EP1174485A1 - Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S - Google Patents
Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S Download PDFInfo
- Publication number
- EP1174485A1 EP1174485A1 EP01401679A EP01401679A EP1174485A1 EP 1174485 A1 EP1174485 A1 EP 1174485A1 EP 01401679 A EP01401679 A EP 01401679A EP 01401679 A EP01401679 A EP 01401679A EP 1174485 A1 EP1174485 A1 EP 1174485A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- gasoline
- sulfur
- approximately
- carried out
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
- C10G47/06—Sulfides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
- C10G67/06—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen
Definitions
- the present invention relates to a method for producing gasolines with low sulfur content, which makes it possible to recover the entire petrol cut containing sulfur, to reduce the total sulfur contents of said petrol cut to very low levels, without appreciable reduction in fuel efficiency, and minimizing the decrease in octane number due to hydrogenation of olefins.
- This process particularly applicable when the essence to be treated is a cracked essence catalytic containing a sulfur content higher than 1000 ppm by weight and / or a olefin content greater than 30% by weight, when the sulfur content sought in the desulphurized petrol is less than 50 ppm by weight.
- the fuel specifications aimed at reducing emissions of pollutants have been severely curtailed for several years. This trend risks to continue in the years to come.
- the most stringent specifications relate in particular to the olefin content, in benzene and sulfur.
- Cracked essences which can represent 30 to 50% of the petrol pool, have the disadvantage of containing significant concentrations of sulfur which fact that the sulfur present in reformulated gasolines is attributable to almost 90%, with cracked gasolines (catalytic cracked gasolines in a fluidized bed or FCC, steam cracking essence, coking essence ). Desulfurization (hydrodesulfurization) of essences and mainly cracking essences is therefore of obvious importance for achieving the specifications.
- Patent application EP-A-0 725 126 describes a hydrodesulfurization process of a cracked gasoline in which the gasoline is separated into a plurality of fractions comprising at least a first fraction rich in compounds easy to desulfurization and a second fraction rich in compounds difficult to desulfurize. Before to carry out this separation, it is first necessary to determine the distribution of products sulfur by means of analyzes.
- French patent application 99 / 02.336 describes a hydrodesulfurization process in 2 steps, a step of hydrogenation of unsaturated sulfur compounds and a step of decomposition of saturated sulfur compounds. There is no elimination of H2S present or formed between these two stages.
- the present invention relates to a three-stage desulfurization process for species. This process is particularly particularly well suited to essences of cracking with a sulfur content greater than 1000 ppm by weight, which wish to lower to a level below 50 ppm weight and preferably below 15 ppm weight.
- step A It moreover optionally and preferably includes a hydrogenation step selective of diene and possibly acetylenic compounds, located before step A.
- the present invention therefore relates to a process for the production of gasolines low sulfur content, which makes it possible to recover the entire petrol cut containing sulfur and olefins, to reduce the sulfur contents in said cut gasoline at very low levels and generally below 50 ppm or even less than 15 ppm by weight, without appreciable reduction in the fuel yield, and minimizing the decrease in octane number due to the hydrogenation of olefins.
- the process is particularly suitable for the treatment of species with high sulfur content, i.e. a sulfur content greater than 1000 ppm by weight and / or when the petrol has a high olefin content, that is to say greater than 30% weight.
- the method according to the invention comprises a treatment of the load on a first catalyst making it possible to at least partially hydrogenate the sulfur-containing compounds aromatics such as for example thiophenic compounds by being placed in conditions where the hydrogenation of olefins is limited on this catalyst (step A), a step making it possible to at least partially remove the H2S from the gasoline thus treated (step B), then a third treatment on at least one catalyst making it possible to decompose at least partially the saturated sulfur compounds with limited hydrogenation of olefins (step C).
- step C is carried out on a sequence of catalysts, for example the sequence described in the application for patent 99 / 02.336 while respecting the criteria concerning the H2S concentration at the entry of the third step according to the present invention.
- the charge of the process according to the invention is a petrol cut containing sulfur and olefins, preferably a gasoline cut from a unit of cracked, and preferably a gasoline coming mainly from a unit of catalytic cracking.
- the treated essence can also be a mixture of essences from different conversion processes such as steam cracking processes, coking or visbreaking (visbreaking according to Anglo-Saxon terminology) or even gasolines directly from the distillation of petroleum products.
- the essences with high olefin concentrations are particularly suitable to be subjected to the process according to the invention.
- the sulfur species contained in the charges treated by the process of the invention may be mercaptans or heterocyclic compounds, such as by for example thiophenes or alkyl thiophenes, or heavier compounds, such as for example benzothiophene or dibenzothiophene.
- heterocyclic compounds unlike mercaptans, cannot be eliminated by conventional extraction processes. These sulfur compounds are therefore eliminated by the process according to the invention which leads to their decomposition at least partial in hydrocarbons and H2S.
- the sulfur content of gasoline cuts produced by catalytic cracking depends on the sulfur content of the feed treated with FCC, as well as the point end of the cut.
- the sulfur contents of an entire cut gasoline, especially those from the FCC are greater than 100 ppm by weight and most of the time greater than 500 ppm by weight.
- sulfur contents are often greater than 1000 ppm by weight, they can even in some cases reach values of on the order of 4000 to 5000 ppm by weight.
- Essences particularly suitable for the process according to the invention therefore contain olefin concentrations which are generally understood between 5 and 60% by weight.
- the gasoline treated in the process according to the invention preferably contains more than 30% by weight of olefins.
- Species can also contain significant concentrations of diolefins, ie diolefin concentrations of up to 15% by weight. Generally the content of diolefins is between 0.1 and 10% by weight. When the diolefin content is greater than 1% by weight or even greater than 0.5% by weight, the gasoline can, before undergoing steps A, B and C of the process according to the invention, be subjected to a selective hydrogenation treatment aimed at hydrogenating at least in part of the diolefins present in said essence.
- Gasoline can also naturally contain nitrogen compounds.
- the gasoline nitrogen concentration is generally less than 1000 ppm weight and is generally between 20 and 500 ppm by weight.
- This essence preferably contains a sulfur content greater than 1000 ppm weight.
- the range of boiling points typically extends from about the boiling points of hydrocarbons with 5 carbon atoms (C5) up to approximately 250 ° C.
- the end point of the petrol cut depends on the refinery from which it comes and market constraints, but generally remains within the limits indicated above. In some cases, and in order to optimize the configuration of the process, it can be advantageous to subject the essence to different treatments before submitting it to the method according to the invention. Gasoline can, for example, undergo splitting or any other treatment before being subjected to the process according to the invention without these processing does not limit the scope of the invention.
- the method according to the invention firstly comprises a treatment (step A) of the gasoline on a catalyst making it possible to at least partially hydrogenate unsaturated sulfur compounds such as for example thiophenic compounds, into saturated compounds such as by example thiophanes (or thiacyclopentane) or mercaptans according to a succession of reactions described below:
- This hydrogenation reaction can be carried out on a hydrotreating catalyst (hydrodesulfurization) conventional comprising a group VIII metal and a metal of the Vlb group partly in the form of sulphides.
- a hydrotreating catalyst hydrodesulfurization
- the operating conditions are adjusted in order to be able to at least partially hydrogenate the thiophenic compounds while limiting the hydrogenation of olefins.
- the thiophenic, benzothiophenic and dibenzothiophenics if they are present in the essence to be treated are generally significantly transformed, i.e. at the end of the first stage, the content of thiophenic, benzothiophenic or dibenzothiophenic compounds represents at most 20% of that of the starting gasoline.
- this step hydrogenation is accompanied by significant production of H2S by decomposition total of sulfur compounds initially present in the feed. The rate of decomposition of sulfur compounds present in the H2S charge, which accompanies the hydrogenation of unsaturated sulfur compounds, is generally greater than 50%.
- the method according to the invention comprises a second step where the H2S is at less partially removed from the effluent obtained at the end of step A.
- This step can be carried out using any technique known to those skilled in the art. She may be performed directly under the conditions in which the effluent is found after step A or after these conditions have been changed to facilitate disposal at least part of the H2S.
- a gas / liquid separation (where the gas concentrates in H2S and the liquid is depleted in H2S and is sent directly to step C), a stripping step of the gasoline practiced on a liquid fraction of the gasoline obtained after step A, a amine washing step, again performed on a liquid fraction of the gasoline obtained after step A, an H2S uptake by an absorbent mass operating on the gaseous or liquid effluent obtained after the step, a separation of the H2S from the effluent gaseous or liquid by a membrane.
- the sulfur content as H2S is generally less than 500 ppm weight compared to petrol of departure.
- this content is reduced, at the end of step B to a value between 0.2 and 300 ppm weight and more preferably at a value between 0.5 and 150 ppm weight.
- step C in which the saturated sulfur compounds are converted into H2S according to the reactions:
- This treatment can be carried out using any catalyst allowing the conversion of saturated sulfur compounds (mainly type compounds thiophanes or mercaptans type). It can for example be done using a catalyst based on nickel, molybdenum, cobalt, tungsten, iron or tin. Preferably, the treatment is carried out in the presence of a catalyst based on nickel, nickel and tin, cobalt and iron, cobalt and tungsten.
- the gasoline thus desulphurized is then optionally stripped, in order to remove the H2S produced in step C.
- step C In the case of petrol with a high sulfur content and / or when the level of transformation of unsaturated sulfur compounds into saturated sulfur compounds is not sufficient in step A, it may be advantageous to perform step C with a sequence of catalysts comprising at least one catalyst described for step A and at least one catalyst described for step C.
- the hydrogenation of dienes is an optional but advantageous step, which makes it possible to eliminate, before hydrodesulfurization, almost all of the dienes present in the gasoline fraction containing sulfur to be treated. It generally takes place in the presence of a catalyst comprising at least one metal from group VIII, preferably chosen from the group formed by platinum, palladium and nickel, and a support.
- a catalyst comprising at least one metal from group VIII, preferably chosen from the group formed by platinum, palladium and nickel, and a support.
- a nickel-based catalyst deposited on an inert support, such as, for example, alumina, silica or a support containing at least 50% alumina.
- This catalyst operates under a pressure of 0.4 to 5 MPa, at a temperature of 50 to 250 ° C, with an hourly space velocity of the liquid from 1 to 10 h -1 .
- Another metal can be combined to form a bimetallic catalyst, such as for example molybdenum or tungsten.
- the choice of operating conditions is particularly important. We will operate on more generally under pressure in the presence of a small quantity of hydrogen excess over the stoichiometric value required to hydrogenate the diolefins.
- the hydrogen and the charge to be treated are injected in updrafts or descendants in a reactor preferably with a fixed catalyst bed.
- the temperature is most generally between about 50 and about 250 ° C, and preferably between 80 and 230 ° C, and more preferably between 120 and 200 ° C.
- the pressure is sufficient to maintain more than 80%, and preferably more than 95% by weight of the gasoline to be treated in the liquid phase in the reactor; it is most generally between 0.4 and 5 MPa and preferably greater than 1 MPa.
- the pressure is advantageously between 1 and 4 MPa.
- the space velocity is between approximately 1 and approximately 10 h -1 , preferably between 4 and 10 h -1 .
- the catalytic cracking gasoline can contain up to a few% by weight of diolefins. After hydrogenation, the diolefin content is generally reduced to less than 3000 ppm, or even less than 2500 ppm and more preferably less than 1500 ppm. In some cases it can be obtained less than 500 ppm. Content dienes after selective hydrogenation can even be reduced to less than 250 ppm.
- the hydrogenation step of the dienes is takes place in a catalytic hydrogenation reactor which includes a zone catalytic reaction crossed by the entire charge and the quantity of hydrogen necessary to carry out the desired reactions.
- step A Hydrogenation of unsaturated sulfur compounds
- This step consists in transforming at least part of the unsaturated compounds sulfur such as thiophenic compounds, in saturated compounds for example in thiophanes (or thiacyclopentanes) or mercaptans.
- This step can, for example, be carried out by passing the feed to be treated, in the presence of hydrogen, over a catalyst containing at least one element from group VIII and / or at least one element from group Vlb at least partially in sulphide form, at a temperature between about 210 ° C and about 350 ° C, preferably between 220 ° C and 320 ° C and more preferably between 220 ° C and 290 ° C, under a pressure generally between about 1 and about 5 MPa, preferably between 1 and 4MPa and more preferably between 1.5 and 3MPa.
- the liquid space velocity is between about 1 and about 10 h -1 (expressed as volume of liquid per volume of catalyst and per hour), preferably between 3 h -1 and 8 h -1.
- the H 2 / HC ratio is between 100 to 600 liters per liter and preferably 300 to 600 liters per liter.
- At least one hydrodesulfurization catalyst comprising at least one element from group VIII (metals of groups 8, 9 and 10 of the new classification, i.e. iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium or platinum) and / or at least one element of group Vlb (metals of group 6 of the new classification, i.e. chromium, molybdenum or tungsten), on a support appropriate.
- group VIII metal of groups 8, 9 and 10 of the new classification
- Vlb metal of group 6 of the new classification
- the element of group VIII, when present, is usually nickel or cobalt
- the Vlb group element, when present, is usually molybdenum or tungsten.
- Combinations such as nickel-molybdenum or cobalt-molybdenum are preferred.
- the catalyst support is usually a porous solid, such as for example an alumina, a silica-alumina or other porous solids, such as, for example, magnesia, silica or titanium oxide, alone or as a mixture with alumina or silica-alumina.
- the catalyst After introduction of the element (s) and possibly shaping of the catalyst (when this step is carried out on a mixture already containing the basic elements), the catalyst is in a first activated stage.
- This activation can correspond either to an oxidation, then to a reduction, or to a reduction direct, or to calcination only.
- the calcination step is generally carried out at temperatures ranging from about 100 to about 600 ° C and preferably between 200 and 450 ° C, under an air flow.
- the catalyst preferably used in this step is a catalyst comprising an alumina-based support whose specific surface is less than 200 m2 / g, and comprising at least one element chosen from the group consisting of cobalt, molybdenum, nickel or tungsten and preferably chosen from the group consisting of cobalt, molybdenum and tungsten. Even more preferably the catalyst according to the invention contains at least cobalt and molybdenum.
- the molybdenum content, when this element is present is preferably greater than 10% by weight expressed as molybdenum oxide
- the cobalt content, when this element is present is preferably greater than 1% by weight (expressed as oxide cobalt II).
- the density of molybdenum in the catalyst expressed in grams of MoO3 per square meter of support, is greater than 0.05 g / m 2 of support.
- the reduction stage is carried out under conditions allowing conversion to minus some of the oxidized forms of the base metal metal. Generally it consists in treating the catalyst under a stream of hydrogen at a temperature at least equal to 300 ° C. The reduction can also be achieved in part by means of chemical reducers.
- the catalyst is preferably used at least in part in its sulfurized form.
- the introduction of sulfur can occur between different activation stages.
- no oxidation step is carried out when the sulfur or a sulfur-containing compound is introduced onto the catalyst.
- the sulfur or a sulfur-containing compound can be introduced ex situ, that is to say outside the reactor where the process according to the invention is carried out, or in situ, that is to say in the reactor used for the method according to the invention.
- the catalyst is preferably reduced under the conditions described above, then sulphurized by passing a charge containing at least one sulfur compound, which once decomposed leads to the fixing of sulfur on the catalyst.
- This charge can be gaseous or liquid, for example hydrogen containing H 2 S, or a liquid containing at least one sulfur-containing compound.
- the sulfur-containing compound is added to the catalyst ex situ.
- a sulfur-containing compound can be introduced onto the catalyst in the optional presence of another compound.
- the catalyst is then dried, then transferred to the reactor used to carry out the process of the invention. In this reactor, the catalyst is then treated under hydrogen in order to transform at least part of the main metal into sulphide.
- a procedure which is particularly suitable for the invention is that described in patents FR-B- 2,708,596 and FR-B- 2,708,597.
- the conversion of unsaturated sulfur compounds is greater than 15% and preferably greater than 50%.
- the hydrogenation rate of olefins is preferably less than 50% and so preferred less than 40% during this step.
- stage B which at least partially eliminates the H2S present at the end of step A.
- H2S concentration is reduced.
- Elimination of H2S can be carried out in various ways, most of which are known to those skilled in the art job.
- We can for example cite the adsorption of part of the H2S contained in the effluent from step A by an absorbent mass based on a metal oxide, preference chosen from the group consisting of zinc oxide, copper oxide or molybdenum oxide.
- This adsorbent mass is preferably regenerable.
- Her regeneration can be carried out continuously or discontinuously for example at by means of a heat treatment under an oxidizing or reducing atmosphere.
- the mass absorbent can be used in a fixed bed or a mobile bed.
- Another method is to perform a membrane separation of H2S using a selective membrane operating on a liquid or gaseous effluent from step A.
- One of the zones of the separation can contain an absorbent mass to promote the transfer of H2S through the wall of the membrane.
- Another method may be to cool the effluent from step A and to produce a gas rich in H2S and a liquid phase depleted in H2S.
- the gas phase can then be treated in an amine washing unit.
- the liquid phase and the gas phase can then be remixed and sent to step C.
- the fraction liquid can also undergo other treatments such as stripping with hydrogen, nitrogen or water vapor, extraction of H2S, washing with amines, washing with a sodium hydroxide solution to reduce its H2S content.
- the saturated sulfur compounds are transformed into presence of hydrogen on a suitable catalyst.
- This transformation is carried out, without hydrogenation of olefins, i.e. during this stage the hydrogenation of olefins is limited to 20% based on the content of the starting gasoline, and preferably, limited to 10% relative to the olefin concentration of the gasoline.
- Catalysts which may be suitable for the invention, without this list being limiting, are catalysts comprising at least one metal chosen from the group consisting of nickel, cobalt, iron, molybdenum and tungsten and. So more preferred the catalysts of this stage are based on nickel. These metals are preferably supported and used in their sulfurized form.
- the metal content of the catalyst used according to the invention is generally between approximately 1 and approximately 60% by weight and preferably between 5 and 20% by weight.
- the catalyst is generally shaped, preferably under in the form of beads, extrudates, pellets, or trilobes.
- Metal can be incorporated into catalyst on the preformed support, it can also be mixed with the support before the shaping step.
- the metal is generally introduced in the form of a precursor salt, generally soluble in water, such as for example nitrates, heptamolybdates. This mode of introduction is not specific to the invention. Other mode of introduction known to the skilled person suitable for the implementation of the invention.
- the catalyst supports used in the process of the invention are generally porous solids chosen from refractory oxides, such as, for example, aluminas, silicas and silica-aluminas, magnesia, as well as titanium oxide and zinc oxide, the latter oxides can be used alone or as a mixture with alumina or silica-alumina.
- the supports are transition aluminas or silicas whose specific surface is between 25 and 350 m 2 / g. Natural compounds (for example kieselguhr or kaolin) can also be suitable as supports for the catalysts of the process according to the invention.
- the catalyst After introduction of the metal and possibly shaping of the catalyst (when this step is carried out with a mixture already containing the base metal), the catalyst is in a first activated stage.
- This activation can correspond either to an oxidation, then to a reduction, either to a direct reduction, or to a calcination only.
- the calcination step is generally carried out at temperatures ranging from approximately 100 to approximately 600 ° C. and preferably between 200 and 450 ° C, under an air flow.
- the reduction step is carried out in conditions for converting at least some of the oxidized forms of the metal metal base. Generally, it consists in treating the catalyst under a flow of hydrogen at a temperature at least equal to 300 ° C.
- the reduction can also be carried out in part by chemical reducers.
- the catalyst is preferably used at least in part in its sulfurized form. This has the advantage of minimizing the risk of hydrogenation of unsaturated compounds such as olefins or aromatic compounds during the start-up phase.
- the introduction of sulfur can occur between different activation stages. Preferably, no oxidation step is carried out when the sulfur or a sulfur-containing compound is introduced onto the catalyst.
- the sulfur or a sulfur-containing compound can be introduced ex situ , that is to say outside the reactor where the process according to the invention is carried out, or in situ , that is to say in the reactor used for the method according to the invention.
- the catalyst is preferably reduced under the conditions described above, then sulphurized by passing a charge containing at least one sulfur compound, which once decomposed leads to the fixing of sulfur on the catalyst.
- This charge can be gaseous or liquid, for example hydrogen containing H 2 S, or a liquid containing at least one sulfur-containing compound.
- the sulfur-containing compound is added to the catalyst ex situ.
- a sulfur-containing compound can be introduced onto the catalyst in the optional presence of another compound.
- the catalyst is then dried, then transferred to the reactor used to carry out the process according to the invention. In this reactor, the catalyst is then treated under hydrogen in order to transform at least part of the main metal into sulphide.
- a procedure which is particularly suitable for the invention is that described in patents FR-B-2 708 596 and FR-B-2 708 597.
- the sulfur content of the catalyst is generally understood between 0.5 and 25% by weight, preferably between 4 and 20% by weight.
- the purpose of the hydrotreatment carried out during this stage is to convert the saturated sulfur compounds in gasoline which has already undergone a preliminary treatment into H 2 S, so as to obtain an effluent which will meet the desired specifications in terms of content. into sulfur compounds.
- the gasoline thus obtained has a slightly lower octane number, due to the partial but inevitable saturation of the olefins, than that of the gasoline to be treated. However, this saturation is limited.
- the operating conditions of the catalyst making it possible to decompose the saturated sulfur compounds in H2S should be adjusted so as to reach the desired level of hydrodesulfurization, and in order to minimize the loss of octane resulting from saturation of olefins.
- the second catalyst (catalyst of step C) used in the process according to the invention generally makes it possible to convert only at most 20% of the olefins, preferably at most 10% of the olefins.
- the treatment aimed at decomposing the saturated sulfur compounds during the first step of the process (step A) is carried out in the presence of hydrogen, with the catalyst based on a metal, such as more preferably nickel, at a temperature between about 200 ° C and about 350 ° C, preferably between 250 ° C and 350 ° C, more preferably between 260 ° C and 320 ° C, under a low to moderate pressure generally between about 0.5 and about 5 MPa, preferably between 0.5 MPa and 3 MPa, more preferably between 1 and 3 MPa.
- the space velocity of the liquid is generally between approximately 0.5 and approximately 10 h -1 (expressed in volume of liquid per volume of catalyst and per hour), preferably between 1 and 8 h -1 .
- the H 2 / HC ratio is adjusted as a function of the desired hydrodesulfurization rates in the range generally between approximately 100 and approximately 600 liters per liter, preferably between 100 and 300 liters per liter. All or part of this hydrogen can come from stage A or from a recycling of the unconsumed hydrogen coming from stage C.
- One of the possibilities of implementing the method according to the invention can by example consist of passing the gasoline to be hydrotreated through a reactor containing a catalyst allowing, at least in part, the hydrogenation of the compounds unsaturated sulfur, such as for example thiophenic compounds, in compounds saturated with sulfur (step A) and removal of H2S (step B), then through a reactor containing a catalyst for decomposing the saturated compounds of the sulfur in H2S (step C).
- the H2S removal step can also be performed in the reactor of step C or partly in each of the 2 reactors.
- the elimination stage can also be partially or entirely located outside reactors of stages A and C.
- the two catalysts of the stages A and C are placed in series in the same reactor and an adsorbent mass of the H2S is placed between the two catalysts in order to at least partially eliminate the H2S product in the first catalytic zone (step B).
- the absorbent mass, once saturated with H2S can be either replaced or regenerated. In the latter case regeneration can be carried out discontinuously or continuously depending on the adsorbent mass used.
- the two catalytic zones can operate in different conditions of pressure, VVH, temperature, H2 / charge ratio. of the systems can be implemented to dissociate the operating conditions of the two reaction zones.
- step A it can also be envisaged to carry out a sequence which consists in passing the gasoline to be hydrotreated through a reactor containing a catalyst allowing, at least in part, the hydrogenation of unsaturated sulfur compounds, saturated sulfur compounds (step A), then to be carried out separately or in a simultaneous H2S removal step, then perform step C in a reactor containing a chain of catalysts comprising at least one catalyst of the same type as that used in the first step of the process (step A) and at least a catalyst for decomposing saturated sulfur compounds into H2S (step C).
- This charge is pretreated by means of a selective hydrogenation step.
- the hydrogenation of diolefins is carried out on an HR945® catalyst based on nickel and molybdenum, sold by the company Procatalyse.
- the test is performed in a continuous reactor of the crossed bed type, the charge and the hydrogen being introduced by the bottom of the reactor.
- 60 ml of catalyst are introduced into the reactor after having been previously sulfurized ex situ for 4 hours, under a pressure of 3.4 Mpa, at 350 ° C, in contact with a charged load of 2% by weight of sulfur in the form of dimethylsisulfide in n-heptane.
- the catalyst is then transferred to the reactor where the hydrogenation of diolefins is carried out.
- the charge contains // (ppm or% by weight) of dienes
- a catalyst A is obtained by impregnation "without excess solution" of a transition alumina, in the form of beads, with a specific surface 130 m2 / g and a pore volume 0.9 ml / g, with an aqueous solution containing molybdenum and cobalt in the form of ammonium heptamolybdate and cobalt nitrate.
- the catalyst is then dried and calcined in air at 500 ° C.
- the cobalt and molybdenum content of this sample is 3% CoO and 10% MoO3.
- 25 ml of catalyst A are placed in a tubular hydrodesulfurization reactor with a fixed bed.
- the catalyst is first sulfurized by treatment for 4 hours under a pressure of 3.4 MPa at 350 ° C, in contact with a charge consisting of 2% sulfur in the form of dimethyldisulfide in n-heptane.
- the temperature of the catalytic zone is between 280 ° C and 320 ° C.
- the hydrogenated gasoline under the conditions of Example 1 is hydrodesulfurized.
- a second catalyst (catalyst C) is prepared from a transition alumina of 140 m 2 / g in the form of beads of 2 mm in diameter. The pore volume is 1 ml / g of support. 1 kilogram of support is impregnated with 1 liter of nickel nitrate solution. The catalyst is then dried at 120 ° C and calcined in an air stream at 400 ° C for one hour. The nickel content of the catalyst is 20% by weight. 25 ml of catalyst A of Example 1 and 50 ml of catalyst C are placed in the same hydrodesulfurization reactor, so that the feed to be treated (heavy fraction) first meets catalyst A and then the catalyst C. The catalysts are first of all sulfurized by treatment for 4 hours under a pressure of 3.4 MPa at 350 ° C., in contact with a charge consisting of 2% of sulfur in the form of dimethyldisulphide in n-heptane .
- the temperature of the catalytic zone comprising catalyst A is from 250 ° C to 290 ° C, the temperature of the catalytic zone containing catalyst C is 330 ° C.
- the results obtained under these conditions are reported in Table 3.
- Temperature of catalytic zone A (° C) Sulfur content of desulphurized petrol (ppm) Olefin content of desulfurized gasoline (% by weight) Desulfurized gasoline octane (RON + MON) / 2 270 ° C. 50 20.4 82.3 290 ° C. 13 15.6 78.7
- Example 4 Hydrodesulfurization according to steps A, B and C of the process according to the invention.
- the hydrogenated gasoline under the conditions of Example 1 is hydrodesulfurized.
- a test is carried out under the same conditions as those of Example 3, except that the two catalysts are placed in two different reactors and that the H2S is separated between these two reactors.
- the effluent from the first reactor is cooled to room temperature, the liquid phase and the gas phase are separated, the H2S from the liquid phase is stripped by a stream of nitrogen making it possible to remove the H2S to a content of 50 ppm weight relative to the liquid.
- the liquid thus obtained is then warmed to the temperature of the second catalyst and reinjected in the presence of hydrogen introduced with a hydrogen flow rate of 330 I / I of charge corresponding approximately to the flow of hydrogen entering the second reactor of the example. 3.
- Example 5 Another mode of hydrodesulfurization according to steps A, B and C of method according to the invention.
- the hydrogenated gasoline under the conditions of Example 1 is hydrodesulfurized. 25 ml of catalyst A are placed in a tubular reactor. This reactor is coupled with a second hydrodesulfurization reactor containing 13 ml of catalyst A example 1 and 25 ml of catalyst C of example 3, so that the charge first meets catalyst A then catalyst C.
- the effluent from the first reactor is cooled to room temperature, the liquid phase and the gas phase are separated, the H2S of the liquid phase is stripped by a stream of nitrogen allowing eliminate H2S up to a content of 50 ppm by weight relative to the liquid.
- the liquid thus obtained is then heated to the temperature of the second reactor and reinjected into presence of hydrogen introduced with a flow rate and under a pressure corresponding to that of the second reactor of Example 2.
- the temperature of the first reactor is indicated in table 5.
- the temperature of the catalyst A present in the second zone is brought to 270 ° C. and the temperature of the catalyst C present in the second reactor is brought to 330 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Abstract
Description
- de pouvoir atteindre des taux de désulfuration de l'essence plus élevées, c'est à dire des teneurs en soufre résiduelles beaucoup plus basse et ce notamment lorsque l'essence à traiter présente une teneur élevée en soufre c'est à dire une teneur en soufre supérieure à 1000 ppm et/ou une teneur en oléfine supérieure à 30 % poids;
- d'opérer l'étape C dans des conditions de températures beaucoup plus douces, ce qui présente des avantages au niveau du procédé notamment en permettant une intégration thermique mieux optimisée entre la section réactionnelle de l'étape A et de l'étape C.
- chromatographie en phase gaz (CPG) pour les constituants hydrocarbonés ;
- méthode NF M 07052 pour le soufre total ;
- méthode NF EN 25164/M 07026-2/ISO 5164/ASTM D 2699 pour l'indice d'octane recherche ;
- méthode NF EN 25163/M 07026-1/ISO 5163/ASTM D 2700 pour l'indice d'octane moteur.
Caractéristiques de la charge utilisée | |
Charge | |
Densité | 0,78 |
Point initial (°C) | 63°C |
Point final (°C) | 250°C |
Teneur en oléfines (% pds) | 31.3 |
Teneur en diènes | 1,4 |
S total (ppm) | 2062 |
RON | 91 |
MON | 80 |
(RON + MON)/2 | 85.5 |
Un catalyseur A est obtenu par imprégnation « sans excès de solution » d'une alumine de transition, se présentant sous forme de billes, de surface spécifique 130 m2/g et de volume poreux 0,9 ml/g, par une solution aqueuse contenant du molybdène et du cobalt sous forme d'heptamolybdate d'ammonium et de nitrate de cobalt . Le catalyseur est ensuite séché et calciné sous air à 500°C. La teneur en cobalt et en molybdène de cette échantillon est de 3 % de CoO et 10 % de MoO3.
25 ml du catalyseur A sont placés dans un réacteur d'hydrodésulfuration tubulaire à lit fixe. Le catalyseur est tout d'abord sulfuré par traitement pendant 4 heures sous une pression de 3,4 MPa à 350°C, au contact d'une charge constituée de 2% de soufre sous forme de diméthyldisulfure dans du n-heptane.
Les conditions opératoires de l'hydrodésulfuration sont les suivantes : VVH = 4 h-1 (VVH = volume de charge traité par heure et par volume de catalyseur), H2/HC = 360 I/I, P = 2,0 MPa. La température de la zone catalytique est entre 280°C et 320°C. Les résultats obtenus sont présentés dans le tableau 2
Température de la zone catalytique (°C) | Teneur en Soufre de l'essence désulfurée (ppm) | Teneur en oléfine de l'essence désulfurée (% poids) | Octane de l'essence désulfurée (RON+MON)/2 |
280°C | 184 | 23,9 | 83.5 |
300°C | 90 | 20,2 | 82.4 |
305°C | 50 | 17,1 | 80.4 |
320°C | 12 | 13,6 | 76.5 |
Les résultats obtenus dans ces conditions sont reportés dans le tableau 3.
Température de la zone catalytique A (°C) | Teneur en Soufre de l'essence désulfurée (ppm) | Teneur en oléfine de l'essence désulfurée (% poids) | Octane de l'essence désulfurée (RON+MON)/2 |
270°C | 50 | 20,4 | 82.3 |
290°C | 13 | 15,6 | 78.7 |
Les conditions de sulfuration et de test correspondent à celles de l'exemple 3.
Les résultats obtenus dans ces conditions sont reportés dans le tableau 4.
Température de la zone catalytique A (°C) | Teneur en Soufre de l'essence désulfurée (ppm) | Teneur en oléfine de l'essence désulfurée (% poids) | Octane de l'essence désulfurée (RON+MON)/2 |
260°C | 48 | 21,3 | 82.5 |
280°C | 12 | 16,2 | 79.4 |
Température de la zone catalytique A (°C) | Teneur en Soufre de l'essence désulfurée (ppm) | Teneur en oléfine de l'essence désulfurée (% poids) | Octane de l'essence désulfurée (RON+MON)/2 |
260°C | 49 | 23,6 | 83.3 |
280°C | 10 | 20,2 | 82.3 |
Claims (13)
- Procédé de production d'essence à faible teneur en soufre caractérisé en ce qu'il comprend au moins trois étapes :A) une première étape dans laquelle les composés soufrés présents dans l'essence sont au moins partiellement transformés en H2S et en composés soufrés saturés,B) une deuxième étape visant à éliminer l'H2S de l'essence produite dans l'étape A,C) une troisième étape dans laquelle les composés soufrés saturés restant dans l'essence sont transformés en H2S.
- Procédé selon la revendication 1, dans lequel une étape de prétraitement visant à hydrogéner les dioléfines de la charge est effectuée avant l'étape A.
- Procédé selon l'une quelconques des revendications 1 ou 2 dans lequel la charge est une essence de craquage catalytique.
- Procédé selon l'une quelconques des revendications 1 à 3 dans lequel l'étape A est effectuée par passage de la charge, en présence d'hydrogène, sur un catalyseur comprenant au moins un élément du groupe VIII et/ou au moins un élément du groupe Vlb, au moins en partie sous forme sulfure.
- Procédé selon la revendication 4 dans lequel l'élément du groupe VIII, lorsqu'il est présent, est le nickel ou le cobalt, et l'élément du groupe Vlb, lorsqu'il est présent, est le molybdène ou le tungstène.
- Procédé selon la revendication 5 dans lequel l'étape A est effectuée à une température comprise entre environ 210°C et environ 350°C, sous une pression généralement comprise entre environ 1 et environ 5 MPa, avec une vitesse spatiale du liquide comprise entre environ 1 et environ 10 h-1, et un rapport H2/HC compris entre environ 100 et environ 600 litres.
- Procédé selon l'une des revendications 1 à 6 dans lequel l'étape C est effectuée en présence d'un catalyseur comprenant au moins un métal de base choisi dans le groupe formé par le nickel, le cobalt, le fer, le molybdène, le tungstène.
- Procédé selon la revendication 7 dans lequel la teneur en métal de base est comprise entre 1 et 60 % poids et ledit métal est sulfuré.
- Procédé selon l'une des revendications 1 à 8 dans lequel l'étape C est effectuée à une température comprise entre environ 200°C et environ 350°C, une pression comprise entre environ 0,5 et environ 5 MPa, une vitesse spatiale du liquide comprise entre environ 0,5 et environ 10 h-1 et un rapport H2/HC entre environ 100 et environ 600 litres par litres.
- Procédé selon l'une quelconque des revendications 1 à 9 mis en oeuvre au moyen d'au moins deux réacteurs séparés, réacteur de prétraitement de la charge non compris, le premier réacteur contenant le catalyseur nécessaire à l'étape A et le deuxième au moins celui nécessaire à l'étape B.
- Procédé selon l'une quelconque des revendications 1 à 9 mis en oeuvre au moyen d'au moins deux réacteurs séparés, réacteur de prétraitement de la charge non compris, le premier réacteur contenant au moins un partie du catalyseur nécessaire à l'étape A et le deuxième au moins l'autre partie de celui nécessaire à l'étape A et celui nécessaire à l'étape B.
- Procédé selon l'une quelconque des revendications 1 à 11, dans lequel l'étape B est d'élimination d'H2S est réalisée par adsorption en présence d'une masse adsorbante choisie dans le groupe constitué par l'oxyde de zinc, l'oxyde de cuivre et l'oxyde de molybdène.
- Procédé selon la revendication 1 à 11 dans lequel l'H2S est séparé au moyen d'une membrane.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0008860 | 2000-07-06 | ||
FR0008860A FR2811328B1 (fr) | 2000-07-06 | 2000-07-06 | Procede comprenant deux etapes d'hydrodesulfuration d'essence et une elimination intermediaire de l'h2s forme au cours de la premiere etape |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1174485A1 true EP1174485A1 (fr) | 2002-01-23 |
EP1174485B1 EP1174485B1 (fr) | 2010-10-27 |
Family
ID=8852221
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01401679A Expired - Lifetime EP1174485B1 (fr) | 2000-07-06 | 2001-06-25 | Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S |
Country Status (9)
Country | Link |
---|---|
US (1) | US6972086B2 (fr) |
EP (1) | EP1174485B1 (fr) |
JP (1) | JP2002047497A (fr) |
KR (1) | KR100807159B1 (fr) |
CA (1) | CA2352408C (fr) |
DE (1) | DE60143332D1 (fr) |
ES (1) | ES2352835T3 (fr) |
FR (1) | FR2811328B1 (fr) |
MX (1) | MXPA01006856A (fr) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101619234A (zh) * | 2008-07-04 | 2010-01-06 | 中国石油化工股份有限公司 | 一种轻质汽油生产低硫汽油的方法 |
EP2606969A1 (fr) | 2011-12-21 | 2013-06-26 | IFP Energies nouvelles | Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des esences de craquage catalytique |
EP2644683A1 (fr) | 2012-03-29 | 2013-10-02 | IFP Energies nouvelles | Procédé d'hydrogenation selective d'une essence |
WO2014013154A1 (fr) | 2012-07-17 | 2014-01-23 | IFP Energies Nouvelles | Procede de desulfuration d'une essence |
EP2796196A1 (fr) | 2013-04-26 | 2014-10-29 | IFP Energies nouvelles | Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des essences |
EP2816094A1 (fr) | 2013-06-19 | 2014-12-24 | IFP Energies nouvelles | Procédé de production d'une essence à basse teneur en soufre et en mercaptans |
WO2016165853A1 (fr) | 2015-04-15 | 2016-10-20 | IFP Energies Nouvelles | Procede d'adoucissement en composes du type sulfure d'une essence olefinique |
EP3153564A1 (fr) | 2015-10-07 | 2017-04-12 | IFP Energies nouvelles | Procédé de désulfuration de naphta craqué |
EP3228683A1 (fr) | 2016-04-08 | 2017-10-11 | IFP Énergies nouvelles | Procede de traitement d'une essence |
CN107335445A (zh) * | 2017-08-17 | 2017-11-10 | 江苏天东新材料科技有限公司 | 一种双功能精脱硫剂的制备方法和应用 |
EP3312260A1 (fr) | 2016-10-19 | 2018-04-25 | IFP Energies nouvelles | Procede d'hydrodesulfuration d'une essence olefinique |
WO2019197351A1 (fr) | 2018-04-11 | 2019-10-17 | IFP Energies Nouvelles | Masse de captation de l'arsenic à base de nanoparticules de sulfure de nickel |
WO2019197352A1 (fr) | 2018-04-11 | 2019-10-17 | IFP Energies Nouvelles | Procédé de captation de l'arsenic mettant en œuvre une masse de captation à base de particules d'oxyde de nickel |
FR3090005A1 (fr) | 2018-12-18 | 2020-06-19 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur régénéré. |
FR3089824A1 (fr) | 2018-12-18 | 2020-06-19 | IFP Energies Nouvelles | Procédé de réjuvénation d’un catalyseur usé et régénéré d’un procédé d'hydrodésulfuration d'essences. |
FR3090006A1 (fr) | 2018-12-18 | 2020-06-19 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur réjuvéné à un composé organique. |
FR3089825A1 (fr) | 2018-12-18 | 2020-06-19 | IFP Energies Nouvelles | Procédé de réjuvénation d’un catalyseur usé non régénéré d’un procédé d'hydrodésulfuration d'essences. |
WO2021013528A1 (fr) | 2019-07-23 | 2021-01-28 | IFP Energies Nouvelles | Procédé de production d'une essence a basse teneur en soufre et en mercaptans |
WO2021013526A1 (fr) | 2019-07-23 | 2021-01-28 | IFP Energies Nouvelles | Procédé de production d'une essence a basse teneur en soufre et en mercaptans |
WO2021013527A1 (fr) | 2019-07-23 | 2021-01-28 | IFP Energies Nouvelles | Procédé de production d'une essence a basse teneur en soufre et en mercaptans |
WO2021013525A1 (fr) | 2019-07-23 | 2021-01-28 | IFP Energies Nouvelles | Procede de traitement d'une essence par separation en trois coupes |
FR3104460A1 (fr) | 2019-12-17 | 2021-06-18 | IFP Energies Nouvelles | Masse de captation d'impuretés organométalliques préparée par la voie sels fondus |
FR3104602A1 (fr) | 2019-12-17 | 2021-06-18 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de finition en présence d’un catalyseur obtenu par la voie sels fondus |
FR3104459A1 (fr) | 2019-12-17 | 2021-06-18 | IFP Energies Nouvelles | Masse de captation de mercaptans préparée par voie sels fondus |
FR3106506A1 (fr) | 2020-01-28 | 2021-07-30 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de finition en présence d’un catalyseur obtenu par additivation |
WO2021185658A1 (fr) | 2020-03-20 | 2021-09-23 | IFP Energies Nouvelles | Procédé de production d'une essence a basse teneur en soufre et en mercaptans |
WO2022112093A1 (fr) | 2020-11-27 | 2022-06-02 | IFP Energies Nouvelles | Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur contenant un materiau graphitique caracterise par son rapport h/c |
WO2022112094A1 (fr) | 2020-11-27 | 2022-06-02 | IFP Energies Nouvelles | Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur ayant une porosite bimodale particuliere |
WO2022112081A1 (fr) | 2020-11-27 | 2022-06-02 | IFP Energies Nouvelles | Procede d'hydrodesulfuration de finition en presence d'un catalyseur sur support meso-macroporeux |
WO2022112080A1 (fr) | 2020-11-27 | 2022-06-02 | IFP Energies Nouvelles | Procede de captation d'impuretes organometalliques en presence d'une masse de captation sur support meso-macroporeux |
WO2022112095A1 (fr) | 2020-11-27 | 2022-06-02 | IFP Energies Nouvelles | Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur contenant un materiau graphitique caracterise par spectroscopie rmn 13c mas |
FR3116740A1 (fr) | 2020-11-27 | 2022-06-03 | IFP Energies Nouvelles | Procédé de préparation d’un catalyseur d’hydrodésulfuration d’une coupe essence comprenant un métal du groupe VIB, un métal du groupe VIII et du carbone graphitique |
FR3116828A1 (fr) | 2020-11-27 | 2022-06-03 | IFP Energies Nouvelles | Procédé de captation d'impuretés organométalliques mettant en œuvre une masse de captation à base de cobalt et de molybdène et contenant du carbone |
WO2023110730A1 (fr) | 2021-12-17 | 2023-06-22 | IFP Energies Nouvelles | Procede de captation de mercaptans mettant en œuvre une masse de captation macro et mesoporeuse |
WO2023110733A1 (fr) | 2021-12-17 | 2023-06-22 | IFP Energies Nouvelles | Procede de captation de mercaptans mettant en œuvre une masse de captation ayant subi une etape de passivation au co2 |
WO2023110728A1 (fr) | 2021-12-17 | 2023-06-22 | IFP Energies Nouvelles | Procédé de captation de mercaptans mettant en œuvre une masse de captation mésoporeuse |
WO2023110732A1 (fr) | 2021-12-17 | 2023-06-22 | IFP Energies Nouvelles | Procede de captation de mercaptans avec selection de temperature et rapport en ni/nio specifique |
FR3130831A1 (fr) | 2021-12-20 | 2023-06-23 | IFP Energies Nouvelles | Procédé de production d'une coupe essence légère à basse teneur en soufre |
FR3130834A1 (fr) | 2021-12-20 | 2023-06-23 | IFP Energies Nouvelles | Procédé de traitement d'une essence contenant des composés soufrés |
FR3130835A1 (fr) | 2021-12-20 | 2023-06-23 | IFP Energies Nouvelles | Procédé de traitement d'une essence contenant des composés soufrés comprenant une étape de dilution |
FR3142486A1 (fr) | 2022-11-30 | 2024-05-31 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de finition des essences mettant en œuvre un enchaînement de catalyseurs |
FR3142362A1 (fr) | 2022-11-30 | 2024-05-31 | IFP Energies Nouvelles | Catalyseur d’hydrodésulfuration de finition comprenant un métal du groupe VIB, un métal du groupe VIII et du phosphore sur support alumine alpha |
FR3142487A1 (fr) | 2022-11-30 | 2024-05-31 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de finition des essences mettant en œuvre un catalyseur à base de métaux du groupe VIB et VIII et du phosphore sur support alumine à faible surface spécifique |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2470079A1 (fr) * | 2001-12-13 | 2003-06-26 | Lehigh University | Desulfuration oxydative d'hydrocarbures soufres |
ATE359119T1 (de) * | 2002-09-23 | 2007-05-15 | Shell Int Research | Katalysatorteilchen und ihre verwendung bei der entschwefelung |
US7785461B2 (en) * | 2004-11-10 | 2010-08-31 | Petroleo Brasileiro S.A. - Petrobras | Process for selective hydrodesulfurization of naphtha |
US7419586B2 (en) * | 2004-12-27 | 2008-09-02 | Exxonmobil Research And Engineering Company | Two-stage hydrodesulfurization of cracked naphtha streams with light naphtha bypass or removal |
US20060151359A1 (en) * | 2005-01-13 | 2006-07-13 | Ellis Edward S | Naphtha desulfurization process |
FR2888583B1 (fr) * | 2005-07-18 | 2007-09-28 | Inst Francais Du Petrole | Nouveau procede de desulfuration d'essences olefiniques permettant de limiter la teneur en mercaptans |
CN101134914B (zh) * | 2006-08-31 | 2012-02-15 | 中国石油化工股份有限公司 | 一种烃油在固定床反应器内临氢催化吸附脱硫的方法 |
FR2908781B1 (fr) * | 2006-11-16 | 2012-10-19 | Inst Francais Du Petrole | Procede de desulfuration profonde des essences de craquage avec une faible perte en indice d'octane |
JP5123635B2 (ja) * | 2007-10-12 | 2013-01-23 | Jx日鉱日石エネルギー株式会社 | ガソリン基材の製造方法及びガソリン |
CA2683148A1 (fr) * | 2009-10-07 | 2011-04-07 | Lyle E. Carnegie | Appareillage et procede de production d'hydrogene |
FR3020376B1 (fr) * | 2014-04-28 | 2017-10-20 | Ifp Energies Now | Procede de production d'une essence a basse temperature en soufre et en marcaptans. |
FR3007416B1 (fr) * | 2013-06-19 | 2018-03-23 | IFP Energies Nouvelles | Procede de production d'une essence a basse teneur en soufre et en mercaptans |
FR3014896B1 (fr) | 2013-12-18 | 2018-07-27 | IFP Energies Nouvelles | Procede d'hydrodesulfuration de coupes d'hydrocarbures |
KR101590107B1 (ko) | 2014-10-17 | 2016-01-29 | 고등기술연구원연구조합 | 습식탈황공정용 부유황 분리 재생 구조체 |
FR3056599B1 (fr) * | 2016-09-26 | 2018-09-28 | IFP Energies Nouvelles | Procede de traitement d'une essence par separation en trois coupes. |
WO2018104056A1 (fr) * | 2016-12-06 | 2018-06-14 | Haldor Topsøe A/S | Procédé pour l'élimination sélective de dioléfines à partir d'un flux gazeux |
US20210309923A1 (en) * | 2018-05-30 | 2021-10-07 | Haldor Topsøe A/S | Process for desulfurization of hydrocarbons |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994022980A1 (fr) * | 1993-04-02 | 1994-10-13 | Mobil Oil Corporation | Procede d'amelioration de la qualite de l'essence |
EP0755995A1 (fr) * | 1995-07-26 | 1997-01-29 | Mitsubishi Oil Co., Ltd. | Procédé de désulfuration d'essence craquée catalytiquement |
WO1997003150A1 (fr) * | 1995-07-13 | 1997-01-30 | Engelhard De Meern B.V. | Procede d'hydrogenation d'une alimentation en hydrocarbures contenant du soufre thiophenique |
WO1998007805A2 (fr) * | 1996-08-23 | 1998-02-26 | Exxon Chemical Patents Inc. | Elimination d'heteroatomes par sorption a contre-courant |
EP0870817A1 (fr) * | 1997-04-11 | 1998-10-14 | Akzo Nobel N.V. | Procédé pour l'hydrodésulphuration poussé de charges hydrocarbonées |
EP1031622A1 (fr) * | 1999-02-24 | 2000-08-30 | Institut Francais Du Petrole | Procédé de production d'essences à faible teneur en soufre |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5679183A (en) * | 1979-12-03 | 1981-06-29 | Jgc Corp | Low-temperature steam reformation |
US4442223A (en) * | 1979-12-17 | 1984-04-10 | Mobil Oil Corporation | Catalyst and catalyst support compositions |
US4925549A (en) * | 1984-10-31 | 1990-05-15 | Chevron Research Company | Sulfur removal system for protection of reforming catalyst |
US4952306A (en) * | 1989-09-22 | 1990-08-28 | Exxon Research And Engineering Company | Slurry hydroprocessing process |
US5114562A (en) * | 1990-08-03 | 1992-05-19 | Uop | Two-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons |
JPH0734073A (ja) * | 1993-07-23 | 1995-02-03 | Jgc Corp | 石油類の水素化処理方法及び水素化処理装置 |
FR2753717B1 (fr) * | 1996-09-24 | 1998-10-30 | Procede et installation pour la production d'essences de craquage catalytique a faible teneur en soufre | |
US6083378A (en) * | 1998-09-10 | 2000-07-04 | Catalytic Distillation Technologies | Process for the simultaneous treatment and fractionation of light naphtha hydrocarbon streams |
FR2785908B1 (fr) * | 1998-11-18 | 2005-12-16 | Inst Francais Du Petrole | Procede de production d'essences a faible teneur en soufre |
US6303020B1 (en) * | 2000-01-07 | 2001-10-16 | Catalytic Distillation Technologies | Process for the desulfurization of petroleum feeds |
US6444118B1 (en) * | 2001-02-16 | 2002-09-03 | Catalytic Distillation Technologies | Process for sulfur reduction in naphtha streams |
-
2000
- 2000-07-06 FR FR0008860A patent/FR2811328B1/fr not_active Expired - Lifetime
-
2001
- 2001-06-25 DE DE60143332T patent/DE60143332D1/de not_active Expired - Lifetime
- 2001-06-25 EP EP01401679A patent/EP1174485B1/fr not_active Expired - Lifetime
- 2001-06-25 ES ES01401679T patent/ES2352835T3/es not_active Expired - Lifetime
- 2001-07-03 US US09/897,757 patent/US6972086B2/en not_active Expired - Lifetime
- 2001-07-04 CA CA2352408A patent/CA2352408C/fr not_active Expired - Lifetime
- 2001-07-04 MX MXPA01006856A patent/MXPA01006856A/es active IP Right Grant
- 2001-07-06 KR KR1020010040368A patent/KR100807159B1/ko active IP Right Grant
- 2001-07-06 JP JP2001205906A patent/JP2002047497A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994022980A1 (fr) * | 1993-04-02 | 1994-10-13 | Mobil Oil Corporation | Procede d'amelioration de la qualite de l'essence |
WO1997003150A1 (fr) * | 1995-07-13 | 1997-01-30 | Engelhard De Meern B.V. | Procede d'hydrogenation d'une alimentation en hydrocarbures contenant du soufre thiophenique |
EP0755995A1 (fr) * | 1995-07-26 | 1997-01-29 | Mitsubishi Oil Co., Ltd. | Procédé de désulfuration d'essence craquée catalytiquement |
WO1998007805A2 (fr) * | 1996-08-23 | 1998-02-26 | Exxon Chemical Patents Inc. | Elimination d'heteroatomes par sorption a contre-courant |
EP0870817A1 (fr) * | 1997-04-11 | 1998-10-14 | Akzo Nobel N.V. | Procédé pour l'hydrodésulphuration poussé de charges hydrocarbonées |
EP1031622A1 (fr) * | 1999-02-24 | 2000-08-30 | Institut Francais Du Petrole | Procédé de production d'essences à faible teneur en soufre |
Cited By (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101619234A (zh) * | 2008-07-04 | 2010-01-06 | 中国石油化工股份有限公司 | 一种轻质汽油生产低硫汽油的方法 |
CN101619234B (zh) * | 2008-07-04 | 2012-09-12 | 中国石油化工股份有限公司 | 一种轻质汽油生产低硫汽油的方法 |
EP2606969A1 (fr) | 2011-12-21 | 2013-06-26 | IFP Energies nouvelles | Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des esences de craquage catalytique |
EP2644683A1 (fr) | 2012-03-29 | 2013-10-02 | IFP Energies nouvelles | Procédé d'hydrogenation selective d'une essence |
WO2014013154A1 (fr) | 2012-07-17 | 2014-01-23 | IFP Energies Nouvelles | Procede de desulfuration d'une essence |
EP2796196A1 (fr) | 2013-04-26 | 2014-10-29 | IFP Energies nouvelles | Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des essences |
EP2816094A1 (fr) | 2013-06-19 | 2014-12-24 | IFP Energies nouvelles | Procédé de production d'une essence à basse teneur en soufre et en mercaptans |
WO2016165853A1 (fr) | 2015-04-15 | 2016-10-20 | IFP Energies Nouvelles | Procede d'adoucissement en composes du type sulfure d'une essence olefinique |
US10822555B2 (en) | 2015-04-15 | 2020-11-03 | IFP Energies Nouvelles | Method for sweetening an olefinic petrol of sulphide-type compounds |
EP3153564A1 (fr) | 2015-10-07 | 2017-04-12 | IFP Energies nouvelles | Procédé de désulfuration de naphta craqué |
EP3228683A1 (fr) | 2016-04-08 | 2017-10-11 | IFP Énergies nouvelles | Procede de traitement d'une essence |
EP3312260A1 (fr) | 2016-10-19 | 2018-04-25 | IFP Energies nouvelles | Procede d'hydrodesulfuration d'une essence olefinique |
CN107335445A (zh) * | 2017-08-17 | 2017-11-10 | 江苏天东新材料科技有限公司 | 一种双功能精脱硫剂的制备方法和应用 |
WO2019197351A1 (fr) | 2018-04-11 | 2019-10-17 | IFP Energies Nouvelles | Masse de captation de l'arsenic à base de nanoparticules de sulfure de nickel |
WO2019197352A1 (fr) | 2018-04-11 | 2019-10-17 | IFP Energies Nouvelles | Procédé de captation de l'arsenic mettant en œuvre une masse de captation à base de particules d'oxyde de nickel |
FR3090005A1 (fr) | 2018-12-18 | 2020-06-19 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur régénéré. |
FR3089824A1 (fr) | 2018-12-18 | 2020-06-19 | IFP Energies Nouvelles | Procédé de réjuvénation d’un catalyseur usé et régénéré d’un procédé d'hydrodésulfuration d'essences. |
FR3090006A1 (fr) | 2018-12-18 | 2020-06-19 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur réjuvéné à un composé organique. |
FR3089825A1 (fr) | 2018-12-18 | 2020-06-19 | IFP Energies Nouvelles | Procédé de réjuvénation d’un catalyseur usé non régénéré d’un procédé d'hydrodésulfuration d'essences. |
WO2020126677A1 (fr) | 2018-12-18 | 2020-06-25 | IFP Energies Nouvelles | Procede d'hydrodesulfuration de coupes essence olefinique contenant du soufre mettant en œuvre un catalyseur regenere |
WO2020126678A1 (fr) | 2018-12-18 | 2020-06-25 | IFP Energies Nouvelles | Procede d'hydrodesulfuration de coupes essence olefinique contenant du soufre mettant en œuvre un catalyseur rejuvene a un compose organique |
WO2020126679A1 (fr) | 2018-12-18 | 2020-06-25 | IFP Energies Nouvelles | Procede de rejuvenation d'un catalyseur use non regenere d'un procede d'hydrodesulfuration d'essences |
WO2020126676A1 (fr) | 2018-12-18 | 2020-06-25 | IFP Energies Nouvelles | Procede de rejuvenation d'un catalyseur use et regenere d'un procede d'hydrodesulfuration d'essences |
WO2021013528A1 (fr) | 2019-07-23 | 2021-01-28 | IFP Energies Nouvelles | Procédé de production d'une essence a basse teneur en soufre et en mercaptans |
WO2021013526A1 (fr) | 2019-07-23 | 2021-01-28 | IFP Energies Nouvelles | Procédé de production d'une essence a basse teneur en soufre et en mercaptans |
WO2021013527A1 (fr) | 2019-07-23 | 2021-01-28 | IFP Energies Nouvelles | Procédé de production d'une essence a basse teneur en soufre et en mercaptans |
WO2021013525A1 (fr) | 2019-07-23 | 2021-01-28 | IFP Energies Nouvelles | Procede de traitement d'une essence par separation en trois coupes |
FR3099175A1 (fr) | 2019-07-23 | 2021-01-29 | IFP Energies Nouvelles | Procédé de production d'une essence a basse teneur en soufre et en mercaptans |
FR3099174A1 (fr) | 2019-07-23 | 2021-01-29 | IFP Energies Nouvelles | Procédé de production d'une essence a basse teneur en soufre et en mercaptans |
FR3099172A1 (fr) | 2019-07-23 | 2021-01-29 | IFP Energies Nouvelles | Procede de traitement d'une essence par separation en trois coupes |
FR3099173A1 (fr) | 2019-07-23 | 2021-01-29 | IFP Energies Nouvelles | Procédé de production d'une essence a basse teneur en soufre et en mercaptans |
WO2021122059A1 (fr) | 2019-12-17 | 2021-06-24 | IFP Energies Nouvelles | Masse de captation de mercaptans preparee par voie sels fondus |
FR3104602A1 (fr) | 2019-12-17 | 2021-06-18 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de finition en présence d’un catalyseur obtenu par la voie sels fondus |
FR3104459A1 (fr) | 2019-12-17 | 2021-06-18 | IFP Energies Nouvelles | Masse de captation de mercaptans préparée par voie sels fondus |
FR3104460A1 (fr) | 2019-12-17 | 2021-06-18 | IFP Energies Nouvelles | Masse de captation d'impuretés organométalliques préparée par la voie sels fondus |
FR3106506A1 (fr) | 2020-01-28 | 2021-07-30 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de finition en présence d’un catalyseur obtenu par additivation |
WO2021151731A1 (fr) | 2020-01-28 | 2021-08-05 | IFP Energies Nouvelles | Procede d'hydrodesulfuration de finition en presence d'un catalyseur obtenu par additivation |
WO2021185658A1 (fr) | 2020-03-20 | 2021-09-23 | IFP Energies Nouvelles | Procédé de production d'une essence a basse teneur en soufre et en mercaptans |
FR3108333A1 (fr) | 2020-03-20 | 2021-09-24 | IFP Energies Nouvelles | Procédé de production d'une essence a basse teneur en soufre et en mercaptans |
FR3116828A1 (fr) | 2020-11-27 | 2022-06-03 | IFP Energies Nouvelles | Procédé de captation d'impuretés organométalliques mettant en œuvre une masse de captation à base de cobalt et de molybdène et contenant du carbone |
WO2022112094A1 (fr) | 2020-11-27 | 2022-06-02 | IFP Energies Nouvelles | Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur ayant une porosite bimodale particuliere |
WO2022112081A1 (fr) | 2020-11-27 | 2022-06-02 | IFP Energies Nouvelles | Procede d'hydrodesulfuration de finition en presence d'un catalyseur sur support meso-macroporeux |
WO2022112080A1 (fr) | 2020-11-27 | 2022-06-02 | IFP Energies Nouvelles | Procede de captation d'impuretes organometalliques en presence d'une masse de captation sur support meso-macroporeux |
WO2022112095A1 (fr) | 2020-11-27 | 2022-06-02 | IFP Energies Nouvelles | Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur contenant un materiau graphitique caracterise par spectroscopie rmn 13c mas |
FR3116825A1 (fr) | 2020-11-27 | 2022-06-03 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration d’une coupe essence mettant en œuvre un catalyseur ayant une porosité bimodale particulière |
FR3116833A1 (fr) | 2020-11-27 | 2022-06-03 | IFP Energies Nouvelles | Procede de captation d’impuretes organometalliques en presence d’une masse de captation sur support meso-macroporeux |
FR3116740A1 (fr) | 2020-11-27 | 2022-06-03 | IFP Energies Nouvelles | Procédé de préparation d’un catalyseur d’hydrodésulfuration d’une coupe essence comprenant un métal du groupe VIB, un métal du groupe VIII et du carbone graphitique |
FR3116830A1 (fr) | 2020-11-27 | 2022-06-03 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration d’une coupe essence mettant en œuvre un catalyseur contenant un matériau graphitique caractérisé par son rapport H/C |
FR3116827A1 (fr) | 2020-11-27 | 2022-06-03 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration d’une coupe essence mettant en œuvre un catalyseur contenant un matériau graphitique caractérisé par spectroscopie RMN13C MAS |
FR3116832A1 (fr) | 2020-11-27 | 2022-06-03 | IFP Energies Nouvelles | Procede d’hydrodesulfuration de finition en presence d’un catalyseur sur support meso-macroporeux |
WO2022112093A1 (fr) | 2020-11-27 | 2022-06-02 | IFP Energies Nouvelles | Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur contenant un materiau graphitique caracterise par son rapport h/c |
WO2023110732A1 (fr) | 2021-12-17 | 2023-06-22 | IFP Energies Nouvelles | Procede de captation de mercaptans avec selection de temperature et rapport en ni/nio specifique |
WO2023110733A1 (fr) | 2021-12-17 | 2023-06-22 | IFP Energies Nouvelles | Procede de captation de mercaptans mettant en œuvre une masse de captation ayant subi une etape de passivation au co2 |
WO2023110728A1 (fr) | 2021-12-17 | 2023-06-22 | IFP Energies Nouvelles | Procédé de captation de mercaptans mettant en œuvre une masse de captation mésoporeuse |
WO2023110730A1 (fr) | 2021-12-17 | 2023-06-22 | IFP Energies Nouvelles | Procede de captation de mercaptans mettant en œuvre une masse de captation macro et mesoporeuse |
FR3130828A1 (fr) | 2021-12-17 | 2023-06-23 | IFP Energies Nouvelles | Procédé de captation de mercaptans mettant en œuvre une masse de captation macro et mésoporeuse |
FR3130830A1 (fr) | 2021-12-17 | 2023-06-23 | IFP Energies Nouvelles | Procédé de captation de mercaptans mettant en œuvre une masse de captation mésoporeuse |
FR3130829A1 (fr) | 2021-12-17 | 2023-06-23 | IFP Energies Nouvelles | Procédé de captation de mercaptans avec sélection de température et rapport en Ni/NiO spécifique |
FR3130827A1 (fr) | 2021-12-17 | 2023-06-23 | IFP Energies Nouvelles | Procédé de captation de mercaptans mettant en œuvre une masse de captation ayant subi une étape de passivation au CO2 |
FR3130834A1 (fr) | 2021-12-20 | 2023-06-23 | IFP Energies Nouvelles | Procédé de traitement d'une essence contenant des composés soufrés |
FR3130831A1 (fr) | 2021-12-20 | 2023-06-23 | IFP Energies Nouvelles | Procédé de production d'une coupe essence légère à basse teneur en soufre |
FR3130835A1 (fr) | 2021-12-20 | 2023-06-23 | IFP Energies Nouvelles | Procédé de traitement d'une essence contenant des composés soufrés comprenant une étape de dilution |
WO2023117531A1 (fr) | 2021-12-20 | 2023-06-29 | IFP Energies Nouvelles | Procede de traitement d'une essence contenant des composes soufres |
WO2023117533A1 (fr) | 2021-12-20 | 2023-06-29 | IFP Energies Nouvelles | Procede de traitement d'une essence contenant des composes soufres comprenant une etape de dilution |
WO2023117532A1 (fr) | 2021-12-20 | 2023-06-29 | IFP Energies Nouvelles | Procede de production d'une coupe essence legere a basse teneur en soufre |
FR3142486A1 (fr) | 2022-11-30 | 2024-05-31 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de finition des essences mettant en œuvre un enchaînement de catalyseurs |
FR3142362A1 (fr) | 2022-11-30 | 2024-05-31 | IFP Energies Nouvelles | Catalyseur d’hydrodésulfuration de finition comprenant un métal du groupe VIB, un métal du groupe VIII et du phosphore sur support alumine alpha |
FR3142487A1 (fr) | 2022-11-30 | 2024-05-31 | IFP Energies Nouvelles | Procédé d’hydrodésulfuration de finition des essences mettant en œuvre un catalyseur à base de métaux du groupe VIB et VIII et du phosphore sur support alumine à faible surface spécifique |
WO2024115277A1 (fr) | 2022-11-30 | 2024-06-06 | IFP Energies Nouvelles | Procede d'hydrodesulfuration de finition des essences mettant en œuvre un catalyseur a base de metaux du groupe vib et viii et du phosphore sur support alumine a faible surface specifique |
WO2024115276A1 (fr) | 2022-11-30 | 2024-06-06 | IFP Energies Nouvelles | Catalyseur d'hydrodesulfuration de finition comprenant un metal du groupe vib, un metal du groupe viii et du phosphore sur support alumine alpha |
WO2024115275A1 (fr) | 2022-11-30 | 2024-06-06 | IFP Energies Nouvelles | Procede d'hydrodesulfuration de finition des essences mettant en œuvre un enchainement de catalyseurs |
Also Published As
Publication number | Publication date |
---|---|
KR20020005488A (ko) | 2002-01-17 |
FR2811328B1 (fr) | 2002-08-23 |
CA2352408C (fr) | 2010-06-15 |
FR2811328A1 (fr) | 2002-01-11 |
KR100807159B1 (ko) | 2008-02-27 |
ES2352835T3 (es) | 2011-02-23 |
DE60143332D1 (de) | 2010-12-09 |
US6972086B2 (en) | 2005-12-06 |
MXPA01006856A (es) | 2004-07-16 |
US20030209467A1 (en) | 2003-11-13 |
JP2002047497A (ja) | 2002-02-12 |
EP1174485B1 (fr) | 2010-10-27 |
CA2352408A1 (fr) | 2002-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1174485B1 (fr) | Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S | |
EP2169032B1 (fr) | Catalyseur permettant de décomposer ou d'hydrogéner au moins partiellement les composes soufres insaturés | |
EP1002853B1 (fr) | Procédé de production d'essences à faible teneur en soufre | |
EP1923452B1 (fr) | Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d'octane | |
EP1138749B1 (fr) | Procédé de desulfuration d'essence comprenant une desulfuration des fractions lourde et intermediaire issues d'un fractionnement en au moins trois coupes | |
EP1849850B1 (fr) | Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration | |
CA2299152C (fr) | Procede de production d'essences a faible teneur en soufre | |
FR2850299A1 (fr) | Catalyseurs partiellement cokes utilisables dans l'hydrotraitement des coupes contenant des composes soufres et des olefines | |
EP1354930A1 (fr) | Procédé de production d'hydocarbures à faible teneur en soufre et en mercaptans | |
WO2014013153A1 (fr) | Procede de production d'une essence legere basse teneur en soufre | |
EP1369468B1 (fr) | Procédé de production d'hydrocarbures à faible teneur en soufre et en azote | |
EP3228683B1 (fr) | Procede de traitement d'une essence | |
WO2014013154A1 (fr) | Procede de desulfuration d'une essence | |
EP1370627B1 (fr) | Procede de production d'essence a faible teneur en soufre | |
FR2997415A1 (fr) | Procede de production d'une essence a basse teneur en soufre | |
EP1370630B1 (fr) | Procede de production d'une essence desulfuree a partir d'une coupe essence contenant de l'essence de craquage | |
EP1370629B1 (fr) | Procede de production d'essence a faible teneur en soufre | |
FR2785833A1 (fr) | Catalyseur comprenant du nickel et son utilisation dans un procede d'hydrodesulfuration de charges hydrocarbonees |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Kind code of ref document: A1 Designated state(s): DE ES GB IT NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20020723 |
|
AKX | Designation fees paid |
Free format text: DE ES GB IT NL |
|
17Q | First examination report despatched |
Effective date: 20050331 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES GB IT NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 60143332 Country of ref document: DE Date of ref document: 20101209 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Effective date: 20110211 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 60143332 Country of ref document: DE Owner name: IFP ENERGIES NOUVELLES, FR Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR Effective date: 20110331 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110728 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60143332 Country of ref document: DE Effective date: 20110728 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20200618 Year of fee payment: 20 Ref country code: GB Payment date: 20200630 Year of fee payment: 20 Ref country code: NL Payment date: 20200625 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200827 Year of fee payment: 20 Ref country code: ES Payment date: 20200710 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60143332 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MK Effective date: 20210624 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20210624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20210624 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20211105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20210626 |