EP1174485A1 - Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S - Google Patents

Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S Download PDF

Info

Publication number
EP1174485A1
EP1174485A1 EP01401679A EP01401679A EP1174485A1 EP 1174485 A1 EP1174485 A1 EP 1174485A1 EP 01401679 A EP01401679 A EP 01401679A EP 01401679 A EP01401679 A EP 01401679A EP 1174485 A1 EP1174485 A1 EP 1174485A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
gasoline
sulfur
approximately
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01401679A
Other languages
German (de)
English (en)
Other versions
EP1174485B1 (fr
Inventor
Blaise c/o Inst. Française du Petrole Didillon
Denis c/o Inst. Française du Petrole Uzio
Jean-Luc c/o Inst. Française du Petrole Nocca
Quentin c/o Inst. Franç. du Petrole Debuisschert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1174485A1 publication Critical patent/EP1174485A1/fr
Application granted granted Critical
Publication of EP1174485B1 publication Critical patent/EP1174485B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including a sorption process as the refining step in the absence of hydrogen

Definitions

  • the present invention relates to a method for producing gasolines with low sulfur content, which makes it possible to recover the entire petrol cut containing sulfur, to reduce the total sulfur contents of said petrol cut to very low levels, without appreciable reduction in fuel efficiency, and minimizing the decrease in octane number due to hydrogenation of olefins.
  • This process particularly applicable when the essence to be treated is a cracked essence catalytic containing a sulfur content higher than 1000 ppm by weight and / or a olefin content greater than 30% by weight, when the sulfur content sought in the desulphurized petrol is less than 50 ppm by weight.
  • the fuel specifications aimed at reducing emissions of pollutants have been severely curtailed for several years. This trend risks to continue in the years to come.
  • the most stringent specifications relate in particular to the olefin content, in benzene and sulfur.
  • Cracked essences which can represent 30 to 50% of the petrol pool, have the disadvantage of containing significant concentrations of sulfur which fact that the sulfur present in reformulated gasolines is attributable to almost 90%, with cracked gasolines (catalytic cracked gasolines in a fluidized bed or FCC, steam cracking essence, coking essence ). Desulfurization (hydrodesulfurization) of essences and mainly cracking essences is therefore of obvious importance for achieving the specifications.
  • Patent application EP-A-0 725 126 describes a hydrodesulfurization process of a cracked gasoline in which the gasoline is separated into a plurality of fractions comprising at least a first fraction rich in compounds easy to desulfurization and a second fraction rich in compounds difficult to desulfurize. Before to carry out this separation, it is first necessary to determine the distribution of products sulfur by means of analyzes.
  • French patent application 99 / 02.336 describes a hydrodesulfurization process in 2 steps, a step of hydrogenation of unsaturated sulfur compounds and a step of decomposition of saturated sulfur compounds. There is no elimination of H2S present or formed between these two stages.
  • the present invention relates to a three-stage desulfurization process for species. This process is particularly particularly well suited to essences of cracking with a sulfur content greater than 1000 ppm by weight, which wish to lower to a level below 50 ppm weight and preferably below 15 ppm weight.
  • step A It moreover optionally and preferably includes a hydrogenation step selective of diene and possibly acetylenic compounds, located before step A.
  • the present invention therefore relates to a process for the production of gasolines low sulfur content, which makes it possible to recover the entire petrol cut containing sulfur and olefins, to reduce the sulfur contents in said cut gasoline at very low levels and generally below 50 ppm or even less than 15 ppm by weight, without appreciable reduction in the fuel yield, and minimizing the decrease in octane number due to the hydrogenation of olefins.
  • the process is particularly suitable for the treatment of species with high sulfur content, i.e. a sulfur content greater than 1000 ppm by weight and / or when the petrol has a high olefin content, that is to say greater than 30% weight.
  • the method according to the invention comprises a treatment of the load on a first catalyst making it possible to at least partially hydrogenate the sulfur-containing compounds aromatics such as for example thiophenic compounds by being placed in conditions where the hydrogenation of olefins is limited on this catalyst (step A), a step making it possible to at least partially remove the H2S from the gasoline thus treated (step B), then a third treatment on at least one catalyst making it possible to decompose at least partially the saturated sulfur compounds with limited hydrogenation of olefins (step C).
  • step C is carried out on a sequence of catalysts, for example the sequence described in the application for patent 99 / 02.336 while respecting the criteria concerning the H2S concentration at the entry of the third step according to the present invention.
  • the charge of the process according to the invention is a petrol cut containing sulfur and olefins, preferably a gasoline cut from a unit of cracked, and preferably a gasoline coming mainly from a unit of catalytic cracking.
  • the treated essence can also be a mixture of essences from different conversion processes such as steam cracking processes, coking or visbreaking (visbreaking according to Anglo-Saxon terminology) or even gasolines directly from the distillation of petroleum products.
  • the essences with high olefin concentrations are particularly suitable to be subjected to the process according to the invention.
  • the sulfur species contained in the charges treated by the process of the invention may be mercaptans or heterocyclic compounds, such as by for example thiophenes or alkyl thiophenes, or heavier compounds, such as for example benzothiophene or dibenzothiophene.
  • heterocyclic compounds unlike mercaptans, cannot be eliminated by conventional extraction processes. These sulfur compounds are therefore eliminated by the process according to the invention which leads to their decomposition at least partial in hydrocarbons and H2S.
  • the sulfur content of gasoline cuts produced by catalytic cracking depends on the sulfur content of the feed treated with FCC, as well as the point end of the cut.
  • the sulfur contents of an entire cut gasoline, especially those from the FCC are greater than 100 ppm by weight and most of the time greater than 500 ppm by weight.
  • sulfur contents are often greater than 1000 ppm by weight, they can even in some cases reach values of on the order of 4000 to 5000 ppm by weight.
  • Essences particularly suitable for the process according to the invention therefore contain olefin concentrations which are generally understood between 5 and 60% by weight.
  • the gasoline treated in the process according to the invention preferably contains more than 30% by weight of olefins.
  • Species can also contain significant concentrations of diolefins, ie diolefin concentrations of up to 15% by weight. Generally the content of diolefins is between 0.1 and 10% by weight. When the diolefin content is greater than 1% by weight or even greater than 0.5% by weight, the gasoline can, before undergoing steps A, B and C of the process according to the invention, be subjected to a selective hydrogenation treatment aimed at hydrogenating at least in part of the diolefins present in said essence.
  • Gasoline can also naturally contain nitrogen compounds.
  • the gasoline nitrogen concentration is generally less than 1000 ppm weight and is generally between 20 and 500 ppm by weight.
  • This essence preferably contains a sulfur content greater than 1000 ppm weight.
  • the range of boiling points typically extends from about the boiling points of hydrocarbons with 5 carbon atoms (C5) up to approximately 250 ° C.
  • the end point of the petrol cut depends on the refinery from which it comes and market constraints, but generally remains within the limits indicated above. In some cases, and in order to optimize the configuration of the process, it can be advantageous to subject the essence to different treatments before submitting it to the method according to the invention. Gasoline can, for example, undergo splitting or any other treatment before being subjected to the process according to the invention without these processing does not limit the scope of the invention.
  • the method according to the invention firstly comprises a treatment (step A) of the gasoline on a catalyst making it possible to at least partially hydrogenate unsaturated sulfur compounds such as for example thiophenic compounds, into saturated compounds such as by example thiophanes (or thiacyclopentane) or mercaptans according to a succession of reactions described below:
  • This hydrogenation reaction can be carried out on a hydrotreating catalyst (hydrodesulfurization) conventional comprising a group VIII metal and a metal of the Vlb group partly in the form of sulphides.
  • a hydrotreating catalyst hydrodesulfurization
  • the operating conditions are adjusted in order to be able to at least partially hydrogenate the thiophenic compounds while limiting the hydrogenation of olefins.
  • the thiophenic, benzothiophenic and dibenzothiophenics if they are present in the essence to be treated are generally significantly transformed, i.e. at the end of the first stage, the content of thiophenic, benzothiophenic or dibenzothiophenic compounds represents at most 20% of that of the starting gasoline.
  • this step hydrogenation is accompanied by significant production of H2S by decomposition total of sulfur compounds initially present in the feed. The rate of decomposition of sulfur compounds present in the H2S charge, which accompanies the hydrogenation of unsaturated sulfur compounds, is generally greater than 50%.
  • the method according to the invention comprises a second step where the H2S is at less partially removed from the effluent obtained at the end of step A.
  • This step can be carried out using any technique known to those skilled in the art. She may be performed directly under the conditions in which the effluent is found after step A or after these conditions have been changed to facilitate disposal at least part of the H2S.
  • a gas / liquid separation (where the gas concentrates in H2S and the liquid is depleted in H2S and is sent directly to step C), a stripping step of the gasoline practiced on a liquid fraction of the gasoline obtained after step A, a amine washing step, again performed on a liquid fraction of the gasoline obtained after step A, an H2S uptake by an absorbent mass operating on the gaseous or liquid effluent obtained after the step, a separation of the H2S from the effluent gaseous or liquid by a membrane.
  • the sulfur content as H2S is generally less than 500 ppm weight compared to petrol of departure.
  • this content is reduced, at the end of step B to a value between 0.2 and 300 ppm weight and more preferably at a value between 0.5 and 150 ppm weight.
  • step C in which the saturated sulfur compounds are converted into H2S according to the reactions:
  • This treatment can be carried out using any catalyst allowing the conversion of saturated sulfur compounds (mainly type compounds thiophanes or mercaptans type). It can for example be done using a catalyst based on nickel, molybdenum, cobalt, tungsten, iron or tin. Preferably, the treatment is carried out in the presence of a catalyst based on nickel, nickel and tin, cobalt and iron, cobalt and tungsten.
  • the gasoline thus desulphurized is then optionally stripped, in order to remove the H2S produced in step C.
  • step C In the case of petrol with a high sulfur content and / or when the level of transformation of unsaturated sulfur compounds into saturated sulfur compounds is not sufficient in step A, it may be advantageous to perform step C with a sequence of catalysts comprising at least one catalyst described for step A and at least one catalyst described for step C.
  • the hydrogenation of dienes is an optional but advantageous step, which makes it possible to eliminate, before hydrodesulfurization, almost all of the dienes present in the gasoline fraction containing sulfur to be treated. It generally takes place in the presence of a catalyst comprising at least one metal from group VIII, preferably chosen from the group formed by platinum, palladium and nickel, and a support.
  • a catalyst comprising at least one metal from group VIII, preferably chosen from the group formed by platinum, palladium and nickel, and a support.
  • a nickel-based catalyst deposited on an inert support, such as, for example, alumina, silica or a support containing at least 50% alumina.
  • This catalyst operates under a pressure of 0.4 to 5 MPa, at a temperature of 50 to 250 ° C, with an hourly space velocity of the liquid from 1 to 10 h -1 .
  • Another metal can be combined to form a bimetallic catalyst, such as for example molybdenum or tungsten.
  • the choice of operating conditions is particularly important. We will operate on more generally under pressure in the presence of a small quantity of hydrogen excess over the stoichiometric value required to hydrogenate the diolefins.
  • the hydrogen and the charge to be treated are injected in updrafts or descendants in a reactor preferably with a fixed catalyst bed.
  • the temperature is most generally between about 50 and about 250 ° C, and preferably between 80 and 230 ° C, and more preferably between 120 and 200 ° C.
  • the pressure is sufficient to maintain more than 80%, and preferably more than 95% by weight of the gasoline to be treated in the liquid phase in the reactor; it is most generally between 0.4 and 5 MPa and preferably greater than 1 MPa.
  • the pressure is advantageously between 1 and 4 MPa.
  • the space velocity is between approximately 1 and approximately 10 h -1 , preferably between 4 and 10 h -1 .
  • the catalytic cracking gasoline can contain up to a few% by weight of diolefins. After hydrogenation, the diolefin content is generally reduced to less than 3000 ppm, or even less than 2500 ppm and more preferably less than 1500 ppm. In some cases it can be obtained less than 500 ppm. Content dienes after selective hydrogenation can even be reduced to less than 250 ppm.
  • the hydrogenation step of the dienes is takes place in a catalytic hydrogenation reactor which includes a zone catalytic reaction crossed by the entire charge and the quantity of hydrogen necessary to carry out the desired reactions.
  • step A Hydrogenation of unsaturated sulfur compounds
  • This step consists in transforming at least part of the unsaturated compounds sulfur such as thiophenic compounds, in saturated compounds for example in thiophanes (or thiacyclopentanes) or mercaptans.
  • This step can, for example, be carried out by passing the feed to be treated, in the presence of hydrogen, over a catalyst containing at least one element from group VIII and / or at least one element from group Vlb at least partially in sulphide form, at a temperature between about 210 ° C and about 350 ° C, preferably between 220 ° C and 320 ° C and more preferably between 220 ° C and 290 ° C, under a pressure generally between about 1 and about 5 MPa, preferably between 1 and 4MPa and more preferably between 1.5 and 3MPa.
  • the liquid space velocity is between about 1 and about 10 h -1 (expressed as volume of liquid per volume of catalyst and per hour), preferably between 3 h -1 and 8 h -1.
  • the H 2 / HC ratio is between 100 to 600 liters per liter and preferably 300 to 600 liters per liter.
  • At least one hydrodesulfurization catalyst comprising at least one element from group VIII (metals of groups 8, 9 and 10 of the new classification, i.e. iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium or platinum) and / or at least one element of group Vlb (metals of group 6 of the new classification, i.e. chromium, molybdenum or tungsten), on a support appropriate.
  • group VIII metal of groups 8, 9 and 10 of the new classification
  • Vlb metal of group 6 of the new classification
  • the element of group VIII, when present, is usually nickel or cobalt
  • the Vlb group element, when present, is usually molybdenum or tungsten.
  • Combinations such as nickel-molybdenum or cobalt-molybdenum are preferred.
  • the catalyst support is usually a porous solid, such as for example an alumina, a silica-alumina or other porous solids, such as, for example, magnesia, silica or titanium oxide, alone or as a mixture with alumina or silica-alumina.
  • the catalyst After introduction of the element (s) and possibly shaping of the catalyst (when this step is carried out on a mixture already containing the basic elements), the catalyst is in a first activated stage.
  • This activation can correspond either to an oxidation, then to a reduction, or to a reduction direct, or to calcination only.
  • the calcination step is generally carried out at temperatures ranging from about 100 to about 600 ° C and preferably between 200 and 450 ° C, under an air flow.
  • the catalyst preferably used in this step is a catalyst comprising an alumina-based support whose specific surface is less than 200 m2 / g, and comprising at least one element chosen from the group consisting of cobalt, molybdenum, nickel or tungsten and preferably chosen from the group consisting of cobalt, molybdenum and tungsten. Even more preferably the catalyst according to the invention contains at least cobalt and molybdenum.
  • the molybdenum content, when this element is present is preferably greater than 10% by weight expressed as molybdenum oxide
  • the cobalt content, when this element is present is preferably greater than 1% by weight (expressed as oxide cobalt II).
  • the density of molybdenum in the catalyst expressed in grams of MoO3 per square meter of support, is greater than 0.05 g / m 2 of support.
  • the reduction stage is carried out under conditions allowing conversion to minus some of the oxidized forms of the base metal metal. Generally it consists in treating the catalyst under a stream of hydrogen at a temperature at least equal to 300 ° C. The reduction can also be achieved in part by means of chemical reducers.
  • the catalyst is preferably used at least in part in its sulfurized form.
  • the introduction of sulfur can occur between different activation stages.
  • no oxidation step is carried out when the sulfur or a sulfur-containing compound is introduced onto the catalyst.
  • the sulfur or a sulfur-containing compound can be introduced ex situ, that is to say outside the reactor where the process according to the invention is carried out, or in situ, that is to say in the reactor used for the method according to the invention.
  • the catalyst is preferably reduced under the conditions described above, then sulphurized by passing a charge containing at least one sulfur compound, which once decomposed leads to the fixing of sulfur on the catalyst.
  • This charge can be gaseous or liquid, for example hydrogen containing H 2 S, or a liquid containing at least one sulfur-containing compound.
  • the sulfur-containing compound is added to the catalyst ex situ.
  • a sulfur-containing compound can be introduced onto the catalyst in the optional presence of another compound.
  • the catalyst is then dried, then transferred to the reactor used to carry out the process of the invention. In this reactor, the catalyst is then treated under hydrogen in order to transform at least part of the main metal into sulphide.
  • a procedure which is particularly suitable for the invention is that described in patents FR-B- 2,708,596 and FR-B- 2,708,597.
  • the conversion of unsaturated sulfur compounds is greater than 15% and preferably greater than 50%.
  • the hydrogenation rate of olefins is preferably less than 50% and so preferred less than 40% during this step.
  • stage B which at least partially eliminates the H2S present at the end of step A.
  • H2S concentration is reduced.
  • Elimination of H2S can be carried out in various ways, most of which are known to those skilled in the art job.
  • We can for example cite the adsorption of part of the H2S contained in the effluent from step A by an absorbent mass based on a metal oxide, preference chosen from the group consisting of zinc oxide, copper oxide or molybdenum oxide.
  • This adsorbent mass is preferably regenerable.
  • Her regeneration can be carried out continuously or discontinuously for example at by means of a heat treatment under an oxidizing or reducing atmosphere.
  • the mass absorbent can be used in a fixed bed or a mobile bed.
  • Another method is to perform a membrane separation of H2S using a selective membrane operating on a liquid or gaseous effluent from step A.
  • One of the zones of the separation can contain an absorbent mass to promote the transfer of H2S through the wall of the membrane.
  • Another method may be to cool the effluent from step A and to produce a gas rich in H2S and a liquid phase depleted in H2S.
  • the gas phase can then be treated in an amine washing unit.
  • the liquid phase and the gas phase can then be remixed and sent to step C.
  • the fraction liquid can also undergo other treatments such as stripping with hydrogen, nitrogen or water vapor, extraction of H2S, washing with amines, washing with a sodium hydroxide solution to reduce its H2S content.
  • the saturated sulfur compounds are transformed into presence of hydrogen on a suitable catalyst.
  • This transformation is carried out, without hydrogenation of olefins, i.e. during this stage the hydrogenation of olefins is limited to 20% based on the content of the starting gasoline, and preferably, limited to 10% relative to the olefin concentration of the gasoline.
  • Catalysts which may be suitable for the invention, without this list being limiting, are catalysts comprising at least one metal chosen from the group consisting of nickel, cobalt, iron, molybdenum and tungsten and. So more preferred the catalysts of this stage are based on nickel. These metals are preferably supported and used in their sulfurized form.
  • the metal content of the catalyst used according to the invention is generally between approximately 1 and approximately 60% by weight and preferably between 5 and 20% by weight.
  • the catalyst is generally shaped, preferably under in the form of beads, extrudates, pellets, or trilobes.
  • Metal can be incorporated into catalyst on the preformed support, it can also be mixed with the support before the shaping step.
  • the metal is generally introduced in the form of a precursor salt, generally soluble in water, such as for example nitrates, heptamolybdates. This mode of introduction is not specific to the invention. Other mode of introduction known to the skilled person suitable for the implementation of the invention.
  • the catalyst supports used in the process of the invention are generally porous solids chosen from refractory oxides, such as, for example, aluminas, silicas and silica-aluminas, magnesia, as well as titanium oxide and zinc oxide, the latter oxides can be used alone or as a mixture with alumina or silica-alumina.
  • the supports are transition aluminas or silicas whose specific surface is between 25 and 350 m 2 / g. Natural compounds (for example kieselguhr or kaolin) can also be suitable as supports for the catalysts of the process according to the invention.
  • the catalyst After introduction of the metal and possibly shaping of the catalyst (when this step is carried out with a mixture already containing the base metal), the catalyst is in a first activated stage.
  • This activation can correspond either to an oxidation, then to a reduction, either to a direct reduction, or to a calcination only.
  • the calcination step is generally carried out at temperatures ranging from approximately 100 to approximately 600 ° C. and preferably between 200 and 450 ° C, under an air flow.
  • the reduction step is carried out in conditions for converting at least some of the oxidized forms of the metal metal base. Generally, it consists in treating the catalyst under a flow of hydrogen at a temperature at least equal to 300 ° C.
  • the reduction can also be carried out in part by chemical reducers.
  • the catalyst is preferably used at least in part in its sulfurized form. This has the advantage of minimizing the risk of hydrogenation of unsaturated compounds such as olefins or aromatic compounds during the start-up phase.
  • the introduction of sulfur can occur between different activation stages. Preferably, no oxidation step is carried out when the sulfur or a sulfur-containing compound is introduced onto the catalyst.
  • the sulfur or a sulfur-containing compound can be introduced ex situ , that is to say outside the reactor where the process according to the invention is carried out, or in situ , that is to say in the reactor used for the method according to the invention.
  • the catalyst is preferably reduced under the conditions described above, then sulphurized by passing a charge containing at least one sulfur compound, which once decomposed leads to the fixing of sulfur on the catalyst.
  • This charge can be gaseous or liquid, for example hydrogen containing H 2 S, or a liquid containing at least one sulfur-containing compound.
  • the sulfur-containing compound is added to the catalyst ex situ.
  • a sulfur-containing compound can be introduced onto the catalyst in the optional presence of another compound.
  • the catalyst is then dried, then transferred to the reactor used to carry out the process according to the invention. In this reactor, the catalyst is then treated under hydrogen in order to transform at least part of the main metal into sulphide.
  • a procedure which is particularly suitable for the invention is that described in patents FR-B-2 708 596 and FR-B-2 708 597.
  • the sulfur content of the catalyst is generally understood between 0.5 and 25% by weight, preferably between 4 and 20% by weight.
  • the purpose of the hydrotreatment carried out during this stage is to convert the saturated sulfur compounds in gasoline which has already undergone a preliminary treatment into H 2 S, so as to obtain an effluent which will meet the desired specifications in terms of content. into sulfur compounds.
  • the gasoline thus obtained has a slightly lower octane number, due to the partial but inevitable saturation of the olefins, than that of the gasoline to be treated. However, this saturation is limited.
  • the operating conditions of the catalyst making it possible to decompose the saturated sulfur compounds in H2S should be adjusted so as to reach the desired level of hydrodesulfurization, and in order to minimize the loss of octane resulting from saturation of olefins.
  • the second catalyst (catalyst of step C) used in the process according to the invention generally makes it possible to convert only at most 20% of the olefins, preferably at most 10% of the olefins.
  • the treatment aimed at decomposing the saturated sulfur compounds during the first step of the process (step A) is carried out in the presence of hydrogen, with the catalyst based on a metal, such as more preferably nickel, at a temperature between about 200 ° C and about 350 ° C, preferably between 250 ° C and 350 ° C, more preferably between 260 ° C and 320 ° C, under a low to moderate pressure generally between about 0.5 and about 5 MPa, preferably between 0.5 MPa and 3 MPa, more preferably between 1 and 3 MPa.
  • the space velocity of the liquid is generally between approximately 0.5 and approximately 10 h -1 (expressed in volume of liquid per volume of catalyst and per hour), preferably between 1 and 8 h -1 .
  • the H 2 / HC ratio is adjusted as a function of the desired hydrodesulfurization rates in the range generally between approximately 100 and approximately 600 liters per liter, preferably between 100 and 300 liters per liter. All or part of this hydrogen can come from stage A or from a recycling of the unconsumed hydrogen coming from stage C.
  • One of the possibilities of implementing the method according to the invention can by example consist of passing the gasoline to be hydrotreated through a reactor containing a catalyst allowing, at least in part, the hydrogenation of the compounds unsaturated sulfur, such as for example thiophenic compounds, in compounds saturated with sulfur (step A) and removal of H2S (step B), then through a reactor containing a catalyst for decomposing the saturated compounds of the sulfur in H2S (step C).
  • the H2S removal step can also be performed in the reactor of step C or partly in each of the 2 reactors.
  • the elimination stage can also be partially or entirely located outside reactors of stages A and C.
  • the two catalysts of the stages A and C are placed in series in the same reactor and an adsorbent mass of the H2S is placed between the two catalysts in order to at least partially eliminate the H2S product in the first catalytic zone (step B).
  • the absorbent mass, once saturated with H2S can be either replaced or regenerated. In the latter case regeneration can be carried out discontinuously or continuously depending on the adsorbent mass used.
  • the two catalytic zones can operate in different conditions of pressure, VVH, temperature, H2 / charge ratio. of the systems can be implemented to dissociate the operating conditions of the two reaction zones.
  • step A it can also be envisaged to carry out a sequence which consists in passing the gasoline to be hydrotreated through a reactor containing a catalyst allowing, at least in part, the hydrogenation of unsaturated sulfur compounds, saturated sulfur compounds (step A), then to be carried out separately or in a simultaneous H2S removal step, then perform step C in a reactor containing a chain of catalysts comprising at least one catalyst of the same type as that used in the first step of the process (step A) and at least a catalyst for decomposing saturated sulfur compounds into H2S (step C).
  • This charge is pretreated by means of a selective hydrogenation step.
  • the hydrogenation of diolefins is carried out on an HR945® catalyst based on nickel and molybdenum, sold by the company Procatalyse.
  • the test is performed in a continuous reactor of the crossed bed type, the charge and the hydrogen being introduced by the bottom of the reactor.
  • 60 ml of catalyst are introduced into the reactor after having been previously sulfurized ex situ for 4 hours, under a pressure of 3.4 Mpa, at 350 ° C, in contact with a charged load of 2% by weight of sulfur in the form of dimethylsisulfide in n-heptane.
  • the catalyst is then transferred to the reactor where the hydrogenation of diolefins is carried out.
  • the charge contains // (ppm or% by weight) of dienes
  • a catalyst A is obtained by impregnation "without excess solution" of a transition alumina, in the form of beads, with a specific surface 130 m2 / g and a pore volume 0.9 ml / g, with an aqueous solution containing molybdenum and cobalt in the form of ammonium heptamolybdate and cobalt nitrate.
  • the catalyst is then dried and calcined in air at 500 ° C.
  • the cobalt and molybdenum content of this sample is 3% CoO and 10% MoO3.
  • 25 ml of catalyst A are placed in a tubular hydrodesulfurization reactor with a fixed bed.
  • the catalyst is first sulfurized by treatment for 4 hours under a pressure of 3.4 MPa at 350 ° C, in contact with a charge consisting of 2% sulfur in the form of dimethyldisulfide in n-heptane.
  • the temperature of the catalytic zone is between 280 ° C and 320 ° C.
  • the hydrogenated gasoline under the conditions of Example 1 is hydrodesulfurized.
  • a second catalyst (catalyst C) is prepared from a transition alumina of 140 m 2 / g in the form of beads of 2 mm in diameter. The pore volume is 1 ml / g of support. 1 kilogram of support is impregnated with 1 liter of nickel nitrate solution. The catalyst is then dried at 120 ° C and calcined in an air stream at 400 ° C for one hour. The nickel content of the catalyst is 20% by weight. 25 ml of catalyst A of Example 1 and 50 ml of catalyst C are placed in the same hydrodesulfurization reactor, so that the feed to be treated (heavy fraction) first meets catalyst A and then the catalyst C. The catalysts are first of all sulfurized by treatment for 4 hours under a pressure of 3.4 MPa at 350 ° C., in contact with a charge consisting of 2% of sulfur in the form of dimethyldisulphide in n-heptane .
  • the temperature of the catalytic zone comprising catalyst A is from 250 ° C to 290 ° C, the temperature of the catalytic zone containing catalyst C is 330 ° C.
  • the results obtained under these conditions are reported in Table 3.
  • Temperature of catalytic zone A (° C) Sulfur content of desulphurized petrol (ppm) Olefin content of desulfurized gasoline (% by weight) Desulfurized gasoline octane (RON + MON) / 2 270 ° C. 50 20.4 82.3 290 ° C. 13 15.6 78.7
  • Example 4 Hydrodesulfurization according to steps A, B and C of the process according to the invention.
  • the hydrogenated gasoline under the conditions of Example 1 is hydrodesulfurized.
  • a test is carried out under the same conditions as those of Example 3, except that the two catalysts are placed in two different reactors and that the H2S is separated between these two reactors.
  • the effluent from the first reactor is cooled to room temperature, the liquid phase and the gas phase are separated, the H2S from the liquid phase is stripped by a stream of nitrogen making it possible to remove the H2S to a content of 50 ppm weight relative to the liquid.
  • the liquid thus obtained is then warmed to the temperature of the second catalyst and reinjected in the presence of hydrogen introduced with a hydrogen flow rate of 330 I / I of charge corresponding approximately to the flow of hydrogen entering the second reactor of the example. 3.
  • Example 5 Another mode of hydrodesulfurization according to steps A, B and C of method according to the invention.
  • the hydrogenated gasoline under the conditions of Example 1 is hydrodesulfurized. 25 ml of catalyst A are placed in a tubular reactor. This reactor is coupled with a second hydrodesulfurization reactor containing 13 ml of catalyst A example 1 and 25 ml of catalyst C of example 3, so that the charge first meets catalyst A then catalyst C.
  • the effluent from the first reactor is cooled to room temperature, the liquid phase and the gas phase are separated, the H2S of the liquid phase is stripped by a stream of nitrogen allowing eliminate H2S up to a content of 50 ppm by weight relative to the liquid.
  • the liquid thus obtained is then heated to the temperature of the second reactor and reinjected into presence of hydrogen introduced with a flow rate and under a pressure corresponding to that of the second reactor of Example 2.
  • the temperature of the first reactor is indicated in table 5.
  • the temperature of the catalyst A present in the second zone is brought to 270 ° C. and the temperature of the catalyst C present in the second reactor is brought to 330 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un procédé de production d'essence à faible teneur en soufre comprenant au moins trois étapes : une première étape dans laquelle les composés soufrés présents dans l'essence sont au moins partiellement transformés en H2S et en composés soufrés saturés, une deuxième étape visant à éliminer 1'H2S de l'essence produite dans la première étape et une troisième étape dans laquelle les composés soufrés saturés restant dans l'essence sont transformés en H2S. Le procédé selon l'invention comprend éventuellement en outre une étape de prétraitement visant à hydrogéner les dioléfines de la charge avant la première étape.

Description

La présente invention concerne un procédé de production d'essences à faible teneur en soufre, qui permet de valoriser la totalité d'une coupe essence contenant du soufre, de réduire les teneurs en soufre total de ladite coupe essence à de très faibles niveaux, sans diminution sensible du rendement en essence, et en minimisant la diminution de l'indice d'octane due à l'hydrogénation des oléfines. Ce procédé s'applique particulièrement lorsque l'essence à traiter est une essence de craquage catalytique contenant une teneur en soufre supérieure à 1000 ppm poids et/ou une teneur en oléfine supérieure à 30 % poids, quand la teneur en soufre recherchée dans l'essence désulfurée est inférieure à 50 ppm poids.
Art antérieur :
Les spécifications sur les carburants, visant à diminuer les émissions de polluants ce sont fortement sévérisées depuis plusieurs années. Cette tendance risque de se poursuivre dans les années à venir. En ce qui concerne les essences, les spécifications les plus sévères concernent notamment la teneur en oléfines, en benzène et en soufre.
Les essences de craquage, qui peuvent représenter 30 à 50 % du pool essence, présentent l'inconvénient de contenir des concentrations importantes en soufre ce qui fait que le soufre présent dans les essences reformulées est imputable, à près de 90 %, aux essences de craquage (essences de craquage catalytique en lit fluidisé ou FCC, essence de vapocraquage, essences de cokage...). La désulfuration (l'hydrodésulfuration) des essences et principalement des essences de craquage est donc d'une importance évidente pour l'atteinte des spécifications.
Ces essences contiennent cependant des oléfines qui contribuent de façon significative à l'octane de l'essence reformulée et ainsi il est souhaitable de minimiser ou de contrôler leur saturation lors des traitements de désulfuration afin de minimiser les pertes en octane qui en résultent.
De nombreuses recherches ont été menées dans les dernières années afin de proposer des procédés ou des catalyseurs permettant de désulfurer les essences en tentant de minimiser les pertes en oléfines dues à l'hydrogénation. Ce travail à conduit à l'émergence d'un certain nombre de procédés, dont certains sont aujourd'hui commercialisés, et qui sont capables de minimiser le taux d'hydrogénation des oléfines tout en permettant d'atteindre des taux de désulfurations requis pour l'atteinte des spécifications en vigueurs.
Cependant les spécifications à venir vont se sévériser, c'est à dire qu'elles vont imposer des spécifications en soufre encore plus sévères. Par conséquent, il y a un continuel besoin de disposer de catalyseurs, ou de procédés, permettant d'atteindre des teneurs en soufre encore plus basses tout en préservant les oléfines et ce même pour des essences de craquage qui peuvent contenir des teneurs en soufre élevées, c'est à dire des teneurs supérieures à 1000 ppm poids et/ou pour des essences contenant des teneurs en oléfines élevées (supérieure à 30 % poids par rapport à l'essence de départ).
La demande de brevet EP-A-0 725 126 décrit un procédé d'hydrodésulfuration d'une essence de craquage dans lequel l'essence est séparée en une pluralité de fractions comprenant au moins une première fraction riche en composés faciles à désulfurer et une seconde fraction riche en composés difficiles à désulfurer. Avant d'effectuer cette séparation, il faut au préalable déterminer la distribution de produits soufrés au moyen d'analyses.
La demande de brevet français 99/02.336 décrit un procédé d'hydrodésulfuration en 2 étapes, une étape d'hydrogénation des composés soufrés insaturés et une étape de décomposition des composés soufrés saturés. Il n'y a pas d'élimination de l'H2S présent ou formé entre ces deux étapes.
RESUME DE L'INVENTION :
La présente invention concerne un procédé de désulfuration en trois étapes des essences. Ce procédé est notamment particulièrement bien adapté à des essences de craquage présentant une teneur en soufre supérieure à 1000 ppm poids, que l'on désire abaisser à un niveau inférieur à 50 ppm poids et de préférence inférieure à 15 ppm poids.
Le procédé selon l'invention comprends au moins trois étapes :
  • - A) une première étape dans laquelle les composés soufrés présents dans l'essence sont au moins partiellement transformés en H2S et en composés soufrés saturés.
  • - B) une deuxième étape visant à éliminer l'H2S de l'essence produite dans l'étape A) ;
  • - C) une troisième étape dans laquelle les composés soufrés saturés restant dans l'essence sont transformés en H2S.
  • Il comprend de plus éventuellement et de préférence, une étape d'hydrogénation sélective des composés diéniques et éventuellement acétyléniques, située avant l'étape A.
    La présente invention concerne donc un procédé de production d'essences à faible teneur en soufre, qui permet de valoriser la totalité d'une coupe essence contenant du soufre et des oléfines, de réduire les teneurs en soufre dans ladite coupe essence à de très faibles niveaux et généralement à une valeur inférieure à 50 ppm voire inférieur à 15 ppm poids, sans diminution sensible du rendement en essence, et en minimisant la diminution de l'indice d'octane due à l'hydrogénation des oléfines. Le procédé est particulièrement adapté pour le traitement des essences présentant une teneur en soufre élevée, c'est à dire une teneur en soufre supérieure à 1000 ppm poids et/ou lorsque l'essence présente une teneur en oléfine élevée, c'est à dire supérieure à 30 % poids.
    Le procédé selon l'invention comprend un traitement de la charge sur un premier catalyseur permettant d'hydrogéner au moins partiellement les composés soufrés aromatiques tels que par exemple les composés thiophéniques en se plaçant dans des conditions où l'hydrogénation des oléfines est limitée sur ce catalyseur (étape A), une étape permettant d'éliminer au moins en partie l'H2S de l'essence ainsi traitée (étape B), puis un troisième traitement sur au moins un catalyseur permettant de décomposer au moins en partie les composés soufrés saturés avec une hydrogénation limitée des oléfines (étape C).
    Dans certain cas il est possible d'envisager que l'étape C soit réalisé sur un enchaínement de catalyseurs par exemple l'enchaínement décrit dans la demande de brevet 99/02.336 tout en respectant les critères concernant la concentration en H2S à l'entrée de la troisième étape selon la présente invention.
    La charge du procédé selon l'invention est une coupe essence contenant du soufre et des oléfines, de préférence une coupe essence issue d'une unité de craquage, et de façon préférée une essence provenant majoritairement d'une unité de craquage catalytique. L'essence traitée peut aussi être un mélange d'essences provenant de différents procédés de conversion tels les procédés de vapocraquage, de coking ou de viscoréduction (visbreaking selon la terminologie anglo-saxonne) voire des essences directement issues de la distillation des produits pétroliers. Les essences présentant des concentrations en oléfines importantes sont particulièrement adaptées pour être soumises au procédé selon l'invention.
    Description détaillée l'invention :
    II a été décrit dans la demande de brevet 99/02.336 que l'association de deux catalyseurs adaptés pour l'hydrotraitement des essences de craquage catalytique dont l'un permettant de transformer les composés insaturés du soufre présents dans l'essence, tels que par exemple les composés thiophéniques, et l'autre permettant de transformer sélectivement les composés saturés du soufre déjà présents dans l'essence ou produits lors de la première étape du traitement de l'essence, permet d'obtenir une essence désulfurée ne présentant pas de diminution importante de la teneur en oléfines ou de l'indice d'octane. On a maintenant découvert et ceci fait l'objet de la présente invention, qu'il était possible d'obtenir des performances accrues du procédé, et ce surtout lorsque la teneur en soufre de l'essence est élevée c'est à dire supérieure à 1000 ppm poids et/ou lorsque la teneur en oléfines est supérieure à 30 % poids et que la teneur en soufre de l'essence visée est inférieure à 50 ppm poids voire inférieure à 15 ppm poids.
    Les espèces soufrées contenues dans les charges traitées par le procédé de l'invention peuvent être des mercaptans ou des composés hétérocycliques, tels que par exemple les thiophènes ou les alkyl-thiophènes, ou des composés plus lourds, comme par exemple le benzothiophène ou le dibenzothiophène. Ces composés hétérocycliques, contrairement aux mercaptans, ne peuvent pas être éliminés par les procédés extractifs conventionnels. Ces composés soufrés sont par conséquent éliminés par le procédé selon l'invention qui conduit à leur décomposition au moins partielle en hydrocarbures et H2S.
    La teneur en soufre des coupes essences produites par craquage catalytique (FCC) dépend de la teneur en soufre de la charge traitée au FCC, ainsi que du point final de la coupe. Généralement, les teneurs en soufre de l'intégralité d'une coupe essence, notamment celles provenant du FCC, sont supérieures à 100 ppm en poids et la plupart du temps supérieures à 500 ppm en poids. Pour des essences ayant des points finaux supérieurs à 200°C, les teneurs en soufre sont souvent supérieures à 1000 ppm en poids, elles peuvent même dans certains cas atteindre des valeurs de l'ordre de 4000 à 5000 ppm en poids.
    Les essences convenant particulièrement au procédé selon l'invention contiennent donc des concentrations en oléfines qui sont généralement comprises entre 5 et 60 % poids. Lorsque l'essence contient une teneur en soufre inférieure à 1000ppm, l'essence traitée dans le procédé selon l'invention contient de préférence plus de 30 % poids d'oléfines.
    Les essences peuvent aussi contenir des concentrations significatives en dioléfines c'est à dire des concentrations en dioléfines pouvant aller jusqu'à 15 % poids. Généralement la teneur en dioléfines est comprise entre 0,1 et 10 % poids. Lorsque la teneur en dioléfines est supérieures à 1 % poids voire supérieure à 0,5 % poids, l'essence peut, avant de subir les étapes A, B et C du procédé selon l'invention, être soumise à un traitement d'hydrogénation sélective visant à hydrogéner au moins en partie les dioléfines présente dans ladite essence.
    L'essence peut également contenir de façon naturelle des composés azotés. La concentration en azote de l'essence est généralement inférieure à 1000 ppm poids et est généralement comprise entre 20 et 500 ppm poids.
    Cette essence contient de préférence une teneur en soufre supérieure à 1000 ppm poids. La gamme de points d'ébullition s'étend typiquement depuis environ les points d'ébullitions des hydrocarbures à 5 atomes de carbone (C5) jusqu'à environ 250°C. Le point final de la coupe essence dépend de la raffinerie dont elle est issue et des contraintes du marché, mais reste généralement dans les limites indiquées ci-avant. Dans certains cas, et afin d'optimiser la configuration du procédé, il peut être avantageux de faire subir à l'essence différents traitements avant de la soumettre au procédé selon l'invention. L'essence peut, par exemple, subir des fractionnements ou tout autre traitement avant d'être soumise au procédé selon l'invention sans que ces traitement ne limite la portée de l'invention.
    Pour ce type d'essence, l'analyse de la nature des composés soufrés montrent que le soufre est essentiellement présent sous forme de composés thiophéniques (thiophène, méthylthiophènes, alkylthiophènes...) et, en fonction du point final de l'essence à traitée, de composés benzothiophéniques, alkylbenzothiophéniques, voire de composés dérivés du dibenzothiophène.
    Le procédé selon l'invention comprend tout d'abord un traitement (étape A) de l'essence sur un catalyseur permettant d'hydrogéner au moins en partie des composés soufrés insaturés tels que par exemple les composés thiophéniques, en composés saturés tels que par exemple les thiophanes (ou thiacyclopentane) ou en mercaptans selon une succession de réactions décrites ci-après:
    Figure 00060001
    Cette réaction d'hydrogénation peut être réalisée sur un catalyseur d'hydrotraitement (d'hydrodésulfuration) conventionnel comprenant un métal du groupe VIII et un métal du groupe Vlb en partie sous forme de sulfures. Quand un tel catalyseur est utilisé, les conditions opératoires sont ajustées afin de pouvoir hydrogéner au moins en partie les composés thiophéniques tout en limitant l'hydrogénation des oléfines.
    Lors de cette étape, les composés thiophéniques, benzothiophéniques et dibenzothiophéniques s'ils sont présents dans l'essence à traiter, sont généralement transformés de façon significative, c'est à dire qu'à l'issue de la première étape, la teneur en composés thiophéniques, benzothiophéniques ou dibenzothiophéniques représente au plus 20 % de celle de l'essence de départ. De plus, cette étape d'hydrogénation s'accompagne de la production significative d'H2S par décomposition totale des composés soufrés initialement présent dans la charge. Le taux de décomposition des composés soufrés présents dans la charge en H2S, qui accompagne l'hydrogénation des composés soufrés insaturés, est généralement supérieur à 50 %.
    Le procédé selon l'invention comprend une deuxième étape où l'H2S est au moins en partie éliminé de l'effluent obtenu à l'issu de l'étape A. Cette étape peut être réalisée au moyen de toutes techniques connues de l'homme du métier. Elle peut être réalisée directement dans les conditions dans lesquelles se trouve l'effluent à l'issue de l'étape A où après que ces conditions aient été changées afin de faciliter l'élimination d'au moins une partie de l'H2S. Comme technique envisageable, on peut par exemple citer, une séparation gaz/liquide (où le gaz se concentre en H2S et le liquide est appauvri en H2S et est envoyé directement à l'étape C), une étape de stripage de l'essence pratiquée sur une fraction liquide de l'essence obtenue après l'étape A, une étape de lavage aux amines, là encore pratiquée sur une fraction liquide de l'essence obtenue après l'étape A, une captation de l'H2S par une masse absorbante opérant sur l'effluent gazeux ou liquide obtenu après l'étape, une séparation de l'H2S de l'effluent gazeux ou liquide par une membrane. A l'issue de ce traitement la teneur en soufre sous forme d'H2S est généralement inférieure à 500 ppm poids par rapport à l'essence de départ. D'une façon préférée cette teneur est ramenée, à l'issue de l'étape B à une valeur comprise entre 0,2 et 300 ppm poids et de façon encore préférée à une valeur comprise entre 0,5 et 150 ppm poids.
    Le procédé selon l'invention comprend une troisième étape (étape C) dans laquelle les composés saturés soufrés sont convertis en H2S selon les réactions :
    Figure 00080001
    Ce traitement peut être réalisé au moyen de tout catalyseur permettant la conversion des composés saturés du soufre (principalement les composés de type thiophanes ou de type mercaptans). Il peut par exemple être effectué en utilisant un catalyseur à base de nickel, de molybdène, de cobalt, de tungstène de fer où d'étain. De façon préférée, le traitement est effectué en présence d'un catalyseur à base de nickel, de nickel et d'étain, de cobalt et de fer, de cobalt et de tungstène.
    L'essence ainsi désulfurée est ensuite éventuellement strippée, afin d'éliminer l'H2S produit lors de l'étape C.
    Par rapport à l'invention décrite dans la demande de brevet 99/02.336, l'invention ici proposée présente comme avantage:
    • de pouvoir atteindre des taux de désulfuration de l'essence plus élevées, c'est à dire des teneurs en soufre résiduelles beaucoup plus basse et ce notamment lorsque l'essence à traiter présente une teneur élevée en soufre c'est à dire une teneur en soufre supérieure à 1000 ppm et/ou une teneur en oléfine supérieure à 30 % poids;
    • d'opérer l'étape C dans des conditions de températures beaucoup plus douces, ce qui présente des avantages au niveau du procédé notamment en permettant une intégration thermique mieux optimisée entre la section réactionnelle de l'étape A et de l'étape C.
    Dans le cas d'essence à forte teneur en soufre et/ou lorsque le taux de transformation des composés soufrés insaturés en composés soufrés saturés n'est pas suffisant dans l'étape A, il peut être avantageux de réaliser l'étape C avec un enchaínement de catalyseurs comprenant au moins un catalyseur décrit pour l'étape A et au moins un catalyseur décrit pour l'étape C.
    Les étapes du procédé selon l'invention sont décrites plus en détail ci après.
    - Hydrogénation des diènes (étape optionnelle avant l'étape A) :
    L'hydrogénation des diènes est une étape facultative mais avantageuse, qui permet d'éliminer, avant hydrodésulfuration, la presque totalité des diènes présents dans la coupe essence contenant du soufre à traiter. Elle se déroule généralement en présence d'un catalyseur comprenant au moins un métal du groupe VIII, de préférence choisi dans le groupe formé par le platine, le palladium et le nickel, et un support. On emploiera par exemple un catalyseur à base de nickel déposé sur un support inerte, tel que par exemple de l'alumine, de la silice ou un support contenant au moins 50 % d'alumine. Ce catalyseur opère sous une pression de 0,4 à 5 MPa, à une température de 50 à 250 °C, avec une vitesse spatiale horaire du liquide de 1 à 10 h-1. Un autre métal peut être associé pour former un catalyseur bimétallique, tel que par exemple le molybdène ou le tungstène.
    Il peut être particulièrement avantageux, surtout lorsqu'on traite des coupes dont le point d'ébullition est inférieur à 160°C, d'opérer dans des conditions telles qu'un adoucissement au moins partiel de l'essence soit obtenu, c'est-à-dire une certaine réduction de la teneur en mercaptans. Pour ce faire, on peut utiliser la procédure décrite dans la demande de brevet FR-A-2 753 717, qui utilise un catalyseur à base de palladium.
    Le choix des conditions opératoires est particulièrement important. On opérera le plus généralement sous pression en présence d'une quantité d'hydrogène en faible excès par rapport à la valeur stoechiométrique nécessaire pour hydrogéner les dioléfines. L'hydrogène et la charge à traiter sont injectés en courants ascendants ou descendants dans un réacteur de préférence à lit fixe de catalyseur. La température est comprise le plus généralement entre environ 50 et environ 250 °C, et de préférence entre 80 et 230 °C, et de manière plus préférée entre 120 et 200 °C.
    La pression est suffisante pour maintenir plus de 80 %, et de préférence plus de 95 % en poids de l'essence à traiter en phase liquide dans le réacteur ; elle est le plus généralement comprise entre 0,4 et 5 MPa et de préférence supérieure à 1 MPa. La pression est avantageusement comprise entre 1 et 4 MPa. La vitesse spatiale est comprise entre environ 1 et environ 10 h-1, de préférence entre 4 et 10 h-1.
    L'essence de craquage catalytique peut contenir jusqu'à quelques % poids de dioléfines. Après hydrogénation, la teneur en dioléfines est généralement réduite à moins de 3000 ppm, voire moins de 2500 ppm et de manière plus préférée moins de 1500 ppm. Dans certains cas, il peut être obtenu moins de 500 ppm. La teneur en diènes après hydrogénation sélective peut même si nécessaire être réduite à moins de 250 ppm.
    Selon une réalisation de l'invention, l'étape d'hydrogénation des diènes se déroule dans un réacteur catalytique d'hydrogénation qui comprend une zone réactionnelle catalytique traversée par la totalité de la charge et la quantité d'hydrogène nécessaire pour effectuer les réactions désirées.
    - Hydrogénation des composés insaturés du soufre (étape A) :
    Cette étape consiste à transformer au moins une partie des composés insaturés du soufre tels que les composés thiophéniques, en composés saturés par exemple en thiophanes (ou thiacyclopentanes) ou en mercaptans.
    Cette étape peut par exemple est réalisée par passage de la charge à traiter, en présence d'hydrogène, sur un catalyseur contenant au moins un élément du groupe VIII et/ou au moins un élément du groupe Vlb au moins en partie sous forme sulfure, à une température comprise entre environ 210°C et environ 350°C, de préférence entre 220°C et 320°C et de manière plus préférée entre 220°C et 290°C, sous une pression généralement comprise entre environ 1 et environ 5 MPa, de préférence entre 1 et 4MPa et de manière plus préférée entre 1,5 et 3MPa. La vitesse spatiale du liquide est comprise entre environ 1 et environ 10 h-1 (exprimée en volume de liquide par volume de catalyseur et par heure), de préférence entre 3h-1 et 8 h-1. Le rapport H2/HC est compris entre 100 à 600 litres par litre et préférentiellement de 300 à 600 litres par litre.
    Pour réaliser, au moins en partie, l'hydrogénation des composés soufrés insaturés de l'essence selon le procédé de l'invention, on utilise en général au moins un catalyseur d'hydrodésulfuration, comprenant au moins un élément du groupe VIII (métaux des groupes 8, 9 et 10 de la nouvelle classification, c'est-à-dire le fer, le ruthénium, l'osmium, le cobalt, le rhodium, l'iridium, le nickel, le palladium ou le platine) et/ou au moins un élément du groupe Vlb (métaux du groupe 6 de la nouvelle classification, c'est-à-dire le chrome, le molybdène ou le tungstène), sur un support approprié. De préférence, l'élément du groupe VIII, lorsqu'il est présent, est généralement le nickel ou le cobalt, et l'élément du groupe Vlb, lorsqu'il est présent, est généralement le molybdène ou le tungstène. Des combinaisons telles que nickel-molybdène ou cobalt-molybdène sont préférées. Le support du catalyseur est habituellement un solide poreux, tel que par exemple une alumine, une silice-alumine ou d'autres solides poreux, tels que par exemple de la magnésie, de la silice ou de l'oxyde de titane, seuls ou en mélange avec de l'alumine ou de la silice-alumine.
    Après introduction du ou des éléments et éventuellement mise en forme du catalyseur (lorsque cette étape est réalisée sur un mélange contenant déjà les éléments de base), le catalyseur est dans une première étape activé. Cette activation peut correspondre soit à une oxydation, puis à une réduction, soit à une réduction directe, soit à une calcination uniquement. L'étape de calcination est généralement réalisée à des températures allant d'environ 100 à environ 600 °C et de préférence comprises entre 200 et 450 °C, sous un débit d'air.
    Le catalyseur préférentiellement utilisé dans cette étape est un catalyseur comprenant un support à base d'alumine dont la surface spécifique est inférieure à 200 m2/g, et comprenant au moins un élément choisi dans le groupe constitué par le cobalt, le molybdène, le nickel ou le tungstène et de préférence choisi dans le groupe constitué par le cobalt, le molybdène et le tungstène. De façon encore plus préférée le catalyseur selon l'invention contient au moins du cobalt et du molybdène. De plus, la teneur en molybdène, lorsque cet élément est présent est de préférence supérieure à 10 % poids exprimée en oxyde de molybdène, la teneur en cobalt, lorsque cet élément est présent, est de préférence supérieure à 1 % poids (exprimée en oxyde de cobalt II). Pour les catalyseurs à base de molybdène, la densité de molybdène dans le catalyseur, exprimée en gramme de MoO3 par mètre carré de support est supérieure à 0,05 g/m2 de support.
    L'étape de réduction est réalisée dans des conditions permettant de convertir au moins une partie des formes oxydées du métal de base en métal. Généralement, elle consiste à traiter le catalyseur sous un flux d'hydrogène à une température au moins égale à 300 °C. La réduction peut également être réalisée en partie au moyen de réducteurs chimiques.
    Le catalyseur est de préférence utilisé au moins en partie sous sa forme sulfurée. L'introduction du soufre peut intervenir entre différentes étapes d'activation. De préférence, aucune étape d'oxydation n'est réalisée lorsque le soufre ou un composé soufré est introduit sur le catalyseur. Le soufre ou un composé soufré peut être introduit ex situ, c'est-à-dire en dehors du réacteur où le procédé selon l'invention est réalisé, ou in situ, c'est-à-dire dans le réacteur utilisé pour le procédé selon l'invention. Dans ce dernier cas, le catalyseur est de préférence réduit dans les conditions décrites précédemment, puis sulfuré par passage d'une charge contenant au moins un composé soufré, qui une fois décomposé conduit à la fixation de soufre sur le catalyseur. Cette charge peut être gazeuse ou liquide, par exemple de l'hydrogène contenant de l'H2S, ou un liquide contenant au moins un composé soufré.
    D'une façon préférée, le composé soufré est ajouté sur le catalyseur ex situ. Par exemple, après l'étape de calcination, un composé soufré peut être introduit sur le catalyseur en présence éventuellement d'un autre composé. Le catalyseur est ensuite séché, puis transféré dans le réacteur servant à mettre en oeuvre le procédé de l'invention. Dans ce réacteur, le catalyseur est alors traité sous hydrogène afin de transformer au moins une partie du métal principal en sulfure. Une procédure qui convient particulièrement à l'invention est celle décrite dans les brevets FR-B- 2 708 596 et FR-B- 2 708 597.
    Dans le procédé selon l'invention la conversion des composés soufrés insaturés est supérieure à 15 % et de préférence supérieure à 50 %. Dans le même temps le taux d'hydrogénation des oléfines est de préférence inférieur à 50 % et de façon préférée inférieure à 40 % au cours de cette étape.
    L'effluent qui a subi ce premier traitement est ensuite envoyé à l'étape B qui permet d'éliminer au moins en partie l'H2S présent à l'issue de l'étape A.
    - Elimination de l'H2S de l'effluent de l'étape A (Etape B):
    Dans cette étape la concentration en H2S est diminuée. L'élimination de l'H2S peut être réalisée de différentes manières pour la plupart connues de l'homme du métier. On peut par exemple citer l'adsorption d'une partie de l'H2S contenu dans l'effluent de l'étape A par une masse absorbante à base d'un oxyde métallique, de préférence choisie dans le groupe constitué par l'oxyde de zinc, l'oxyde de cuivre ou l'oxyde de molybdène. Cette masse adsorbante est de préférence régénérable. Sa régénération peut être réalisée de façon continue ou discontinue par exemple au moyen d'un traitement thermique sous atmosphère oxydante ou réductrice. La masse absorbante peut être utilisé en lit fixe ou en lit mobile. Elle peut opérer directement sur l'effluent de l'étape A, ou sur cet effluent ayant subi des traitements (par exemple un refroidissement ou une séparation...). Une autre méthode consiste à réaliser une séparation membranaire de l'H2S en utilisant une membrane sélective opérant sur un effluent liquide ou gazeux issue de l'étape A. L'une des zones de la séparation peut contenir une masse absorbante afin de favoriser le transfert de l'H2S à travers la paroi de la membrane. Une autre méthode peut consister à refroidir l'effluent de l'étape A et à produire un gaz riche en H2S et une phase liquide appauvrie en H2S. La phase gaz peut alors être traitée dans une unité de lavage aux amines. La phase liquide et la phase gaz peuvent ensuite être remélangées et envoyées à l'étape C. La fraction liquide peut par ailleurs subir d'autres traitements tels qu'un stripage avec de l'hydrogène, de l'azote ou de la vapeur d'eau, une extraction de l'H2S, un lavage aux amines, un lavage par une solution de soude afin de diminuer sa teneur en H2S.
    - Décomposition des composés saturés du soufre (Etape C):
    Dans cette étape, les composés saturés du soufre sont transformés, en présence d'hydrogène sur un catalyseur adapté. Cette transformation est réalisée, sans hydrogénation des oléfines, c'est à dire qu'au cours de cette étape l'hydrogénation des oléfines est limitée à 20 % par rapport à la teneur de l'essence de départ, et de préférence, limitée à 10 % par rapport à la concentration en oléfines de l'essence.
    Les catalyseurs qui peuvent convenir à l'invention, sans que cette liste soit limitative, sont des catalyseurs comprenant au moins un métal choisi dans le groupe constitué par le nickel, le cobalt , le fer, le molybdène et le tungstène et. De manière plus préférée les catalyseurs de cette étape sont à base de nickel. Ces métaux sont de préférence supportés et utilisés sous leur forme sulfurée.
    La teneur en métal du catalyseur utilisé selon l'invention est généralement comprise entre environ 1 et environ 60 % poids et de préférence entre 5 et 20 % poids. De façon préférée, le catalyseur est généralement mis en forme, de préférence sous forme de billes, d'extrudés, de pastilles, ou de trilobes. Le métal peut être incorporé au catalyseur sur le support préformé, il peut également être mélangé avec le support avant l'étape de mise en forme. Le métal est généralement introduit sous la forme d'un sel précurseur, généralement soluble dans l'eau, tel que par exemple les nitrates, les heptamolybdates. Ce mode d'introduction n'est pas spécifique de l'invention. Tout autre mode d'introduction connu de l'homme du métier convient pour la mise en oeuvre de l'invention.
    Les supports des catalyseurs utilisés dans le procédé de l'invention sont généralement des solides poreux choisis parmi les oxydes réfractaires, tels que par exemple, les alumines, les silices et les silices-alumines, la magnésie, ainsi que l'oxyde de titane et l'oxyde de zinc, ces derniers oxydes pouvant être utilisés seuls ou en mélange avec de l'alumine ou de la silice-alumine. De préférence, les supports sont des alumines de transition ou des silices dont la surface spécifique est comprise entre 25 et 350 m2/g. Les composés naturels (par exemple kieselguhr ou kaolin) peuvent également convenir comme supports pour les catalyseurs du procédé selon l'invention.
    Après introduction du métal et éventuellement mise en forme du catalyseur (lorsque cette étape est réalisée avec un mélange contenant déjà le métal de base), le catalyseur est dans une première étape activé. Cette activation peut correspondre soit à une oxydation, puis à une réduction, soit à une réduction directe, soit à une calcination uniquement. L'étape de calcination est généralement réalisée à des températures allant d'environ 100 à environ 600 °C et de préférence comprises entre 200 et 450 °C, sous un débit d'air. L'étape de réduction est réalisée dans des conditions permettant de convertir au moins une partie des formes oxydées du métal de base en métal. Généralement, elle consiste à traiter le catalyseur sous un flux d'hydrogène à une température au moins égale à 300 °C. La réduction peut aussi être réalisée en partie au moyen de réducteurs chimiques.
    Le catalyseur est de préférence utilisé au moins en partie sous sa forme sulfurée. Ceci présente l'avantage de limiter au maximum les risques d'hydrogénation des composés insaturés tels que les oléfines ou les composés aromatiques pendant la phase de démarrage. L'introduction du soufre peut intervenir entre différentes étapes d'activation. De préférence, aucune étape d'oxydation n'est réalisée lorsque le soufre ou un composé soufré est introduit sur le catalyseur. Le soufre ou un composé soufré peut être introduit ex situ, c'est-à-dire en dehors du réacteur où le procédé selon l'invention est réalisé, ou in situ, c'est-à-dire dans le réacteur utilisé pour le procédé selon l'invention. Dans ce dernier cas, le catalyseur est de préférence réduit dans les conditions décrites précédemment, puis sulfuré par passage d'une charge contenant au moins un composé soufré, qui une fois décomposé conduit à la fixation de soufre sur le catalyseur. Cette charge peut être gazeuse ou liquide, par exemple de l'hydrogène contenant de l'H2S, ou un liquide contenant au moins un composé soufré.
    D'une façon préférée, le composé soufré est ajouté sur le catalyseur ex situ. Par exemple, après l'étape de calcination, un composé soufré peut être introduit sur le catalyseur en présence éventuellement d'un autre composé. Le catalyseur est ensuite séché, puis transféré dans le réacteur servant à mettre en oeuvre le procédé selon l'invention. Dans ce réacteur, le catalyseur est alors traité sous hydrogène afin de transformer au moins une partie du métal principal en sulfure. Une procédure qui convient particulièrement à l'invention est celle décrite dans les brevets FR-B-2 708 596 et FR-B- 2 708 597.
    Après sulfuration, la teneur en soufre du catalyseur est en général comprise entre 0,5 et 25 % poids, de préférence entre 4 et 20 % poids.
    L'hydrotraitement réalisé au cours de cette étape a pour but de convertir en H2S les composés soufrés saturés de l'essence qui a déjà subi un traitement préalable, de façon à obtenir un effluent, qui répondra aux spécifications désirées en terme de teneur en composés soufrés. L'essence ainsi obtenue présente un indice d'octane un peu plus faible, du fait de la saturation partielle mais inévitable des oléfines, que celui de l'essence à traiter. Toutefois cette saturation est limitée.
    Les conditions opératoires du catalyseur permettant de décomposer les composés saturés du soufre en H2S doivent être ajustées de manière à atteindre le niveau d'hydrodésulfuration désiré, et afin de minimiser la perte en octane résultant de la saturation des oléfines. Le second catalyseur (catalyseur de l'étape C) utilisé dans le procédé selon l'invention permet généralement de ne convertir qu'au plus 20 % des oléfines, de préférence au plus 10 % des oléfines.
    Le traitement visant à décomposer les composés soufrés saturés lors de la première étape du procédé (étape A) est effectué en présence d'hydrogène, avec le catalyseur à base d'un métal, tel que de manière plus préférée le nickel, à une température comprise entre environ 200°C et environ 350°C, de préférence entre 250°C et 350°C, de manière plus préférée entre 260°C et 320°C, sous une pression faible à modérée généralement comprise entre environ 0,5 et environ 5 MPa, de préférence entre 0,5 MPa et 3 MPa, de manière plus préférée entre 1 et 3 MPa. La vitesse spatiale du liquide est généralement comprise entre environ 0,5 et environ 10 h-1 (exprimée en volume de liquide par volume de catalyseur et par heure), de préférence entre 1 et 8 h-1. Le rapport H2/HC est ajusté en fonction des taux d'hydrodésulfuration désirés dans la gamme généralement comprise entre environ 100 et environ 600 litres par litres, de préférence entre 100 et 300 litres par litres. Tout ou partie de cet hydrogène peut provenir de l'étape A ou d'un recyclage de l'hydrogène non consommé issu de l'étape C.
    - Mise en oeuvre du procédé :
    Une des possibilités de mise en oeuvre du procédé selon l'invention, peut par exemple consister à faire passer l'essence à hydrotraiter à travers un réacteur contenant un catalyseur permettant, au moins en partie, l'hydrogénation des composés soufrés insaturés, tel que par exemple les composés thiophéniques, en composés saturés du soufre (étape A) et l'élimination de l'H2S (étape B), puis à travers un réacteur contenant un catalyseur permettant de décomposer les composés saturés du soufre en H2S (étape C). L'étape d'élimination de l'H2S peut également être effectuée dans le réacteur de l'étape C ou encore pour partie dans chacun des 2 réacteurs. L'étape d'élimination peut également être en partie ou intégralement située en dehors des réacteurs des étapes A et C.
    Dans une autre configuration qui convient également, les deux catalyseurs des étapes A et C sont placés en série dans le même réacteur et une masse adsorbante de l'H2S est placée entre les deux catalyseurs afin d'éliminer au moins en partie l'H2S produit dans la première zone catalytique (étape B). Dans une telle configuration la masse absorbante, une fois saturée en H2S peut être soit remplacée, soit régénérée. Dans ce dernier cas la régénération peut être réalisée de façon discontinue ou de façon continue en fonction de la masse adsorbante utilisée.
    Dans tous les cas, les deux zones catalytiques peuvent opérer dans des conditions différentes de pression, de VVH, de température, de rapport H2/charge. Des systèmes peuvent être implantés afin de dissocier les conditions opératoires des deux zones de réactionnelles.
    Il peut également être envisagée de réaliser un enchaínement qui consiste à faire passer l'essence à hydrotraiter à travers un réacteur contenant un catalyseur permettant, au moins en partie, l'hydrogénation des composés soufrés insaturés, en composés saturés du soufre (étape A), puis à réaliser séparément ou de manière simultanée une étape d'élimination de l'H2S, puis à réaliser l'étape C dans un réacteur contenant un enchaínement de catalyseurs comprenant au moins un catalyseur du même type que celui utilisé dans la première étape du procédé (étape A) et au moins un catalyseur permettant de décomposer les composés saturés du soufre en H2S (étape C).
    Avec les enchaínements proposés pour le procédé selon l'invention, il est possible d'atteindre des taux d'hydrodésulfuration élevés tout en limitant la perte en oléfines et par conséquent la diminution de l'indice d'octane.
    Les exemples ci-après illustrent l'invention sans en limiter la portée.
    Exemple 1 : Prétraitement de la charge par hydrogénation sélective
    Le tableau 1 présente les caractéristiques de la charge (essences de craquage catalytique) traitées par le procédé selon l'invention. Les méthodes d'analyses utilisées pour caractériser les charges et effluents sont les suivantes :
    • chromatographie en phase gaz (CPG) pour les constituants hydrocarbonés ;
    • méthode NF M 07052 pour le soufre total ;
    • méthode NF EN 25164/M 07026-2/ISO 5164/ASTM D 2699 pour l'indice d'octane recherche ;
    • méthode NF EN 25163/M 07026-1/ISO 5163/ASTM D 2700 pour l'indice d'octane moteur.
    Caractéristiques de la charge utilisée
    Charge
    Densité 0,78
    Point initial (°C) 63°C
    Point final (°C) 250°C
    Teneur en oléfines (% pds) 31.3
    Teneur en diènes 1,4
    S total (ppm) 2062
    RON 91
    MON 80
    (RON + MON)/2 85.5
    Cette charge est prétraitée au moyen d'une étape d'hydrogénation sélective. L'hydrogénation des dioléfines est effectuée sur un catalyseur HR945® à base de nickel et de molybdène, commercialisé par la société Procatalyse. Le test est effectué en réacteur continu de type lit traversé, la charge et l'hydrogène étant introduit par le bas du réacteur. 60 ml de catalyseur sont introduits dans le réacteur après avoir été préalablement sulfurés ex situ pendant 4 heures, sous une pression de 3,4 Mpa, à 350°C, au contact d'une charge consitutée de 2 % en poids de soufre sous forme de diméthylsisulfure dans du n-heptane. Le catalyseur est ensuite transféré dans le réacteur où l'hydrogénation des dioléfines est réalisée. L'hydrogénation est ensuite réalisée dans les conditions suivantes: T=190°C, P=2,7 Mpa, VVH=6h-1 et H2/HC=151/1. Après hydrogénation des dioléfines, la teneur en dioléfines est de .,1 % poids.
    Après hydrogénation, la charge contient.....(ppm ou % poids) de diènes
    EXEMPLE 2 : Hydrodésulfuration de l'essence hydrogénée selon l'étape A (comparatif)
    L'essence hydrogénée dans les conditions de l'exemple 1 est hydrodésulfurée.
    Un catalyseur A est obtenu par imprégnation « sans excès de solution » d'une alumine de transition, se présentant sous forme de billes, de surface spécifique 130 m2/g et de volume poreux 0,9 ml/g, par une solution aqueuse contenant du molybdène et du cobalt sous forme d'heptamolybdate d'ammonium et de nitrate de cobalt . Le catalyseur est ensuite séché et calciné sous air à 500°C. La teneur en cobalt et en molybdène de cette échantillon est de 3 % de CoO et 10 % de MoO3.
    25 ml du catalyseur A sont placés dans un réacteur d'hydrodésulfuration tubulaire à lit fixe. Le catalyseur est tout d'abord sulfuré par traitement pendant 4 heures sous une pression de 3,4 MPa à 350°C, au contact d'une charge constituée de 2% de soufre sous forme de diméthyldisulfure dans du n-heptane.
    Les conditions opératoires de l'hydrodésulfuration sont les suivantes : VVH = 4 h-1 (VVH = volume de charge traité par heure et par volume de catalyseur), H2/HC = 360 I/I, P = 2,0 MPa. La température de la zone catalytique est entre 280°C et 320°C. Les résultats obtenus sont présentés dans le tableau 2
    Température de la zone catalytique (°C) Teneur en Soufre de l'essence désulfurée (ppm) Teneur en oléfine de l'essence désulfurée (% poids) Octane de l'essence désulfurée (RON+MON)/2
    280°C 184 23,9 83.5
    300°C 90 20,2 82.4
    305°C 50 17,1 80.4
    320°C 12 13,6 76.5
    Exemple 3 : Hydrodésulfuration selon les étapes A et C (comparatif)
    L'essence hydrogénée dans les conditions de l'exemple 1 est hydrodésulfurée. Un second catalyseur (catalyseur C) est préparé à partir d'une alumine de transition de 140 m2/g se présentant sous forme de billes de 2 mm de diamètre. Le volume poreux est de 1 ml/g de support.1 kilogramme de support est imprégné par 1 litre de solution de nitrate de nickel. Le catalyseur est ensuite séché à 120°C et calciné sous courant d'air à 400°C pendant une heure. La teneur en nickel du catalyseur est de 20 % poids. 25 ml du catalyseur A de l'exemple 1 et 50 ml du catalyseur C, sont placés dans un même réacteur d'hydrodésulfuration, de manière à ce que la charge à traiter (fraction lourde) rencontre tout d'abord le catalyseur A puis le catalyseur C. Les catalyseurs sont tout d'abord sulfurés par traitement pendant 4 heures sous une pression de 3,4 MPa à 350°C, au contact d'une charge constituée de 2 % de soufre sous forme de diméthyldisulfure dans du n-heptane.
    Les conditions opératoires de l'hydrodésulfuration sont les suivantes : VVH = 1,33 h-1 par rapport à l'ensemble du lit catalytique H2/HC = 360 I/I, P = 2,0 MPa. La température de la zone catalytique comprenant le catalyseur A est de 250°C à 290°C, la température de la zone catalytique contenant le catalyseur C est de 330°C.
       Les résultats obtenus dans ces conditions sont reportés dans le tableau 3.
    Température de la zone catalytique A (°C) Teneur en Soufre de l'essence désulfurée (ppm) Teneur en oléfine de l'essence désulfurée (% poids) Octane de l'essence désulfurée (RON+MON)/2
    270°C 50 20,4 82.3
    290°C 13 15,6 78.7
    Exemple 4 : Hydrodésulfuration selon les étapes A, B et C du procédé selon l'invention.
    L'essence hydrogénée dans les conditions de l'exemple 1 est hydrodésulfurée. Un essai est réalisé dans les mêmes conditions que celles de l'exemple 3, si ce n'est que les deux catalyseurs sont placés dans deux réacteurs différents et que l'H2S est séparé ente ces deux réacteurs. L'effluent du premier réacteur est refroidi à température ambiante, la phase liquide et la phase gazeuse sont séparées, l'H2S de la phase liquide est strippé par un courant d'azote permettant d'éliminer l'H2S jusqu'à une teneur de 50 ppm poids par rapport au liquide. Le liquide ainsi obtenu est alors réchauffé à la température du second catalyseur et réinjecté en présence d'hydrogène introduit avec un débit d'hydrogène de 330 I/I de charge correspondant approximativement au débit d'hydrogène entrant dans le second réacteur de l'exemple 3.
       Les conditions de sulfuration et de test correspondent à celles de l'exemple 3.
       Les résultats obtenus dans ces conditions sont reportés dans le tableau 4.
    Température de la zone catalytique A (°C) Teneur en Soufre de l'essence désulfurée (ppm) Teneur en oléfine de l'essence désulfurée (% poids) Octane de l'essence désulfurée (RON+MON)/2
    260°C 48 21,3 82.5
    280°C 12 16,2 79.4
    Exemple 5 : Autre mode d'hydrodésulfuration selon les étapes A, B et C du procédé selon l'invention.
    L'essence hydrogénée dans les conditions de l'exemple 1 est hydrodésulfurée. 25 ml de catalyseur A sont placé dans un réacteur tubulaire. Ce réacteur est couplé avec un second réacteur d'hydrodésulfuration contenant 13 ml du catalyseur A de l'exemple 1 et 25 ml du catalyseur C de l'exemple 3, de manière à ce que la charge rencontre tout d'abord le catalyseur A puis le catalyseur C. L'effluent du premier réacteur est refroidi à température ambiante, la phase liquide et la phase gazeuse sont séparées, l'H2S de la phase liquide est strippé par un courant d'azote permettant d'éliminer l'H2S jusqu'à une teneur de 50 ppm poids par rapport au liquide. Le liquide ainsi obtenu est alors rechauffé à la température du second réacteur et réinjecté en présence d'hydrogène introduit avec un débit et sous une pression correspondant à celui du second réacteur de l'exemple 2. La température du premier réacteur est indiquée dans le tableau 5. La température du catalyseur A présent dans la seconde zone est portée à 270°C et la température du catalyseur C présent dans le second réacteur est portée à 330°C.
    Les résultats obtenus sont consignés dans le tableau 5.
    Température de la zone catalytique A (°C) Teneur en Soufre de l'essence désulfurée (ppm) Teneur en oléfine de l'essence désulfurée (% poids) Octane de l'essence désulfurée (RON+MON)/2
    260°C 49 23,6 83.3
    280°C 10 20,2 82.3

    Claims (13)

    1. Procédé de production d'essence à faible teneur en soufre caractérisé en ce qu'il comprend au moins trois étapes :
      A) une première étape dans laquelle les composés soufrés présents dans l'essence sont au moins partiellement transformés en H2S et en composés soufrés saturés,
      B) une deuxième étape visant à éliminer l'H2S de l'essence produite dans l'étape A,
      C) une troisième étape dans laquelle les composés soufrés saturés restant dans l'essence sont transformés en H2S.
    2. Procédé selon la revendication 1, dans lequel une étape de prétraitement visant à hydrogéner les dioléfines de la charge est effectuée avant l'étape A.
    3. Procédé selon l'une quelconques des revendications 1 ou 2 dans lequel la charge est une essence de craquage catalytique.
    4. Procédé selon l'une quelconques des revendications 1 à 3 dans lequel l'étape A est effectuée par passage de la charge, en présence d'hydrogène, sur un catalyseur comprenant au moins un élément du groupe VIII et/ou au moins un élément du groupe Vlb, au moins en partie sous forme sulfure.
    5. Procédé selon la revendication 4 dans lequel l'élément du groupe VIII, lorsqu'il est présent, est le nickel ou le cobalt, et l'élément du groupe Vlb, lorsqu'il est présent, est le molybdène ou le tungstène.
    6. Procédé selon la revendication 5 dans lequel l'étape A est effectuée à une température comprise entre environ 210°C et environ 350°C, sous une pression généralement comprise entre environ 1 et environ 5 MPa, avec une vitesse spatiale du liquide comprise entre environ 1 et environ 10 h-1, et un rapport H2/HC compris entre environ 100 et environ 600 litres.
    7. Procédé selon l'une des revendications 1 à 6 dans lequel l'étape C est effectuée en présence d'un catalyseur comprenant au moins un métal de base choisi dans le groupe formé par le nickel, le cobalt, le fer, le molybdène, le tungstène.
    8. Procédé selon la revendication 7 dans lequel la teneur en métal de base est comprise entre 1 et 60 % poids et ledit métal est sulfuré.
    9. Procédé selon l'une des revendications 1 à 8 dans lequel l'étape C est effectuée à une température comprise entre environ 200°C et environ 350°C, une pression comprise entre environ 0,5 et environ 5 MPa, une vitesse spatiale du liquide comprise entre environ 0,5 et environ 10 h-1 et un rapport H2/HC entre environ 100 et environ 600 litres par litres.
    10. Procédé selon l'une quelconque des revendications 1 à 9 mis en oeuvre au moyen d'au moins deux réacteurs séparés, réacteur de prétraitement de la charge non compris, le premier réacteur contenant le catalyseur nécessaire à l'étape A et le deuxième au moins celui nécessaire à l'étape B.
    11. Procédé selon l'une quelconque des revendications 1 à 9 mis en oeuvre au moyen d'au moins deux réacteurs séparés, réacteur de prétraitement de la charge non compris, le premier réacteur contenant au moins un partie du catalyseur nécessaire à l'étape A et le deuxième au moins l'autre partie de celui nécessaire à l'étape A et celui nécessaire à l'étape B.
    12. Procédé selon l'une quelconque des revendications 1 à 11, dans lequel l'étape B est d'élimination d'H2S est réalisée par adsorption en présence d'une masse adsorbante choisie dans le groupe constitué par l'oxyde de zinc, l'oxyde de cuivre et l'oxyde de molybdène.
    13. Procédé selon la revendication 1 à 11 dans lequel l'H2S est séparé au moyen d'une membrane.
    EP01401679A 2000-07-06 2001-06-25 Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S Expired - Lifetime EP1174485B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0008860 2000-07-06
    FR0008860A FR2811328B1 (fr) 2000-07-06 2000-07-06 Procede comprenant deux etapes d'hydrodesulfuration d'essence et une elimination intermediaire de l'h2s forme au cours de la premiere etape

    Publications (2)

    Publication Number Publication Date
    EP1174485A1 true EP1174485A1 (fr) 2002-01-23
    EP1174485B1 EP1174485B1 (fr) 2010-10-27

    Family

    ID=8852221

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01401679A Expired - Lifetime EP1174485B1 (fr) 2000-07-06 2001-06-25 Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S

    Country Status (9)

    Country Link
    US (1) US6972086B2 (fr)
    EP (1) EP1174485B1 (fr)
    JP (1) JP2002047497A (fr)
    KR (1) KR100807159B1 (fr)
    CA (1) CA2352408C (fr)
    DE (1) DE60143332D1 (fr)
    ES (1) ES2352835T3 (fr)
    FR (1) FR2811328B1 (fr)
    MX (1) MXPA01006856A (fr)

    Cited By (43)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN101619234A (zh) * 2008-07-04 2010-01-06 中国石油化工股份有限公司 一种轻质汽油生产低硫汽油的方法
    EP2606969A1 (fr) 2011-12-21 2013-06-26 IFP Energies nouvelles Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des esences de craquage catalytique
    EP2644683A1 (fr) 2012-03-29 2013-10-02 IFP Energies nouvelles Procédé d'hydrogenation selective d'une essence
    WO2014013154A1 (fr) 2012-07-17 2014-01-23 IFP Energies Nouvelles Procede de desulfuration d'une essence
    EP2796196A1 (fr) 2013-04-26 2014-10-29 IFP Energies nouvelles Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des essences
    EP2816094A1 (fr) 2013-06-19 2014-12-24 IFP Energies nouvelles Procédé de production d'une essence à basse teneur en soufre et en mercaptans
    WO2016165853A1 (fr) 2015-04-15 2016-10-20 IFP Energies Nouvelles Procede d'adoucissement en composes du type sulfure d'une essence olefinique
    EP3153564A1 (fr) 2015-10-07 2017-04-12 IFP Energies nouvelles Procédé de désulfuration de naphta craqué
    EP3228683A1 (fr) 2016-04-08 2017-10-11 IFP Énergies nouvelles Procede de traitement d'une essence
    CN107335445A (zh) * 2017-08-17 2017-11-10 江苏天东新材料科技有限公司 一种双功能精脱硫剂的制备方法和应用
    EP3312260A1 (fr) 2016-10-19 2018-04-25 IFP Energies nouvelles Procede d'hydrodesulfuration d'une essence olefinique
    WO2019197351A1 (fr) 2018-04-11 2019-10-17 IFP Energies Nouvelles Masse de captation de l'arsenic à base de nanoparticules de sulfure de nickel
    WO2019197352A1 (fr) 2018-04-11 2019-10-17 IFP Energies Nouvelles Procédé de captation de l'arsenic mettant en œuvre une masse de captation à base de particules d'oxyde de nickel
    FR3090005A1 (fr) 2018-12-18 2020-06-19 IFP Energies Nouvelles Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur régénéré.
    FR3089824A1 (fr) 2018-12-18 2020-06-19 IFP Energies Nouvelles Procédé de réjuvénation d’un catalyseur usé et régénéré d’un procédé d'hydrodésulfuration d'essences.
    FR3090006A1 (fr) 2018-12-18 2020-06-19 IFP Energies Nouvelles Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur réjuvéné à un composé organique.
    FR3089825A1 (fr) 2018-12-18 2020-06-19 IFP Energies Nouvelles Procédé de réjuvénation d’un catalyseur usé non régénéré d’un procédé d'hydrodésulfuration d'essences.
    WO2021013528A1 (fr) 2019-07-23 2021-01-28 IFP Energies Nouvelles Procédé de production d'une essence a basse teneur en soufre et en mercaptans
    WO2021013526A1 (fr) 2019-07-23 2021-01-28 IFP Energies Nouvelles Procédé de production d'une essence a basse teneur en soufre et en mercaptans
    WO2021013527A1 (fr) 2019-07-23 2021-01-28 IFP Energies Nouvelles Procédé de production d'une essence a basse teneur en soufre et en mercaptans
    WO2021013525A1 (fr) 2019-07-23 2021-01-28 IFP Energies Nouvelles Procede de traitement d'une essence par separation en trois coupes
    FR3104460A1 (fr) 2019-12-17 2021-06-18 IFP Energies Nouvelles Masse de captation d'impuretés organométalliques préparée par la voie sels fondus
    FR3104602A1 (fr) 2019-12-17 2021-06-18 IFP Energies Nouvelles Procédé d’hydrodésulfuration de finition en présence d’un catalyseur obtenu par la voie sels fondus
    FR3104459A1 (fr) 2019-12-17 2021-06-18 IFP Energies Nouvelles Masse de captation de mercaptans préparée par voie sels fondus
    FR3106506A1 (fr) 2020-01-28 2021-07-30 IFP Energies Nouvelles Procédé d’hydrodésulfuration de finition en présence d’un catalyseur obtenu par additivation
    WO2021185658A1 (fr) 2020-03-20 2021-09-23 IFP Energies Nouvelles Procédé de production d'une essence a basse teneur en soufre et en mercaptans
    WO2022112093A1 (fr) 2020-11-27 2022-06-02 IFP Energies Nouvelles Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur contenant un materiau graphitique caracterise par son rapport h/c
    WO2022112094A1 (fr) 2020-11-27 2022-06-02 IFP Energies Nouvelles Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur ayant une porosite bimodale particuliere
    WO2022112081A1 (fr) 2020-11-27 2022-06-02 IFP Energies Nouvelles Procede d'hydrodesulfuration de finition en presence d'un catalyseur sur support meso-macroporeux
    WO2022112080A1 (fr) 2020-11-27 2022-06-02 IFP Energies Nouvelles Procede de captation d'impuretes organometalliques en presence d'une masse de captation sur support meso-macroporeux
    WO2022112095A1 (fr) 2020-11-27 2022-06-02 IFP Energies Nouvelles Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur contenant un materiau graphitique caracterise par spectroscopie rmn 13c mas
    FR3116740A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé de préparation d’un catalyseur d’hydrodésulfuration d’une coupe essence comprenant un métal du groupe VIB, un métal du groupe VIII et du carbone graphitique
    FR3116828A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé de captation d'impuretés organométalliques mettant en œuvre une masse de captation à base de cobalt et de molybdène et contenant du carbone
    WO2023110730A1 (fr) 2021-12-17 2023-06-22 IFP Energies Nouvelles Procede de captation de mercaptans mettant en œuvre une masse de captation macro et mesoporeuse
    WO2023110733A1 (fr) 2021-12-17 2023-06-22 IFP Energies Nouvelles Procede de captation de mercaptans mettant en œuvre une masse de captation ayant subi une etape de passivation au co2
    WO2023110728A1 (fr) 2021-12-17 2023-06-22 IFP Energies Nouvelles Procédé de captation de mercaptans mettant en œuvre une masse de captation mésoporeuse
    WO2023110732A1 (fr) 2021-12-17 2023-06-22 IFP Energies Nouvelles Procede de captation de mercaptans avec selection de temperature et rapport en ni/nio specifique
    FR3130831A1 (fr) 2021-12-20 2023-06-23 IFP Energies Nouvelles Procédé de production d'une coupe essence légère à basse teneur en soufre
    FR3130834A1 (fr) 2021-12-20 2023-06-23 IFP Energies Nouvelles Procédé de traitement d'une essence contenant des composés soufrés
    FR3130835A1 (fr) 2021-12-20 2023-06-23 IFP Energies Nouvelles Procédé de traitement d'une essence contenant des composés soufrés comprenant une étape de dilution
    FR3142486A1 (fr) 2022-11-30 2024-05-31 IFP Energies Nouvelles Procédé d’hydrodésulfuration de finition des essences mettant en œuvre un enchaînement de catalyseurs
    FR3142362A1 (fr) 2022-11-30 2024-05-31 IFP Energies Nouvelles Catalyseur d’hydrodésulfuration de finition comprenant un métal du groupe VIB, un métal du groupe VIII et du phosphore sur support alumine alpha
    FR3142487A1 (fr) 2022-11-30 2024-05-31 IFP Energies Nouvelles Procédé d’hydrodésulfuration de finition des essences mettant en œuvre un catalyseur à base de métaux du groupe VIB et VIII et du phosphore sur support alumine à faible surface spécifique

    Families Citing this family (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CA2470079A1 (fr) * 2001-12-13 2003-06-26 Lehigh University Desulfuration oxydative d'hydrocarbures soufres
    ATE359119T1 (de) * 2002-09-23 2007-05-15 Shell Int Research Katalysatorteilchen und ihre verwendung bei der entschwefelung
    US7785461B2 (en) * 2004-11-10 2010-08-31 Petroleo Brasileiro S.A. - Petrobras Process for selective hydrodesulfurization of naphtha
    US7419586B2 (en) * 2004-12-27 2008-09-02 Exxonmobil Research And Engineering Company Two-stage hydrodesulfurization of cracked naphtha streams with light naphtha bypass or removal
    US20060151359A1 (en) * 2005-01-13 2006-07-13 Ellis Edward S Naphtha desulfurization process
    FR2888583B1 (fr) * 2005-07-18 2007-09-28 Inst Francais Du Petrole Nouveau procede de desulfuration d'essences olefiniques permettant de limiter la teneur en mercaptans
    CN101134914B (zh) * 2006-08-31 2012-02-15 中国石油化工股份有限公司 一种烃油在固定床反应器内临氢催化吸附脱硫的方法
    FR2908781B1 (fr) * 2006-11-16 2012-10-19 Inst Francais Du Petrole Procede de desulfuration profonde des essences de craquage avec une faible perte en indice d'octane
    JP5123635B2 (ja) * 2007-10-12 2013-01-23 Jx日鉱日石エネルギー株式会社 ガソリン基材の製造方法及びガソリン
    CA2683148A1 (fr) * 2009-10-07 2011-04-07 Lyle E. Carnegie Appareillage et procede de production d'hydrogene
    FR3020376B1 (fr) * 2014-04-28 2017-10-20 Ifp Energies Now Procede de production d'une essence a basse temperature en soufre et en marcaptans.
    FR3007416B1 (fr) * 2013-06-19 2018-03-23 IFP Energies Nouvelles Procede de production d'une essence a basse teneur en soufre et en mercaptans
    FR3014896B1 (fr) 2013-12-18 2018-07-27 IFP Energies Nouvelles Procede d'hydrodesulfuration de coupes d'hydrocarbures
    KR101590107B1 (ko) 2014-10-17 2016-01-29 고등기술연구원연구조합 습식탈황공정용 부유황 분리 재생 구조체
    FR3056599B1 (fr) * 2016-09-26 2018-09-28 IFP Energies Nouvelles Procede de traitement d'une essence par separation en trois coupes.
    WO2018104056A1 (fr) * 2016-12-06 2018-06-14 Haldor Topsøe A/S Procédé pour l'élimination sélective de dioléfines à partir d'un flux gazeux
    US20210309923A1 (en) * 2018-05-30 2021-10-07 Haldor Topsøe A/S Process for desulfurization of hydrocarbons

    Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO1994022980A1 (fr) * 1993-04-02 1994-10-13 Mobil Oil Corporation Procede d'amelioration de la qualite de l'essence
    EP0755995A1 (fr) * 1995-07-26 1997-01-29 Mitsubishi Oil Co., Ltd. Procédé de désulfuration d'essence craquée catalytiquement
    WO1997003150A1 (fr) * 1995-07-13 1997-01-30 Engelhard De Meern B.V. Procede d'hydrogenation d'une alimentation en hydrocarbures contenant du soufre thiophenique
    WO1998007805A2 (fr) * 1996-08-23 1998-02-26 Exxon Chemical Patents Inc. Elimination d'heteroatomes par sorption a contre-courant
    EP0870817A1 (fr) * 1997-04-11 1998-10-14 Akzo Nobel N.V. Procédé pour l'hydrodésulphuration poussé de charges hydrocarbonées
    EP1031622A1 (fr) * 1999-02-24 2000-08-30 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS5679183A (en) * 1979-12-03 1981-06-29 Jgc Corp Low-temperature steam reformation
    US4442223A (en) * 1979-12-17 1984-04-10 Mobil Oil Corporation Catalyst and catalyst support compositions
    US4925549A (en) * 1984-10-31 1990-05-15 Chevron Research Company Sulfur removal system for protection of reforming catalyst
    US4952306A (en) * 1989-09-22 1990-08-28 Exxon Research And Engineering Company Slurry hydroprocessing process
    US5114562A (en) * 1990-08-03 1992-05-19 Uop Two-stage hydrodesulfurization and hydrogenation process for distillate hydrocarbons
    JPH0734073A (ja) * 1993-07-23 1995-02-03 Jgc Corp 石油類の水素化処理方法及び水素化処理装置
    FR2753717B1 (fr) * 1996-09-24 1998-10-30 Procede et installation pour la production d'essences de craquage catalytique a faible teneur en soufre
    US6083378A (en) * 1998-09-10 2000-07-04 Catalytic Distillation Technologies Process for the simultaneous treatment and fractionation of light naphtha hydrocarbon streams
    FR2785908B1 (fr) * 1998-11-18 2005-12-16 Inst Francais Du Petrole Procede de production d'essences a faible teneur en soufre
    US6303020B1 (en) * 2000-01-07 2001-10-16 Catalytic Distillation Technologies Process for the desulfurization of petroleum feeds
    US6444118B1 (en) * 2001-02-16 2002-09-03 Catalytic Distillation Technologies Process for sulfur reduction in naphtha streams

    Patent Citations (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO1994022980A1 (fr) * 1993-04-02 1994-10-13 Mobil Oil Corporation Procede d'amelioration de la qualite de l'essence
    WO1997003150A1 (fr) * 1995-07-13 1997-01-30 Engelhard De Meern B.V. Procede d'hydrogenation d'une alimentation en hydrocarbures contenant du soufre thiophenique
    EP0755995A1 (fr) * 1995-07-26 1997-01-29 Mitsubishi Oil Co., Ltd. Procédé de désulfuration d'essence craquée catalytiquement
    WO1998007805A2 (fr) * 1996-08-23 1998-02-26 Exxon Chemical Patents Inc. Elimination d'heteroatomes par sorption a contre-courant
    EP0870817A1 (fr) * 1997-04-11 1998-10-14 Akzo Nobel N.V. Procédé pour l'hydrodésulphuration poussé de charges hydrocarbonées
    EP1031622A1 (fr) * 1999-02-24 2000-08-30 Institut Francais Du Petrole Procédé de production d'essences à faible teneur en soufre

    Cited By (71)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN101619234A (zh) * 2008-07-04 2010-01-06 中国石油化工股份有限公司 一种轻质汽油生产低硫汽油的方法
    CN101619234B (zh) * 2008-07-04 2012-09-12 中国石油化工股份有限公司 一种轻质汽油生产低硫汽油的方法
    EP2606969A1 (fr) 2011-12-21 2013-06-26 IFP Energies nouvelles Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des esences de craquage catalytique
    EP2644683A1 (fr) 2012-03-29 2013-10-02 IFP Energies nouvelles Procédé d'hydrogenation selective d'une essence
    WO2014013154A1 (fr) 2012-07-17 2014-01-23 IFP Energies Nouvelles Procede de desulfuration d'une essence
    EP2796196A1 (fr) 2013-04-26 2014-10-29 IFP Energies nouvelles Adsorbant catalytique pour la captation de l'arsenic et l'hydrodésulfuration sélective des essences
    EP2816094A1 (fr) 2013-06-19 2014-12-24 IFP Energies nouvelles Procédé de production d'une essence à basse teneur en soufre et en mercaptans
    WO2016165853A1 (fr) 2015-04-15 2016-10-20 IFP Energies Nouvelles Procede d'adoucissement en composes du type sulfure d'une essence olefinique
    US10822555B2 (en) 2015-04-15 2020-11-03 IFP Energies Nouvelles Method for sweetening an olefinic petrol of sulphide-type compounds
    EP3153564A1 (fr) 2015-10-07 2017-04-12 IFP Energies nouvelles Procédé de désulfuration de naphta craqué
    EP3228683A1 (fr) 2016-04-08 2017-10-11 IFP Énergies nouvelles Procede de traitement d'une essence
    EP3312260A1 (fr) 2016-10-19 2018-04-25 IFP Energies nouvelles Procede d'hydrodesulfuration d'une essence olefinique
    CN107335445A (zh) * 2017-08-17 2017-11-10 江苏天东新材料科技有限公司 一种双功能精脱硫剂的制备方法和应用
    WO2019197351A1 (fr) 2018-04-11 2019-10-17 IFP Energies Nouvelles Masse de captation de l'arsenic à base de nanoparticules de sulfure de nickel
    WO2019197352A1 (fr) 2018-04-11 2019-10-17 IFP Energies Nouvelles Procédé de captation de l'arsenic mettant en œuvre une masse de captation à base de particules d'oxyde de nickel
    FR3090005A1 (fr) 2018-12-18 2020-06-19 IFP Energies Nouvelles Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur régénéré.
    FR3089824A1 (fr) 2018-12-18 2020-06-19 IFP Energies Nouvelles Procédé de réjuvénation d’un catalyseur usé et régénéré d’un procédé d'hydrodésulfuration d'essences.
    FR3090006A1 (fr) 2018-12-18 2020-06-19 IFP Energies Nouvelles Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur réjuvéné à un composé organique.
    FR3089825A1 (fr) 2018-12-18 2020-06-19 IFP Energies Nouvelles Procédé de réjuvénation d’un catalyseur usé non régénéré d’un procédé d'hydrodésulfuration d'essences.
    WO2020126677A1 (fr) 2018-12-18 2020-06-25 IFP Energies Nouvelles Procede d'hydrodesulfuration de coupes essence olefinique contenant du soufre mettant en œuvre un catalyseur regenere
    WO2020126678A1 (fr) 2018-12-18 2020-06-25 IFP Energies Nouvelles Procede d'hydrodesulfuration de coupes essence olefinique contenant du soufre mettant en œuvre un catalyseur rejuvene a un compose organique
    WO2020126679A1 (fr) 2018-12-18 2020-06-25 IFP Energies Nouvelles Procede de rejuvenation d'un catalyseur use non regenere d'un procede d'hydrodesulfuration d'essences
    WO2020126676A1 (fr) 2018-12-18 2020-06-25 IFP Energies Nouvelles Procede de rejuvenation d'un catalyseur use et regenere d'un procede d'hydrodesulfuration d'essences
    WO2021013528A1 (fr) 2019-07-23 2021-01-28 IFP Energies Nouvelles Procédé de production d'une essence a basse teneur en soufre et en mercaptans
    WO2021013526A1 (fr) 2019-07-23 2021-01-28 IFP Energies Nouvelles Procédé de production d'une essence a basse teneur en soufre et en mercaptans
    WO2021013527A1 (fr) 2019-07-23 2021-01-28 IFP Energies Nouvelles Procédé de production d'une essence a basse teneur en soufre et en mercaptans
    WO2021013525A1 (fr) 2019-07-23 2021-01-28 IFP Energies Nouvelles Procede de traitement d'une essence par separation en trois coupes
    FR3099175A1 (fr) 2019-07-23 2021-01-29 IFP Energies Nouvelles Procédé de production d'une essence a basse teneur en soufre et en mercaptans
    FR3099174A1 (fr) 2019-07-23 2021-01-29 IFP Energies Nouvelles Procédé de production d'une essence a basse teneur en soufre et en mercaptans
    FR3099172A1 (fr) 2019-07-23 2021-01-29 IFP Energies Nouvelles Procede de traitement d'une essence par separation en trois coupes
    FR3099173A1 (fr) 2019-07-23 2021-01-29 IFP Energies Nouvelles Procédé de production d'une essence a basse teneur en soufre et en mercaptans
    WO2021122059A1 (fr) 2019-12-17 2021-06-24 IFP Energies Nouvelles Masse de captation de mercaptans preparee par voie sels fondus
    FR3104602A1 (fr) 2019-12-17 2021-06-18 IFP Energies Nouvelles Procédé d’hydrodésulfuration de finition en présence d’un catalyseur obtenu par la voie sels fondus
    FR3104459A1 (fr) 2019-12-17 2021-06-18 IFP Energies Nouvelles Masse de captation de mercaptans préparée par voie sels fondus
    FR3104460A1 (fr) 2019-12-17 2021-06-18 IFP Energies Nouvelles Masse de captation d'impuretés organométalliques préparée par la voie sels fondus
    FR3106506A1 (fr) 2020-01-28 2021-07-30 IFP Energies Nouvelles Procédé d’hydrodésulfuration de finition en présence d’un catalyseur obtenu par additivation
    WO2021151731A1 (fr) 2020-01-28 2021-08-05 IFP Energies Nouvelles Procede d'hydrodesulfuration de finition en presence d'un catalyseur obtenu par additivation
    WO2021185658A1 (fr) 2020-03-20 2021-09-23 IFP Energies Nouvelles Procédé de production d'une essence a basse teneur en soufre et en mercaptans
    FR3108333A1 (fr) 2020-03-20 2021-09-24 IFP Energies Nouvelles Procédé de production d'une essence a basse teneur en soufre et en mercaptans
    FR3116828A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé de captation d'impuretés organométalliques mettant en œuvre une masse de captation à base de cobalt et de molybdène et contenant du carbone
    WO2022112094A1 (fr) 2020-11-27 2022-06-02 IFP Energies Nouvelles Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur ayant une porosite bimodale particuliere
    WO2022112081A1 (fr) 2020-11-27 2022-06-02 IFP Energies Nouvelles Procede d'hydrodesulfuration de finition en presence d'un catalyseur sur support meso-macroporeux
    WO2022112080A1 (fr) 2020-11-27 2022-06-02 IFP Energies Nouvelles Procede de captation d'impuretes organometalliques en presence d'une masse de captation sur support meso-macroporeux
    WO2022112095A1 (fr) 2020-11-27 2022-06-02 IFP Energies Nouvelles Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur contenant un materiau graphitique caracterise par spectroscopie rmn 13c mas
    FR3116825A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé d’hydrodésulfuration d’une coupe essence mettant en œuvre un catalyseur ayant une porosité bimodale particulière
    FR3116833A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procede de captation d’impuretes organometalliques en presence d’une masse de captation sur support meso-macroporeux
    FR3116740A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé de préparation d’un catalyseur d’hydrodésulfuration d’une coupe essence comprenant un métal du groupe VIB, un métal du groupe VIII et du carbone graphitique
    FR3116830A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé d’hydrodésulfuration d’une coupe essence mettant en œuvre un catalyseur contenant un matériau graphitique caractérisé par son rapport H/C
    FR3116827A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procédé d’hydrodésulfuration d’une coupe essence mettant en œuvre un catalyseur contenant un matériau graphitique caractérisé par spectroscopie RMN13C MAS
    FR3116832A1 (fr) 2020-11-27 2022-06-03 IFP Energies Nouvelles Procede d’hydrodesulfuration de finition en presence d’un catalyseur sur support meso-macroporeux
    WO2022112093A1 (fr) 2020-11-27 2022-06-02 IFP Energies Nouvelles Procede d'hydrodesulfuration d'une coupe essence mettant en œuvre un catalyseur contenant un materiau graphitique caracterise par son rapport h/c
    WO2023110732A1 (fr) 2021-12-17 2023-06-22 IFP Energies Nouvelles Procede de captation de mercaptans avec selection de temperature et rapport en ni/nio specifique
    WO2023110733A1 (fr) 2021-12-17 2023-06-22 IFP Energies Nouvelles Procede de captation de mercaptans mettant en œuvre une masse de captation ayant subi une etape de passivation au co2
    WO2023110728A1 (fr) 2021-12-17 2023-06-22 IFP Energies Nouvelles Procédé de captation de mercaptans mettant en œuvre une masse de captation mésoporeuse
    WO2023110730A1 (fr) 2021-12-17 2023-06-22 IFP Energies Nouvelles Procede de captation de mercaptans mettant en œuvre une masse de captation macro et mesoporeuse
    FR3130828A1 (fr) 2021-12-17 2023-06-23 IFP Energies Nouvelles Procédé de captation de mercaptans mettant en œuvre une masse de captation macro et mésoporeuse
    FR3130830A1 (fr) 2021-12-17 2023-06-23 IFP Energies Nouvelles Procédé de captation de mercaptans mettant en œuvre une masse de captation mésoporeuse
    FR3130829A1 (fr) 2021-12-17 2023-06-23 IFP Energies Nouvelles Procédé de captation de mercaptans avec sélection de température et rapport en Ni/NiO spécifique
    FR3130827A1 (fr) 2021-12-17 2023-06-23 IFP Energies Nouvelles Procédé de captation de mercaptans mettant en œuvre une masse de captation ayant subi une étape de passivation au CO2
    FR3130834A1 (fr) 2021-12-20 2023-06-23 IFP Energies Nouvelles Procédé de traitement d'une essence contenant des composés soufrés
    FR3130831A1 (fr) 2021-12-20 2023-06-23 IFP Energies Nouvelles Procédé de production d'une coupe essence légère à basse teneur en soufre
    FR3130835A1 (fr) 2021-12-20 2023-06-23 IFP Energies Nouvelles Procédé de traitement d'une essence contenant des composés soufrés comprenant une étape de dilution
    WO2023117531A1 (fr) 2021-12-20 2023-06-29 IFP Energies Nouvelles Procede de traitement d'une essence contenant des composes soufres
    WO2023117533A1 (fr) 2021-12-20 2023-06-29 IFP Energies Nouvelles Procede de traitement d'une essence contenant des composes soufres comprenant une etape de dilution
    WO2023117532A1 (fr) 2021-12-20 2023-06-29 IFP Energies Nouvelles Procede de production d'une coupe essence legere a basse teneur en soufre
    FR3142486A1 (fr) 2022-11-30 2024-05-31 IFP Energies Nouvelles Procédé d’hydrodésulfuration de finition des essences mettant en œuvre un enchaînement de catalyseurs
    FR3142362A1 (fr) 2022-11-30 2024-05-31 IFP Energies Nouvelles Catalyseur d’hydrodésulfuration de finition comprenant un métal du groupe VIB, un métal du groupe VIII et du phosphore sur support alumine alpha
    FR3142487A1 (fr) 2022-11-30 2024-05-31 IFP Energies Nouvelles Procédé d’hydrodésulfuration de finition des essences mettant en œuvre un catalyseur à base de métaux du groupe VIB et VIII et du phosphore sur support alumine à faible surface spécifique
    WO2024115277A1 (fr) 2022-11-30 2024-06-06 IFP Energies Nouvelles Procede d'hydrodesulfuration de finition des essences mettant en œuvre un catalyseur a base de metaux du groupe vib et viii et du phosphore sur support alumine a faible surface specifique
    WO2024115276A1 (fr) 2022-11-30 2024-06-06 IFP Energies Nouvelles Catalyseur d'hydrodesulfuration de finition comprenant un metal du groupe vib, un metal du groupe viii et du phosphore sur support alumine alpha
    WO2024115275A1 (fr) 2022-11-30 2024-06-06 IFP Energies Nouvelles Procede d'hydrodesulfuration de finition des essences mettant en œuvre un enchainement de catalyseurs

    Also Published As

    Publication number Publication date
    KR20020005488A (ko) 2002-01-17
    FR2811328B1 (fr) 2002-08-23
    CA2352408C (fr) 2010-06-15
    FR2811328A1 (fr) 2002-01-11
    KR100807159B1 (ko) 2008-02-27
    ES2352835T3 (es) 2011-02-23
    DE60143332D1 (de) 2010-12-09
    US6972086B2 (en) 2005-12-06
    MXPA01006856A (es) 2004-07-16
    US20030209467A1 (en) 2003-11-13
    JP2002047497A (ja) 2002-02-12
    EP1174485B1 (fr) 2010-10-27
    CA2352408A1 (fr) 2002-01-06

    Similar Documents

    Publication Publication Date Title
    EP1174485B1 (fr) Procédé comprenant deux étapes d'hydrodesulfuration d'essence avec élimination intermediaire de L'H2S
    EP2169032B1 (fr) Catalyseur permettant de décomposer ou d'hydrogéner au moins partiellement les composes soufres insaturés
    EP1002853B1 (fr) Procédé de production d'essences à faible teneur en soufre
    EP1923452B1 (fr) Procédé de désulfuration profonde des essences de craquage avec une faible perte en indice d'octane
    EP1138749B1 (fr) Procédé de desulfuration d'essence comprenant une desulfuration des fractions lourde et intermediaire issues d'un fractionnement en au moins trois coupes
    EP1849850B1 (fr) Procédé de désulfuration d'essences oléfiniques comprenant au moins deux étapes distinctes d'hydrodésulfuration
    CA2299152C (fr) Procede de production d'essences a faible teneur en soufre
    FR2850299A1 (fr) Catalyseurs partiellement cokes utilisables dans l'hydrotraitement des coupes contenant des composes soufres et des olefines
    EP1354930A1 (fr) Procédé de production d'hydocarbures à faible teneur en soufre et en mercaptans
    WO2014013153A1 (fr) Procede de production d'une essence legere basse teneur en soufre
    EP1369468B1 (fr) Procédé de production d'hydrocarbures à faible teneur en soufre et en azote
    EP3228683B1 (fr) Procede de traitement d'une essence
    WO2014013154A1 (fr) Procede de desulfuration d'une essence
    EP1370627B1 (fr) Procede de production d'essence a faible teneur en soufre
    FR2997415A1 (fr) Procede de production d'une essence a basse teneur en soufre
    EP1370630B1 (fr) Procede de production d'une essence desulfuree a partir d'une coupe essence contenant de l'essence de craquage
    EP1370629B1 (fr) Procede de production d'essence a faible teneur en soufre
    FR2785833A1 (fr) Catalyseur comprenant du nickel et son utilisation dans un procede d'hydrodesulfuration de charges hydrocarbonees

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    Kind code of ref document: A1

    Designated state(s): DE ES GB IT NL

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20020723

    AKX Designation fees paid

    Free format text: DE ES GB IT NL

    17Q First examination report despatched

    Effective date: 20050331

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES GB IT NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 60143332

    Country of ref document: DE

    Date of ref document: 20101209

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: T3

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Effective date: 20110211

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 60143332

    Country of ref document: DE

    Owner name: IFP ENERGIES NOUVELLES, FR

    Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

    Effective date: 20110331

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20110728

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R097

    Ref document number: 60143332

    Country of ref document: DE

    Effective date: 20110728

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20200618

    Year of fee payment: 20

    Ref country code: GB

    Payment date: 20200630

    Year of fee payment: 20

    Ref country code: NL

    Payment date: 20200625

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20200827

    Year of fee payment: 20

    Ref country code: ES

    Payment date: 20200710

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 60143332

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MK

    Effective date: 20210624

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20210624

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20210624

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20211105

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20210626