EP1172887A2 - Antenna, in particular a high-power microwave antenna - Google Patents

Antenna, in particular a high-power microwave antenna Download PDF

Info

Publication number
EP1172887A2
EP1172887A2 EP01113450A EP01113450A EP1172887A2 EP 1172887 A2 EP1172887 A2 EP 1172887A2 EP 01113450 A EP01113450 A EP 01113450A EP 01113450 A EP01113450 A EP 01113450A EP 1172887 A2 EP1172887 A2 EP 1172887A2
Authority
EP
European Patent Office
Prior art keywords
antenna
airbag
cassegrain
hpm
horn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01113450A
Other languages
German (de)
French (fr)
Other versions
EP1172887A3 (en
EP1172887B1 (en
Inventor
Marcus Dr. Jung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall W&M GmbH
Original Assignee
Rheinmetall W&M GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rheinmetall W&M GmbH filed Critical Rheinmetall W&M GmbH
Publication of EP1172887A2 publication Critical patent/EP1172887A2/en
Publication of EP1172887A3 publication Critical patent/EP1172887A3/en
Application granted granted Critical
Publication of EP1172887B1 publication Critical patent/EP1172887B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/08Means for collapsing antennas or parts thereof
    • H01Q1/081Inflatable antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/005Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements for radiating non-sinusoidal waves

Definitions

  • the invention relates to an antenna, in particular a high-power microwave antenna, according to the preamble of claim 1.
  • indirect movement antennas or antenna systems that require little installation space to meet the requirements of the carrier system, but also the requirements of an HPM source such as dielectric strength, surface quality, Antenna gain, directivity, etc. must meet.
  • HPM source for example for an HPM active system, is disclosed in US Pat. No. 5,671,133.
  • a deployable HPM active system is described in US 5,192,827.
  • This HPM active system indicates the non-lethal destruction of a target, d. H. only the electronics of the The target is destroyed, a projectile as a carrier system.
  • TEM microwave antenna
  • TEM horn antenna transverse electromagnetic
  • wire antennas in particular Antenna gain and the directivity very low and inhomogeneous.
  • the radiant field strength is determined by the environmental conditions of the HPM active system. With horn antennas the maximum radiated field strength depends on the size of the aperture of the horn antenna limited, which is subject to the geometric boundary parameters of the carrier system.
  • EP 0 128 970 A1 describes the construction of a horn antenna for use as a ground station antenna for satellite radio. Another horn antenna is known from US 5,568,160. A cylindrical hybrid horn antenna is described in US 4,783,665. The principle of a multi-horn antenna can be found in US 5,113,197 and US 4,758,842.
  • microwave antennas are intended for use in particular HPM active systems are unsuitable because the space required for these antennas in the Carrier system is not available.
  • the invention is based on the idea of creating an antenna by means of an airbag inflates near a target, and then the HPM pulses generated by an HPM source to radiate to the target.
  • an airbag that is already in the carrier system or insert another airbag into the carrier system.
  • Such an existing airbag describes DE 34 32 614 A1, the task of this airbag being the Unfold the wing of a missile (carrier system) in its working position.
  • the airbag (antenna airbag) can be a horn antenna or a Cassegrain antenna and reproduce these in whole or in part.
  • the Cassegrain antenna can preferably be a horn antenna as a feed system and a curved reflector surface of the rear antenna airbag or one as an antenna airbag be formed with a combination of a parachute.
  • Another variant is in the Cassegrain antenna to integrate a horn-like airbag, which in turn as a feed system acts. This measure increases the antenna aperture, which increases the increase the maximum achievable field strength at the entry point and the antenna gain or the Directional characteristics can be improved.
  • the field strength of the antenna airbag with electronegative gas is completely or also only partially filled.
  • the transmission or antenna aperture can be used to improve the radiation properties of the antenna improved or enlarged by an individual design of the antenna airbag become. So the curvature of the reflector can be ideal by cutting the airbag can be set.
  • This solution offers a space-saving antenna, which is particularly useful during installation into a carrier system to be moved, the requirements for the carrier system (artillery grenade, Rocket, drone, projectile etc.) in terms of volume, mass, acceleration resistance, Flow properties etc. not affected, but nevertheless a safe radiation guaranteed by short HPM pulses.
  • the carrier system artificialillery grenade, Rocket, drone, projectile etc.
  • an HPM active system 1 which consists of a carrier system 2, a pulse generation source 3, and an antenna 4 is formed.
  • the antenna 4 is accommodated as a folded antenna airbag 5 in the HPM active system 1 and for example stowed in or on the carrier system 2 in an aerodynamically favorable casing 6.
  • the Antenna airbag 5 is connected to at least one gas generator 7.
  • the antenna is electrical 4 connected on one side to the pulse generation source 3.
  • the pulse generation source 3, for example an HPM source supplies the short pulses 8 to be delivered to the antenna 4, those in the picosecond range (ps), preferably between 10 picoseconds (ps) up to 10 Microseconds ( ⁇ s).
  • the antenna 4 is designed as a broadband antenna and delivers frequencies from 10 MHz to the 10 GHz range. Another, the HPM active system 1 forming assemblies and units are neither shown for clarity, nor designated.
  • FIG. 2 shows the general principle or the interaction of the antenna 4 with the antenna airbag 5 shown in functional use.
  • On approach or during the approach phase of the HPM active system 1 to a target 100 is a few milliseconds (ms) before Radiation of the at least one pulse 8 of the antenna airbag 5 by inflowing gas 10 from the at least one gas generator 7 in the functional use for the antenna 4 inflated, the envelope 6 being destroyed.
  • the at least one short pulse 8 is the at least one short pulse 8 in the direction indicated by the arrow against the target 100 via a kind of paraboloid 4.1 of the antenna 4 emitted in the antenna airbag 5.
  • the antenna 4 and so that the antenna airbag 5 are dropped when this airbag 5 has no further tasks in the HPM active system 1, such as flight stabilization for the HPM active system 1.
  • the target 100 can be an airborne or ground target 100.
  • the spent HPM active system 1 is preferably located vertically and above target 100.
  • the antenna airbag 5 according to the invention can emulate different antenna arrangements. This is possible through the most varied design of an airbag.
  • the antenna airbag 5 simulates a horn antenna 9 in the shape of a truncated pyramid or truncated cone, the horn antenna 9 widening from its bottom surface 9.1 to the top surface 9.3.
  • This stump top 9.3 can be referred to as the bottom surface of the horn antenna aperture.
  • the size of this bottom surface determines the radiation property of the horn antenna 9.
  • the sides 9.2 of the horn antenna are designed as metallically conductive walls, while the bottom surface or stump top 9.3 has no coating and is therefore open.
  • the horn antenna 9 is electrically connected on the underside to the pulse generation source 3.
  • the antenna airbag 5 is preferably filled with an electronegative gas 10, for example N 2 , SF 6 , which increases the field strength when the antenna airbag 5 is used as an antenna 4, which has a positive effect on the antenna performance.
  • an electronegative gas 10 for example N 2 , SF 6
  • FIGS. 3a, 3b the horn antenna 9 is shown in a top view of the stump upper side 9.3, the round or angular shape of the horn antenna 9 being clearly visible.
  • the antenna airbag 5 forms a combined arrangement from a horn antenna 9 according to FIG. 3 with one connected to the horn antenna 9 in one piece and cooperating airbag 11 designed as a parachute Combination, a cassegrain-like antenna 12 is created, the bottom surface 12.3 is more easily curved and enlarged relative to the bottom surface 9.3 of the horn antenna 9, whereby this antenna aperture in functional use the radiation properties the antenna 4 significantly improved.
  • the horn antenna 9 serves as a feed system for the Antenna 4, d. H. for the Cassegrain antenna 12.
  • the parachute-like airbag 11 points to the Pages 12.2, i.e. circumferentially, a metallic reflector 13.
  • the peripheral connection surface 14 between the airbag 11 and the horn antenna 9 is not metallically conductive.
  • FIG. 5 Another cassegrain-like antenna 15 is shown in the embodiment of Figure 5.
  • a horn-like antenna 16 is used as the feed system integrated in the Cassegrain antenna 15, a slightly curved metallic
  • the reflector 17 is not part of a parachute-like airbag, but the Cassegrain antenna 15 forming antenna airbags 5.
  • Connection surfaces 18 are also circumferential and not metallic conductive.
  • FIGS. 5a and 5b show possible configurations of the Cassegrain antenna 12, 15, but also shown in Figure 6 in a plan view.
  • the Cassegrain antenna can also be used here 12, 15, 20 have a truncated cone shape or truncated pyramid shape.
  • the cassegrain antenna 15 has no reflector on the circumference.
  • the sides 20.2 are not of metallic conductivity.
  • the bottom surface 20.3 of the antenna 4 working as Cassegrain antenna 20 is metallically coated and serves as a reflector.
  • the short pulses 8 are reflected in the transmission direction shown in FIG. 2, this being done on the side reflectors 9.2, 12.2 or 15.2 or on the coated bottom surfaces 20.3. It goes without saying that combinations of both reflection options can also be part of the antenna airbag 5. It is not necessary for all sides 9.2, 12.2 or 15.2 of the antennas 4 to be of metallic conductivity. This can also be done in pairs and in a structured manner, so that, among other things, a TEM horn antenna is simulated (FIG. 7).
  • an already named electronegative gas 10 can be used as the filling gas for all antenna airbags 5.
  • the proposed solution is not only limited to the exemplary embodiments shown.
  • the horn antenna 9 can also be designed as a multi-horn antenna, the structure of the, for example, angular pyramids only forming when the antenna airbag is set up.
  • Such a proposed antenna airbag 5 can also be used in stationary HPM active systems or similar floor systems. The formation of the antenna airbag 5 to the antenna 4 also takes place here shortly before the pulse 8 is sent to the target 100 located next to the antenna 4.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Abstract

The high power microwave antenna [4] generates pulses [8] from a pulse source [3] and is configured as a horn shaped device. The antenna aperture is determined by the geometric boundary profile. The antenna is produced by inflation of an air bag [5] by triggering a gas supply.

Description

Die Erfindung betrifft eine Antenne, insbesondere eine Hochleistungs-Mikrowellenantenne, nach dem Oberbegriff des Patentanspruches 1.The invention relates to an antenna, in particular a high-power microwave antenna, according to the preamble of claim 1.

Zur Realisierung von HPM-Wirksystemen (high-power-microwave = Hochleistungs-Mikrowellen) mit indirekter Verbringung werden Antennen bzw. Antennensysteme benötigt, die wenig Bauraum benötigen, um den Anforderungen an das Trägersystem zu entsprechen, die aber auch die Anforderungen einer HPM-Quelle wie Spannungsfestigkeit, Oberflächenqualität, Antennengewinn, Richtwirkung usw. erfüllen müssen.For the implementation of HPM active systems (high-power-microwave = high-power microwaves) with indirect movement antennas or antenna systems are required, that require little installation space to meet the requirements of the carrier system, but also the requirements of an HPM source such as dielectric strength, surface quality, Antenna gain, directivity, etc. must meet.

Eine HPM-Quelle, beispielsweise für ein HPM-Wirksystem, offenbart die US 5,671,133.An HPM source, for example for an HPM active system, is disclosed in US Pat. No. 5,671,133.

Ein verbringbares HPM-Wirksystem wird in der US 5,192,827 beschrieben. Dieses HPM-Wirksystem weist für die nicht letale Zerstörung eines Zieles, d. h. nur die Elektronik des Ziels wird zerstört, als Trägersystem ein Projektil auf. Als Mikrowellenantenne wird eine TEM-Hornantenne (TEM = transvers electromagnetic), eine Anordnung von Dipolen oder eine winkeltreue Spirale (Draht) vorgeschlagen. Insbesondere bei Drahtantennen sind der Antennengewinn und die Richtwirkung sehr gering und inhomogen. Die abstrahlbare Feldstärke wird von den Umgebungsbedingungen des HPM-Wirksystems festgelegt. Bei Hornantennen wird die maximal abstrahlbare Feldstärke von der Größe der Apertur der Hornantenne beschränkt, die den geometrischen Randparametern des Trägersystems unterliegt.A deployable HPM active system is described in US 5,192,827. This HPM active system indicates the non-lethal destruction of a target, d. H. only the electronics of the The target is destroyed, a projectile as a carrier system. As a microwave antenna TEM horn antenna (TEM = transverse electromagnetic), an arrangement of dipoles or proposed a spiral with the correct angle (wire). In the case of wire antennas in particular Antenna gain and the directivity very low and inhomogeneous. The radiant field strength is determined by the environmental conditions of the HPM active system. With horn antennas the maximum radiated field strength depends on the size of the aperture of the horn antenna limited, which is subject to the geometric boundary parameters of the carrier system.

Den Aufbau einer Hornantenne für den Einsatz als Bodenstationsantenne des Satellitenfunks beschreibt die EP 0 128 970 A1. Eine weitere Hornantenne ist aus der US 5,568,160 bekannt. Eine zylindrische Hybridhornantenne beschreibt die US 4,783,665.
Das Prinzip einer Multihornantenne ist der US 5,113,197 sowie der US 4,758,842 entnehmbar.
EP 0 128 970 A1 describes the construction of a horn antenna for use as a ground station antenna for satellite radio. Another horn antenna is known from US 5,568,160. A cylindrical hybrid horn antenna is described in US 4,783,665.
The principle of a multi-horn antenna can be found in US 5,113,197 and US 4,758,842.

Diese vorgenannten Mikrowellenantennen sind für den Einsatz insbesondere in zu verbringenden HPM-Wirksystemen ungeeignet, da ein für diese Antennen notwendiger Bauraum im Trägersystem nicht vorhanden ist.These aforementioned microwave antennas are intended for use in particular HPM active systems are unsuitable because the space required for these antennas in the Carrier system is not available.

Hieraus ergibt sich die Aufgabe der Erfindung, eine Antenne aufzuzeigen, die einen geringen Bauraum benötigt und zudem die Abstrahlung von kurzen HPM-Pulsen ermöglicht.This results in the object of the invention to show an antenna that is small Installation space is required and the emission of short HPM pulses is also possible.

Gelöst wird die Aufgabe durch die Merkmale des Patentanspruches 1.The object is achieved by the features of patent claim 1.

Der Erfindung liegt die Idee zugrunde, eine Antenne durch einen Airbag zu schaffen, der sich in der Nähe eines Zieles aufbläst, um danach die durch eine HPM-Quelle erzeugten HPM-Pulse auf das Ziel abzustrahlen. Bei Integrierung der Antenne in ein verbringbares Trägersystem besteht die Möglichkeit, einen bereits im Trägersystem vorhandenen Airbag zu nutzen oder einen weiteren Airbag ins Trägersystem einzubringen. Einen solchen vorhandenen Airbag beschreibt die DE 34 32 614 A1, wobei die Aufgabe dieses Airbags darin besteht, die Flügel eines Flugkörpers (Trägersystem) in ihrer Arbeitsstellung aufzuklappen.The invention is based on the idea of creating an antenna by means of an airbag inflates near a target, and then the HPM pulses generated by an HPM source to radiate to the target. When integrating the antenna into a portable carrier system it is possible to use an airbag that is already in the carrier system or insert another airbag into the carrier system. Such an existing airbag describes DE 34 32 614 A1, the task of this airbag being the Unfold the wing of a missile (carrier system) in its working position.

Weitere vorteilhafte Ausführungen sind in den Unteransprüchen aufgeführt.Further advantageous designs are listed in the subclaims.

So kann der Airbag (Antennenairbag) eine Hornantenne oder eine Cassegrainantenne und diese ganz oder teilweise nachbilden.The airbag (antenna airbag) can be a horn antenna or a Cassegrain antenna and reproduce these in whole or in part.

Dabei kann die Cassegrainantenne vorzugsweise aus einer Hornantenne als Einspeisesystem und einer gekrümmten Reflektorfläche des hinteren Antennenairbags bzw. eines als Antennenairbag mit Kombination eines Fallschirmes gebildet sein. Eine weitere Variante ist, in die Cassegrainantenne einen hornähnlichen Airbag zu integrieren, der wiederum als Einspeisesystem fungiert. Durch diese Maßnahme wird die Antennenapertur erhöht, wodurch sich die maximal erreichbare Feldstärke am Einspeiseort sowie der Antennengewinn erhöhen bzw. die Richtcharakteristik verbessern läßt.The Cassegrain antenna can preferably be a horn antenna as a feed system and a curved reflector surface of the rear antenna airbag or one as an antenna airbag be formed with a combination of a parachute. Another variant is in the Cassegrain antenna to integrate a horn-like airbag, which in turn as a feed system acts. This measure increases the antenna aperture, which increases the increase the maximum achievable field strength at the entry point and the antenna gain or the Directional characteristics can be improved.

Zur weiteren Erhöhung der maximal abstrahlbaren Leistung und damit der maximal erreichbaren Feldstärke wird der Antennenairbag mit elektronegativem Gas vollständig oder auch nur teilweise befüllt. To further increase the maximum radiant power and thus the maximum achievable The field strength of the antenna airbag with electronegative gas is completely or also only partially filled.

Für eine Verbesserung der Strahlungseigenschaft der Antenne kann die Sende- bzw. Antennenapertur durch eine individuelle Gestaltung des Antennenairbags verbessert bzw. vergrößert werden. So kann die Krümmung des Reflektors durch Zuschneiden des Airbags ideal eingestellt werden.The transmission or antenna aperture can be used to improve the radiation properties of the antenna improved or enlarged by an individual design of the antenna airbag become. So the curvature of the reflector can be ideal by cutting the airbag can be set.

Mit dieser Lösung wird eine platzsparende Antenne angeboten, welche insbesondere bei Einbau in ein zu verbringendes Trägersystem, die Anforderungen an das Trägersystem (Artilleriegranate, Rakete, Drohne, Projektil usw.) bezüglich Volumen, Masse, Beschleunigungfestigkeit, Strömungseigenschaften usw. nicht beeinflußt, trotzdem aber eine sichere Abstrahlung von kurzen HPM-Pulsen gewährleistet.This solution offers a space-saving antenna, which is particularly useful during installation into a carrier system to be moved, the requirements for the carrier system (artillery grenade, Rocket, drone, projectile etc.) in terms of volume, mass, acceleration resistance, Flow properties etc. not affected, but nevertheless a safe radiation guaranteed by short HPM pulses.

Anhand von Ausführungsbeispielen mit Zeichnung soll die Erfindung näher erläutert werden.
Es zeigt:

Figur 1
ein Trägersystem mit integrierter HPM-Quelle und unaufgeblasenem Antennenairbag,
Figur 2
eine Prinzipdarstellung der Arbeitsweise eines HPM-Wirksystems im funktionsgemäßen Gebrauch des Antennenairbags,
Figur 3
eine erste Variante des Antennenairbags, ausgebildet als Hornantenne,
Figur 3a
eine Draufsicht auf die Hornantenne aus Figur 3 in Kegelstumpfform,
Figur 3b
eine Draufsicht auf die Hornantenne aus Figur 3 in Pyramidenstumpfform,
Figur 4
eine weitere Variante des Antennenairbags, ausgebildet als Cassegrainantenne mit der Airbaghornantenne aus Figur 3,
Figur 5
eine weitere Variante des Antennenairbags, ausgebildet als Cassegrainantenne mit integrierter, hornähnlicher Einspeisung,
Figur 5a
eine Draufsicht auf die Cassegrainantenne aus Figur 5 in Kegelstumpfform,
Figur 5b
eine Draufsicht auf die Cassegrainantenne aus Figur 5 in Pyramidenstumpfform,
Figur 6
eine Variante zu Figur 1 und Figur 5
Figur 7
eine weitere Draufsicht auf die Hornantenne aus Figur 3
The invention will be explained in more detail with reference to exemplary embodiments with drawings.
It shows:
Figure 1
a carrier system with an integrated HPM source and an uninflated antenna airbag,
Figure 2
a schematic representation of the operation of an HPM active system in the functional use of the antenna airbag,
Figure 3
a first variant of the antenna airbag, designed as a horn antenna,
Figure 3a
3 shows a top view of the horn antenna from FIG. 3 in the shape of a truncated cone,
Figure 3b
3 shows a plan view of the horn antenna from FIG. 3 in the shape of a truncated pyramid,
Figure 4
another variant of the antenna airbag, designed as a Cassegrain antenna with the airbag horn antenna from FIG. 3,
Figure 5
another variant of the antenna airbag, designed as a Cassegrain antenna with integrated horn-like feed,
Figure 5a
5 shows a top view of the Cassegrain antenna from FIG. 5 in the shape of a truncated cone,
Figure 5b
5 shows a plan view of the Cassegrain antenna from FIG. 5 in the shape of a truncated pyramid,
Figure 6
a variant of Figure 1 and Figure 5
Figure 7
a further top view of the horn antenna from Figure 3

In Figur 1 ist ein zu verbringendes HPM-Wirksystem 1 dargestellt, welches aus einem Trägersystem 2, einer Pulserzeugungsquelle 3, sowie einer Antenne 4 gebildet wird. Die Antenne 4 ist als ein gefalteter Antennenairbag 5 im HPM-Wirksystem 1 untergebracht und beispielsweise im oder am Trägersystem 2 in einer aerodynamisch günstigen Hülle 6 verstaut. Der Antennenairbag 5 ist mit wenigstens einem Gasgenerator 7 verbunden. Elektrisch ist die Antenne 4 einseitig mit der Pulserzeugungsquelle 3 verschaltet. Die Pulserzeugungsquelle 3, beispielsweise eine HPM-Quelle, liefert die an die Antenne 4 abzugebenden kurzen Pulse 8, die im Picosekundenbereich (ps), vorzugsweise zwischen 10 Picosekunden (ps) bis zu 10 Microsekunden (µs) liegen können. Die Antenne 4 ist als Breitbandantenne ausgeführt und liefert Frequenzen von 10 MHz bis in den 10-GHz-Bereich. Weitere, das HPM-Wirksystem 1 bildende Baugruppen und Einheiten sind der Übersichtlichkeit halber weder dargestellt, noch bezeichnet.In Figure 1, an HPM active system 1 is shown, which consists of a carrier system 2, a pulse generation source 3, and an antenna 4 is formed. The antenna 4 is accommodated as a folded antenna airbag 5 in the HPM active system 1 and for example stowed in or on the carrier system 2 in an aerodynamically favorable casing 6. The Antenna airbag 5 is connected to at least one gas generator 7. The antenna is electrical 4 connected on one side to the pulse generation source 3. The pulse generation source 3, for example an HPM source, supplies the short pulses 8 to be delivered to the antenna 4, those in the picosecond range (ps), preferably between 10 picoseconds (ps) up to 10 Microseconds (µs). The antenna 4 is designed as a broadband antenna and delivers frequencies from 10 MHz to the 10 GHz range. Another, the HPM active system 1 forming assemblies and units are neither shown for clarity, nor designated.

In Figur 2 ist das allgemeine Prinzip bzw. das Zusammenspiel der Antenne 4 mit dem Antennenairbag 5 im funktionsgemäßen Gebrauch dargestellt. Beim Anflug bzw. während der Anflugsphase des HPM-Wirksystems 1 an ein Ziel 100 wird wenige Millisekunden (ms) vor der Abstrahlung des wenigstens einen Puls 8 der Antennenairbag 5 durch einströmendes Gas 10 aus dem wenigstens einen Gasgenerator 7 in den funktionsgemäßen Gebrauch für die Antenne 4 aufgeblasen, wobei die Hülle 6 zerstört wird. Nach Erreichen der für die Abstrahlung günstigen Ausdehnung des Antennenairbags 5 wird der wenigstens eine kurze Puls 8 in die mit dem Pfeil angedeutete Richtung gegen das Ziel 100 über eine Art Paraboloid 4.1 der Antenne 4 im Antennenairbag 5 ausgesendet. Nach Abstrahlung des Pulses 8 kann die Antenne 4 und damit der Antennenairbag 5 abgeworfen werden, wenn diesem Airbag 5 keine weiteren Aufgaben im HPM-Wirksystem 1 zufallen, wie beispielsweise eine Flugstabilisierung für das HPM-Wirksystem 1.FIG. 2 shows the general principle or the interaction of the antenna 4 with the antenna airbag 5 shown in functional use. On approach or during the approach phase of the HPM active system 1 to a target 100 is a few milliseconds (ms) before Radiation of the at least one pulse 8 of the antenna airbag 5 by inflowing gas 10 from the at least one gas generator 7 in the functional use for the antenna 4 inflated, the envelope 6 being destroyed. After reaching the most favorable for the radiation Expansion of the antenna airbag 5 is the at least one short pulse 8 in the direction indicated by the arrow against the target 100 via a kind of paraboloid 4.1 of the antenna 4 emitted in the antenna airbag 5. After radiation of the pulse 8, the antenna 4 and so that the antenna airbag 5 are dropped when this airbag 5 has no further tasks in the HPM active system 1, such as flight stabilization for the HPM active system 1.

Bei dem Ziel 100 kann es sich um ein in der Luft oder am Boden befindliches Ziel 100 handeln. Beim letztgenannten befindet sich das verbrachte HPM-Wirksystem 1 vorzugsweise senkrecht und oberhalb des Zieles 100.The target 100 can be an airborne or ground target 100. In the latter case, the spent HPM active system 1 is preferably located vertically and above target 100.

Der erfindungsgemäße Antennenairbag 5 kann unterschiedliche Antennenanordnungen nachbilden. Dies ist durch verschiedenartigste Gestaltbarkeit eines Airbags möglich. The antenna airbag 5 according to the invention can emulate different antenna arrangements. This is possible through the most varied design of an airbag.

Anhand der nachfolgenden Figuren sollen dazu einige Gestaltungsmöglichkeiten aufgezeigt werden.With the help of the following figures, some design options are shown become.

Im Ausführungsbeispiel nach Figur 3 bildet der Antennenairbag 5 eine Hornantenne 9 in Pyramidenstumpfform bzw. Kegelstumpfform nach, wobei die Hornantenne 9 sich von ihrer Stumpfunterseite 9.1 zur Stumpfoberseite 9.3 hin aufweitet. Diese Stumpfoberseite 9.3 kann als Bodenfläche der Hornantennenapertur bezeichnet werden. Die Größe dieser Bodenfläche bestimmt die Abstrahlungseigenschaft der Hornantenne 9. Die Seiten 9.2 der Hornantenne sind als metallisch leitende Wände ausgeführt, während die Bodenfläche bzw. Stumpfoberseite 9.3 keine Beschichtung aufweist und damit offen ist. Die Hornantenne 9 ist stumpfunterseitig mit der Pulserzeugungsquelle 3 elektrisch verbunden. Der Antennenairbag 5 ist vorzugsweise mit einem elektronegativen Gas 10, beispielsweise N2, SF6 befüllt, wodurch sich beim funktionsgemäßen Gebrauch des Antennenairbags 5 als Antenne 4 die Feldstärke erhöht, was die Antennenleistung positiv beeinflußt.
In den Figuren 3a, 3b ist die Hornantenne 9 in einer Draufsicht auf die Stumpfoberseite 9.3 dargestellt, wobei deutlich die runde oder eckige Form der Hornantenne 9 erkennbar ist.
In the exemplary embodiment according to FIG. 3, the antenna airbag 5 simulates a horn antenna 9 in the shape of a truncated pyramid or truncated cone, the horn antenna 9 widening from its bottom surface 9.1 to the top surface 9.3. This stump top 9.3 can be referred to as the bottom surface of the horn antenna aperture. The size of this bottom surface determines the radiation property of the horn antenna 9. The sides 9.2 of the horn antenna are designed as metallically conductive walls, while the bottom surface or stump top 9.3 has no coating and is therefore open. The horn antenna 9 is electrically connected on the underside to the pulse generation source 3. The antenna airbag 5 is preferably filled with an electronegative gas 10, for example N 2 , SF 6 , which increases the field strength when the antenna airbag 5 is used as an antenna 4, which has a positive effect on the antenna performance.
In FIGS. 3a, 3b, the horn antenna 9 is shown in a top view of the stump upper side 9.3, the round or angular shape of the horn antenna 9 being clearly visible.

Im Ausführungsbeispiel nach Figur 4 bildet der Antennenairbag 5 eine kombinierte Anordnung aus einer Hornantenne 9 nach Figur 3 mit einem, mit der Hornantenne 9 einteilig verbundenen und zusammenwirkenden, als Fallschirm ausgebildeten Airbag 11. Durch diese Kombination wird eine cassegrainartige Antenne 12 geschaffen, deren Bodenfläche 12.3 leichter gekrümmt und gegenüber der Bodenfläche 9.3 der Hornantenne 9 vergrößert ist, wodurch diese Antennenapertur im fünktionsgemäßen Gebrauch die Abstrahlungseigenschaften der Antenne 4 deutlich verbessert. Die Hornantenne 9 dient hierbei als Einspeissystem für die Antenne 4, d. h. für die Cassegrainantenne 12. Der fallschirmartige Airbag 11 weist an den Seiten 12.2, d.h. umfangsseitig, einen metallischen Reflektor 13 auf. Die umlaufende Verbindungsfläche 14 zwischen dem Airbag 11 und der Hornantenne 9 ist metallisch nicht leitfähig.In the exemplary embodiment according to FIG. 4, the antenna airbag 5 forms a combined arrangement from a horn antenna 9 according to FIG. 3 with one connected to the horn antenna 9 in one piece and cooperating airbag 11 designed as a parachute Combination, a cassegrain-like antenna 12 is created, the bottom surface 12.3 is more easily curved and enlarged relative to the bottom surface 9.3 of the horn antenna 9, whereby this antenna aperture in functional use the radiation properties the antenna 4 significantly improved. The horn antenna 9 serves as a feed system for the Antenna 4, d. H. for the Cassegrain antenna 12. The parachute-like airbag 11 points to the Pages 12.2, i.e. circumferentially, a metallic reflector 13. The peripheral connection surface 14 between the airbag 11 and the horn antenna 9 is not metallically conductive.

Eine weitere cassegrainartige Antenne 15 ist im Ausführungsbeispiel nach Figur 5 dargestellt. Im Unterschied zur Cassegrainantenne 12 nach Figur 4 ist eine hornartige Antenne 16 als Einspeisesystem in der Cassegrainantenne 15 integriert, wobei ein leicht gekrümmter metallischer Reflektor 17 nicht Bestandteil eines fallschirmartigen Airbags ist, sondern des, die Cassegrainantenne 15 bildenden Antennenairbags 5. Verbindungsflächen 18 sind gleichfalls umlaufend und nicht metallisch leitfähig. Another cassegrain-like antenna 15 is shown in the embodiment of Figure 5. In contrast to the Cassegrain antenna 12 according to FIG. 4, a horn-like antenna 16 is used as the feed system integrated in the Cassegrain antenna 15, a slightly curved metallic The reflector 17 is not part of a parachute-like airbag, but the Cassegrain antenna 15 forming antenna airbags 5. Connection surfaces 18 are also circumferential and not metallic conductive.

In den Figuren 5a und 5b sind mögliche Ausgestaltungsformen der Cassegrainantenne 12, 15, aber auch der aus Figur 6 in einer Draufsicht dargestellt. Auch hier kann die Cassegrainantenne 12, 15, 20 eine Kegelstumpfform oder Pyramidenstumpfform aufweisen.FIGS. 5a and 5b show possible configurations of the Cassegrain antenna 12, 15, but also shown in Figure 6 in a plan view. The Cassegrain antenna can also be used here 12, 15, 20 have a truncated cone shape or truncated pyramid shape.

Im Ausführungsbeispiel nach Figur 6 besitzt die Cassegrainantenne 15 umfangsseitig keinen Reflektor. In diesem Ausführungsbeispiel sind die Seiten 20.2 nicht metallisch leitend ausgeführt. Hier ist die Bodenfläche 20.3 der als Cassegrainantenne 20 arbeitenden Antenne 4 metallisch beschichtet und dient als Reflektor.
Die kurzen Pulse 8 werden in den Ausführungsbeispielen in die, in Figur 2 dargestellte Senderichtung reflektiert, wobei dies an den Seitenreflektoren 9.2, 12.2 oder 15.2 oder an der beschichteten Bodenflächen 20.3 erfolgt. Es versteht sich, daß auch Kombinationen beider Reflektionsmöglichkeiten Bestandteil des Antennenairbags 5 sein können. Es ist nicht notwendig, daß alle Seiten 9.2, 12.2 oder 15.2 der Antennen 4 metallisch leitend ausgeführt sind. Dies kann auch paarweise und strukturiert erfolgen, so daß u. a. eine TEM-Hornantenne nachgebildet wird (Fig. 7).
In the exemplary embodiment according to FIG. 6, the cassegrain antenna 15 has no reflector on the circumference. In this exemplary embodiment, the sides 20.2 are not of metallic conductivity. Here, the bottom surface 20.3 of the antenna 4 working as Cassegrain antenna 20 is metallically coated and serves as a reflector.
In the exemplary embodiments, the short pulses 8 are reflected in the transmission direction shown in FIG. 2, this being done on the side reflectors 9.2, 12.2 or 15.2 or on the coated bottom surfaces 20.3. It goes without saying that combinations of both reflection options can also be part of the antenna airbag 5. It is not necessary for all sides 9.2, 12.2 or 15.2 of the antennas 4 to be of metallic conductivity. This can also be done in pairs and in a structured manner, so that, among other things, a TEM horn antenna is simulated (FIG. 7).

Es sei noch erwähnt, daß für alle Antennenairbags 5 als Füllgas ein bereits benanntes elektronegatives Gas 10 verwendet werden kann.
Außerdem ist die vorgeschlagene Lösung nicht nur auf die dargestellten Ausführungsbeispiele begrenzt. So kann die Hornantenne 9 auch als Multihornantenne ausgeführt sein, wobei sich die Struktur der beispielsweise eckigen Pyramiden erst beim Aufbau des Antennenairbags bildet.
Auch kann ein solch vorgeschlagener Antennenairbag 5 bei stationären HPM-Wirksystemen oder ähnlichen Bodensystemen angewendet werden. Die Ausbildung des Antennenairbags 5 zur Antenne 4 erfolgt auch hierbei erst kurz vor Aussendung des Pulses 8 auf das neben der Antenne 4 befindliche Ziel 100.
It should also be mentioned that an already named electronegative gas 10 can be used as the filling gas for all antenna airbags 5.
In addition, the proposed solution is not only limited to the exemplary embodiments shown. For example, the horn antenna 9 can also be designed as a multi-horn antenna, the structure of the, for example, angular pyramids only forming when the antenna airbag is set up.
Such a proposed antenna airbag 5 can also be used in stationary HPM active systems or similar floor systems. The formation of the antenna airbag 5 to the antenna 4 also takes place here shortly before the pulse 8 is sent to the target 100 located next to the antenna 4.

Claims (12)

Antenne, insbesondere Hochleistungs-Mikrowellenantenne mit einer Pulserzeugungsquelle zur Erzeugung eines durch die Antenne gegen ein Ziel abzustrahlenden Pulses, dadurch gekennzeichnet, daß die Antenne (4) durch einen Antennenairbag (5) gebildet wird, der mit der Pulserzeugungsquelle (3) elektrisch verbunden ist und zur Abstrahlung des Pulses (8) mit Gas eines Gasgenerators (7) befüllt wird, wodurch die Antenne (4) in den funktionsgemäßen Gebrauch gebracht wird.Antenna, in particular high-power microwave antenna with a pulse generation source for generating a pulse to be emitted by the antenna against a target, characterized in that the antenna (4) is formed by an antenna airbag (5) which is electrically connected to the pulse generation source (3) and for emitting the pulse (8) with gas from a gas generator (7) is filled, whereby the antenna (4) is brought into functional use. Antenne nach Anspruch 1, dadurch gekennzeichnet, daß der Antennenairbag (5) eine Hornantenne (9) nachbildet.Antenna according to claim 1, characterized in that the antenna airbag (5) simulates a horn antenna (9). Antenne nach Anspruch 1, dadurch gekennzeichnet, daß der Antennenairbag (5) eine Cassegrainantenne (12,15,20) ganz oder teilweise nachbildet.Antenna according to claim 1, characterized in that the antenna airbag (5) simulates a Cassegrain antenna (12, 15, 20) in whole or in part. Antenne nach Anspruch 3, dadurch gekennzeichnet, daß bei teilweiser Nachbildung ein zusätzlicher, fallschirmartiger Airbag (11) Bestandteil der Cassegrainantenne (12) ist und einen Teil des Antennenairbags (5) bildet.Antenna according to Claim 3, characterized in that in the case of partial replication, an additional, parachute-like airbag (11) is part of the Cassegrain antenna (12) and forms part of the antenna airbag (5). Antenne nach Anspruch 2 und 3, dadurch gekennzeichnet, daß zur Einspeisung des Pulses (8) in die Cassegrainantenne (12) die Hornantenne (9) in den Antennenairbag (5) der Cassegrainantenne (12) eingebunden ist.Antenna according to claims 2 and 3, characterized in that the horn antenna (9) is integrated in the antenna airbag (5) of the cassegrain antenna (12) for feeding the pulse (8) into the cassegrain antenna (12). Antenne nach Anspruch 2 und 3, dadurch gekennzeichnet, daß zur Einspeisung des Pulses (8) in die Cassegrainantenne (15,20) eine hornartige Antenne (16) im Antennenairbag (5) der Cassegrainantenne (15,20) integriert ist.Antenna according to claims 2 and 3, characterized in that a horn-like antenna (16) is integrated in the antenna airbag (5) of the cassegrain antenna (15, 20) for feeding the pulse (8) into the cassegrain antenna (15, 20). Antenne nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Füllgas des Antennenairbags (5) ein elektronegatives Gas (10) verwendet wird.Antenna according to one of claims 1 to 5, characterized in that an electronegative gas (10) is used as the filling gas of the antenna airbag (5). Antenne nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Antennenairbag (4) eine kugelstumpfförmige oder eine pyramidenstumpfförmige Gestalt nach dem Einströmen des Füllgases einnimmt. Antenna according to one of claims 1 to 6, characterized in that the antenna airbag (4) takes the shape of a truncated sphere or a truncated pyramid after the inflow of the filling gas. Antenne nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß als Pulserzeugungsquelle (3) eine HPM-Quelle verwendet wird.Antenna according to one of the preceding claims, characterized in that an HPM source is used as the pulse generation source (3). Antenne nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß die Antenne (1) als Breitbandantenne ausgeführt ist.Antenna according to one of the preceding claims, characterized in that the antenna (1) is designed as a broadband antenna. Antenne nach Anspruch 1, dadurch gekennzeichnet, daß der, die Antenne (4) bildende Antennenairbag (5) in oder an einem Trägersystem (2) eines zu verbringenden HPM-Wirksystems (1) in einer aerodynamischen Hülle (6) in unaufgeblasenem Zustand untergebracht ist.Antenna according to claim 1, characterized in that the antenna airbag (5) forming the antenna (4) is accommodated in or on a carrier system (2) of an HPM active system (1) to be deployed in an aerodynamic envelope (6) in an uninflated state , Antenne nach Anspruch 1, dadurch gekennzeichnet, daß der, die Antenne (4) bildende Antennenairbag (5) in oder an einem Trägersystem eines stationären HPM-Wirksystems (1) in unaufgeblasenem Zustand untergebracht ist.Antenna according to claim 1, characterized in that the antenna airbag (5) forming the antenna (4) is accommodated in or on a carrier system of a stationary HPM active system (1) in an uninflated state.
EP01113450A 2000-06-15 2001-06-02 High-power microwave antenna Expired - Lifetime EP1172887B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10029263A DE10029263A1 (en) 2000-06-15 2000-06-15 Antenna, especially high-power microwave antenna
DE10029263 2000-06-15

Publications (3)

Publication Number Publication Date
EP1172887A2 true EP1172887A2 (en) 2002-01-16
EP1172887A3 EP1172887A3 (en) 2002-09-18
EP1172887B1 EP1172887B1 (en) 2005-12-07

Family

ID=7645677

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01113450A Expired - Lifetime EP1172887B1 (en) 2000-06-15 2001-06-02 High-power microwave antenna

Country Status (3)

Country Link
US (1) US6819298B2 (en)
EP (1) EP1172887B1 (en)
DE (2) DE10029263A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10139440C1 (en) * 2001-08-10 2003-04-30 Rheinmetall W & M Gmbh Metalized textile reflecting antenna made of conductive fabric, for airborne pulse weapons system, directs electromagnetic waves from field-generating device onto target to be disabled
JP2004125746A (en) * 2002-10-07 2004-04-22 Mitsubishi Electric Corp Horn antenna for radar
US7006047B2 (en) * 2003-01-24 2006-02-28 Bae Systems Information And Electronic Systems Integration Inc. Compact low RCS ultra-wide bandwidth conical monopole antenna
DE102020006889A1 (en) 2020-11-10 2022-05-12 Diehl Defence Gmbh & Co. Kg Effective device for attacking a target by means of electromagnetic pulses, effective device system, carrier device and method for operating an effective device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE290260C (en) * 1914-03-03 1919-06-26 ANTENNA
US2977596A (en) * 1959-04-10 1961-03-28 Collins Radio Co Inflatable antenna
US3321763A (en) * 1965-01-27 1967-05-23 Ikrath Kurt Inflatable microwave antenna with variable parameters
JPS6193706A (en) * 1984-10-13 1986-05-12 Kuniharu Shimizu Baloon parabolic antenna
WO1990001813A1 (en) * 1988-08-11 1990-02-22 Thomas Michael Benyon Wright Antennas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37736E1 (en) * 1992-05-05 2002-06-11 Automotive Technologies International Inc. Vehicle occupant position and velocity sensor
EP1410955A3 (en) * 1999-09-02 2006-03-29 Honda elesys Co., Ltd. Passenger detection system and detection method
US6273461B1 (en) * 1999-09-13 2001-08-14 Daimlerchrysler Corporation Vehicle safety airbag control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE290260C (en) * 1914-03-03 1919-06-26 ANTENNA
US2977596A (en) * 1959-04-10 1961-03-28 Collins Radio Co Inflatable antenna
US3321763A (en) * 1965-01-27 1967-05-23 Ikrath Kurt Inflatable microwave antenna with variable parameters
JPS6193706A (en) * 1984-10-13 1986-05-12 Kuniharu Shimizu Baloon parabolic antenna
WO1990001813A1 (en) * 1988-08-11 1990-02-22 Thomas Michael Benyon Wright Antennas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 272 (E-437), 16. September 1986 (1986-09-16) & JP 61 093706 A (KUNIHARU SHIMIZU), 12. Mai 1986 (1986-05-12) *

Also Published As

Publication number Publication date
EP1172887A3 (en) 2002-09-18
DE50108280D1 (en) 2006-01-12
EP1172887B1 (en) 2005-12-07
US6819298B2 (en) 2004-11-16
US20020089463A1 (en) 2002-07-11
DE10029263A1 (en) 2002-01-24

Similar Documents

Publication Publication Date Title
DE4440120C2 (en) Protective device with reactive armor
EP0137910B1 (en) Projectile head to be launched by a carrier projectile or missile
EP1189492B1 (en) Explosive activated RF source
DE112005003573T5 (en) A phased array radar antenna having a reduced seek time and methods of using the same
EP1503449A1 (en) Phased array antenna for data transmission between movable devices, in particular aircrafts
DE10313286B3 (en) microwave generator
EP3641056B1 (en) Hpem source, vehicle and method
EP1172887B1 (en) High-power microwave antenna
DE3042974A1 (en) ELECTRIC IGNITIONER WITH DIFFERENT WORKING METHODS
DE69006564T2 (en) AUTOMATIC WEAPON DEFENSE SYSTEM.
US5721558A (en) Deployable helical antenna
EP0757224A1 (en) Non lethal electromagnetic ammunition
EP1873903B1 (en) Microwave generator
EP3995776B1 (en) Active device for engaging a target by means of electromagnetic pulses, active device system, carrier device and method for operating an active device
EP0202901B1 (en) Radar antenna array
EP1764910B1 (en) Microwave generator
EP0149717B1 (en) Projectile head
EP1143556B1 (en) Projectile with antenna for a satellite navigation receiver
DE69505423T2 (en) Aerodynamic brake shield for spacecraft and thus equipped satellites
DE10139440C1 (en) Metalized textile reflecting antenna made of conductive fabric, for airborne pulse weapons system, directs electromagnetic waves from field-generating device onto target to be disabled
EP3277060B1 (en) Microelectronic module for modifying the electromagnetic signature of a surface, module array and method for modifying the electromagnetic signature of a surface
DE68907827T2 (en) FLOOR TO REALIZE A ZONE, IN PARTICULAR A AIRPORT.
AT524850B1 (en) Electrical fuse with a disconnecting element
DE19943396B3 (en) Method for protecting moving objects by means of a deployable decoy and decoys
DE4000851B3 (en) Spherical warhead, has ignition points distributedly arranged on hemispherical surface at periphery of casing for firing explosive agent, where hemispherical surface lies in flight direction behind center of casing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 01Q 15/00 A, 7H 01Q 1/08 B, 7H 01Q 15/16 B

17P Request for examination filed

Effective date: 20020809

AKX Designation fees paid

Designated state(s): DE FR GB NL SE

17Q First examination report despatched

Effective date: 20030630

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: HIGH-POWER MICROWAVE ANTENNA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50108280

Country of ref document: DE

Date of ref document: 20060112

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060307

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20051207

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060908

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150619

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108280

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103