EP1165944A1 - Method of determining the position of an armature - Google Patents

Method of determining the position of an armature

Info

Publication number
EP1165944A1
EP1165944A1 EP00918683A EP00918683A EP1165944A1 EP 1165944 A1 EP1165944 A1 EP 1165944A1 EP 00918683 A EP00918683 A EP 00918683A EP 00918683 A EP00918683 A EP 00918683A EP 1165944 A1 EP1165944 A1 EP 1165944A1
Authority
EP
European Patent Office
Prior art keywords
coil
current
determined
armature
voltage drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00918683A
Other languages
German (de)
French (fr)
Other versions
EP1165944B1 (en
Inventor
Joachim Melbert
Stefan Butzmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1165944A1 publication Critical patent/EP1165944A1/en
Application granted granted Critical
Publication of EP1165944B1 publication Critical patent/EP1165944B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/40Methods of operation thereof; Control of valve actuation, e.g. duration or lift
    • F01L2009/409Determination of valve speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2201/00Electronic control systems; Apparatus or methods therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/123Guiding or setting position of armatures, e.g. retaining armatures in their end position by ancillary coil

Definitions

  • the invention relates to a method for determining the position of an armature, which is assigned to an electromechanical actuator.
  • the actuator is assigned to an actuator which preferably has a gas exchange valve of an internal combustion engine as the actuator.
  • a known actuator (DE 195 26 683 AI) has a gas exchange valve and an actuator.
  • the actuator has two electromagnets, between which an armature plate can be moved against the force of a restoring means by switching off the coil current on the holding electromagnet and switching on the coil current on the capturing electromagnet.
  • the coil current of the respective capturing electromagnet is kept constant by a predefined catch value for a predefined period of time and then regulated to a stop value by a two-point regulator with hysteresis.
  • EP 0 493 634 AI To determine the position of the anchor plate, it is known from EP 0 493 634 AI to provide an optical sensor which is arranged in the electromagnet and which detects the position of the anchor plate.
  • EP 0 493 634 AI To determine the position of the anchor plate, it is known from EP 0 493 634 AI to provide an optical sensor which is arranged in the electromagnet and which detects the position of the anchor plate.
  • such a sensor requires space that is only available to a very limited extent and requires expensive cabling.
  • the object of the invention is to provide a method for determining the position of an anchor that is simple and reliable.
  • the magnetic flux depends on a negligible leakage flux and a non-saturated magnetic circuit only on the current through the coil, and from the position of the anchor plate.
  • U L is the inductive voltage drop across the coil, which is advantageously the difference between the measured voltage drop across the coil minus the voltage drop resulting from multiplying the ohmic resistance of the coil by the current through the coil.
  • A is the contact surface of the core of the electromagnet on which the armature plate comes to rest
  • is the number of turns of the coil
  • I is the current through the coil
  • s is the position of the armature plate
  • ⁇ Q is the permeability of the air
  • K is a constant. The position s is equal to the sum of the constant K and the length of the air gap between the anchor plate and the core.
  • Equating equations (1) and (2) and solving for position s results in:
  • Equation (4) can be used to easily determine the position of the armature plate as a function of the magnetic flux and the current through the coil.
  • FIG. 2 shows a circuit arrangement in the control device
  • FIG. 3 shows a flow diagram of a program for determining the position s of the anchor plate
  • Figure 4 is a flowchart of a program for determining the ohmic resistance of the coil.
  • An actuator ( Figure 1) comprises an actuator 1 and an actuator, which is preferably designed as a gas exchange valve 2.
  • the gas exchange valve 2 has a shaft 21 and a plate 22.
  • the actuator 1 has a housing 11 in which a first and a second electromagnet are arranged.
  • the first electromagnet has a first core 12 which is provided with a first coil 13.
  • the second electromagnet has a second core 14 which is provided with a second coil 15.
  • An anchor is provided, the anchor plate in the housing 11 is movably arranged between a first contact surface 15a of the first electromagnet and a second contact surface 15b of the second electromagnet.
  • the anchor plate 16 is thus movable between a closed position s maxS and an open position s max0 .
  • the armature further comprises an armature shaft 17 which is guided through recesses in the first and second core 12, 14 and which can be mechanically coupled to the shaft 21 of the gas exchange valve 2.
  • the actuator 1 is rigidly connected to the cylinder head 31 and the internal combustion engine.
  • a control device 4 is provided which detects signals from sensors and preferably communicates with a higher-level control device for engine operating functions and receives control signals from the latter.
  • the control device 4 controls the first and second coils 13, 15 of the actuator 1 depending on the signals from the sensors and the control signal.
  • the control device 4 comprises a control unit 41, in which the control signals for the coils 13, 15 are determined, and a first power output stage 42 and a second power output stage 43. Furthermore, the control device 4 comprises an evaluation unit, in which the ohmic resistance of the coils 13, 15 and the position of the anchor plate 16 can be determined. The first power output stage 42 and the second power output stage 43 amplify the control signals.
  • the control unit 41 has a first regulator, the command variable of which is the current or a voltage corresponding to the current through the first coil 13.
  • a higher-level controller can also be provided, which depends on the position tion of the anchor plate generates the reference variable for the first controller.
  • the control unit 41 further comprises a second controller, the controlled variable of which is the current through the second coil 15 or a corresponding voltage and which generates corresponding control signals for controlling the power output stages.
  • the first electromagnet and the second electromagnet are arranged symmetrically with respect to the rest position of the armature plate in the actuator 1.
  • the first and second regulator differ only in that the first regulator regulates the current through the first coil 13 and the second regulator regulates the current through the second coil.
  • the first power output stage 42 and the second power output stage 43 have the same structure and the same circuit arrangement of their components. They differ only in that the first power output stage for driving the first coil 13 and the second power output stage 43 are provided for driving the second coil.
  • the elements arranged in the evaluation unit 44 are each provided once for the first electromagnet and once for the second electromagnet, but their function is identical.
  • a circuit arrangement (FIG. 2) in the control device 4 comprises a two-point regulator, which comprises a first resistor R1, a second resistor R2, a first comparator Ki and a second comparator K 2 and also an RS flip-flop 411.
  • the output Q of the RS flip-flop 411 is connected to the first power output stage 42, the output of which is led to the control input of a first power transistor Ti.
  • a half-bridge circuit arrangement is provided which comprises the first transistor Ti, a second transistor T 2 , a measuring resistor R s and diodes Di and D 2 and which is electrically conductively connected to the coil 13 which has the inductance L and the ohmic resistor R AK ⁇ includes.
  • the diode D 2 is a free-wheeling diode.
  • the current I s through the coil 13 is detected when the transistor T 2 is switched on and is proportional to an actual value U IST of the voltage potential at the tap of the current measuring resistor R s . Furthermore, a current measuring device 45 is provided which generates a signal which represents the current I s through the coil 13.
  • the switching threshold of the comparator Kl is the setpoint U ⁇ , So ⁇ of the voltage potential at the tap of the current measuring resistor R s .
  • the switching shaft of the comparator K2 is the nominal value U I / So ⁇ of the voltage potential at the tap of the current measuring resistor R ⁇ multiplied by the ratio of the resistor R 2 to the sum of the resistors Ri and R 2 . Accordingly, the Q output of the RS flip-flop 411 is set to a low potential as soon as the actual value is greater than or equal to the nominal value of the voltage potential at the tap of the current measuring resistor R s .
  • the Q output of the RS flip-flop 411 is set to a high potential as soon as the actual value is less than or equal to the ratio of the resistance R 2 to the sum of the resistance Ri and R 2 multiplied by the target value U I / So i ⁇ of the voltage potential at the tap of the current measuring resistor R s .
  • the output stage 42 amplifies the output signal Q of the RS flip-flop 411 and thus drives the transistor Ti. If both the transistors Ti and T 2 are controlled to be conductive, the entire supply voltage U B at the coil 13 drops. If the transistor Ti is subsequently blocked, the diode D2 becomes conductive in freewheeling and only the forward voltage of the diode D2 drops at the coil 13.
  • a differential amplifier XI is also provided, which taps the voltage drop U S p at the coil 13.
  • the output of the differential amplifier XI is routed via a switch Z to a low-pass filter, which comprises a resistor R 3 and a capacitor Ci and at whose output the average voltage drop U IiAKT is present across the coil 13.
  • a program for determining the position of the anchor plate 16 and the anchor is described below with reference to the flow chart of FIG. 3. The method is started in a step S1.
  • the magnetic flux ⁇ through the coil 13 is initialized with the value zero.
  • step S3 it is checked whether the current I s through the coil has changed from a zero value OFF to any current value ON since the program was last run through in step S3. If the condition of step S3 is fulfilled, the processing is continued in a step S4. However, if the condition of step S3 is not met, it is checked again after a predetermined waiting period.
  • step S4 the inductive voltage drop U L across the coil 13 is determined from the difference between the voltage drop U SP and the product of the ohmic resistance R AK ⁇ of the coil 13 and the current I s through the coil 13. The inductive voltage drop U L can thus be determined in a simple manner from the measured quantities of the current I s through the coil and the voltage drop U SP at the coil.
  • the resistance R AK ⁇ on the coil is either stored as a fixed, predetermined value in the evaluation device or is preferably determined by means of a program according to FIG. 4 with the advantage that the resistance can be determined with high accuracy regardless of the operating temperature and the operating time of the actuator .
  • the magnetic flux ⁇ is then determined in a step S5 in accordance with equation (1).
  • the current magnetic flux ⁇ is preferably calculated from the magnetic flux ⁇ during the last run of step S5, the current inductive voltage drop U L and the time period between the successive calculation runs of step S5 using a numerical integration method.
  • the position s of the anchor plate 16 is determined in accordance with equation (4).
  • step S3 ensures that the position S is always determined when the armature plate 16 moves towards the coil 13. This ensures that the position s can be determined particularly precisely in the vicinity before the anchor plate 16 strikes the first contact surface 15a.
  • a corresponding program for determining the position s is started, which measures the coil current through the second coil 15, the inductive voltage drop at the second coil 15 and the ohmic w evaluates the status of the second coil.
  • a program for determining the ohmic resistance R A ⁇ of the first coil 13 is started in a step S15.
  • a step ⁇ 16 it is checked whether the position s of the anchor plate is the same as the closed position S ⁇ XS or the open position S ⁇ XO or the distance of the armature from the coil to be evaluated (here first coil 13) is greater than or equal to half the distance between the closed position S M ⁇ XS and the open position S MAXO - If one of these conditions is met, it is ensured that the inductance L of the coil 13 changes only negligibly.
  • step S16 If one of the first two conditions is met, it is ensured that the armature plate is at rest and thus the inductance of the coil 13 remains unchanged during the further execution of the program for determining the ohmic resistance. If the third condition is met, it is ensured that the distance of the anchor plate 16 from the first contact surface 15a is so large that at When the armature plate 16 moves toward the second contact surface 15b, the inductance of the coil 13 remains almost unchanged. If none of the conditions of step S16 is met, step S16 is carried out again after a predetermined waiting period. However, if one of the conditions of step S16 is met, then a step S17 checks whether the current I s through the coil 13 is approximately constant.
  • step S19 there is a wait for a predetermined measuring time period ⁇ t. Then in a step S20
  • the program is stopped in a step S22.
  • the procedure according to the program according to FIG. 4 has the advantage that during the operation of the actuator, the currently valid ohmic resistance R AKT of the coil 13 can be determined with high accuracy.
  • the program according to FIG. 4 is preferably carried out again at fixed, predetermined time intervals during the operation of the actuator 1. If the
  • the current I s through the coil 13 has a known predetermined value when steps S15 to S22 are carried out, the current I s can be dispensed with and the resistance can be determined in step S21 with a stored value I s of the current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

An electromechanical actuator comprises at least one electromagnet with a coil and an armature with an armature plate which can be displaced between a first contact surface on the electromagnet and a second contact surface. The position (s) of the armature is determined in accordance with the magnetic flow ( PHI ) and current (Is) flowing through the coil.

Description

Beschreibungdescription
Verfahren zum Bestimmen der Position eines AnkersMethod for determining the position of an anchor
Die Erfindung betrifft ein Verfahren zum Bestimmen der Position eines Ankers, der einem elektromechanischen Stellantrieb zugeordnet ist. Der Stellantrieb ist einem Stellgerät zugeordnet, das als Stellglied vorzugsweise ein Gaswechselventil einer Brennkraftmaschine hat.The invention relates to a method for determining the position of an armature, which is assigned to an electromechanical actuator. The actuator is assigned to an actuator which preferably has a gas exchange valve of an internal combustion engine as the actuator.
Ein bekanntes Stellgerät (DE 195 26 683 AI) hat ein Gaswechselventil und einen Stellantrieb. Der Stellantrieb weist zwei Elektromagnete auf, zwischen denen jeweils gegen die Kraft eines Rückstellmittels eine Ankerplatte durch Abschalten des Spulenstroms am haltenden Elektromagneten und Einschalten des Spulenstroms am fangenden Elektromagneten bewegt werden kann. Der Spulenstrom des jeweils fangenden Elektromagneten wird durch einen vorgegebenen Fangwert während einer vorgegebenen Zeitdauer konstant gehalten und dann von einem Zweipunktreg- 1er mit Hysterese auf einen Haltewert geregelt.A known actuator (DE 195 26 683 AI) has a gas exchange valve and an actuator. The actuator has two electromagnets, between which an armature plate can be moved against the force of a restoring means by switching off the coil current on the holding electromagnet and switching on the coil current on the capturing electromagnet. The coil current of the respective capturing electromagnet is kept constant by a predefined catch value for a predefined period of time and then regulated to a stop value by a two-point regulator with hysteresis.
Zum Bestimmen der Position der Ankerplatte ist es aus der EP 0 493 634 AI bekannt, einen optischen Sensor vorzusehen, der in dem Elektromagneten angeordnet ist, und der die Position der Ankerplatte erfaßt. Ein derartiger Sensor benötigt jedoch Platz, der nur sehr begrenzt zur Verfügung steht, und benötigt eine kostspielige Verkabelung.To determine the position of the anchor plate, it is known from EP 0 493 634 AI to provide an optical sensor which is arranged in the electromagnet and which detects the position of the anchor plate. However, such a sensor requires space that is only available to a very limited extent and requires expensive cabling.
Aus der DE 195 44 207 AI ist bekannt zum Bestimmen eines An- kerweges, den die Magnetkraft erzeugenden magnetischen Fluß und den Strom durch die Erregerwicklung eines elektromagnetischen Aktors zu messen. Auf der Grundlage von angepaßten physikalischen Gleichungen werden aus dem magnetischen Fluß und dem Strom durch die Erregerwicklung die Bewegungsgrößen An- kerweg, Ankergeschwindigkeit und/oder Ankerbeschleunigung errechnet und als Regelgrößen für die Regelung der Bewegung des Ankers eingesetzt. Allerdings enthält die DE 195 44 207 AI keinen Hinweis, wie dazu zuverlässig der ohmsche Widerstand der Erregerwicklung bestimmt werden kann.From DE 195 44 207 A1 it is known for determining an armature path to measure the magnetic flux generating the magnetic force and the current through the field winding of an electromagnetic actuator. On the basis of adapted physical equations, the movement variables armature travel, armature speed and / or armature acceleration are calculated from the magnetic flux and the current through the excitation winding and used as control variables for regulating the movement of the armature. However, DE 195 44 207 AI no indication of how reliably the ohmic resistance of the excitation winding can be determined.
Die Aufgabe der Erfindung ist es, ein Verfahren zum Bestimmen der Position eines Ankers zu schaffen, das einfach und zuverlässig ist.The object of the invention is to provide a method for determining the position of an anchor that is simple and reliable.
Die Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltung der Erfindung sind in den Unteransprüchen gekennzeichnet.The object is achieved by the features of patent claim 1. Advantageous embodiments of the invention are characterized in the subclaims.
Der magnetische Fluß hängt bei einem Magnetkreis, der durch eine Spule, einen Kern, eine Ankerplatte und den Luftspalt zwischen der Ankerplatte und dem Kern gebildet wird, bei ei- nem vernachlässigbaren Streufluß und einem nicht gesättigten Magnetkreis nur von dem Strom durch die Spule, sowie von der Position der Ankerplatte ab. Für den magnetischen Fluß Φ gilt :With a magnetic circuit formed by a coil, a core, an armature plate and the air gap between the armature plate and the core, the magnetic flux depends on a negligible leakage flux and a non-saturated magnetic circuit only on the current through the coil, and from the position of the anchor plate. The following applies to the magnetic flux Φ:
Φ = ^{U^τ (1) Φ = ^ { U ^ τ (1)
N , wobei UL der induktive Spannungsabfall über der Spule ist, der vorteilhaft aus der Differenz des gemessenen Spannungsabfalls an der Spule abzüglich des Spannungsabfalls, der sich durch das Multiplizieren des ohmschen Widerstands der Spule mit dem Strom durch die Spule ergibt.N, where U L is the inductive voltage drop across the coil, which is advantageously the difference between the measured voltage drop across the coil minus the voltage drop resulting from multiplying the ohmic resistance of the coil by the current through the coil.
Für den magnetischen Fluß Φ gilt ferner:The following also applies to the magnetic flux Φ:
N - Is N - I s
Φ =Φ =
1 2(5 - K)1 2 (5 - K)
AA
wobei A die Anlagefläche des Kerns des Elektromagneten ist, an der die Ankerplatte zur Anlage kommt, Ν die Windungszahl der Spule ist, I der Strom durch die Spule ist, s die Position der Ankerplatte ist, μQ die Permeabilität der Luft ist, und K eine Konstante ist. Die Position s ist gleich der Summe aus der Konstante K und der Länge des Luftspalts zwischen der Ankerplatte und dem Kern.where A is the contact surface of the core of the electromagnet on which the armature plate comes to rest, Ν is the number of turns of the coil, I is the current through the coil, s is the position of the armature plate, μ Q is the permeability of the air, and K is a constant. The position s is equal to the sum of the constant K and the length of the air gap between the anchor plate and the core.
Durch das Gleichsetzen der Gleichungen (1) und (2) und Auflösen nach der Position s ergibt sich:Equating equations (1) and (2) and solving for position s results in:
Durch Einsetzen von Gleichung (1) in Gleichung (3) ergibt sich: s = ^—- » I, + K (4)Substituting equation (1) into equation (3) gives: s = ^ —- »I, + K (4)
Mit Gleichung (4) kann auf einfache Weise die Position der Ankerplatte abhängig von dem magnetischen Fluß und dem Strom durch die Spule ermittelt werden.Equation (4) can be used to easily determine the position of the armature plate as a function of the magnetic flux and the current through the coil.
Ausführungsbeispiele der Erfindung sind anhand der schematischen Zeichen näher erläutert. Es zeigen:Exemplary embodiments of the invention are explained in more detail using the schematic symbols. Show it:
Figur 1 die Anordnung des Stellantriebs und einer Steuerein- richtung in einer Brennkraftmaschine,1 shows the arrangement of the actuator and a control device in an internal combustion engine,
Figur 2 eine Schaltungsanordnung in der Steuereinrichtung,FIG. 2 shows a circuit arrangement in the control device,
Figur 3 ein Ablaufdiagramm eines Programms zum Ermitteln der Position s der Ankerplatte,FIG. 3 shows a flow diagram of a program for determining the position s of the anchor plate,
Figur 4 ein Ablaufdiagramm eines Programms zum Ermitteln des ohmschen Widerstands der Spule.Figure 4 is a flowchart of a program for determining the ohmic resistance of the coil.
Ein Stellgerät (Figur 1) umfaßt einen Stellantrieb 1 und ein Stellglied, daß vorzugsweise als ein Gaswechselventil 2 ausgebildet ist. Das Gaswechselventil 2 hat einen Schaft 21 und einen Teller 22. Der Stellantrieb 1 hat ein Gehäuse 11, in dem ein erster und ein zweiter Elektromagnet angeordnet sind. Der erste Elektromagnet hat einen ersten Kern 12, der mit einer ersten Spule 13 versehen ist. Der zweite Elektromagnet hat einen zweiten Kern 14, der mit einer zweiten Spule 15 versehen ist. Ein Anker ist vorgesehen, dessen Ankerplatte in dem Gehäuse 11 beweglich zwischen einer ersten Anlagefläche 15a des ersten Elektromagneten und einer zweiten Anlagefläche 15b des zweiten Elektromagneten angeordnet ist. Die Ankerplatte 16 ist somit beweglich zwischen einer Schließposition smaxS und einer Offenposition smax0 . Der Anker umfaßt des weiteren einen Ankerschaft 17, der durch Ausnehmungen des ersten und des zweiten Kerns 12, 14 geführt ist und der mit dem Schaft 21 des Gaswechselventils 2 mechanisch koppelbar ist. Ein erstes Rückstellmittel 18a und ein zweites Rückstellmit- tel 18b, die vorzugsweise als Federn ausgebildet sind, spannen die Ankerplatte 16 in die vorgegebene Ruheposition so vor .An actuator (Figure 1) comprises an actuator 1 and an actuator, which is preferably designed as a gas exchange valve 2. The gas exchange valve 2 has a shaft 21 and a plate 22. The actuator 1 has a housing 11 in which a first and a second electromagnet are arranged. The first electromagnet has a first core 12 which is provided with a first coil 13. The second electromagnet has a second core 14 which is provided with a second coil 15. An anchor is provided, the anchor plate in the housing 11 is movably arranged between a first contact surface 15a of the first electromagnet and a second contact surface 15b of the second electromagnet. The anchor plate 16 is thus movable between a closed position s maxS and an open position s max0 . The armature further comprises an armature shaft 17 which is guided through recesses in the first and second core 12, 14 and which can be mechanically coupled to the shaft 21 of the gas exchange valve 2. A first restoring means 18a and a second restoring means 18b, which are preferably designed as springs, thus bias the anchor plate 16 into the predetermined rest position.
Der Stellantrieb 1 ist mit dem Zylinderkopf 31 und der Brenn- kraftmaschine starr verbunden.The actuator 1 is rigidly connected to the cylinder head 31 and the internal combustion engine.
Eine Steuereinrichtung 4 ist vorgesehen, die Signale von Sensoren erfaßt und vorzugsweise mit einer übergeordneten Steuereinrichtung für Motorbetriebsfunktionen kommuniziert und von dieser Steuersignale empfängt. Die Steuereinrichtung 4 steuert abhängig von den Signalen der Sensoren und dem Steuersignal die erste und zweite Spule 13,15 des Stellantriebs 1.A control device 4 is provided which detects signals from sensors and preferably communicates with a higher-level control device for engine operating functions and receives control signals from the latter. The control device 4 controls the first and second coils 13, 15 of the actuator 1 depending on the signals from the sensors and the control signal.
Die Steuereinrichtung 4 umfaßt eine Steuereinheit 41, in der die Stellsignale für die Spulen 13, 15 ermittelt werden, und eine erste Leistungsendstufe 42 und eine zweite Leistungsendstufe 43. Ferner umfaßt die Steuereinrichtung 4 eine Auswerteeinheit, in der der ohmsche Widerstand der Spulen 13, 15 und die Position der Ankerplatte 16 ermittelt werden. Die erste Leistungsendstufe 42 und die zweite Leistungsendstufe 43 verstärken die Stellsignale.The control device 4 comprises a control unit 41, in which the control signals for the coils 13, 15 are determined, and a first power output stage 42 and a second power output stage 43. Furthermore, the control device 4 comprises an evaluation unit, in which the ohmic resistance of the coils 13, 15 and the position of the anchor plate 16 can be determined. The first power output stage 42 and the second power output stage 43 amplify the control signals.
Die Steuereinheit 41 hat einen ersten Regler, dessen Füh- rungsgröße der Strom oder eine dem Strom entsprechende Spannung durch die erste Spule 13 ist. Dabei kann auch ein übergeordneter Regler vorgesehen sein, der abhängig von der Posi- tion der Ankerplatte die Führungsgröße für den ersten Regler erzeugt. Die Steuereinheit 41 umfaßt ferner einen zweiten Regler, dessen Regelgröße der Strom durch die zweite Spule 15 oder eine entsprechende Spannung ist und der entsprechende Steuersignale zum Ansteuern der Leistungsendstufen erzeugt.The control unit 41 has a first regulator, the command variable of which is the current or a voltage corresponding to the current through the first coil 13. A higher-level controller can also be provided, which depends on the position tion of the anchor plate generates the reference variable for the first controller. The control unit 41 further comprises a second controller, the controlled variable of which is the current through the second coil 15 or a corresponding voltage and which generates corresponding control signals for controlling the power output stages.
Der erste Elektromagnet und der zweite Elektromagnet sind symmetrisch bezüglich der Ruheposition der Ankerplatte in dem Stellantrieb 1 angeordnet. Der erste und zweite Regler unter- scheiden sich nur dadurch, daß der erste Regler den Strom durch die erste Spule 13 und der zweite Regler den Strom durch die zweite Spule regelt. Die erste Leistungsendstufe 42 und die zweite Leistungsendstufe 43 haben den gleichen Aufbau und die gleiche Schaltungsanordnung ihrer Bauelemente. Sie unterscheiden sich lediglich dadurch, daß die erste Leistungsendstufe zum Ansteuern der ersten Spule 13, die zweite Leistungsendstufe 43 zum Ansteuern der zweiten Spule vorgesehen sind. Ebenso sind die in der Auswerteeinheit 44 angeordneten Elemente jeweils einmal für den ersten Elektromagneten und einmal für den zweiten Elektromagneten vorgesehen, aber in ihrer Funktion identisch.The first electromagnet and the second electromagnet are arranged symmetrically with respect to the rest position of the armature plate in the actuator 1. The first and second regulator differ only in that the first regulator regulates the current through the first coil 13 and the second regulator regulates the current through the second coil. The first power output stage 42 and the second power output stage 43 have the same structure and the same circuit arrangement of their components. They differ only in that the first power output stage for driving the first coil 13 and the second power output stage 43 are provided for driving the second coil. Likewise, the elements arranged in the evaluation unit 44 are each provided once for the first electromagnet and once for the second electromagnet, but their function is identical.
Eine Schaltungsanordnung (Figur 2) in der Steuereinrichtung 4 umfaßt einen Zweipunktregler, der einen ersten Widerstand Rl, einen zweiten Widerstand R2, einen ersten Komparator Ki und einen zweiten Komparator K2 und ferner ein RS-Flip-Flop 411 umfaßt. Der Ausgang Q des RS-Flip-Flops 411 ist mit der ersten Leistungsendstufe 42 verbunden, deren Ausgang an den Steuereingang eines ersten Leistungstransistors Ti geführt ist. Eine Halbrückenschaltungsanordnung ist vorgesehen, die den ersten Transistor Ti, einen zweiten Transistor T2, einen Meßwiderstand Rs und Dioden Di und D2 umfaßt und die elektrisch leitend mit der Spule 13 verbunden ist, die die Induktivität L und den ohmschen Widerstand RAKτ umfaßt. Die Diode D2 ist eine Freilaufdiode. Der Strom Is durch die Spule 13 wird bei eingeschaltetem Transistor T2 erfaßt und ist proportional zu einem Istwert UIST des Spannungspotentials am Abgriff des Strommeßwiderstands Rs. Ferner ist eine Strommeßeinrichtung 45 vorgese- hen, die ein Signal erzeugt, das den Strom Is durch die Spule 13 repräsentiert.A circuit arrangement (FIG. 2) in the control device 4 comprises a two-point regulator, which comprises a first resistor R1, a second resistor R2, a first comparator Ki and a second comparator K 2 and also an RS flip-flop 411. The output Q of the RS flip-flop 411 is connected to the first power output stage 42, the output of which is led to the control input of a first power transistor Ti. A half-bridge circuit arrangement is provided which comprises the first transistor Ti, a second transistor T 2 , a measuring resistor R s and diodes Di and D 2 and which is electrically conductively connected to the coil 13 which has the inductance L and the ohmic resistor R AK τ includes. The diode D 2 is a free-wheeling diode. The current I s through the coil 13 is detected when the transistor T 2 is switched on and is proportional to an actual value U IST of the voltage potential at the tap of the current measuring resistor R s . Furthermore, a current measuring device 45 is provided which generates a signal which represents the current I s through the coil 13.
Die Schaltschwelle des Komparators Kl ist der Sollwert Uι,Soιι des Spannungspotentials am Abgriff des Strommeßwiderstands Rs. Die Schaltwelle des Komparators K2 ist der Sollwert UI/Soιι des Spannungspotentials am Abgriff des Strommeßwiderstands RΞ multipliziert mit dem Verhältnis des Widerstands R2 zu der Summe der Widerstände Ri und R2. Demnach wird der Q-Ausgang des RS-Flip-Flops 411 auf ein niedriges Potential gesetzt, sobald der Istwert größer oder gleich dem Sollwert des Spannungspotentials am Abgriff des Strommeßwiderstands Rs ist. Der Q-Ausgang des RS-Flip-Flops 411 wird auf ein hohes Potential gesetzt, sobald der Istwert kleiner oder gleich dem Verhältnis des Widerstands R2 zu der Summe des Widerstands Ri und R2 multipliziert mit dem Sollwert UI/Soiι des Spannungspotentials am Abgriff des Strommeßwiderstands Rs ist.The switching threshold of the comparator Kl is the setpoint Uι, So ιι of the voltage potential at the tap of the current measuring resistor R s . The switching shaft of the comparator K2 is the nominal value U I / So ιι of the voltage potential at the tap of the current measuring resistor R Ξ multiplied by the ratio of the resistor R 2 to the sum of the resistors Ri and R 2 . Accordingly, the Q output of the RS flip-flop 411 is set to a low potential as soon as the actual value is greater than or equal to the nominal value of the voltage potential at the tap of the current measuring resistor R s . The Q output of the RS flip-flop 411 is set to a high potential as soon as the actual value is less than or equal to the ratio of the resistance R 2 to the sum of the resistance Ri and R 2 multiplied by the target value U I / So iι of the voltage potential at the tap of the current measuring resistor R s .
Die Endstufe 42 verstärkt das Ausgangssignal Q des RS-Flip- Flops 411 und steuert damit den Transistor Ti an. Sind sowohl die Transistoren Ti als auch T2 leitend gesteuert, so fällt die gesamte Versorgungsspannung UB an der Spule 13 ab. Wird anschließend der Transistor Ti gesperrt, so wird die Diode D2 im Freilauf leitend und an der Spule 13 fällt lediglich die Durchlaßspannung der Diode D2 ab.The output stage 42 amplifies the output signal Q of the RS flip-flop 411 and thus drives the transistor Ti. If both the transistors Ti and T 2 are controlled to be conductive, the entire supply voltage U B at the coil 13 drops. If the transistor Ti is subsequently blocked, the diode D2 becomes conductive in freewheeling and only the forward voltage of the diode D2 drops at the coil 13.
Ferner ist ein Differenzverstärker XI vorgesehen, der den Spannungsabfall USp an der Spule 13 abgreift. Der Ausgang des Differenzverstärkers XI ist über einen Schalter Z auf einen Tiefpaß geführt, der einen Widerstand R3 und einen Kondensa- tor Ci umfaßt und an dessen Ausgang der mittlere Spannungsabfall UIiAKT über der Spule 13 anliegt. Ein Programm zum Ermitteln der Position der Ankerplatte 16 und des Ankers wird im folgenden anhand des Ablaufdiagramms von Figur 3 beschrieben. In einem Schritt Sl wird das Verfahren gestartet. In einem Schritt S2 wird der magnetische Fluß Φ durch die Spule 13 mit dem Wert null initialisiert. In einem Schritt S3 wird geprüft ob ein Bestromen der Spule begonnen hat. Dazu wird geprüft, ob der Strom Is durch die Spule sich seit dem letzten Durchlauf des Programms durch den Schritt S3 von einem Nullwert OFF zu einem beliebigen Strom- wert ON verändert hat. Ist die Bedingung des Schritts S3 erfüllt, so wird die Bearbeitung in einem Schritt S4 fortgesetzt. Ist die Bedingung des Schritts S3 jedoch nicht erfüllt, so wird sie nach einer vorgegebenen Wartezeitdauer erneut geprüft. In dem Schritt S4 wird der induktive Spannungsabfall UL an der Spule 13 aus der Differenz des Spannungsabfalls USP und des Produkts des ohmschen Widerstands RAKτ der Spule 13 und des Stroms Is durch die Spule 13 ermittelt. So kann auf einfache Weise der induktive Spannungsabfall UL aus den gemesse- nen Größen des Stroms Is durch die Spule und des Spannungabfalls USP an der Spule ermittelt werden. Der Widerstand RAKτ an der Spule ist entweder als fest vorgegebener Wert in der Auswerteeinrichtung gespeichert oder wird bevorzugt mittels eines Programms gemäß Figur 4 bestimmt mit dem Vorteil, daß der Widerstand mit hoher Genauigkeit unabhängig von der Betriebstemperatur und der Betriebsdauer des Stellantriebs bestimmt werden kann.A differential amplifier XI is also provided, which taps the voltage drop U S p at the coil 13. The output of the differential amplifier XI is routed via a switch Z to a low-pass filter, which comprises a resistor R 3 and a capacitor Ci and at whose output the average voltage drop U IiAKT is present across the coil 13. A program for determining the position of the anchor plate 16 and the anchor is described below with reference to the flow chart of FIG. 3. The method is started in a step S1. In a step S2, the magnetic flux Φ through the coil 13 is initialized with the value zero. In a step S3, it is checked whether energization of the coil has started. For this purpose, it is checked whether the current I s through the coil has changed from a zero value OFF to any current value ON since the program was last run through in step S3. If the condition of step S3 is fulfilled, the processing is continued in a step S4. However, if the condition of step S3 is not met, it is checked again after a predetermined waiting period. In step S4, the inductive voltage drop U L across the coil 13 is determined from the difference between the voltage drop U SP and the product of the ohmic resistance R AK τ of the coil 13 and the current I s through the coil 13. The inductive voltage drop U L can thus be determined in a simple manner from the measured quantities of the current I s through the coil and the voltage drop U SP at the coil. The resistance R AK τ on the coil is either stored as a fixed, predetermined value in the evaluation device or is preferably determined by means of a program according to FIG. 4 with the advantage that the resistance can be determined with high accuracy regardless of the operating temperature and the operating time of the actuator .
In einem Schritt S5 wird dann der magnetische Fluß Φ gemäß der Gleichung (1) ermittelt. Dabei wird vorzugsweise mittels eines numerischen Integrationsverfahrens der aktuelle magnetische Fluß Φ aus dem magnetischen Fluß Φ bei dem letzten Durchlauf des Schrittes S5, dem aktuellen induktiven Spannungsabfall UL und der Zeitdauer zwischen den aufeinanderfol- genden Berechnungsdurchläufe des Schrittes S5 berechnet. In einem Schritt S6 wird die Position s der Ankerplatte 16 gemäß der Gleichung (4) ermittelt. In einem Schritt S7 wird geprüft, ob die Position s gleich der Offenposition SMÄX.O ist. Ist dies der Fall, so wird das Programm in einem Schritt S8 beendet. Andernfalls wird das Programm in dem Schritt S4 fortgesetzt .The magnetic flux Φ is then determined in a step S5 in accordance with equation (1). The current magnetic flux Φ is preferably calculated from the magnetic flux Φ during the last run of step S5, the current inductive voltage drop U L and the time period between the successive calculation runs of step S5 using a numerical integration method. In a step S6, the position s of the anchor plate 16 is determined in accordance with equation (4). In a step S7, it is checked whether the position s is equal to the open position S MAX . O is. If this is the case, the program is ended in a step S8. Otherwise, the program continues in step S4.
Durch die Bedingung des Schrittes S3 wird sichergestellt, daß die Position S immer dann bestimmt wird, wenn sich die Anker- platte 16 auf die Spule 13 zu bewegt. Dadurch ist gewährleistet, daß gerade im Nahbereich vor dem Auftreffen der Ankerplatte 16 auf die erste Anlagefläche 15a die Position s besonders genau bestimmt werden kann.The condition of step S3 ensures that the position S is always determined when the armature plate 16 moves towards the coil 13. This ensures that the position s can be determined particularly precisely in the vicinity before the anchor plate 16 strikes the first contact surface 15a.
Bewegt sich die Ankerplatte 16 von der ersten Anlagefläche 15a hin zur zweiten Anlagefläche 15b, so wird ein entsprechendes Programm zum Bestimmen der Position s gestartet, das den Spulenstrom durch die zweite Spule 15, den induktiven Spannungsabfall an der zweiten Spule 15 und den ohmschen Wi- derstand an der zweiten Spule auswertet.If the armature plate 16 moves from the first contact surface 15a to the second contact surface 15b, a corresponding program for determining the position s is started, which measures the coil current through the second coil 15, the inductive voltage drop at the second coil 15 and the ohmic w evaluates the status of the second coil.
Ein Programm zum Bestimmen des ohmschen Widerstands RAκτ der ersten Spule 13 wird in einem Schritt S15 gestartet. In einem Schritt Ξ16 wird geprüft, ob die Position s der Ankerplatte gleich ist der Schließposition S ÄXS oder gleich ist der Offenposition S ÄXO oder der Abstand des Ankers zur auszuwertenden Spule (hier erste Spule 13) größer oder gleich ist des halben Abstands zwischen der Schließposition SMΛXS und der Offenposition SMAXO- Ist eine dieser Bedingungen erfüllt, so ist gewährleistet, daß sich die Induktivität L der Spule 13 nur vernachlässigbar ändert. Sind eine der ersten zwei Bedingungen erfüllt, so ist gewährleistet, daß die Ankerplatte in Ruhe ist und somit während des weiteren Durchlaufs des Programms zum Bestimmen des ohmschen Widerstands die Induktivi- tat der Spule 13 unverändert bleibt. Ist die dritte Bedingung erfüllt, so ist gewährleistet, daß der Abstand der Ankerplatte 16 von der ersten Anlagefläche 15a so groß ist, daß bei einer Bewegung der Ankerplatte 16 hin zu der zweiten Anlagefläche 15b die Induktivität der Spule 13 nahezu unverändert bleibt. Ist keine der Bedingungen des Schritts S16 erfüllt, so wird nach einer vorgegebenen Wartezeitdauer erneut der Schritt S16 ausgeführt. Ist eine der Bedingung des Schritts S16 jedoch erfüllt, so wird in einem Schritt S17 geprüft, ob der Strom Is durch die Spule 13 annähernd konstant ist. Dies ist beispielsweise der Fall, wenn die Ankerplatte 16 an der ersten Anlagefläche anliegt und ein konstanter Haltestrom in der Spule geregelt wird. Alternativ kann jedoch auch, falls die Position der Ankerplatte gleich der Offenposition S ÄXO ist, ein konstantes Stromniveau an der Spule eingestellt werden.A program for determining the ohmic resistance R A κτ of the first coil 13 is started in a step S15. In a step Ξ16 it is checked whether the position s of the anchor plate is the same as the closed position SÄXS or the open position SÄXO or the distance of the armature from the coil to be evaluated (here first coil 13) is greater than or equal to half the distance between the closed position S MΛXS and the open position S MAXO - If one of these conditions is met, it is ensured that the inductance L of the coil 13 changes only negligibly. If one of the first two conditions is met, it is ensured that the armature plate is at rest and thus the inductance of the coil 13 remains unchanged during the further execution of the program for determining the ohmic resistance. If the third condition is met, it is ensured that the distance of the anchor plate 16 from the first contact surface 15a is so large that at When the armature plate 16 moves toward the second contact surface 15b, the inductance of the coil 13 remains almost unchanged. If none of the conditions of step S16 is met, step S16 is carried out again after a predetermined waiting period. However, if one of the conditions of step S16 is met, then a step S17 checks whether the current I s through the coil 13 is approximately constant. This is the case, for example, when the armature plate 16 bears on the first contact surface and a constant holding current is regulated in the coil. Alternatively, however, if the position of the armature plate is equal to the open position S AXO , a constant current level can also be set on the coil.
Ist die Bedingung des Schritts S17 erfüllt, so wird in einem Schritt S18 der Schalter Z geschlossen (Z=ON) . In diesem Zustand ist der Ausgang des Differenzverstärkers XI elektrisch leitend mit dem Tiefpaß verbunden, der den Widerstand R3 und den Kondensator Ci umfaßt.If the condition of step S17 is met, the switch Z is closed in a step S18 (Z = ON). In this state, the output of the differential amplifier XI is electrically conductively connected to the low-pass filter, which comprises the resistor R 3 and the capacitor Ci.
In einem Schritt S19 wird für eine vorgegebene Meßzeitdauer Δt gewartet. Anschließend wird in einem Schritt S20 derIn a step S19, there is a wait for a predetermined measuring time period Δt. Then in a step S20
Schalter Z wieder geöffnet (Z = OFF) . Am Ausgang des Tiefpasses liegt dann der Mittelwert U^r des Spannungsabfalls über der Spule gemittelt über die Meßzeitdauer Δt an. Da die Bedingung für die Abarbeitung der Schritte S18 bis S20 der annähernd konstante Strom Is durch die Spule ist, d. h. zumindest der Mittelwert des Stroms Is über die Meßzeitdauer ist konstant, ist der mittlere induktive Spannungsab all an der Spule gleich Null. Demnach kann in einem Schritt S21 der aktuelle ohmsche Widerstand RAKτ gemäß der folgenden Beziehung berechnet werdenSwitch Z opened again (Z = OFF). At the output of the low-pass filter, the mean value U ^ r of the voltage drop across the coil is then averaged over the measuring time period Δt. Since the condition for the processing of steps S18 to S20 is the approximately constant current I s through the coil, ie at least the mean value of the current I s over the measurement period is constant, the mean inductive voltage ab across the coil is zero. Accordingly, the current ohmic resistance R AK τ can be calculated in a step S21 according to the following relationship
K AKT ~ U RAKT ' R 5)K AKT ~ U RAKT 'R 5)
In einem Schritt S22 wird das Programm gestoppt. Das Vorgehen gemäß dem Programm gemäß Figur 4 hat den Vorteil, daß während des Betriebs des Stellantriebs jeweils der aktuell gültige ohmsche Widerstand RAKT der Spule 13 mit hoher Genauigkeit bestimmt werden kann. Dabei wird das Programm gemäß Figur 4 bevorzugt in fest vorgegebenen Zeitabständen während des Be- triebs des Stellantriebs 1 erneut durchgeführt. Falls derThe program is stopped in a step S22. The procedure according to the program according to FIG. 4 has the advantage that during the operation of the actuator, the currently valid ohmic resistance R AKT of the coil 13 can be determined with high accuracy. Here, the program according to FIG. 4 is preferably carried out again at fixed, predetermined time intervals during the operation of the actuator 1. If the
Strom Is durch die Spule 13 bei der Durchführung der Schritte S15 bis S22 einen bekannten vorgegebenen Wert hat, kann auf ein Erfassen des Stroms Is verzichtet werden und der Widerstand in dem Schritt S21 mit einem abgespeicherten Wert Is des Stroms ermittelt werden. If the current I s through the coil 13 has a known predetermined value when steps S15 to S22 are carried out, the current I s can be dispensed with and the resistance can be determined in step S21 with a stored value I s of the current.

Claims

Patentansprüche claims
1. Verfahren zum Bestimmen der Position eines Ankers, der einem elektromechanischen Stellantrieb (1) zugeordnet ist, wobei der Stellantrieb (1) mindestens einen Elektromagneten mit einer Spule (13,15) hat und der Anker eine Ankerplatte (16) umfaßt, die zwischen einer ersten Anlagefläche (15a) an dem Elektromagneten und einer zweiten Anlagefläche (15b) beweglich ist, wobei1. A method for determining the position of an armature, which is associated with an electromechanical actuator (1), wherein the actuator (1) has at least one electromagnet with a coil (13, 15) and the armature comprises an armature plate (16) which between a first contact surface (15a) on the electromagnet and a second contact surface (15b) is movable, wherein
- ein Mittelwert ( URAKT ) des gemessenen Spannungsabfalls an der Spule (13,15) in einem Betriebszustand mit annähernd konstantem Strom (Is) durch die Spule (13,15) ermittelt wird, - der ohmsche Widerstand (RΛKT) der Spule (13,15) abhängig von dem Mittelwert ( U^f. ) des gemessenen Spannungsabfalls (USp) und dem Strom (Is) durch die Spule (13,15) ermittelt wird,- an average (U RAKT ) of the measured voltage drop across the coil ( 13, 15 ) is determined in an operating state with an approximately constant current (I s ) through the coil ( 13, 15 ), - the ohmic resistance (R ΛKT ) of the coil (13.15) is determined as a function of the mean value (U ^ f .) Of the measured voltage drop (U S p) and the current (I s ) through the coil (13.15),
- der induktive Spannungsabfall (U ) an der Spule (13,15) ermittelt wird aus der Differenz des gemessenen Spannungsabfalls (UΞp) an der Spule (13,15) abzüglich des Spannungsabfalls, der sich durch das Multiplizieren des ohmschen Widerstands (RAKτ) der Spule (13,15) mit dem Strom (Is) durch die Spule (13,15) ergibt, - der magnetische Fluß (φ) bestimmt wird, durch Integrieren des induktiven Spannungsabfalls (UL) an der Spule (13,15) und- The inductive voltage drop (U) on the coil (13, 15) is determined from the difference of the measured voltage drop (U Ξ p) on the coil (13, 15) minus the voltage drop, which is obtained by multiplying the ohmic resistance (R AK τ) of the coil (13, 15) with the current (I s ) through the coil (13, 15), - the magnetic flux (φ) is determined by integrating the inductive voltage drop (U L ) on the coil ( 13.15) and
- die Position (s) des Ankers abhängig von dem magnetischen Fluß (φ) und dem Strom (IΞ) durch die Spule (13,15) bestimmt wird.- The position (s) of the armature is determined depending on the magnetic flux (φ) and the current (I Ξ ) through the coil (13,15).
2. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Mittelwert ( U ^^ ) dann ermittelt wird, wenn während einer vorgegebenen Meßzeitdauer (Δt) das Verhältnis der Änderung der Position (s) zu der Position (s) kleiner ist als ein vorgegebener Schwellenwert. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der Mittelwert U^j. ) dann ermittelt wird, wenn während der vorgegebenen Meßzeitdauer (Δt) das Verhältnis des Abstands der Ankerplatte (16) von der ersten Anlagefläche (15a) zu dem Abstand der ersten von der zweiten Anlagefläche (15a, 15b) größer ist als ein vorgegebener weiterer Schwellenwert . 2. The method according to claim 4, characterized in that the mean value (U ^^) is determined when the ratio of the change in position (s) to the position (s) is smaller than a predetermined during a predetermined measurement period (.DELTA.t) Threshold. Method according to claim 4, characterized in that the mean U ^ j . ) is then determined if the ratio of the distance of the anchor plate (16) from the first contact surface (15a) to the distance of the first from the second contact surface (15a, 15b) is greater than a predetermined further threshold value during the predetermined measurement period (Δt) .
EP00918683A 1999-03-30 2000-03-03 Method of determining the position of an armature Expired - Lifetime EP1165944B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19914467 1999-03-30
DE19914467 1999-03-30
PCT/DE2000/000676 WO2000060220A1 (en) 1999-03-30 2000-03-03 Method of determining the position of an armature

Publications (2)

Publication Number Publication Date
EP1165944A1 true EP1165944A1 (en) 2002-01-02
EP1165944B1 EP1165944B1 (en) 2006-05-17

Family

ID=7902986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00918683A Expired - Lifetime EP1165944B1 (en) 1999-03-30 2000-03-03 Method of determining the position of an armature

Country Status (5)

Country Link
US (1) US6518748B2 (en)
EP (1) EP1165944B1 (en)
JP (1) JP2002541656A (en)
DE (1) DE50012773D1 (en)
WO (1) WO2000060220A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019025038A1 (en) * 2017-08-02 2019-02-07 Ilmenauer Mechatronik GmbH Method and device for monitoring an armature end position of an electromagnetic actuator
US10378475B2 (en) 2015-06-12 2019-08-13 Cpt Group Gmbh Method for determining a reference current value for actuating a fuel injector
US10563633B2 (en) 2015-04-15 2020-02-18 Vitesco Technologies GmbH Determining a lift of a solenoid valve

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10002322C1 (en) * 2000-01-20 2001-08-30 Siemens Ag Method for controlling an actuator
DE10150199A1 (en) * 2001-10-12 2003-04-24 Wolfgang E Schultz Method and circuit for detecting the armature position of an electromagnet
ITBO20010760A1 (en) * 2001-12-14 2003-06-16 Magneti Marelli Powertrain Spa METHOD FOR ESTIMATING THE POSITION AND SPEED OF AN ACTUATOR BODY IN AN ELECTROMAGNETIC ACTUATOR FOR THE CONTROL OF A VALVE
US7483253B2 (en) * 2006-05-30 2009-01-27 Caterpillar Inc. Systems and methods for detecting solenoid armature movement
US7405917B2 (en) * 2006-06-16 2008-07-29 Festo Ag & Co. Method and apparatus for monitoring and determining the functional status of an electromagnetic valve
US7837585B2 (en) * 2006-11-27 2010-11-23 American Axle & Manufacturing, Inc. Linear actuator with position sensing system
US7746620B2 (en) * 2008-02-22 2010-06-29 Baxter International Inc. Medical fluid machine having solenoid control system with temperature compensation
US9435459B2 (en) 2009-06-05 2016-09-06 Baxter International Inc. Solenoid pinch valve apparatus and method for medical fluid applications having reduced noise production
DE102009042777B4 (en) * 2009-09-25 2014-03-06 Kendrion (Donaueschingen/Engelswies) GmbH Electromagnetic actuator
DE102011075935B4 (en) * 2011-05-16 2017-04-13 Kendrion Mechatronics Center GmbH Determination of functional states of an electromagnetic actuator
US9068815B1 (en) * 2011-11-09 2015-06-30 Sturman Industries, Inc. Position sensors and methods
DE102012218393A1 (en) * 2012-10-09 2014-04-10 E.G.O. Elektro-Gerätebau GmbH Method for monitoring a gas valve, control for a gas valve and gas cooking appliance
DE102014222437A1 (en) 2014-11-04 2016-05-04 Robert Bosch Gmbh Method for determining and / or regulating a valve spool travel of a hydraulic proportional valve
FR3112650B1 (en) * 2020-07-20 2023-05-12 Schneider Electric Ind Sas Method for diagnosing an operating state of an electrical switching device and electrical switching device for implementing such a method
FR3112649B1 (en) * 2020-07-20 2023-05-12 Schneider Electric Ind Sas Method for diagnosing an operating state of an electrical switching device and electrical switching device for implementing such a method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813443A (en) * 1988-04-06 1989-03-21 Signet Scientific Company Method for controllably positioning a solenoid plunger
JP3043349B2 (en) 1989-12-12 2000-05-22 株式会社いすゞセラミックス研究所 Electromagnetic force valve drive control device
JP2695698B2 (en) * 1990-11-27 1998-01-14 株式会社トキメック Checking method of movable iron core position of solenoid
JPH04186705A (en) * 1990-11-20 1992-07-03 Tokimec Inc Checking method for operation of solenoid
JP2995107B2 (en) * 1990-11-27 1999-12-27 株式会社トキメック How to check the position of the movable iron core of the solenoid
US5481187A (en) * 1991-11-29 1996-01-02 Caterpillar Inc. Method and apparatus for determining the position of an armature in an electromagnetic actuator
JPH07117647A (en) * 1993-10-27 1995-05-09 Unisia Jecs Corp Brake hydraulic pressure controller for vehicle
DE19501766A1 (en) * 1995-01-21 1996-07-25 Bosch Gmbh Robert Control of proportional solenoid with movable element
JP2981835B2 (en) * 1995-06-29 1999-11-22 内田油圧機器工業株式会社 Drive control device for electromagnetic proportional control valve and drive control method therefor
DE19526683A1 (en) 1995-07-21 1997-01-23 Fev Motorentech Gmbh & Co Kg Detecting striking of armature on electromagnetically actuated positioning device e.g. for gas exchange valves in IC engine
DE19533452B4 (en) * 1995-09-09 2005-02-17 Fev Motorentechnik Gmbh Method for adapting a control for an electromagnetic actuator
DE19535211C2 (en) * 1995-09-22 2001-04-26 Univ Dresden Tech Method for controlling armature movement for a switching device
DE19544207C2 (en) 1995-11-28 2001-03-01 Univ Dresden Tech Process for model-based measurement and control of movements on electromagnetic actuators
JP3465568B2 (en) * 1998-01-19 2003-11-10 トヨタ自動車株式会社 Electromagnetic drive valve control device for internal combustion engine
DE19807875A1 (en) * 1998-02-25 1999-08-26 Fev Motorentech Gmbh Method for regulating the armature incident speed at an electromagnetic actuator by extrapolated estimation of the energy input

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0060220A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10563633B2 (en) 2015-04-15 2020-02-18 Vitesco Technologies GmbH Determining a lift of a solenoid valve
US10378475B2 (en) 2015-06-12 2019-08-13 Cpt Group Gmbh Method for determining a reference current value for actuating a fuel injector
WO2019025038A1 (en) * 2017-08-02 2019-02-07 Ilmenauer Mechatronik GmbH Method and device for monitoring an armature end position of an electromagnetic actuator
DE102017117487A1 (en) * 2017-08-02 2019-02-07 Kendrion (Villingen) Gmbh Method and device for Ankerendlagenüberwachung an electromagnetic actuator

Also Published As

Publication number Publication date
EP1165944B1 (en) 2006-05-17
US6518748B2 (en) 2003-02-11
WO2000060220A1 (en) 2000-10-12
DE50012773D1 (en) 2006-06-22
JP2002541656A (en) 2002-12-03
US20020097120A1 (en) 2002-07-25

Similar Documents

Publication Publication Date Title
EP1165944B1 (en) Method of determining the position of an armature
EP1082586B1 (en) Method for determining the position and the speed of motion between of a control element which can be moved back and forth between two switching positions
DE60038519T2 (en) Method for determining an anchor position in an electromagnet by means of inductance
DE19739840C2 (en) Method for controlling an electromagnetically actuated actuating device, in particular a valve for internal combustion engines
EP1164602A2 (en) Method for determining the position of an armature
WO1999037903A1 (en) Device and method for controlling pressure in storage injection systems with an electromagnetically actuated pressure control member
DE4013393C2 (en)
WO1998038656A1 (en) Motion recognition process, in particular for regulating the impact speed of an armature on an electromagnetic actuator, and actuator for carrying out the process
DE4142996A1 (en) METHOD FOR MEASURING THE MECHANICAL MOVEMENT OF A SOLENOID VALVE ARMOR, ESPECIALLY ELECTRICALLY CONTROLLED INJECTION SYSTEMS
EP1105698B1 (en) Method for determining a position in accordance with the measurement signal of a position sensor
DE4011217A1 (en) Controlling magnetic-valve in antilocking braking system - ascertaining function of valve by tapping voltage of transistor setting current flow through solenoid
EP1042767A1 (en) Device for controlling an electromechanical regulator
DE19836769C1 (en) Electromagnetic actuator armature position determining method e.g. for IC engine gas-exchange valve
EP1920146A1 (en) Control unit for operating at least one fuel injector of an internal combustion engine
DE102022202224B3 (en) Method of determining the position of an armature of an electromagnet and fluid system
DE102008040250A1 (en) Electromagnetic actuator operating method for magnetic valve of internal combustion engine for motor vehicle, involves evaluating electrical operating parameters of electromagnetic actuator to close inductance of magnetic coil
EP2930724A2 (en) Solenoid valve and method for monitoring the position of a solenoid valve
EP1212761B1 (en) Method for controlling an electromechanical actuator
EP1205734B1 (en) Measuring method for a mechatronic device
WO2008037464A1 (en) Control unit, and method for regulating an electromagnetic valve assembly
DE60201327T2 (en) A method of estimating the position and velocity of an armature in an electromagnetic actuator for controlling a motor valve
EP1076908A1 (en) Method for detecting an armature movement in an electromagnetic actuator
EP1204873B1 (en) Circuit and method for determining the offset error of a measurement of the coil current of an electromagnetic actuator that is subject to such an offset error
DE102012112201A1 (en) Switching arrangement for determining temperature of drive coil in driving controller for contactor drive unit of coil system, has drive coil and supplementary coil that are wound on coil body such that coils are coupled thermally
DE102013103387A1 (en) Method and device for controlling a solenoid valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20041105

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060517

REF Corresponds to:

Ref document number: 50012773

Country of ref document: DE

Date of ref document: 20060622

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090325

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090312

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100303

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120331

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012773

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001