EP1155483A2 - Vertical resonator laser diode with a small aperture opening - Google Patents

Vertical resonator laser diode with a small aperture opening

Info

Publication number
EP1155483A2
EP1155483A2 EP00915120A EP00915120A EP1155483A2 EP 1155483 A2 EP1155483 A2 EP 1155483A2 EP 00915120 A EP00915120 A EP 00915120A EP 00915120 A EP00915120 A EP 00915120A EP 1155483 A2 EP1155483 A2 EP 1155483A2
Authority
EP
European Patent Office
Prior art keywords
bragg reflector
reflector layer
laser diode
active
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP00915120A
Other languages
German (de)
French (fr)
Inventor
Torsten Wipiejewski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1155483A2 publication Critical patent/EP1155483A2/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/16Semiconductor lasers with special structural design to influence the modes, e.g. specific multimode
    • H01S2301/166Single transverse or lateral mode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation

Definitions

  • the invention relates to a vertical resonator laser diode according to the preamble of patent claim 1.
  • the light output normally increases with increasing operating current.
  • lasers have a laser threshold, above the laser threshold the light output increases continuously with increasing operating current.
  • This threshold behavior should be characterized in that below a certain value of the injection or operating current of the laser diode its light output power should be as low as possible, but above this current value it should assume a constant value that is largely independent of the current value.
  • VCSELs vertical resonator laser diodes
  • thermal saturation of the optical output power can be observed when a specific current value is reached, but the light output power decreases rapidly beyond this current value, so that the desired current-independent output power is not available.
  • a VCSEL component mentioned at the beginning is made of Opt.Qant. Electron. S. 745-749 (1993) known in principle. Optimizing the properties for the respective application is only possible with considerable effort.
  • the object of the present invention is to create a vertical resonator laser diode which is improved compared to the known vertical resonator laser diodes. This object is achieved by the characterizing features of patent claim 1.
  • an approximately constant optical output power of an optical component in the form of a vertical resonator laser diode is achieved over large areas of the injection or operating current in that the laser diode has a relatively small light exit or aperture opening for the output radiation. points, while the active pumped area has a much larger diameter, which is limited by a stropter in the active area.
  • the aperture opening with current aperture should essentially only allow the light of the fundamental mode to pass through. The light from the higher transverse modes of the VCSEL, on the other hand, is to be blocked.
  • the diameter of the active pumped area of the VCSEL can be optimized for the respective application. In most cases, however, it will be in the range from 10 ⁇ m to 20 ⁇ m. This relatively large diameter ensures a relatively low electrical resistance of the VCSEL.
  • the current aperture diaphragm on the other hand, has a diameter of, for example, 5 ⁇ m. The size of the aperture is also optimized for the respective application. The manufacturing process of this special VCSEL structure only requires a modified mask design and the processing can be carried out completely analogous to conventional structures.
  • the total light output of conventional VCSEL structures increases approximately linearly with increasing current. In most cases, the fundamental basic fashion starts to swing. As the current increases, higher transverse modes also oscillate. The increase in the total light output is mainly caused by the oscillation of the higher modes.
  • the basic mode rises relatively quickly to a saturation value that does not change significantly with increasing current.
  • the current aperture diaphragm essentially acts as a mode filter to remove the funda- letting mental fashion happen and essentially blocking all other fashions.
  • the invention is therefore based on the knowledge that the light intensity of the fundamental mode rises relatively quickly to a saturation value and that the further increase in the total light output is essentially due to the higher transverse modes.
  • the desired characteristic of the laser diode can thus be achieved in that only the fundamental mode is emitted to the outside from the entire mode spectrum, but the other modes are blocked.
  • first, lower Bragg reflector layer sequence 2 which is made up of individual identical mirror pairs 22.
  • the mirror pairs each consist of two AlGaAs layers with different bandgaps.
  • a second, upper Bragg reflector layer sequence 4 is constructed from corresponding mirror pairs 44.
  • An active layer sequence 3, which has an active zone 3a, is embedded between the lower and the upper Bragg reflector layer sequence.
  • the material of the active layer sequence 3a can, for example, be chosen such that the emission wavelength of the laser diode is 850 nm.
  • first metallization layer 7 which is used for the electrical connection of the p-doped side of the laser diode.
  • the first metallization layer 7 has a central aperture or light exit opening 7a for the passage of the laser radiation.
  • the n-doped side of the diode is usually electrically connected via a second metallization layer 8 contacted on the substrate 6.
  • the upper Bragg reflector layer sequence 4 contains a pair of mirrors 44, which contains a so-called current aperture diaphragm 41.
  • the current aperture diaphragm 41 ensures lateral current limitation and thus defines the actual active pumped area 3b in the active zone 3a.
  • the current flow is restricted to the opening area of the current aperture 41.
  • the pumped area 3b lies essentially directly below this opening area in the active zone 3a.
  • the current aperture 41 can be produced in a known manner by partial oxidation of the AlGaAs layers of the mirror pair in question or by ion or proton implantation. Several current apertures can also be arranged.
  • the upper Bragg reflector layer sequence 4 of the laser diode is structured in the form of a mesa structure above the active layer 3.
  • the mesa-shaped upper Bragg reflector layer sequence 4 is laterally enclosed by a suitable passivation layer 11 after the at least one current aperture 41 has been formed.
  • the diameter of the light exit or aperture opening 7a in the upper metallization layer 7 is significantly smaller than the pumped area 3b of the active layer 3a.
  • the aperture 7a has a diameter of 5 ⁇ m
  • the diameter of the light-emitting surface 3b is 10-20 ⁇ m or more.
  • This arrangement means that essentially only the light of the fundamental mode (LP 01 mode) can pass through the aperture 7a.
  • the other generated vibration modes are blocked by the first metallization layer 7.
  • the overall light output of the laser diode is thus determined solely by the fundamental mode. If this reaches a saturation range with the increase in the operating current, the total light output assumes a constant value, which no longer changes even with the further increasing operating current.
  • the invention thus creates a laser diode with the desired characteristic.
  • the laser diode emits essentially no or only very low intensity output radiation.
  • the laser threshold is exceeded and the intensity of the output radiation initially increases very quickly, in order to then assume a saturation value.
  • the output intensity remains at an approximately constant value above the saturation value.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

The invention relates to a vertical resonator laser diode. An active series of layers (3) is arranged between a first Bragg reflector layer series (2) and a second Bragg reflector layer series (4) in order to produce laser irradiation. Each Bragg reflector layer series is provided with a plurality of mirror pairs (22, 44). The two Bragg reflector layer series (2, 4) form a laser resonator. The two Bragg reflector layer series (2, 4) and the active series of layers (3) are arranged between a first (7) and a second electric contact layer (8). One (4) of the two Bragg reflector layer series (2, 4) is partially permeable for the laser irradiation produced in the active series of layers (3). A light emitting opening or aperture opening (7a) is provided in the first electric contact layer (7). Said opening is significantly smaller than a pumped active area of the active series of layers (3). A current aperture screen (41) is provided in at least one mirror pair of one of the two Bragg reflector layer series. According to the invention, only the fundamental mode of the laser diode is essentially emitted in operation.

Description

Beschreibungdescription
Vertikalresonator-Laserdiode mit kleiner AperturöffnungVertical resonator laser diode with a small aperture
Die Erfindung betrifft eine Vertikalresonator-Laserdiode nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a vertical resonator laser diode according to the preamble of patent claim 1.
Sowohl in Halbleiterlasern wie auch LEDs nimmt die Lichtausgangsleistung normalerweise mit steigendem Betriebsstrom ständig zu. Zwar besitzen Laser eine Laserschwelle, jedoch nimmt oberhalb der Laserschwelle die Lichtausgangsleistung mit steigendem Betriebsstrom kontinuierlich zu. Es sind jedoch zahlreiche Anwendungen denkbar, bei denen Laserdioden mit einem ausgeprägten Schwellverhalten erforderlich oder wünschenswert wären. Dieses Schwellverhalten soll sich dadurch auszeichnen, daß unterhalb eines bestimmten Wertes des Injektions- oder Betriebsstromes der Laserdiode ihre Lichtausgangsleistung so gering wie möglich, oberhalb dieses Stromwertes jedoch einen konstanten Wert annehmen soll, der weitestgehend unabhängig von dem Stromwert ist.In both semiconductor lasers and LEDs, the light output normally increases with increasing operating current. Although lasers have a laser threshold, above the laser threshold the light output increases continuously with increasing operating current. However, numerous applications are conceivable in which laser diodes with a pronounced swelling behavior would be necessary or desirable. This threshold behavior should be characterized in that below a certain value of the injection or operating current of the laser diode its light output power should be as low as possible, but above this current value it should assume a constant value that is largely independent of the current value.
Insbesondere in Vertikalresonator-Laserdioden (VCSELs) kann eine thermische Sättigung der optischen Ausgangsleistung bei Erreichen eines bestimmten Stromwertes beobachtet werden, je- doch nimmt die Lichtausgangsleistung jenseits dieses Stromwertes rapide ab, so daß nicht die gewünschte stromunabhängige Ausgangsleistung vorliegt.In vertical resonator laser diodes (VCSELs) in particular, thermal saturation of the optical output power can be observed when a specific current value is reached, but the light output power decreases rapidly beyond this current value, so that the desired current-independent output power is not available.
Ein eingangs genanntes VCSEL-Bauelement ist aus Opt.Qant. Electron. S. 745-749 (1993) grundsätzlich bekannt. Eine Optimierung der Eigenschaften auf die jeweilige Anwendung ist dabei nur mit erheblichem Aufwand möglich.A VCSEL component mentioned at the beginning is made of Opt.Qant. Electron. S. 745-749 (1993) known in principle. Optimizing the properties for the respective application is only possible with considerable effort.
Demgemäß liegt der vorliegenden Erfindung die Aufgabe zu- gründe, eine Vertikalresonator-Laserdiode zu schaffen, die gegenüber den bekannten Vertikalresonator-Laserdioden verbessert ist. Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.Accordingly, the object of the present invention is to create a vertical resonator laser diode which is improved compared to the known vertical resonator laser diodes. This object is achieved by the characterizing features of patent claim 1.
In der hier zu beschreibenden Erfindung wird eine über große Bereiche des Injektions- oder Betriebsstroms annähernd konstante optische Ausgangsleistung eines optischen Bauelementes in Form einer Vertikalresonator-Laserdiode (VCSEL) dadurch erreicht, daß die Laserdiode eine relativ kleine Lichtaustritts- oder Aperturöffnung für die Ausgangsstrahlung auf- weist, während der aktive gepumpte Bereich einen wesentlich größeren Durchmesser besitzt, der durch eine Stro aptertur in dem aktiven Bereich begrenzt ist. Die Aperturöffnung mit Stromapertur soll dabei im wesentlichen nur noch das Licht der Fundamentalmode passieren lassen. Das Licht der höheren Transversalmoden des VCSELs soll dagegen abgeblockt werden.In the invention to be described here, an approximately constant optical output power of an optical component in the form of a vertical resonator laser diode (VCSEL) is achieved over large areas of the injection or operating current in that the laser diode has a relatively small light exit or aperture opening for the output radiation. points, while the active pumped area has a much larger diameter, which is limited by a stropter in the active area. The aperture opening with current aperture should essentially only allow the light of the fundamental mode to pass through. The light from the higher transverse modes of the VCSEL, on the other hand, is to be blocked.
Der Durchmesser des aktiven gepumpten Bereichs des VCSELs kann für die jeweilige Anwendung optimiert werden. Er wird aber in den meisten Fällen im Bereich von lOμm bis 20μm lie- gen. Dieser relativ große Durchmesser sorgt für einen verhältnismäßig geringen elektrischen Widerstand des VCSELs. Die Stromaperturblende besitzt dagegen einen Durchmesser von beispielsweise 5um. Die Größe der Apertur wird ebenfalls für die jeweilige Anwendung optimiert. Der Herstellungsprozeß dieser speziellen VCSEL-Struktur erfordert lediglich ein modifiziertes Maskendesign und die Prozessierung kann völlig analog zu herkömmlichen Strukturen erfolgen.The diameter of the active pumped area of the VCSEL can be optimized for the respective application. In most cases, however, it will be in the range from 10 μm to 20 μm. This relatively large diameter ensures a relatively low electrical resistance of the VCSEL. The current aperture diaphragm, on the other hand, has a diameter of, for example, 5 μm. The size of the aperture is also optimized for the respective application. The manufacturing process of this special VCSEL structure only requires a modified mask design and the processing can be carried out completely analogous to conventional structures.
Die gesamte Lichtausgangsleistung herkömmlicher VCSEL-Struk- turen steigt mit zunehmendem Strom etwa linear an. Dabei schwingt in den meisten Fällen zunächst die fundamentale Grundmode an. Mit steigendem Strom schwingen auch höhere transversale Moden an. Die Zunahme der Gesamtlichtleistung wird dabei hauptsächlich durch das Anschwingen der höheren Moden bewirkt. Die Grundmode steigt relativ schnell auf einen Sättigungswert an, der mit zunehmendem Strom sich nicht wesentlich ändert. Die Stromaperturblende wirkt im wesentlichen als Modenfilter, um die in der Sättigung befindliche Funda- mentalmode passieren zu lassen und im wesentlichen alle anderen Moden zu blockieren.The total light output of conventional VCSEL structures increases approximately linearly with increasing current. In most cases, the fundamental basic fashion starts to swing. As the current increases, higher transverse modes also oscillate. The increase in the total light output is mainly caused by the oscillation of the higher modes. The basic mode rises relatively quickly to a saturation value that does not change significantly with increasing current. The current aperture diaphragm essentially acts as a mode filter to remove the funda- letting mental fashion happen and essentially blocking all other fashions.
Der Erfindung geht somit von der Erkenntnis aus, daß die Lichtintensität der Fundamentalmode relativ schnell auf einen Sättigungswert steigt und der weitere Anstieg der Gesamtlichtleistung im wesentlichen auf die höheren transversalen Moden zurückzuführen ist. Somit läßt sich die gewünschte Charakteristik der Laserdiode dadurch erreichen, daß aus dem ge- samten Modenspektrum lediglich die Fundamentalmode nach außen emittiert, die übrigen Moden jedoch blockiert werden.The invention is therefore based on the knowledge that the light intensity of the fundamental mode rises relatively quickly to a saturation value and that the further increase in the total light output is essentially due to the higher transverse modes. The desired characteristic of the laser diode can thus be achieved in that only the fundamental mode is emitted to the outside from the entire mode spectrum, but the other modes are blocked.
Im folgenden wird ein Ausführungsbeispiel der vorliegenden Erfindung anhand einer Figur näher dargestellt, die den epi- taktischen Schichtaufbau einer erfindungsgemäßen Vertikalresonator-Laserdiode darstellt.An exemplary embodiment of the present invention is illustrated below with reference to a figure which represents the epitaxial layer structure of a vertical resonator laser diode according to the invention.
Auf einem GaAs-Substrat 6 befindet sich eine erste, untere Bragg-Reflektor-Schichtenfolge 2, die aus einzelnen identi- sehen Spiegelpaaren 22 aufgebaut ist. Die Spiegelpaare bestehen jeweils aus zwei AlGaAs-Schichten unterschiedlicher Bandlücke. In gleicher Weise ist eine zweite, obere Bragg-Reflektor-Schichtenfolge 4 aus entsprechenden Spiegelpaaren 44 aufgebaut. Zwischen der unteren und der oberen Bragg-Reflektor- Schichtenfolge ist eine aktive Schichtenfolge 3 eingebettet, die eine aktive Zone 3a aufweist. Das Material der aktiven Schichtenfolge 3a kann beispielsweise derart gewählt sein, daß die Emissionswellenlänge der Laserdiode 850 nm beträgt. Auf der oberen Oberfläche der Laserdiode befindet sich eine erste Metallisierungsschicht 7, die für den elektrischen Anschluß der p-dotierten Seite der Laserdiode verwendet wird. Die erste Metallisierungsschicht 7 weist eine zentrale Apertur- oder Lichtaustrittsöffnung 7a für den Durchtritt der La- serstrahlung auf. Die n-dotierte Seite der Diode wird übli- cherweise über eine am Substrat 6 kontaktierte zweite Metallisierungsschicht 8 elektrisch angeschlossen. Die obere Bragg-Reflektor-Schichtenfolge 4 enthält in dem Ausführungsbeispiel ein Spiegelpaar 44, welches eine sogenannte Stromaperturblende 41 enthält. Die Stromaperturblende 41 sorgt für eine laterale Strombegrenzung und definiert da- mit den eigentlichen aktiven gepumpten Bereich 3b in der aktiven Zone 3a. Der Stromfluß wird auf den Öffnungsbereich der Stromapertur 41 beschränkt. Somit liegt der gepumpte Bereich 3b im wesentlichen direkt unterhalb dieses Öffnungsbereichs in der aktiven Zone 3a. Die Stromapertur 41 kann in bekannter Weise durch partielle Oxidation der AlGaAs-Schichten des betreffenden Spiegelpaares oder durch Ionen- oder Protonenimplantation hergestellt werden. Es können auch mehrere Stromaperturen angeordnet werden .On a GaAs substrate 6 there is a first, lower Bragg reflector layer sequence 2, which is made up of individual identical mirror pairs 22. The mirror pairs each consist of two AlGaAs layers with different bandgaps. In the same way, a second, upper Bragg reflector layer sequence 4 is constructed from corresponding mirror pairs 44. An active layer sequence 3, which has an active zone 3a, is embedded between the lower and the upper Bragg reflector layer sequence. The material of the active layer sequence 3a can, for example, be chosen such that the emission wavelength of the laser diode is 850 nm. On the upper surface of the laser diode there is a first metallization layer 7 which is used for the electrical connection of the p-doped side of the laser diode. The first metallization layer 7 has a central aperture or light exit opening 7a for the passage of the laser radiation. The n-doped side of the diode is usually electrically connected via a second metallization layer 8 contacted on the substrate 6. In the exemplary embodiment, the upper Bragg reflector layer sequence 4 contains a pair of mirrors 44, which contains a so-called current aperture diaphragm 41. The current aperture diaphragm 41 ensures lateral current limitation and thus defines the actual active pumped area 3b in the active zone 3a. The current flow is restricted to the opening area of the current aperture 41. Thus, the pumped area 3b lies essentially directly below this opening area in the active zone 3a. The current aperture 41 can be produced in a known manner by partial oxidation of the AlGaAs layers of the mirror pair in question or by ion or proton implantation. Several current apertures can also be arranged.
Die obere Bragg-Reflektor-Schichtenfolge 4 der Laserdiode ist in Form einer Mesa-Struktur oberhalb der aktiven Schicht 3 strukturiert. Die mesaförmige obere Bragg-Reflektor-Schichtenfolge 4 wird seitlich durch eine geeignete Passivierungs- schicht 11 umschlossen, nachdem die mindestens eine Stroma- pertur 41 gebildet wurde.The upper Bragg reflector layer sequence 4 of the laser diode is structured in the form of a mesa structure above the active layer 3. The mesa-shaped upper Bragg reflector layer sequence 4 is laterally enclosed by a suitable passivation layer 11 after the at least one current aperture 41 has been formed.
Der Durchmesser der Lichtaustritts- oder Aperturöffnung 7a in der oberen Metallisierungsschicht 7 ist wesentlich kleiner als der gepumpte Bereich 3b der aktiven Schicht 3a. Während beispielsweise die Aperturöffnung 7a einen Durchmesser von 5 μm aufweist, beträgt der Durchmesser der lichtemittierenden Fläche 3b 10-20 μm oder mehr. Diese Anordnung bewirkt, daß im wesentlichen nur noch das Licht der Fundamentalmode (LP01- Mode) die Aperturöffnung 7a passieren kann. Die anderen er- zeugten Schwingungsmoden werden durch die erste Metallisierungsschicht 7 blockiert. Somit wird die Gesamtlichtleistung der Laserdiode einzig und allein durch die Fundamentalmode bestimmt. Wenn diese mit dem Anstieg des Betriebsstroms einen Sättigungsbereich erreicht, nimmt die Gesamtlichtleistung ei- nen konstanten Wert an, der sich auch mit weiter steigendem Betriebsstrom nicht mehr verändert. Durch die Erfindung wird somit eine Laserdiode mit der gewünschten Charakteristik geschaffen. Bei Stromwerten unterhalb der Laserschwelle emittiert die Laserdiode im wesentlichen keine oder eine AusgangsStrahlung nur sehr geringer Intensität. Mit der Zunahme des Betriebsstromes wird die Laserschwelle überschritten und die Intensität der Ausgangsstrahlung steigt zunächst sehr rasch an, um dann einen Sättigungswert anzunehmen. Oberhalb des Sättigungswertes verbleibt die Ausgangsintensität auf einem annähernd konstanten Wert. The diameter of the light exit or aperture opening 7a in the upper metallization layer 7 is significantly smaller than the pumped area 3b of the active layer 3a. For example, while the aperture 7a has a diameter of 5 μm, the diameter of the light-emitting surface 3b is 10-20 μm or more. This arrangement means that essentially only the light of the fundamental mode (LP 01 mode) can pass through the aperture 7a. The other generated vibration modes are blocked by the first metallization layer 7. The overall light output of the laser diode is thus determined solely by the fundamental mode. If this reaches a saturation range with the increase in the operating current, the total light output assumes a constant value, which no longer changes even with the further increasing operating current. The invention thus creates a laser diode with the desired characteristic. At current values below the laser threshold, the laser diode emits essentially no or only very low intensity output radiation. With the increase in the operating current, the laser threshold is exceeded and the intensity of the output radiation initially increases very quickly, in order to then assume a saturation value. The output intensity remains at an approximately constant value above the saturation value.

Claims

Patentansprüche claims
1. Vertikalresonator-Laserdiode, bei der zwischen einer ersten Bragg-Reflektor-Schichtenfolge (2) und einer zweiten Bragg-Reflektor-Schichtenfolge (4) , von denen jede eine Mehrzahl von Spiegelpaaren (22, 44) aufweist, eine aktive Schichtenfolge (3) zur Erzeugung von Laserstrahlung (6) angeordnet ist,1. Vertical resonator laser diode, in which between a first Bragg reflector layer sequence (2) and a second Bragg reflector layer sequence (4), each of which has a plurality of mirror pairs (22, 44), an active layer sequence (3 ) is arranged to generate laser radiation (6),
- die beiden Bragg-Reflektor-Schichtenfolgen (2, 4) einen Laser-Resonator bilden, die beiden Bragg-Reflektor-Schichtenfolgen (2, 4) und die aktive Schichtenfolge (3) zwischen einer ersten (7), lichtaustrittsseitigen und einer zweiten, substratseitigen elektrischen Kontaktschicht (8) angeordnet sind, - eine (4) der beiden Bragg-Reflektor-Schichtenfolgen (2, 4) für die in der aktiven Schichtenfolge (3) erzeugte Laserstrahlung teildurchlässig ist, der Durchmesser einer in der ersten Kontaktschicht (7) geformten Lichtaustrittsöffnung (7a) wesentlich kleiner als ein gepumpter aktiver Bereich (3b) der aktiven Schichtenfolge (3a) ist, d a d u r c h g e k e n n z e i c h n e t, daß die lichtaustrittsseitige Bragg-Reflektor-Schichtenfolge mesaförmig strukturiert ist und daß - in einem Spiegelpaar der einen (4) der beiden Bragg-- The two Bragg reflector layer sequences (2, 4) form a laser resonator, the two Bragg reflector layer sequences (2, 4) and the active layer sequence (3) between a first (7), light exit side and a second, electrical contact layer (8) are arranged on the substrate, - one (4) of the two Bragg reflector layer sequences (2, 4) is partially transparent to the laser radiation generated in the active layer sequence (3), the diameter of one in the first contact layer (7) Shaped light exit opening (7a) is significantly smaller than a pumped active area (3b) of the active layer sequence (3a), characterized in that the light exit-side Bragg reflector layer sequence is structured in a mesa shape and that - in one pair of mirrors one (4) of the two Bragg -
Reflektor-Schichtenfolgen (2, 4) eine Stromaperturblende (41) zur Begrenzung des gepumpten aktiven Bereiches (3b) der aktiven Schichtenfolge (3) durch Bündelung des im Betrieb der Vertikalresonator-Laserdiode durch die aktive Schichtenfolge (3) fließenden Betriebsstroms vorgesehen ist .Reflector layer sequences (2, 4) a current aperture diaphragm (41) is provided to limit the pumped active area (3b) of the active layer sequence (3) by bundling the operating current flowing through the active layer sequence (3) during operation of the vertical resonator laser diode.
2. Vertikalresonator-Laserdiode nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß - der Durchmesser des gepumpten aktiven Bereichs (3b) mindestens doppelt so groß wie der der Lichtaustrittsöffnung (7a) ist. 2. Vertical resonator laser diode according to claim 1, characterized in that - the diameter of the pumped active region (3b) is at least twice as large as that of the light exit opening (7a).
3. Vertikalresonator-Laserdiode nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß der Durchmesser des gepumpten aktiven Bereichs (3b) um den Faktor zwei bis vier so groß wie der der Lichtaustrittsöffnung (7a) ist.3. Vertical resonator laser diode according to claim 1, d a d u r c h g e k e n n z e i c h n e t that the diameter of the pumped active region (3b) by a factor of two to four as large as that of the light exit opening (7a).
4. Vertikalresonator-Laserdiode nach Anspruch 2 , d a d u r c h g e k e n n z e i c h n e t, daß - - der Durchmesser des gepumpten aktiven Bereichs (3b) 10-20 μm beträgt, während der der Lichtaustrittsöffnung (7a) etwa 5 μm beträgt . 4. Vertical resonator laser diode according to claim 2, d a d u r c h g e k e n n z e i c h n e t that - - the diameter of the pumped active region (3b) is 10-20 microns, while that of the light exit opening (7a) is about 5 microns.
EP00915120A 1999-02-26 2000-02-25 Vertical resonator laser diode with a small aperture opening Ceased EP1155483A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19908425A DE19908425C2 (en) 1999-02-26 1999-02-26 Vertical resonator laser diode with a small aperture
DE19908425 1999-02-26
PCT/DE2000/000544 WO2000052794A2 (en) 1999-02-26 2000-02-25 Vertical resonator laser diode with a small aperture opening

Publications (1)

Publication Number Publication Date
EP1155483A2 true EP1155483A2 (en) 2001-11-21

Family

ID=7899011

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00915120A Ceased EP1155483A2 (en) 1999-02-26 2000-02-25 Vertical resonator laser diode with a small aperture opening

Country Status (5)

Country Link
US (1) US20020021726A1 (en)
EP (1) EP1155483A2 (en)
JP (1) JP2002538632A (en)
DE (1) DE19908425C2 (en)
WO (1) WO2000052794A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10048443B4 (en) * 2000-09-29 2007-09-06 Osram Opto Semiconductors Gmbh Surface emitting semiconductor laser (VCSEL) with increased radiation efficiency

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245622A (en) * 1992-05-07 1993-09-14 Bandgap Technology Corporation Vertical-cavity surface-emitting lasers with intra-cavity structures
US5493577A (en) * 1994-12-21 1996-02-20 Sandia Corporation Efficient semiconductor light-emitting device and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0052794A3 *

Also Published As

Publication number Publication date
DE19908425C2 (en) 2002-09-26
US20020021726A1 (en) 2002-02-21
DE19908425A1 (en) 2000-09-07
WO2000052794A2 (en) 2000-09-08
JP2002538632A (en) 2002-11-12
WO2000052794A3 (en) 2000-12-28

Similar Documents

Publication Publication Date Title
DE69814379T2 (en) LASER WITH SELECTIVE CHANGED CURRENT LAYER
DE102008014093B4 (en) Edge-emitting semiconductor laser chip with at least one current barrier
DE69504276T2 (en) Light-emitting device and method for its manufacture
DE69510129T2 (en) Surface emitting luminescent semiconductor device
DE60128970T2 (en) Surface-emitting laser with vertical resonator and built-in microlens
DE69813899T2 (en) TAPE GAP INSULATED LIGHT EMITTERING DEVICE
DE60107679T2 (en) Indium phosphide-based vertical cavity surface emitting laser
DE60204007T2 (en) SURFACE-EMITTING LASER WITH VERTICAL RESONATOR
DE102006010727B4 (en) Surface emitting semiconductor device with a tunnel junction
EP0829121A1 (en) Dfb laser diode structure with complex optical grid coupling
DE69305058T2 (en) Injection laser emitting in the blue-green area
DE112010000821T5 (en) Two-dimensional, surface emitting laser array element, surface emitting laser device and light source
DE102006010728A1 (en) Semiconductor component and laser device
DE10214120B4 (en) Optically pumpable surface emitting semiconductor laser device
DE112009003719T5 (en) SEMICONDUCTOR LASER ELEMENT AND MANUFACTURING METHOD THEREFOR
DE10229211A1 (en) Vertical cavity polarization controlled surface emitting laser using an asymmetrical current limiting aperture
DE60101195T2 (en) Surface emitting laser with vertical resonator and integrated microlens
EP1605561A2 (en) Lightemitting semiconductor element
DE60204168T2 (en) PHASE-SHIFTED SURFACE-EMITTING DFB LASER STRUCTURES WITH REINFORCING OR ABSORBENT GRIDS
DE102005036820A1 (en) Solid state vertical laser has current blocking and transmitting regions formed in layered structure
WO2001022495A1 (en) Light emitting semi-conducting component with high esd rigidity and method for production of said component
EP1155482A1 (en) Vertical resonator laser diode with a light absorbing layer
DE10223540A1 (en) Optically pumped semiconductor laser for generation of coherent light has pump laser surrounding main laser with first mirror in form of Bragg multiple mirror and second semitransparent mirror
WO2005107027A2 (en) Optically pumped semiconductor device
WO2023218005A1 (en) Broad-area diode laser with integrated p-n tunnel junction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010712

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20040218

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

RBV Designated contracting states (corrected)

Designated state(s): FR GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20070525