EP1152641A2 - Microwave oven heating goods to be heated - Google Patents

Microwave oven heating goods to be heated Download PDF

Info

Publication number
EP1152641A2
EP1152641A2 EP01105940A EP01105940A EP1152641A2 EP 1152641 A2 EP1152641 A2 EP 1152641A2 EP 01105940 A EP01105940 A EP 01105940A EP 01105940 A EP01105940 A EP 01105940A EP 1152641 A2 EP1152641 A2 EP 1152641A2
Authority
EP
European Patent Office
Prior art keywords
microwave
cavity resonator
microwave oven
oven according
coupling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01105940A
Other languages
German (de)
French (fr)
Other versions
EP1152641A3 (en
EP1152641B1 (en
Inventor
Friedrich Dr. Phys. Raether
Jens Dipl.-Ing. Baber
Peter-A. Dipl.-Ing. Püschner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PUESCHNER GMBH & CO. KG
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Pueschner & Co KG GmbH
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pueschner & Co KG GmbH, Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Pueschner & Co KG GmbH
Publication of EP1152641A2 publication Critical patent/EP1152641A2/en
Publication of EP1152641A3 publication Critical patent/EP1152641A3/en
Application granted granted Critical
Publication of EP1152641B1 publication Critical patent/EP1152641B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/647Aspects related to microwave heating combined with other heating techniques
    • H05B6/6491Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors
    • H05B6/6494Aspects related to microwave heating combined with other heating techniques combined with the use of susceptors for cooking

Definitions

  • the invention relates to a microwave oven for heating fuel, with at least one microwave source, a cavity resonator, a coupling device for coupling and decoupling a microwave field into the cavity resonator.
  • Microwave heating is different from conventional oven heating the thermal energy is not on the surface of a component, but in Inside introduced.
  • Heating up quickly with heating rates of more than 200 k / min - as is required for many technical processes - are generated by the conventional furnace large temperature gradients between the hotter component surface and the colder interior. With rapid microwave heating temperature gradients also occur - but in the opposite direction.
  • the temperature differences are several hundred Kelvin and lead to Destruction of the components due to thermal stress. Through different Measures were attempted to eliminate these temperature gradients: additional absorbers for microwave energy - so-called susceptors - in the Microwave resonator introduced. These first heat up and give then thermal energy to the component. It will also be used for microwaves transparent insulation - so-called caskets - used, which the firing envelop.
  • the temperature gradients can be with the methods mentioned decrease, however, is a precise and quick control of the energy input over the component surface or the component volume is not possible.
  • hybrid ovens To reduce an undesirably large temperature gradient during heating Various types of hybrid ovens have already been developed for the kiln. They are heated with microwave energy and at the same time with other heating methods: e.g. through resistance heating, gas firing and Infrared radiation. The additional heating processes are used for controlled surface heating of the fired goods. There are numerous patent applications for this (see e.g. DE 196 33 247 C2). However, hybrid ovens are because of the combination two heating technologies per se more complex to manufacture, more complicated to manufacture Control and more error-prone in operation than pure microwave ovens.
  • the object of the invention is to provide a microwave oven of the type mentioned to develop in such a way that even when the fired material heats up very quickly undesirably large temperature gradients between the interior of the Kiln goods and their surface can be avoided.
  • the advantages of the invention are, in particular, that one or more microwave susceptor elements are provided in the cavity, and that the cavity resonator during an operating interval with a first microwave mode is excited at at the positions of the susceptor elements strong microwave field is generated, the volume of the susceptor elements heats up, which then heat energy as radiation energy against the Dispense the firing material and in this way heat the firing material on the surface.
  • the cavity resonator is then operated with a second one Microwave mode excited, which has its maximum in the range of the firing material, so that the volume is then heated by the microwave field while the thermal radiation emitted by the susceptor elements still continues and the Keeps the surface of the fired material at a high temperature.
  • the Resonance conditions changed so that either at the position of the firing material or there is a field strength maximum at the position of the susceptor elements.
  • the susceptors are warmed to a greater extent than the fired material, the dominant dominates the energy input through surface heating. (The susceptors are usually arranged geometrically so that the component surface (s) are even heat.) Conversely, the volume of the fired material can be warmed up more are called the susceptors, so that primarily volume heating takes place.
  • the temperatures of susceptors and firing stock can e.g. with pyrometers be monitored. It was surprisingly found that in this way a very quick and precise control of surface and volume heating possible is. Since only microwave energy is used, a corresponding one can be used Realize the furnace cheaply compared to complicated hybrid heating technologies. In contrast to microwave ovens, in which closed caskets are used the proposed furnace can be combined with in-situ measurement techniques. In this way, the microwave heating process can be constantly monitored and controlled precisely.
  • Another advantage of the invention is that a combination with an external radiant heating is possible - through additional windows Component surface are exposed to thermal energy. These windows can also be used to quickly change components in series production to ensure.
  • Fig. 1 shows a schematic diagram of a microwave oven 1, for fast Surface heating and volume heating of firing stock is used.
  • a cavity resonator 2 has a cylindrical shape and has on both ends 3 each have a coupling device 4, which is used to couple in and out Microwave energy is used.
  • the cavity resonator 2 is on in its interior its inner surface lined with insulating material 8 to prevent heat loss reduce to the outside.
  • susceptor elements 10 positioned, which is designed as disks in the illustrated embodiment are.
  • the peripheral wall 7 of the cavity resonator 2 has two windows 6, outside the window is a pyrometer 22 for measuring the temperature a susceptor element 10, and a second pyrometer 24, which on the Firing material 20 is directed and measures the temperature of the firing material.
  • the insulation material 8 has corresponding channels to the beam path of the pyrometer 22, 24 to release the fuel and the susceptor elements 10.
  • Fig. 2 shows a block diagram of the microwave circuit. This consists of the cavity resonator 2, on the one end side of which a coupling device 4 projects into the cavity resonator 2.
  • a phase shifter 30 is connected to the one coupling device 4 and is connected via a variable impedance 32 to the microwave source 34, for example a magnetron.
  • a coupling device 4 is also provided on the other end face of the cavity resonator 2 and is connected to a variable impedance 32 via a phase shifter 30.
  • One of the phase shifters 30 is designed to be electronically controllable. The resonator is operated in the E 01n mode, so that the microwave field has cylindrical symmetry .
  • phase shifter 30 and variable impedance 32 are referred to as adjusting means and act in the example shown on the coupling device 4 of the cavity resonator 2 in order to change the field configuration in the desired manner.
  • the actuating means can also act directly on the microwave source and / or on the geometric configuration of the cavity resonator 2 or on other elements which are provided in the cavity resonator 2 for the purpose of changing the field configuration.
  • the operating intervals, near which the susceptor elements 10 or the firing material 20 is heated, are timed so that the desired temperature difference is always is maintained between the susceptor elements 10 and the firing material 20.
  • the coupling devices 4 contain projecting into the cavity resonator 2 Antennas, which are preferably hollow on the inside and the feed or in their hollow channel Allow discharge of furnace gas or an in-situ measurement of properties of the firing material or susceptor elements during microwave heating allow. Additional process monitoring is possible, for example, through additional windows possible with CCD cameras.

Abstract

The oven has at least one microwave source and a hollow volume resonator (2) with a device for coupling a microwave field in and out of the resonator. At least one microwave susceptor element (10) at a defined distance from and alignment to the material to be heated (20) is heated by the microwaves and gives off heat to the material. The source and/or resonator is controlled to produce a strong microwave field at the material and/or susceptor.

Description

Die Erfindung betrifft einen Mikrowellenofen zum Aufheizen von Brenngut, mit mindestens einer Mikrowellenquelle, einem Hohlraumresonator, einer Koppelvorrichtung zum Ein- und Auskoppeln eines Mikrowellenfeldes in den Hohlraumresonator.The invention relates to a microwave oven for heating fuel, with at least one microwave source, a cavity resonator, a coupling device for coupling and decoupling a microwave field into the cavity resonator.

Bei der Mikrowellenerwärmung wird im Unterschied zur konventionellen Ofenheizung die Wärmeenergie nicht an der Oberfläche eines Bauteils, sondern im Inneren eingeführt. Beim schnellen Aufheizen mit Aufheizraten von mehr als 200 k/min - wie es für viele technische Prozesse erforderlich ist - entstehen beim konventionellen Ofen große Temperaturgradienten zwischen der heißeren Bauteiloberfläche und dem kälteren Innenbereich. Bei der schnellen Mikrowellenerwärmung entstehen ebenfalls Temperaturgradienten -jedoch in umgekehrter Richtung. Microwave heating is different from conventional oven heating the thermal energy is not on the surface of a component, but in Inside introduced. When heating up quickly with heating rates of more than 200 k / min - as is required for many technical processes - are generated by the conventional furnace large temperature gradients between the hotter component surface and the colder interior. With rapid microwave heating temperature gradients also occur - but in the opposite direction.

Die Temperaturunterschiede betragen mehrere hundert Kelvin und führen zur Zerstörung der Bauteile aufgrund von Wärmespannungen. Durch verschiedene Maßnahmen wurde versucht, diese Temperaturgradienten zu beseitigen: So wurden zusätzliche Absorber für die Mikrowellenenergie - sogenannte Suszeptoren - in den Mikrowellenresonator eingebracht. Diese erwärmen sich zunächst selbst und geben dann Wärmeenergie an das Bauteil ab. Es werden auch für die Mikrowellen transparente Isolationen - sogenannte Caskets - eingesetzt, die das Brenngut einhüllen. Die Temperaturgradienten lassen sich mit den erwähnten Methoden verringern, jedoch ist eine präzise und schnelle Steuerung des Energieeintrags über die Bauteiloberfläche bzw. das Bauteilvolumen nicht möglich.The temperature differences are several hundred Kelvin and lead to Destruction of the components due to thermal stress. Through different Measures were attempted to eliminate these temperature gradients: additional absorbers for microwave energy - so-called susceptors - in the Microwave resonator introduced. These first heat up and give then thermal energy to the component. It will also be used for microwaves transparent insulation - so-called caskets - used, which the firing envelop. The temperature gradients can be with the methods mentioned decrease, however, is a precise and quick control of the energy input over the component surface or the component volume is not possible.

Zur Verringerung eines unerwünscht großen Temperaturgradienten bei der Erhitzung des Brennguts wurden bereits verschiedene Typen von Hybridöfen entwickelt. Bei ihnen erfolgt die Aufheizung mit Mikrowellenenergie und gleichzeitig mit anderen Heizverfahren: Z.B. durch Widerstandsheizung, Gasbefeuerung und Infrarotstrahlung. Die zusätzlichen Heizverfahren dienen zur kontrollierten Oberflächenheizung des Brennguts. Hierzu liegen zahlreiche Patentanmeldungen vor (vgl. z.B. DE 196 33 247 C2). Hybridöfen sind jedoch wegen der Kombination zweier Heiztechniken per se aufwendiger in der Herstellung, komplizierter in der Regelung und fehleranfälliger im Betrieb als reine Mikrowellenöfen.To reduce an undesirably large temperature gradient during heating Various types of hybrid ovens have already been developed for the kiln. They are heated with microwave energy and at the same time with other heating methods: e.g. through resistance heating, gas firing and Infrared radiation. The additional heating processes are used for controlled surface heating of the fired goods. There are numerous patent applications for this (see e.g. DE 196 33 247 C2). However, hybrid ovens are because of the combination two heating technologies per se more complex to manufacture, more complicated to manufacture Control and more error-prone in operation than pure microwave ovens.

Aufgabe der Erfindung ist es, einen Mikrowellenofen der eingangs genannten Art derart weiterzubilden, dass auch bei einem sehr schnellen Aufheizen des Brenngutes unerwünscht große Temperaturgradienten zwischen dem Innenbereich des Brennguts und dessen Oberfläche vermieden werden.The object of the invention is to provide a microwave oven of the type mentioned to develop in such a way that even when the fired material heats up very quickly undesirably large temperature gradients between the interior of the Kiln goods and their surface can be avoided.

Diese Aufgabe wird bei dem Mikrowellenofen der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass in vorgegebenem Abstand und Ausrichtung zu dem Brenngut mindestens ein Mikrowellen-Suszeptorelement angeordnet ist, welches sich unter der Wirkung des Mikrowellenfeldes volumenmäßig aufheizt und Wärmeenergie an das Brenngut abstrahlt, und dass auf die Mikrowellenquelle und/oder den Hohlraumresonator einwirkende Stellmittel vorgesehen sind, welche an der Position des Brenngutes und an der Position des/der Suszeptorelemente ein starkes Mikrowellenfeld erzeugen.This object is achieved according to the invention in the microwave oven of the type mentioned at the outset solved by that at a predetermined distance and orientation at least one microwave susceptor element is arranged in the kiln, which heats up in volume under the action of the microwave field and Radiates heat energy to the firing material, and that to the microwave source and / or adjusting means acting on the cavity resonator are provided, which at the position of the firing material and at the position of the susceptor element (s) generate a strong microwave field.

Die Vorteile der Erfindung liegen insbesondere darin, dass ein oder mehrere Mikrowellen-Suszeptorelemente in dem Hohlraumresonator vorgesehen sind, und dass der Hohlraumresonator während eines Betriebsintervalles mit einer ersten Mikrowellenmode angeregt wird, bei der an den Positionen der Suszeptorelemente ein starkes Mikrowellenfeld erzeugt wird, welches die Suszeptorelemente volumenmäßig aufheizt, die daraufhin ihre Wärmeenergie als Strahlungsenergie gegen das Brenngut abgeben und auf diese Weise das Brenngut an der Oberfläche erhitzt. In einem zweiten Betriebsintervall wird der Hohlraumresonator dann mit einer zweiten Mikrowellenmode erregt, die ihr Maximum im Bereich des Brenngutes hat, so dass dann das Brenngut volumenmäßig von dem Mikrowellenfeld erhitzt wird, während die von den Suszeptorelementen abgegebene Wärmestrahlung noch anhält und die Oberfläche des Brenngutes auf einer hohen Temperatur hält. Auf diese Weise wird der Temperaturgradient vom Innenbereich des Brennguts zu seiner Oberfläche hin reduziert. Durch schnelle aktive Stellelemente für das Mikrowellenfeld werden die Resonanzbedingungen so verändert, dass entweder an der Position des Brenngutes oder an der Position der Suszeptorelemente ein Feldstärkemaximum vorliegt. Durch die Steuerung der zeitlichen Dauer der beiden Betriebsintervalle sowie durch die Steuerung der während der beiden Betriebsintervalle vorliegenden Amplituden des Mikrowellenfeldes lässt sich der Energieeintrag über die Brenngut-Oberfläche bzw. in das Brenngut-Volumen so steuern, dass der Temperaturgradient zwischen dem heißeren Innenbereich und der kühleren Brenngut-Oberfläche in gewünschter Weise einstellt, so dass unerwünschte Wärmespannungen in dem Brenngut weitgehend vermieden werden können.The advantages of the invention are, in particular, that one or more microwave susceptor elements are provided in the cavity, and that the cavity resonator during an operating interval with a first microwave mode is excited at at the positions of the susceptor elements strong microwave field is generated, the volume of the susceptor elements heats up, which then heat energy as radiation energy against the Dispense the firing material and in this way heat the firing material on the surface. In In a second operating interval, the cavity resonator is then operated with a second one Microwave mode excited, which has its maximum in the range of the firing material, so that the volume is then heated by the microwave field while the thermal radiation emitted by the susceptor elements still continues and the Keeps the surface of the fired material at a high temperature. That way the temperature gradient from the interior of the firing material to its surface reduced. With fast active control elements for the microwave field, the Resonance conditions changed so that either at the position of the firing material or there is a field strength maximum at the position of the susceptor elements. By the control of the duration of the two operating intervals and by the Control of the amplitudes of the present during the two operating intervals Of the microwave field, the energy input can be into the firing volume so that the temperature gradient between the hotter interior and the cooler firing surface in the desired manner sets so that undesirable thermal stresses in the material to a large extent can be avoided.

Gemäß einer bevorzugten Ausführungsform der Erfindung lassen sich die beiden Betriebsintervalle, die Suszeptorelemente bzw. das Brenngut durch ein Mikrowellenfeld, d.h. durch zwei verschiedene Mikrowellenmoden aufgeheizt werden, auch zeitlich überlagern, so dass gleichzeitig die beiden Mikrowellenmoden im Hohlraumresonator erregt werden. According to a preferred embodiment of the invention, the two Operating intervals, the susceptor elements or the firing material through a microwave field, i.e. be heated up by two different microwave modes, too overlap in time so that at the same time the two microwave modes in the cavity be excited.

Ähnlich wie im Fall eines zeitlichen Wechsels bei einer einzigen Frequenz muss dann für den einen Mikrowellentyp ein Feldstärkemaximum an der Position des Brennguts und für den anderen ein Maximum an der Position der Suszeptorelemente vorhanden sein. Die Intensität der beiden Mikrowellentypen wird variiert.Similar to the case of a time change at a single frequency then for the one microwave type a field strength maximum at the position of the Brennguts and for the other a maximum at the position of the susceptor elements to be available. The intensity of the two types of microwaves is varied.

Werden die Suszeptoren stärker erwärmt als das Brenngut, so dominiert im wesentlichen der Energieeintrag durch Oberflächenerwärmung. (Die Suszeptoren sind in der Regel geometrisch so angeordnet, dass sie die Bauteiloberfläche/n gleichmäßig erwärmen.) Umgekehrt kann das Brenngut volumenmäßig stärker erwärmt werden als die Suszeptoren, so dass in erster Linie eine Volumenerwärmung stattfindet.If the susceptors are warmed to a greater extent than the fired material, the dominant dominates the energy input through surface heating. (The susceptors are usually arranged geometrically so that the component surface (s) are even heat.) Conversely, the volume of the fired material can be warmed up more are called the susceptors, so that primarily volume heating takes place.

Die Temperaturen von Suszeptoren und Brenngut können z.B. mit Pyrometern überwacht werden. Überraschend wurde festgestellt, dass auf diese Weise eine sehr schnelle und präzise Kontrolle von Oberflächen- und Volumenheizung möglich ist. Da ausschließlich Mikrowellenenergie verwendet wird, läßt sich ein entsprechender Ofen im Vergleich zu komplizierten Hybridheiztechniken günstig realisieren. Im Unterschied zu Mikrowellenöfen, bei denen geschlossene Caskets eingesetzt werden, lässt sich der vorgeschlagene Ofen mit In-Situ-Messtechniken kombinieren. Auf diese Weise kann der Mikrowellenerwärmungsprozess ständig überwacht und präzise gesteuert werden.The temperatures of susceptors and firing stock can e.g. with pyrometers be monitored. It was surprisingly found that in this way a very quick and precise control of surface and volume heating possible is. Since only microwave energy is used, a corresponding one can be used Realize the furnace cheaply compared to complicated hybrid heating technologies. In contrast to microwave ovens, in which closed caskets are used the proposed furnace can be combined with in-situ measurement techniques. In this way, the microwave heating process can be constantly monitored and controlled precisely.

Ein weiterer Vorteil der Erfindung besteht darin, dass auch eine Kombination mit einer externen Strahlungsheizung möglich ist - durch zusätzliche Fenster kann die Bauteiloberfläche mit Wärmeenergie beaufschlagt werden. Diese Fenster können auch dazu genutzt werden, einen schnellen Wechsel der Bauteile in einer Serienfertigung zu gewährleisten.Another advantage of the invention is that a combination with an external radiant heating is possible - through additional windows Component surface are exposed to thermal energy. These windows can can also be used to quickly change components in series production to ensure.

Vorteilhafte Weiterbildungen der Erfindung sind durch die Merkmale der Unteransprüche gekennzeichnet. Advantageous developments of the invention are due to the features of the subclaims characterized.

Im folgenden wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher erläutert. Es zeigen:

Fig. 1
eine schematische Darstellung eines erfindungsgemäßen Mikrowellenofens; und
Fig. 2
ein Blockschaltbild zum Betreiben des Mikrowellenofens gemäß Fig. 1.
An exemplary embodiment of the invention is explained in more detail below with reference to the drawing. Show it:
Fig. 1
a schematic representation of a microwave oven according to the invention; and
Fig. 2
2 shows a block diagram for operating the microwave oven according to FIG. 1.

Fig. 1 zeigt eine Prinzipdarstellung eines Mikrowellenofens 1, der zur schnellen Oberflächenerwärmung und Volumenerwärmung von Brenngut dient. Ein Hohlraumresonator 2 besitzt eine zylindrische Form und weist an seinen beiden Stirnseiten 3 je eine Koppeleinrichtung 4 auf, welche zum Einkoppeln und Auskoppeln von Mikrowellenenergie dient. Der Hohlraumresonator 2 ist in seinem Innenraum an seiner inneren Oberfläche mit Isoliermaterial 8 ausgekleidet, um Wärmeverluste nach außen zu reduzieren. In dem freien Innenraum 5 des Hohlraumresonators ist - in der dargestellten Ausführungsform in einer zentralen Position - das Brenngut 20 angeordnet, in vorgegebenem Abstand vom Brenngut 20 sind Suszeptorelemente 10 positioniert, die in der dargestellten Ausführungsform als Scheiben ausgebildet sind. Die Umfangswand 7 des Hohlraumresonators 2 besitzt zwei Fenster 6, außerhalb der Fenster befindet sich ein Pyrometer 22 zur Messung der Temperatur eines Suszeptorelements 10, und ein zweites Pyrometer 24, welches auf das Brenngut 20 gerichtet ist und die Temperatur des Brenngutes misst. Das Isoliermaterial 8 besitzt entsprechende Kanäle, um den Strahlengang der Pyrometer 22, 24 auf das Brenngut und die Suszeptorelemente 10 freizugeben.Fig. 1 shows a schematic diagram of a microwave oven 1, for fast Surface heating and volume heating of firing stock is used. A cavity resonator 2 has a cylindrical shape and has on both ends 3 each have a coupling device 4, which is used to couple in and out Microwave energy is used. The cavity resonator 2 is on in its interior its inner surface lined with insulating material 8 to prevent heat loss reduce to the outside. In the free interior 5 of the cavity resonator - in the illustrated embodiment in a central position - the kiln 20 arranged at a predetermined distance from the firing material 20 are susceptor elements 10 positioned, which is designed as disks in the illustrated embodiment are. The peripheral wall 7 of the cavity resonator 2 has two windows 6, outside the window is a pyrometer 22 for measuring the temperature a susceptor element 10, and a second pyrometer 24, which on the Firing material 20 is directed and measures the temperature of the firing material. The insulation material 8 has corresponding channels to the beam path of the pyrometer 22, 24 to release the fuel and the susceptor elements 10.

Fig. 2 zeigt ein Blockschaltbild des Mikrowellenschaltkreises. Dieser besteht aus dem Hohlraumresonator 2, an dessen eine Stirnseite eine Koppeleinrichtung 4 in den Hohlraumresonator 2 hineinragt. An die eine Koppeleinrichtung 4 ist ein Phasenschieber 30 angeschlossen, der über eine variable Impedanz 32 mit der Mikrowellenquelle 34, beispielsweise einem Magnetron, verbunden ist. Auf der anderen Stirnseite des Hohlraumresonators 2 ist ebenfalls eine Koppeleinrichtung 4 vorgesehen, die über einen Phasenschieber 30 an einer variablen Impedanz 32 liegt. Einer der Phasenschieber 30 ist elektronisch steuerbar ausgebildet. Der Resonator wird im E01n-Modus betrieben, so dass das Mikrowellenfeld Zylindersymmetrie besitzt. Die Feldverteilung entlang der Zylinderachse kann mit Hilfe der Phasenschieber 30 innerhalb von wenigen hundert Millisekunden so verändert werden, dass entweder die beiden Suszeptorscheiben 10 oder das Brenngut 20 in einem Feldstärkemaximum liegen. Phasenschieber 30 und variable Impedanz 32 werden als Stellmittel bezeichnet und wirken in dem dargestellten Beispiel auf die Koppeleinrichtung 4 des Hohlraumresonators 2 ein, um die Feldkonfiguration in der gewünschten Weise zu verändern. Alternativ können die Stellmittel auch direkt auf die Mikrowellenquelle und/oder auf die geometrische Konfiguration des Hohlraumresonators 2 oder auf andere Elemente einwirken, die im Hohlraumresonator 2 zum Zwecke der Feldkonfigurationsänderung vorgesehen sind.Fig. 2 shows a block diagram of the microwave circuit. This consists of the cavity resonator 2, on the one end side of which a coupling device 4 projects into the cavity resonator 2. A phase shifter 30 is connected to the one coupling device 4 and is connected via a variable impedance 32 to the microwave source 34, for example a magnetron. A coupling device 4 is also provided on the other end face of the cavity resonator 2 and is connected to a variable impedance 32 via a phase shifter 30. One of the phase shifters 30 is designed to be electronically controllable. The resonator is operated in the E 01n mode, so that the microwave field has cylindrical symmetry . The field distribution along the cylinder axis can be changed with the aid of the phase shifters 30 within a few hundred milliseconds in such a way that either the two susceptor disks 10 or the firing material 20 lie in a field strength maximum. Phase shifter 30 and variable impedance 32 are referred to as adjusting means and act in the example shown on the coupling device 4 of the cavity resonator 2 in order to change the field configuration in the desired manner. Alternatively, the actuating means can also act directly on the microwave source and / or on the geometric configuration of the cavity resonator 2 or on other elements which are provided in the cavity resonator 2 for the purpose of changing the field configuration.

Mit Hilfe der Pyrometer 22, 24 werden die entsprechenden Oberflächentemperaturen des Brennguts 20 und der Suszeptorelemente 10 erfasst. Die Betriebsintervalle, nahe derer die Suszeptorelemente 10 bzw. das Brenngut 20 aufgeheizt wird, werden zeitlich so gesteuert, dass stets die gewünschte Temperaturdifferenz zwischen den Suszeptorelementen 10 und dem Brenngut 20 aufrechterhalten wird.With the help of pyrometers 22, 24, the corresponding surface temperatures of the firing material 20 and the susceptor elements 10. The operating intervals, near which the susceptor elements 10 or the firing material 20 is heated, are timed so that the desired temperature difference is always is maintained between the susceptor elements 10 and the firing material 20.

Die Koppeleinrichtungen 4 enthalten in den Hohlraumresonator 2 hineinragende Antennen, die bevorzugt innen hohl sind und in ihrem Hohlkanal die Zuführung oder Ableitung von Ofengas ermöglichen oder eine In-Situ-Messung von Eigenschaften des Brenngutes oder der Suszeptorelemente während der Mikrowellenerwärmung zulassen. Durch zusätzliche Fenster ist eine weitere Prozessüberwachung beispielsweise durch CCD-Kameras möglich.The coupling devices 4 contain projecting into the cavity resonator 2 Antennas, which are preferably hollow on the inside and the feed or in their hollow channel Allow discharge of furnace gas or an in-situ measurement of properties of the firing material or susceptor elements during microwave heating allow. Additional process monitoring is possible, for example, through additional windows possible with CCD cameras.

Claims (13)

Mikrowellenofen zum Aufheizen von Brenngut, mit mindestens einer Mikrowellenquelle, einem Hohlraumresonator, der eine Einkoppelvorrichtung zum Ein- und Auskoppeln eines Mikrowellenfeldes in den Hohlraumresonator enthält,
dadurch gekennzeichnet, dass in vorgegebenem Abstand und Ausrichtung zu dem Brenngut (20) mindestens ein Mikrowellen-Suszeptorelement (10) angeordnet ist, welches sich unter der Wirkung des Mikrowellenfeldes volumenmäßig aufheizt und Wärmeenergie an das Brenngut (20) abstrahlt, und dass auf die Mikrowellenquelle (34) und/oder den Hohlraumresonator (2) einwirkende Stellmittel (30, 32) vorgesehen sind, welche an der Position des Brenngutes (20) und/oder an der Position des/der Suszeptorelemente (10) ein starkes Mikrowellenfeld erzeugen.
Microwave oven for heating combustible material, with at least one microwave source, a cavity resonator which contains a coupling device for coupling a microwave field into and out of the cavity resonator,
characterized in that at least one microwave susceptor element (10), which heats up in volume under the action of the microwave field and radiates thermal energy to the firing material (20), is arranged at a predetermined distance and orientation from the firing material (20), and that the microwave source (34) and / or the cavity resonator (2) acting adjusting means (30, 32) are provided, which generate a strong microwave field at the position of the material to be burned (20) and / or at the position of the susceptor element (s) (10).
Mikrowellenofen nach Anspruch 1,
dadurch gekennzeichnet, dass die Stellmittel (30, 32) auf die Einkoppelvorrichtung (4) einwirken, um an der Position des Brenngutes (20) und/oder an der Position mindestens eines Suszeptorelements (10) ein starkes Mikrowellenfeld zu erzeugen.
Microwave oven according to claim 1,
characterized in that the adjusting means (30, 32) act on the coupling device (4) in order to generate a strong microwave field at the position of the firing material (20) and / or at the position of at least one susceptor element (10).
Mikrowellenofen nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die Stellmittel (30, 32) auf die Einkoppelvorrichtung (4) des Mikrowellenfeldes entsprechend der mittels eines Pyrometers (22) der erfassten Temperatur des Brenngutes derart einwirken, dass an der Position eines Suszeptorelementes (10) ein Mikrowellenfeld vorherrscht, welches die gewünschte Temperatur an der Position des Brenngutes (20) erzeugt.
Microwave oven according to claim 1 or 2,
characterized in that the adjusting means (30, 32) act on the coupling device (4) of the microwave field in accordance with the temperature of the material to be sensed by means of a pyrometer (22) in such a way that a microwave field prevails at the position of a susceptor element (10) which Desired temperature at the position of the firing material (20) generated.
Mikrowellenofen nach Anspruch 1 bis 3,
dadurch gekennzeichnet, dass die Stellmittel gleichzeitig oder nacheinander an der Position des Brenngutes (20) an der Position des/der Suszeptorelemente(s) (10) ein Maximum des Mikrowellenfeldes erzeugen.
Microwave oven according to claims 1 to 3,
characterized in that the actuating means generate a maximum of the microwave field simultaneously or in succession at the position of the firing material (20) at the position of the susceptor element (s) (10).
Mikrowellenofen nach Anspruch 1 bis 4,
dadurch gekennzeichnet, dass die Stellmittel in dem Hohlraumresonator eine erste Mikrowellenmode, welche an der Position des/der Suszeptorelemente (10) ein Feldstärke-Maximum aufweist, und anschließend eine zweite Mikrowellenmode erzeugen, welche an der Position des Brenngutes (20) ein Feldstärke-Maximum aufweist.
Microwave oven according to claims 1 to 4,
characterized in that the adjusting means in the cavity resonator generate a first microwave mode, which has a maximum field strength at the position of the susceptor element (s), and then generate a second microwave mode, which has a maximum field strength at the position of the material to be burned (20) having.
Mikrowellenofen nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass die Stellmittel zwischen der Mikrowellenquelle (1) und der Einkoppelvorrichtung (4) einen Phasenschieber (30) und ggf. eine variable Impedanz (32) enthalten.
Microwave oven according to one of claims 1 to 5,
characterized in that the adjusting means between the microwave source (1) and the coupling device (4) contain a phase shifter (30) and possibly a variable impedance (32).
Mikrowellenofen nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass der Hohlraumresonator (2) eine Zylinderform besitzt und an seinen gegenüberliegenden Stirnseiten je eine Koppelvorrichtung (4) aufweist, dass eine Koppelvorrichtung (4) über einen Phasenschieber (30) und eine variable Impedanz (32) an der Mikrowellenquelle (1) liegt, und dass die andere Koppelvorrichtung (4) über einen Phasenschieber (30) mit einer variablen Impendanz (32) verbunden ist.
Microwave oven according to one of claims 1 to 6,
characterized in that the cavity resonator (2) has a cylindrical shape and has a coupling device (4) on each of its opposite faces, that a coupling device (4) via a phase shifter (30) and a variable impedance (32) on the microwave source (1) and that the other coupling device (4) is connected to a variable impedance (32) via a phase shifter (30).
Mikrowellenofen nach Anspruch 6 oder 7,
dadurch gekennzeichnet, dass der Phasenschiebder (30) elektrisch steuerbar ist.
Microwave oven according to claim 6 or 7,
characterized in that the phase shifter (30) is electrically controllable.
Mikrowellenofen nach einem der vorstehenden Ansprüche,
gekennzeichnet durch ein erstes Pyrometer (22), welches durch ein Fenster (6) in der Wandung des Hohlraumresonators (2) die Temperatur des Brenngutes (20) misst.
Microwave oven according to one of the preceding claims,
characterized by a first pyrometer (22) which measures the temperature of the combustion material (20) through a window (6) in the wall of the cavity resonator (2).
Mikrowellenofen nach einem der vorstehenden Ansprüche,
gekennzeichnet durch ein zweites Pyrometer (24), welches durch ein Fenster (6) in der Wandung des Hohlraumresonators (2) die Temperatur eines Suszeptorelementes (10) misst.
Microwave oven according to one of the preceding claims,
characterized by a second pyrometer (24) which measures the temperature of a susceptor element (10) through a window (6) in the wall of the cavity resonator (2).
Mikrowellenofen nach einem der vorstehenden Ansprüche,
gekennzeichnet durch eine Wärmeisolierung (8) an der inneren Oberfläche des Hohlraumresonators (2).
Microwave oven according to one of the preceding claims,
characterized by thermal insulation (8) on the inner surface of the cavity resonator (2).
Mikrowellenofen nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass das Brenngut (20) in der Mitte des Hohlraumresonators (2) positioniert ist, und dass die Suszeptorelemente (10) als Scheiben ausgebildet sind, die in vorgegebenem Abstand vom Brenngut (20 positioniert sind.
Microwave oven according to one of the preceding claims,
characterized in that the firing material (20) is positioned in the center of the cavity resonator (2) and that the susceptor elements (10) are designed as disks which are positioned at a predetermined distance from the firing material (20).
Mikrowellenofen nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass ein zusätzliches Fenster in der Wandung des Hohlraumresonators (2) vorgesehen ist, und dass außerhalb des Hohlraumresonators (2) eine Strahlungsheizung angeordnet ist, welche das Brenngut (20) durch das Fenster hindurch mit Wärmeenergie beaufschlagt.
Microwave oven according to one of the preceding claims,
characterized in that an additional window is provided in the wall of the cavity resonator (2) and that outside the cavity resonator (2) there is a radiant heater which acts on the firing material (20) through the window with thermal energy.
EP01105940A 2000-05-03 2001-03-09 Microwave oven heating goods to be heated Expired - Lifetime EP1152641B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10021528 2000-05-03
DE10021528A DE10021528A1 (en) 2000-05-03 2000-05-03 Microwave oven for heating fuel

Publications (3)

Publication Number Publication Date
EP1152641A2 true EP1152641A2 (en) 2001-11-07
EP1152641A3 EP1152641A3 (en) 2003-11-26
EP1152641B1 EP1152641B1 (en) 2006-02-01

Family

ID=7640641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01105940A Expired - Lifetime EP1152641B1 (en) 2000-05-03 2001-03-09 Microwave oven heating goods to be heated

Country Status (3)

Country Link
EP (1) EP1152641B1 (en)
AT (1) ATE317209T1 (en)
DE (2) DE10021528A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775998A1 (en) * 2005-10-17 2007-04-18 Püschner GmbH & Co. KG Microwave conveyor furnace
US9220576B2 (en) 2003-08-07 2015-12-29 Ivoclar Vivadent Ag Machining of ceramic materials
US9326835B2 (en) 2010-04-16 2016-05-03 Ivoclar Vivadent Ag Process for the preparation of dental restorations
US9371249B2 (en) 2012-05-04 2016-06-21 Ivoclar Vivadent Ag Lithium disilicate-apatite glass-ceramic
US9403714B2 (en) 2011-10-14 2016-08-02 Ivoclar Vivadent Ag Lithium silicate glass ceramic and lithium silicate glass comprising a hexavalent metal oxide
US9695082B2 (en) 2011-10-14 2017-07-04 Ivoclar Vivadent Ag Lithium silicate glass ceramic and lithium silicate glass comprising a tetravalent metal oxide
US9757217B2 (en) 2012-05-11 2017-09-12 Ivoclar Vivadent Ag Pre-sintered blank for dental purposes
US9776912B2 (en) 2011-10-14 2017-10-03 Ivoclar Vivadent Ag Lithium silicate glass ceramic and glass with divalent metal oxide
US9878939B2 (en) 2011-10-14 2018-01-30 Ivoclar Vivadent Ag Lithium silicate glass ceramic and glass with monovalent metal oxide
EP3346801A1 (en) * 2017-01-04 2018-07-11 Miele & Cie. KG Method for treating cooked goods and cooking device for performing such a method
US10064708B2 (en) 2013-02-12 2018-09-04 Ivoclar Vivadent Ag Blank for dental purposes
US10131569B2 (en) 2014-05-13 2018-11-20 Ivoclar Vivadent Ag Method for the preparation of lithium silicate glasses and lithium silicate glass ceramics
US10136973B2 (en) 2003-08-07 2018-11-27 Ivoclar Vivadent Ag Lithium silicate materials
US10214443B2 (en) 2005-02-08 2019-02-26 Ivoclar Vivadent Ag Lithium silicate materials
US10227255B2 (en) 2011-10-14 2019-03-12 Ivoclar Vivadent Ag Lithium silicate glass ceramic and lithium silicate glass comprising a pentavalent metal oxide
US10321980B2 (en) 2011-10-14 2019-06-18 Ivoclar Vivadent Ag Lithium silicate glass ceramic and glass with trivalent metal oxide
US10376343B2 (en) 2013-04-15 2019-08-13 Ivoclar Vivadent Ag Lithium silicate glass ceramic and glass with rubidium oxide content
US10457589B2 (en) 2015-01-30 2019-10-29 Ivoclar Vivadent Ag Lithium silicate diopside glass ceramics
US10470854B2 (en) 2012-05-11 2019-11-12 Ivoclar Vivadent Ag Pre-sintered blank for dental purposes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008015483B4 (en) * 2008-03-25 2018-10-11 Ivoclar Vivadent Ag Oven for the thermal treatment of a dental firing object
ES2581452T3 (en) 2010-04-16 2016-09-05 Ivoclar Vivadent Ag Vitroceramic glass and lithium silicate glass with transition metal oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1233030A (en) * 1967-10-13 1971-05-26
WO1995005058A1 (en) * 1993-08-10 1995-02-16 Ea Technology Limited Microwave-assisted processing of materials
DE19633247A1 (en) * 1996-08-17 1998-02-19 Karlsruhe Forschzent Microwave sintering furnace
DE19700140A1 (en) * 1997-01-04 1998-07-09 Gero Hochtemperaturoefen Gmbh Kiln for high temperature treatment of materials with low dielectric loss factor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446349A (en) * 1983-01-03 1984-05-01 General Electric Company Microwave phase shifting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1233030A (en) * 1967-10-13 1971-05-26
WO1995005058A1 (en) * 1993-08-10 1995-02-16 Ea Technology Limited Microwave-assisted processing of materials
DE19633247A1 (en) * 1996-08-17 1998-02-19 Karlsruhe Forschzent Microwave sintering furnace
DE19700140A1 (en) * 1997-01-04 1998-07-09 Gero Hochtemperaturoefen Gmbh Kiln for high temperature treatment of materials with low dielectric loss factor

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9220576B2 (en) 2003-08-07 2015-12-29 Ivoclar Vivadent Ag Machining of ceramic materials
US11744685B2 (en) 2003-08-07 2023-09-05 Ivoclar Vivadent Ag Lithium silicate materials
US11369460B2 (en) 2003-08-07 2022-06-28 Ivoclar Vivadent Ag Lithium silicate materials
US11109949B2 (en) 2003-08-07 2021-09-07 Ivoclar Vivadent Ag Lithium silicate materials
US10136973B2 (en) 2003-08-07 2018-11-27 Ivoclar Vivadent Ag Lithium silicate materials
US9918806B2 (en) 2003-08-07 2018-03-20 Ivoclar Vivadent Ag Machining of ceramic materials
US10981823B2 (en) 2005-02-08 2021-04-20 Ivoclar Vivadent Ag Lithium silicate materials
US10214443B2 (en) 2005-02-08 2019-02-26 Ivoclar Vivadent Ag Lithium silicate materials
EP1775998A1 (en) * 2005-10-17 2007-04-18 Püschner GmbH & Co. KG Microwave conveyor furnace
US9956146B2 (en) 2010-04-16 2018-05-01 Ivoclar Vivadent Ag Process for the preparation of dental restorations
US9326835B2 (en) 2010-04-16 2016-05-03 Ivoclar Vivadent Ag Process for the preparation of dental restorations
US10321980B2 (en) 2011-10-14 2019-06-18 Ivoclar Vivadent Ag Lithium silicate glass ceramic and glass with trivalent metal oxide
US10227255B2 (en) 2011-10-14 2019-03-12 Ivoclar Vivadent Ag Lithium silicate glass ceramic and lithium silicate glass comprising a pentavalent metal oxide
US9403714B2 (en) 2011-10-14 2016-08-02 Ivoclar Vivadent Ag Lithium silicate glass ceramic and lithium silicate glass comprising a hexavalent metal oxide
US10098716B2 (en) 2011-10-14 2018-10-16 Ivoclar Vivadent Ag Lithium silicate glass ceramic and glass with hexavalent metal oxide
US9695082B2 (en) 2011-10-14 2017-07-04 Ivoclar Vivadent Ag Lithium silicate glass ceramic and lithium silicate glass comprising a tetravalent metal oxide
US9878939B2 (en) 2011-10-14 2018-01-30 Ivoclar Vivadent Ag Lithium silicate glass ceramic and glass with monovalent metal oxide
US10160687B2 (en) 2011-10-14 2018-12-25 Ivoclar Vivadent Ag Lithium silicate glass ceramic and glass with tetravalent metal oxide
US10358380B2 (en) 2011-10-14 2019-07-23 Ivoclar Vivadent Ag Lithium silicate glass ceramic and glass with divalent metal oxide
US9776912B2 (en) 2011-10-14 2017-10-03 Ivoclar Vivadent Ag Lithium silicate glass ceramic and glass with divalent metal oxide
US9764982B2 (en) 2012-05-04 2017-09-19 Ivoclar Vivadent Ag Lithium disilicate apatite glass-ceramic
US9371249B2 (en) 2012-05-04 2016-06-21 Ivoclar Vivadent Ag Lithium disilicate-apatite glass-ceramic
US10206761B2 (en) 2012-05-11 2019-02-19 Ivoclar Vivadent Ag Pre-sintered blank for dental purposes
US10470854B2 (en) 2012-05-11 2019-11-12 Ivoclar Vivadent Ag Pre-sintered blank for dental purposes
US9757217B2 (en) 2012-05-11 2017-09-12 Ivoclar Vivadent Ag Pre-sintered blank for dental purposes
US10064708B2 (en) 2013-02-12 2018-09-04 Ivoclar Vivadent Ag Blank for dental purposes
US10376343B2 (en) 2013-04-15 2019-08-13 Ivoclar Vivadent Ag Lithium silicate glass ceramic and glass with rubidium oxide content
US10737972B2 (en) 2014-05-13 2020-08-11 Ivoclar Vivadent Ag Method for the preparation of lithium silicate glasses and lithium silicate glass ceramics
US10131569B2 (en) 2014-05-13 2018-11-20 Ivoclar Vivadent Ag Method for the preparation of lithium silicate glasses and lithium silicate glass ceramics
US10457589B2 (en) 2015-01-30 2019-10-29 Ivoclar Vivadent Ag Lithium silicate diopside glass ceramics
EP3346801A1 (en) * 2017-01-04 2018-07-11 Miele & Cie. KG Method for treating cooked goods and cooking device for performing such a method

Also Published As

Publication number Publication date
ATE317209T1 (en) 2006-02-15
EP1152641A3 (en) 2003-11-26
EP1152641B1 (en) 2006-02-01
DE50108820D1 (en) 2006-04-13
DE10021528A1 (en) 2001-11-22

Similar Documents

Publication Publication Date Title
EP1152641B1 (en) Microwave oven heating goods to be heated
DE3210676C2 (en) Process for radiant heating of preforms
EP2101547B1 (en) Dental sintering furnace and method for sintering ceramic dental elements
EP0007103A1 (en) Cryosurgical instrument
EP0261742A1 (en) Method and apparatus for coating the inside of tubes
EP0767891B1 (en) Device for heat treating products by microwave radiation
EP0542142A2 (en) Radiant heating unit
DE19912484A1 (en) Device for the production of single crystals
EP1107646B1 (en) Device for heating smelt crucibles
EP3371350B1 (en) Apparatus for producing carbon fibers
EP2098189A1 (en) Dental oven
DE3237183C2 (en) Process for the production of a grain-oriented, electromagnetic steel strip or sheet
DE102011077172A1 (en) Microwave oven for sintering e.g. uranium dioxide-based nuclear fuel pellets, has gutter-shaped heating element provided in resonator chamber and heatable by microwaves prevalent in resonator chamber
DE4034211C1 (en) Coating interior of pipe-glass tube - comprises coupling HF energy to tube using resonator to deliver pulsed microwave discharges
DE3706336C1 (en) Method and device for generating high temperatures
DE202021102935U1 (en) Crystal growing system for the production of a single crystal
WO1998008227A1 (en) Process for sintering pellets of nuclear fuel
DE19506503C1 (en) Laboratory furnace esp. for research into materials
DE19640898C2 (en) Microwave sintering furnace
DE3302679C2 (en) Hinged, electrically heated precision oven
DE19648366C1 (en) Thermal treatment system for products using microwave energy e.g. ceramics
DE19842109A1 (en) Apparatus for growing silicon carbide monocrystals comprises shielding element which is movable along the axis of symmetry of the apparatus for adjustment of a local temperature field
DE3726134A1 (en) BRACKET FOR PARTIAL HEAT TREATMENT OF TOOLS IN OEFEN
DE4039546C2 (en)
AT18000U1 (en) SUPPORT FRAME FOR A LID SHIELD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PUESCHNER GMBH & CO. KG

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040526

AKX Designation fees paid

Designated state(s): AT CH DE LI

17Q First examination report despatched

Effective date: 20040728

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50108820

Country of ref document: DE

Date of ref document: 20060413

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080424

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080423

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090309

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120430

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108820

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001