EP1130608B1 - Procédé pour la fabrication d'un matériau de contact pour pièces de contact pour interrupteurs sous vide, matériau de contact et pièces de contact - Google Patents

Procédé pour la fabrication d'un matériau de contact pour pièces de contact pour interrupteurs sous vide, matériau de contact et pièces de contact Download PDF

Info

Publication number
EP1130608B1
EP1130608B1 EP01104952A EP01104952A EP1130608B1 EP 1130608 B1 EP1130608 B1 EP 1130608B1 EP 01104952 A EP01104952 A EP 01104952A EP 01104952 A EP01104952 A EP 01104952A EP 1130608 B1 EP1130608 B1 EP 1130608B1
Authority
EP
European Patent Office
Prior art keywords
copper
chromium
contact
powder
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01104952A
Other languages
German (de)
English (en)
Other versions
EP1130608A3 (fr
EP1130608A2 (fr
Inventor
Franz Dr. Hauner
Susett Dr. Rolle
Alfredo Lietz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metalor Technologies International SA
Eaton Industries GmbH
Original Assignee
Metalor Technologies International SA
Moeller GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metalor Technologies International SA, Moeller GmbH filed Critical Metalor Technologies International SA
Publication of EP1130608A2 publication Critical patent/EP1130608A2/fr
Publication of EP1130608A3 publication Critical patent/EP1130608A3/fr
Application granted granted Critical
Publication of EP1130608B1 publication Critical patent/EP1130608B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0475Impregnated alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a method for producing a contact material of copper and chromium in the ratio of 40 to 75 wt .-% copper and 25 to 60 wt .-% chromium in the form of a semifinished product, are assembled from the individual contact pieces for use in vacuum switching devices.
  • the invention further relates to contact materials as semi-finished products for producing contact pieces for vacuum switching devices and contact pieces for vacuum switching devices.
  • Contact pieces for use in vacuum switching devices such as vacuum contactors, vacuum circuit breakers and vacuum circuit breakers for low voltage and medium voltage should be characterized by low residual porosity, a low gas content and high structural strength and high electrical conductivity.
  • contact materials and contact pieces should be economical to produce.
  • the vacuum switching principle has been prevalent in the high voltage range at voltages between 3 and 36 kV for quite some time worldwide.
  • the predominant application relates to circuit breakers.
  • contactors up to a maximum of 12 kV are used.
  • the high dielectric strength of the vacuum switch and the completely emission-free switching make the vacuum switching principle attractive with further development of the manufacturing process and the associated reduction in costs even for low-voltage switchgear.
  • the Vacuum switching principle comes primarily into consideration for contactors, circuit breakers and switch disconnectors with rated operation or rated currents and 100 to 1000 A or 630 to 6300 A at voltages up to 1000 (1500) V.
  • the low-voltage vacuum circuit-breaker must have 2 to 3 times the short-circuit breaking capacity, such as the medium-voltage circuit-breaker.
  • circuit breakers for low voltage are also used as a motor switch, with no switch-off should occur.
  • the switch-disconnector must be able to switch on currents of up to 20 times the rated current. The occurring welding of the contacts must be breakable by the drive.
  • Contact materials or contact pieces for vacuum switches based on chromium and copper are known in various designs as a melting material or manufactured by powder metallurgy or sintering process.
  • a CuCr contact material for vacuum switch which consists of a sintered metal matrix of chromium, which is impregnated with a drinking substance of copper.
  • DE 2357333 A1 and DE 2521504 A1 describe, as a contact material for vacuum switches, a sintered metal matrix in which aluminum or tin is added to the main component of, for example, chromium as an embrittlement additive, and this metal matrix is impregnated with a copper, silver or alloys of these metals is soaked.
  • the sintering temperatures are above 1 200 ° C, while the melting temperature of the impregnating substance is below the respective sintering temperature.
  • contact materials are preferably produced in the size and shape of the individual contact pieces.
  • a contact material for vacuum interrupters which has a sintered metal matrix comprising a main metallic component having a melting point above 1,600 ° C. and a metallic secondary component having a melting point above the melting point of a drinking substance, the sintered metal Matrix is impregnated with, for example, copper as a drinking substance.
  • US Pat. No. 3,960,554 discloses a method for producing chrome-copper contact pieces for vacuum switches, with a chromium content of 40 to 60% by weight, in which the desired amount of chromium powder for the finished contact piece is provided in a first step mixed very small amount of copper powder and from a compact is produced, which is then sintered to produce a porous chromium matrix, which is then infiltrated with the large amount of copper with further sintering until the chromium matrix with copper in the desired ratio from 60 to 40 wt .-% Cu to 40 to 60 wt .-% Cr is filled.
  • initially less than 10% by weight of copper powder is used to make the sintered matrix, and the greater part to copper powder of at least 30 to 50 wt .-%, introduced exclusively by subsequent infiltration into the chromium sintered matrix.
  • the sintering process for the production of individual copper-chromium contact materials has the disadvantage that by introducing the total amount of copper or almost the entire amount of copper in the liquid phase, namely by infiltration into the chromium sintered matrix blanks arise with significant allowance, the corresponding post-machining must be to get the final shape of the desired contact piece.
  • Another method for producing individual contact pieces is the powder metallurgy method, in which a powder mixture of the refractory component, such as chromium, and the low melting component, such as copper, pressed into a blank and then the blank is sintered and the sintered body still cold or warm purpose Compression is re-pressed, as described for example in DE 2914186 A, DE 3406535 A1 and EP 0184854 A2.
  • the concentration of the components is widely selectable in these methods and the contour of the blanks corresponds almost to the final shape of the contact pieces.
  • a melting material of copper and chromium is proposed for contact pieces of vacuum switches, in which a compact is produced from a powder mixture of chromium and copper by isostatic pressing at high pressure of 3000 bar, which is subsequently heated in vacuo at temperatures near or above Copper melting point is sintered.
  • the sintered blank thus produced is used as Abschmelzelektrode in an arc melting furnace and remelted under helium as a protective gas.
  • the molten electrode material solidifies in a water-cooled copper mold, and the melt block thus produced by arc melting is then formed into a blank for contact pieces by full-forward extrusion molding, forming degrees greater than 60%, e.g. 78% are applied.
  • This semifinished product has a directional structure in which the very fine chromium dendrites formed by cooling in the copper mold after remelting are present in a line-shaped orientation with a preferred direction. Slices are cut off as contact pieces from the formed blank, resulting in a button of the contact pieces perpendicular to the present directional structure.
  • the copper-chromium workpieces produced by this method are extremely complicated and expensive due to the applied multi-stage process and the required amounts of energy of the arc melting.
  • a more economical method for producing copper-chromium contact materials for contact pieces of vacuum switches with low residual porosity is proposed in WO 90/15425 (PCT / DE 8900344), according to which in a The first step is made of powders of the components, a powder mixture and a compact thereof, which is then sintered and subjected to a compression or cold flow process with a minimum degree of deformation of 40% to improve the final compaction, with a space filling of at least 99% of the theoretical density is to be achieved , Binding of the components copper and chromium is thereby obtained by cold welding of the structural constituents, said chromium powder are preferred with relatively small grain size distributions below 63 ⁇ m.
  • chrome particles are only partially connected by sinter bridges in the sintered body, so that they are stretched by the deformation in a preferred direction, but do not form a sufficiently continuous matrix and the bonding quality between copper and chromium and thus the switching properties are in need of improvement.
  • the invention has for its object to provide an economical method for producing contact materials for vacuum switching devices, with the contact materials that meet the highest standards are created, in particular their burning behavior and durability is improved and have a very low residual porosity and a density of at least Reach 99% of the theoretical density.
  • a high performance copper and chromium contact material is produced in a multi-step process, namely, producing a porous chromium powder compact or copper-chromium powder compact having a reduced amount of copper in the compact over the final desired composition of the final product; then preparing a chromium matrix or copper-chromium matrix by sintering in a high vacuum and simultaneously impregnating the matrix with additional copper, thereby obtaining a dense sintered body, and then further mechanically compacting the copper-impregnated sintered body with simultaneous forming and stretching the same in one direction, whereby a contact material in the form of a semifinished product is obtained, which has a directional structure of chromium and copper in the form of embedded in elongated copper tracks chromium stems and has a relation to the impregnated sintered body again increased density, almost the theoretical density equivalent.
  • Essential for achieving a high compression of the copper-impregnated sintered body and the straightening structure is the use of high purity electrolytic chromium powder having a purity of at least 99.8%, with very low gas contents, especially oxygen and nitrogen in each case less than 200 ppm and very low Fe and Al contents, also less than 200 ppm each.
  • high purity electrolytic chromium powder having a purity of at least 99.8%, with very low gas contents, especially oxygen and nitrogen in each case less than 200 ppm and very low Fe and Al contents, also less than 200 ppm each.
  • such highly pure chromium can be readily deformed in the form in the form of a sintered body, as a result of which the contact material semifinished product according to the invention having a directional structure is obtained.
  • the forming of the copper-impregnated chromium sintered body or copper-chromium sintered body can be carried out by extrusion or forging or rolling in each case in one direction.
  • a chromium powder with a grain size greater than 50 ⁇ m is used up to about 160 ⁇ m, particularly preferably a grain mixture.
  • the still missing amount of copper for the desired final composition of the contact material if necessary, also slightly more, for example in the form of compact copper and / or packed under the compact and with this together subjected to the sintering process.
  • the sintering process is preferably carried out in a high vacuum at pressures below 10 -4 mbar with continuous heating of the compact to a temperature to at least melt the copper, on the one hand by sintering some alloy copper chromium is formed and beyond the forming copper-chromium matrix or Chromium matrix is impregnated with the additional massive copper.
  • the compact is compacted by the sintering and impregnation process to a density above 99% of the theoretical density, at the same time the original composition of the compact of chromium or copper and chromium in the desired composition of the amount of copper and chromium by increasing the copper content changed and the desired final composition is achieved.
  • the copper-impregnated chromium sintered body or copper-soaked copper-chromium sintered body produced in this way has a high density, a very strong microstructure and a high ductility. The latter is also achieved through the use of a high-purity chromium, namely an electrolytically obtained chromium powder.
  • the contact material has a marked bond between the components copper and chromium through the liquid phase during impregnation.
  • the contact material produced according to the invention is a powder metallurgical material which has a directional structure as a result of the deformation of the sintered body.
  • a powder metallurgical contact material in the form of a semifinished product for contact pieces for vacuum switching devices made of copper and chromium in the ratio of 40 to 75 wt .-% copper and 25 to 60 wt .-% chromium proposed by preparing a compact of a powder mixture, sintering and additional impregnation of the compact with copper in one go and subsequent forming of the copper impregnated sintered body is obtained and by forming in a direction of stretching a directional structure with elongated chrome stems embedded in elongated copper tracks, having a density of at least 99%, in particular more than 99.4% of the theoretical density and whose electrical conductivity and tensile strength parallel to the direction of stretching at least 10% higher than perpendicular to the direction of stretching.
  • a preferred high-performance powder metallurgical contact material according to the invention has a content of 55 to 62 wt .-% copper, a degree of transformation of at least 70% and an electrical conductivity parallel to the stretching direction, which is at 45% of the electrical conductivity of the pure copper and has a Tensile strength in the direction of stretch of at least 550 N per mm 2 .
  • Contact pieces according to the invention for vacuum switching device made of a powder metallurgical contact material of copper powder and chromium powder in the ratio of 40 to 75 wt .-% copper and 25 to 60 wt .-% chromium, prepared by making a semifinished product are characterized by a copper-impregnated sintered body with a chrome Matrix or copper-chromium matrix which is cold or hot deformed in a stretch direction to at least 30% and at least 99%, in particular more than 99.4% of theoretical density corresponding density, the contact surface is formed transversely to the stretching direction and the tensile strength and electrical conductivity is parallel to the direction of stretching at least 10% higher than transverse to the direction of stretching.
  • Contact pieces according to the invention for vacuum switching devices are produced by assembling the contact material semifinished product according to the invention, wherein the contact surface of the contact pieces are formed perpendicular to the stretching direction of the contact material semifinished product.
  • the impregnated sintered bodies are usually obtained as bars, so that a semifinished product in the form of bars is obtained by stretching in one direction and forming.
  • the forming process deforms the very pure and thereby relatively ductile electrolyte chromium into elongated chromium stems, as a result of which the proportion of copper to chromium interface at the contact surface, i.e., the surface of the chromium stems is reduced. perpendicular to the button of the contacts is many times higher than parallel to the button.
  • the contact material according to the invention forms on the surface of the contact pieces during the electrical life of a thin and even switching fabric layer of the same is completely connected to the contact material and adheres to it. In this way, harmful cracking is avoided, both within the contact piece as well as in the area of the switching structure on the surface.
  • the electrical and the thermal Conductivity is high due to the thin and fully adherent layer of the surface, which forms as switching fabric due to switching. This thin layer leads to both rapid cooling and consequently low welding force as well as low thermal heating by electrical current flow.
  • the burnup of the contact material according to the invention is low due to the formation of this thin barrier layer on the surface of the contacts as a result of switching, which has a long life result.
  • the contact material has high tensile strength perpendicular to the button tensile stress, whereby the separation when opening the contact pieces after initial circuits preferably takes place in the weld or only minor material eruptions occur in the contact material.
  • the contact material according to the invention can be used predominantly in vacuum switching devices or vacuum interrupters for low and medium voltage.
  • the substantial improvement in quality of the copper-impregnated chromium or copper-chromium sintered body is achieved by the directional deformation, wherein preferably degrees of transformation of more than 50%, wherein the deformation is carried out such that the sintered matrix is stretched in one direction, whereby the chromium powder grains elongated become stems and the copper is deformed into elongated copper tracks.
  • the strength in the direction of elongation is substantially increased
  • the conductivity, in particular the electrical conductivity in the direction of stretching substantially improved.
  • a powder-metallurgical contact material with a directional structure is obtained.
  • a deformation of the sintered bodies is carried out to the extent that elongated chromium rods or chromium fibers is reduced to 10 times the initial diameter of the chromium grains.
  • the contact surface of the contact pieces is formed by assembling of contact pieces transversely to the stretching direction of the contact material semifinished product.
  • the contact surface of the contact piece has fine points of chrome distributed in the copper corresponding to the fine chrome stems of the extended chromium frame, which is a prerequisite for a good contact and the subsequent formation of a very thin Wegge Stahl in the range of 100 .mu.m .
  • the electric current flows without hindrance (pores or cracks) and thus homogeneous current density directly from the switching pattern into the contact material, where it can flow almost undisturbed along the copper tracks.
  • the burnup at this contact surface is low due to the switching layer structure acting as a barrier layer, which leads to a significant increase in the service life.
  • the electrical conductivity can be up to 30% and more in the direction of stretching than perpendicular thereto, as well as the tensile strength in the direction of stretching in relation to the transverse direction by 30% and more, depending on the degree of deformation and copper content can be increased.
  • the contact material semi-finished product produced by deformation from the copper-impregnated sintered body can be cold or hot by forging, cold or hot by forging or by cold or hot rolling in the desired manner with a preferred direction to form a corresponding structure deformed.
  • the contact pieces can be obtained in the desired shape by machining.
  • discs of desired thickness are cut off from the contact material semifinished product, for example rods, transversely to the stretching direction, which are brought either by machining or by embossing, cold or hot, into the desired end current of the contact pieces for the vacuum switching devices.
  • the impregnation process serves to eliminate existing residual porosity and good bonding due to the liquid phase of the impregnating copper.
  • 1 is a section through a copper-copper sintered copper body in bar form parallel to the axis X in 50-fold magnification, with a composition containing 40 wt .-% chromium and 60 wt .-% copper, which is not yet formed, shown.
  • the sinter matrix of the still essentially granular or granularly chromium-powdered chrome powder grains in the molten copper regions can be seen.
  • FIG. 2 shows a representation of the copper-chromium copper-soaked sintered body according to FIG. 1 after cold forming by extrusion with a degree of deformation of between 75 and 80%.
  • the illustration shows a section parallel to the stretching direction X, ie flow-press direction in 50-fold magnification. It is clear that an elongated microstructure of the sintered matrix is obtained by the deformation, in particular, an extension of the chromium grains is too long Chrome stems, which are embedded between elongated copper tracks, whereby the later serving as the contact surface of the contact surface F F transverse to the direction of extension X receives a structure that allows the formation of a positive effect on switching behavior and life impact switching fabric layer.
  • This contact material has a pronounced straightening structure, see Figure 2, with stem crystals of chromium in a matrix of copper.
  • the columnar crystals are arranged parallel to the extrusion direction X and thus perpendicular to the button F. They have a length of up to 2 mm and a diameter of up to 60 ⁇ m.
  • the switching in the new condition of the contacts under extremely high stress has a decisive effect on the formation of errors on the surface F of the contact pieces and thus on the further switching behavior of the contacts.
  • Arc or extremely high current densities with low contact area, followed by strong heating up to melting, can lead to partial welding of the contact surfaces of the contact pieces.
  • a switching-fabric layer is formed on the contact surface.
  • this switching structure layer is a more or less homogeneous mixture of copper and chromium up to the alloy. Sufficient mechanical shear and tensile forces cause the welding to break off without power when switched off, and welding points can then be recognized macroscopically.
  • This switching fabric layer is ductile and completely adheres to the contact material without the formation of cracks and pores. It shows a different fracture pattern, since the tensile strength of a chromium-copper contact piece according to Figure 2, along the chrome stems is much higher, up to 30% and more, as perpendicular to it.
  • the contacts thus break, if the restoring force of the device is greater than the force of the welding is necessary, directly on the contact surface parallel to the weld and the contact surface remains macroscopically flat. Therefore, arcing due to macroscopic unevenness in subsequent switching in the contact pieces according to the invention is not to be expected.
  • the burnup on the contact surface is low due to the barrier layer acting in use of the contact piece Wegge Anlagen, resulting in a significant increase in the life. Due to the elongated chrome stems, the material composite of the contact material is reinforced. On the one hand, there is enough chrome on the surface to make one Counteract welding, on the other hand, however, can flow through sufficient copper, the electric current directly high conductivity through the contact material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Contacts (AREA)
  • Manufacture Of Switches (AREA)
  • Powder Metallurgy (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Claims (10)

  1. Procédé de fabrication d'un matériau de contact constitué de cuivre et de chrome dans le rapport de 40 à 75% de cuivre et de 25 à 60% de chrome sous la forme d'un produit semi-fini à partir duquel on élabore des plots de contact individuels destinés à être utilisés dans des commutateurs sous vide,
    comprenant les étapes de procédé suivantes :
    - on comprime de la poudre de chrome en quantité correspondant à la teneur en chrome du matériau de contact à fabriquer ou un mélange de poudre de chrome en quantité correspondant à la teneur en chrome du matériau de contact à fabriquer et de poudre de cuivre en quantité inférieure de 5 à 15% en poids à la teneur en cuivre du matériau de contact à fabriquer en appliquant des pressions entre 200 et 1000 Mpa pour former un comprimé poreux qui présente une densité correspondant à 75 à 90% de la densité théorique,
    - le comprimé poreux est revêtu d'une quantité de cuivre manquant au moins à la teneur en cuivre du matériau de contact à fabriquer,
    - ensuite le comprimé revêtu de cuivre est chauffé sous vide élevé à une température jusqu'au point de fusion du cuivre ou au-dessus, le comprimé formant alors un corps fritté à matrice de chrome ou un corps fritté à matrice de cuivre et de chrome et, en même temps, les corps frittés à matrice de chrome ou les corps frittés à matrice de cuivre et de chrome étant imprégnés par le cuivre en liquéfaction revêtant le comprimé,
    - et on obtient un corps fritté de chrome imprégné de cuivre ou un corps fritté de cuivre et de chrome imprégné de cuivre avec une teneur en cuivre élevée par rapport au comprimé et une densité qui correspond à 96 à 98% de la densité théorique,
    - et le corps fritté de chrome imprégné de cuivre obtenu ou le corps fritté de cuivre et de chrome imprégné de cuivre est ensuite façonné en un produit semi-fini formant le matériau de contact par extrusion dans une direction d'étirage, les grains de chrome des corps frittés étant étirés en tiges de chrome dans la direction d'étirage et formant une structure directive allongée et le degré de déformation des corps frittés étant d'au moins 30%,
    - et on obtient un produit semi-fini de matériau de contact avec une structure directive et avec une densité correspondant à au moins 99%, en particulier à 99,5 à 99,9% de la densité théorique.
  2. Procédé selon la revendication 1, caractérisé en ce que le corps fritté de chrome imprégné de cuivre ou le corps fritté de cuivre et de chrome imprégné de cuivre est façonné à froid ou à chaud avec un degré de déformation qui est d'au moins 50%.
  3. Procédé selon la revendication 1, caractérisé en ce que la déformation du corps fritté de chrome imprégné de cuivre ou du corps fritté de cuivre et de chrome imprégné de cuivre s'effectue par extrusion, forgeage ou laminage.
  4. Procédé selon la revendication 1, caractérisé en ce que l'on utilise comme poudre de chrome une poudre de chrome de pureté élevée obtenue par électrolyse avec un degré de pureté de 99,8% ou plus.
  5. Procédé selon la revendication 1, caractérisé en ce que l'on utilise de la poudre de chrome avec une granulométrie ou avec un mélange granulométrique de plus de 50 µm à moins de 160 µm.
  6. Procédé selon la revendication 1, caractérisé en ce que des comprimés qui ne contiennent que de la poudre de chrome sont revêtus d'une quantité de cuivre qui suffit à la fabrication d'un matériau de contact ayant au moins 50% en poids de chrome.
  7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que l'on sépare du produit semi-fini de matériau de contact des plots de contact transversalement à la direction d'étirage du produit semi-fini de sorte que la surface de contact s'étende perpendiculairement à la direction d'étirage.
  8. Matériau de contact en métallurgie des poudres pour plots de contact de commutateurs sous vide constitués de cuivre et de chrome dans le rapport de 40 à 75% de cuivre et de 25 à 60% de chrome, le matériau de contact présentant une densité d'au moins 99% de la densité théorique et une structure directive obtenue par déformation à froid ou par déformation à chaud dans une direction d'étirage, les particules pulvérulentes de chrome étant allongées pour former des tiges de chrome et étant noyées dans une matrice de cuivre qui est déformée en bandes de cuivre allongées, caractérisé en ce que la conductivité électrique parallèlement à la direction d'étirage est au moins 10% supérieure à celle perpendiculaire à la direction d'étirage et la résistance à la traction parallèlement à la direction d'étirage est au moins 10% supérieure à celle perpendiculaire à la direction d'étirage.
  9. Matériau de contact en métallurgie des poudres selon la revendication 8, caractérisé en ce que, pour une teneur de 55 à 62% en poids de cuivre et un degré de déformation d'au moins 70%, la conductivité électrique du matériau de contact parallèlement à la direction d'étirage correspond à 45% de la conductivité électrique du cuivre pur et la résistance à la traction dans la direction d'étirage est d'au moins 550 N/mm2.
  10. Plot de contact pour commutateurs sous vide constitué d'un matériau de contact en métallurgie des poudres fabriqué à partir de poudre de cuivre et de poudre de chrome dans le rapport de 40 à 75% en poids de cuivre et de 25 à 60% en poids de chrome, fabriqué par élaboration d'un produit semi-fini en matériau de contact avec un corps fritté imprégné de cuivre avec une matrice de chrome ou une matrice de cuivre et de chrome qui est façonnée dans une direction d'étirage à froid ou à chaud pour au moins 30%, et qui présente une densité qui correspond au moins à 99%, en particulier à plus de 99,4% de la densité théorique et dont la surface de contact est formée transversalement à la direction d'étirage, caractérisé en ce que sa résistance à la traction et sa conductivité électrique parallèlement à la direction d'étirage sont respectivement au moins 10% supérieures à celles transversalement à la direction d'étirage.
EP01104952A 2000-03-04 2001-03-01 Procédé pour la fabrication d'un matériau de contact pour pièces de contact pour interrupteurs sous vide, matériau de contact et pièces de contact Expired - Lifetime EP1130608B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10010723A DE10010723B4 (de) 2000-03-04 2000-03-04 Verfahren zum Herstellen eines Kontaktwerkstoff-Halbzeuges für Kontaktstücke für Vakuumschaltgeräte sowie Kontaktwerkstoff-Halbzeuge und Kontaktstücke für Vakuumschaltgeräte
DE10010723 2000-03-04

Publications (3)

Publication Number Publication Date
EP1130608A2 EP1130608A2 (fr) 2001-09-05
EP1130608A3 EP1130608A3 (fr) 2003-09-03
EP1130608B1 true EP1130608B1 (fr) 2007-01-17

Family

ID=7633588

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01104952A Expired - Lifetime EP1130608B1 (fr) 2000-03-04 2001-03-01 Procédé pour la fabrication d'un matériau de contact pour pièces de contact pour interrupteurs sous vide, matériau de contact et pièces de contact

Country Status (5)

Country Link
US (1) US6524525B2 (fr)
EP (1) EP1130608B1 (fr)
AT (1) ATE352090T1 (fr)
DE (1) DE10010723B4 (fr)
ES (1) ES2280278T3 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718737B2 (en) * 2004-03-02 2010-05-18 Bridgestone Corporation Rubber composition containing functionalized polymer nanoparticles
EP1875481A1 (fr) * 2005-04-16 2008-01-09 ABB Technology AG Procede de production de plots de contact pour chambres de commutation a vide
WO2007094507A1 (fr) * 2006-02-15 2007-08-23 Jfe Precision Corporation ALLIAGE Cr-Cu, SON PROCEDE DE FABRICATION, DISSIPATEUR THERMIQUE POUR SEMICONDUCTEUR ET COMPOSANT DE DISSIPATEUR THERMIQUE POUR SEMICONDUCTEUR
CN101540237B (zh) * 2009-04-29 2010-11-03 西安交通大学 一种低氧铜铬触头的制备工艺
EP2485257B1 (fr) * 2009-10-01 2016-06-22 JFE Precision Corporation Dissipateur de chaleur pour dispositif électronique et processus pour sa production
AT11814U1 (de) * 2010-08-03 2011-05-15 Plansee Powertech Ag Verfahren zum pulvermetallurgischen herstellen eines cu-cr-werkstoffs
AT13963U1 (de) * 2012-06-01 2015-01-15 Plansee Powertech Ag Kontaktkomponente und Verfahren zu deren Herstellung
CN104946915B (zh) * 2015-07-03 2017-09-05 东北大学 一种制备细晶CuCr合金的方法
US10468205B2 (en) 2016-12-13 2019-11-05 Eaton Intelligent Power Limited Electrical contact alloy for vacuum contactors
CN109355524A (zh) * 2018-09-12 2019-02-19 河南长征电气有限公司 一种用于真空断路器的铜铬触头材料及其制备方法
CN114515831B (zh) * 2022-03-16 2024-04-26 桂林金格电工电子材料科技有限公司 一种利用铜铬边料制备铜铬触头自耗电极的方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2240493C3 (de) * 1972-08-17 1978-04-27 Siemens Ag, 1000 Berlin Und 8000 Muenchen Durchdringungsverbundmetall als Kontaktwerkstoff für Vakuumschalter und Verfahren zu seiner Herstellung
DE2357333C3 (de) * 1973-11-16 1980-04-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Durchdringungsverbundmetall als Kontaktwerkstoff für Vakuumschalter
GB1459475A (en) * 1974-05-23 1976-12-22 English Electric Co Ltd Manufacture of contact ekements for vacuum interrupters
US3960554A (en) * 1974-06-03 1976-06-01 Westinghouse Electric Corporation Powdered metallurgical process for forming vacuum interrupter contacts
US4190753A (en) * 1978-04-13 1980-02-26 Westinghouse Electric Corp. High-density high-conductivity electrical contact material for vacuum interrupters and method of manufacture
DD219619A1 (de) * 1983-12-12 1985-03-06 Adw Ddr Verfahren zur herstellung von sinterwerkstoffen fuer vakuumschalterkontaktstuecke
DE3406535A1 (de) * 1984-02-23 1985-09-05 Doduco KG Dr. Eugen Dürrwächter, 7530 Pforzheim Pulvermetallurgisches verfahren zum herstellen von elektrischen kontaktstuecken aus einem kupfer-chrom-verbundwerkstoff fuer vakuumschalter
DE3565907D1 (en) * 1984-07-30 1988-12-01 Siemens Ag Vacuum contactor with contact pieces of cucr and process for the production of such contact pieces
CN1003329B (zh) * 1984-12-13 1989-02-15 三菱电机有限公司 真空断路器用触头
EP0238967A1 (fr) * 1986-03-26 1987-09-30 Siemens Aktiengesellschaft Disposition de contacts pour interrupteur sous vide à champ magnétique axial et méthode de fabrication des contacts assortis
WO1990015424A1 (fr) * 1989-05-31 1990-12-13 Siemens Aktiengesellschaft PROCEDE DE FABRICATION DE CONTACTS AU CuCr POUR DES INTERRUPTEURS A VIDE ET CONTACT CORRESPONDANT
US5241745A (en) * 1989-05-31 1993-09-07 Siemens Aktiengesellschaft Process for producing a CUCB contact material for vacuum contactors
DE19822469A1 (de) * 1997-05-22 1998-11-26 Hitachi Ltd Verfahren zur Herstellung von Verbundwerkstoff für Schaltröhren

Also Published As

Publication number Publication date
DE10010723A1 (de) 2001-09-13
US20010036418A1 (en) 2001-11-01
ES2280278T3 (es) 2007-09-16
US6524525B2 (en) 2003-02-25
DE10010723B4 (de) 2005-04-07
EP1130608A3 (fr) 2003-09-03
EP1130608A2 (fr) 2001-09-05
ATE352090T1 (de) 2007-02-15

Similar Documents

Publication Publication Date Title
KR0144562B1 (ko) 진공개폐기용 CuCr-재료의 제조방법 및 그 접점재료
DE69433453T2 (de) Vakuumschalter und in diesem verwendeter elektrischer Kontakt
EP0115292B1 (fr) Procédé pour la fabrication par fusion d'alliages cuivre-chrome, utilisables comme matériau de contact pour interrupteurs à vide
DE2914186C2 (fr)
DE2346179A1 (de) Verbundmetall als kontaktwerkstoff fuer vakuumschalter
EP1130608B1 (fr) Procédé pour la fabrication d'un matériau de contact pour pièces de contact pour interrupteurs sous vide, matériau de contact et pièces de contact
EP2989650A1 (fr) Procédé et dispositif de fabrication d'éléments de contacts de commutation électrique
DE602004008854T2 (de) Elektrischer Kontakt und Verfahren zu seiner Herstellung, Elektrode für Vakuumschalter und Vakuumschalter.
EP0440620B1 (fr) Produit semi-fini pour contacts electriques, constitue d'un materiau composite a base d'argent et d'oxyde d'etain, et procede de metallurgie des poudres pour sa fabrication
DE102005000727B4 (de) Elektrisches Kontaktelement und Verfahren zu dessen Herstellung sowie Vakuum-Unterbrecher, Vakuum-Leistungsschutzschalter und Lastschalter unter Verwendung desselben
EP0474628B1 (fr) PROCEDE DE FABRICATION D'UN MATERIAU DE CONTACT AU CuCr POUR DES INTERRUPTEURS A VIDE, ET MATERIAU DE CONTACT CORRESPONDANT
DE19513790B4 (de) Verfahren zur Herstellung einer Vakuumschaltkammer
DE69116935T2 (de) Elektrisches Kontaktmaterial auf Silberbasis und Verfahren zur Herstellung
EP0172411B1 (fr) Contacteur sous vide avec des pièces de contact de CuCr et procédé pour la fabrication de tels pièces
DE69825227T2 (de) Vakuumschalter
EP2747917A1 (fr) Procédé de production d'un demi-produit pour des contacts électriques, et pièce de contact
DE3543586C2 (fr)
DE19503182C1 (de) Sinterwerkstoff auf der Basis Silber-Zinnoxid für elektrische Kontakte und Verfahren zu dessen Herstellung
DE69614489T2 (de) Kontaktmaterial für Vakuumschalter und Verfahren zu dessen Herstellung
EP2018445B1 (fr) Procédé pour produire des contacts cuivre-chrome pour des interrupteurs à vide
DE69111701T2 (de) Kontakt für einen Vakuumschalter.
EP1043409B1 (fr) Matériau composite préparé par métallurgie des poudres
DE2324317C2 (de) Elektrode für einen Vakuum-Leistungsschalter oder eine Vakuum-Funkenstrecke
DE69016797T2 (de) Vakuumschalterkontaktmaterialien und Herstellungsmethoden.
DE3405218C2 (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MOELLER GMBH

Owner name: METALOR TECHNOLOGIES INTERNATIONAL S.A.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040114

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070411

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070618

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2280278

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071018

BERE Be: lapsed

Owner name: METALOR TECHNOLOGIES INTERNATIONAL S.A.

Effective date: 20070331

Owner name: MOELLER G.M.B.H.

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130319

Year of fee payment: 13

Ref country code: ES

Payment date: 20130320

Year of fee payment: 13

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140302

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200325

Year of fee payment: 20

Ref country code: GB

Payment date: 20200325

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200325

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200324

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210228