EP1113145A1 - Blade for gas turbines with metering section at the trailing edge - Google Patents

Blade for gas turbines with metering section at the trailing edge Download PDF

Info

Publication number
EP1113145A1
EP1113145A1 EP00811043A EP00811043A EP1113145A1 EP 1113145 A1 EP1113145 A1 EP 1113145A1 EP 00811043 A EP00811043 A EP 00811043A EP 00811043 A EP00811043 A EP 00811043A EP 1113145 A1 EP1113145 A1 EP 1113145A1
Authority
EP
European Patent Office
Prior art keywords
guide element
ribs
rear edge
walls
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00811043A
Other languages
German (de)
French (fr)
Other versions
EP1113145B1 (en
Inventor
Alexander Dr. Beeck
Jörgen Ferber
Christoph Nagler
Lothar Schneider
Klaus Semmler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Power Schweiz AG
Alstom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Power Schweiz AG, Alstom SA filed Critical Alstom Power Schweiz AG
Publication of EP1113145A1 publication Critical patent/EP1113145A1/en
Application granted granted Critical
Publication of EP1113145B1 publication Critical patent/EP1113145B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0405Rotating moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/122Fluid guiding means, e.g. vanes related to the trailing edge of a stator vane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/304Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade

Definitions

  • the present invention relates to the field of gas turbine engines Guide elements such as guide or turbine blades. It affects one of a hot Air flow around the guide element for a gas turbine, which at least in a rear edge area, in which the air flow breaks off from the guide element at least two substantially parallel, and with ribs together there are walls connected to form inner cooling channels, and which is cooled on the inside with cooling medium flowing through the cooling channels, the cooling medium at the rear edge substantially parallel to the walls between them emerges from the guide element.
  • a gas turbine comprises a multitude of elements, which consist of hot working air be flown to. Because the working air has a temperature that for many the materials from which such flow-around components are built, in particular leads to severe signs of wear after a long period of operation it is necessary to cool many of these components.
  • the cooling can be used as internal cooling be designed in which the elements are designed as hollow profiles or simple be provided with internal cooling channels through which a cooling air flow is passed becomes.
  • film cooling it is also possible to use what is known as film cooling to provide, in which the elements are acted upon by an outside cooling air film become.
  • Modern gas turbine blades usually use a combination of the above methods, i.e. an internal convective cooling system is used, which critical points also has openings for film blowing.
  • an internal convective cooling system is used, which critical points also has openings for film blowing.
  • the amount of cooling air used must be minimized. This means, that even for large components only a small cooling air mass flow Available. To the low cooling mass flows at the same time required to realize and control efficient internal heat transfer the flow cross-sections reduced accordingly. Throttle cross sections introduced become.
  • the throttling of the cooling mass flow takes place in the area of the cast blade trailing edge, near the Cooling air outlet takes place.
  • the end of the ribs is the pressure and suction side Connect the wall, set back in the axial direction, i.e. the ribs end already inside the shovel and do not reach the rear edge.
  • Figure 1 shows a section through a guide vane according to the prior art, such as it is often used in gas turbines. It is an axial to Main axis of the turbine and cut perpendicular to the plane of the airfoil through a guide vane, as is typically immediately after the combustion chamber and in front of the first row of the gas turbine for optimal flow against the blades be used.
  • the blade is designed as a hollow profile, which bounded on the suction side by a wall 10 and on the pressure side by a further wall 11 becomes. In the inflow area, the blade is widened, walls 10 and 11 are in a curve connected to each other, and is located between the walls 10 and 11 there is a central, radially extending insert 12 around which the cooling channel leads around.
  • the guide vane 30 is only one of the two axially Direction, broken ribs interconnected walls 10 and 11 limited, cooling channels run in between. Often the central one Insert 12 completely or partially enclosed by approximately axially extending ribs. These ribs converge at the rear end of the insert (16 in Fig. 1) and from there connect the suction and pressure side bucket walls. Between The ribs form approximately axial channels in which the cooling air is guided becomes.
  • the fin bank can be interrupted by one in the radial To produce plenum 18.
  • the following ribbed bench 17 can be arranged "in line" or offset to the previous ribbed.
  • the pressure and suction walls are very short ribs or so-called pin rows connected together.
  • State of the art is well, leave these internals (ribs, pins, etc.) inside the blade ends.
  • This avoids the need for the core required for casting production has a large jump in the cross-sectional area exactly at the rear edge.
  • This strong discontinuity in the cross-sectional shape of the core leads to the manufacture to a high number of core breaks.
  • the above procedure has the considerable Disadvantage that the outlet cross section of the cooling air and thus the cooling air mass flow can only be controlled insufficiently.
  • the walls also mostly have film cooling holes 13-15, through which Cooling air can flow to the outside.
  • the invention is therefore based on the object of a hot air flow flow around the guide element of a gas turbine, which at least in a rear Edge area, at which the air flow breaks off from the guide element, at least two arranged substantially parallel, and with ribs inside each other Cooling channels forming connecting walls, and which with cooling medium flowing through the cooling channels is cooled on the inside, the Coolant at the trailing edge substantially parallel to the walls between this emerges from the guide element.
  • a first preferred embodiment of the invention is characterized in that that the throughput of cooling medium through the guide element essentially through the dimensioning of the between the ribs, here so-called throttle ribs Outlet openings is determined.
  • the better one due to the arrangement Accessibility and reworkability is particularly advantageous if the Throttling of the cooling air through the throttling ribs on the rear edge is effected, and the throttling from the outside easily by drilling or the like. can be set or measured.
  • Another embodiment of the invention is characterized in that the Thickness of the guide element at the rear edge in the range from 0.5 to 5 mm, in particular is preferably in the range of 1.0 to 2.5 mm, and that the slot thickness of the Cooling air ducts between the walls at the outlet in the range of 0.3 to 2 mm, is in particular in the range from 0.8 to 1.5 mm.
  • the guiding element is designed as a guide blade arranged in front of a turbine rotor and if air is used as the cooling medium, the ones according to the invention prove Arrangement and these dimensions as particularly advantageous.
  • the invention further comprises a method for producing one of one hot air flow around the guide element of a gas turbine, which at least in a rear edge area, in which the air flow breaks off from the guide element at least two substantially parallel, and with ribs together there are walls connected to form inner cooling channels, and which is cooled on the inside with cooling medium flowing through the cooling channels, the cooling medium at the rear edge substantially parallel to the Walls between them emerges from the guide element, which is characterized by that the guiding element is manufactured in a casting process that the rear edge area with the guide element or its walls in Flow direction extending supernatant is poured, and that after the Pour the supernatant so that at least part of the ribs arranged as a throttling ribs with the rear edge essentially flush are.
  • the casting core is shaped so that the rib geometry over the rear edge of the blade is modeled in the cast core. Only after one The rib geometry is about 0.5 to 5, preferably 1 to 3 core thicknesses hidden.
  • This method makes it easy to manufacture one according to the invention Guiding element only possible. With a normal casting process, namely the effective throttle cross-section is not simply placed directly on the trailing edge become. The sudden increase in cross-section at the outlet in the casting core leads to manufacturing to a sharp increase in core breaks. This can be done while leaving a protrusion during the casting process can be avoided.
  • a preferred embodiment of the method is characterized in that no ribs are arranged between the walls in the area of the overhang, and that the throughput of cooling medium through the finished guide element essentially by the dimensioning of the arranged between the throttle ribs Outlet openings is determined. If in the area of the protrusion on any ribs can be dispensed with in the casting process, in particular in the preferred Press casting processes ("investment casting") are largely avoided. It shows furthermore that especially if the length of the supernatant is in the range from 0.5 to 3 times as large, particularly preferably of the same size, as slot thickness of the cooling air duct between the walls, such core breaks can be avoided can do without excessive post-processing after manufacture would.
  • Figure 2 a shows a section through a guide vane directly to the rear edge bordering ribs 24 between the walls 10 and 11. It is about a figure 2 corresponding axially to the main axis of the turbine and perpendicular to Blade plane running section through a guide blade.
  • the shovel is again formed as a hollow profile, which is on the suction side of a wall 10, and is delimited on the pressure side by a further wall 11.
  • Figure 2c) shows a section along the line X-X in Figure 2a), i.e. essentially parallel to the leaf plane. Immediately adjacent to the insert 12 first ribs 16.
  • the single ones Ribs of the rows 16 and 17 advantageously have a so-called division ratio, the ratio of the radial width e normal to the plane of the sheet radial spacing f, in the range of 0.25 to 0.75.
  • Another radial plenum 19 follows, followed by so-called pins 20, i.e. as simple webs formed rows of ribs which are as uniform as possible Allow distribution of the cooling air flow at the rear edge 21.
  • the division ratio (Diameter g to radial spacing h) of the pins 20 lies in the Range from 0.25 to 0.7.
  • Such a blade is usually produced using the casting process, as a rule an investment casting process.
  • This casting process can but when making the effective throttle cross section not just straight to the Trailing edge.
  • the sudden cross-sectional expansion at the outlet in the cast core leads to a sharp increase in core breaks during manufacture. However, this can be avoided if a protrusion is left in the casting process become.
  • the cooling geometry shown in the core is based on the actual one Component limit extended.
  • Figure 2b) shows the edge area of an element extended in this way beyond the rear edge by the length b. in the In the region of the protrusion, there are advantageously no more ribs.
  • the transition from the throttle geometry does not then coincide with the core holder, rather, it first occurs within the extended component Transition from the throttle geometry to a continuous radial channel instead, which can then be used as a core holder without the risk of core breakage can.
  • This transition can be optimal in various ways depending on the procedure to be designed to hold the core, i.e. it is not imperative that the two Walls as shown in Figure 2b) simply extended evenly to the rear e.g. also a gradual protruding expansion or rejuvenation resp. Thickening of the walls in the area of the overhang is conceivable.
  • the protruding geometry is after the casting to the target length of the rear edge post-processed, i.e. removed so that the throttling points coincide with the rear edge. This can e.g. together with those that are usually necessary after the fact Post-processing such as erosion and laser drilling of the film cooling holes 13-15 happen.
  • the rear edge usually has a thickness d im Range from 0.5 to 5 mm, preferably in the range from 1.0 to 2.5 mm.
  • the slit thickness c of the cooling air duct is usually in the range from 0.3 to 2.0 mm, preferably in Range from 0.8 to 1.5 mm.
  • the protrusion b above the rear edge 0.5 to 5 times, preferably 1 to 3 times, the length a of Throttle ribs 24 amount, it is particularly advantageous if the projection b is the same as the length a of the throttle ribs.

Abstract

The blade (30) consists in the trailing-edge region (21) of at least two parallel walls (10, 11), forming inner cooling channels (18, 19) with ribs (16, 17, 20), and is cooled by the coolant flowing through the channels, running parallel to the walls at the trailing edge and passing out of the blade between these walls,

Description

TECHNISCHES GEBIETTECHNICAL AREA

Die vorliegende Erfindung bezieht sich auf das Gebiet der in Gasturbinen verwendeten Leitelemente wie Leit- oder Turbinenschaufeln. Sie betrifft ein von einem heissen Luftstrom umströmtes Leitelement für eine Gasturbine, welches wenigstens in einem hinteren Kantenbereich, bei dem der Luftstrom vom Leitelement abreisst, aus wenigstens zwei im wesentlichen parallel angeordneten, und mit Rippen miteinander in innere Kühlkanäle ausbildender Weise verbundenen Wänden besteht, und welches mit durch die Kühlkanäle strömendem Kühlmedium innenseitig gekühlt wird, wobei das Kühlmedium an der hinteren Kante im wesentlichen parallel zu den Wänden zwischen diesen aus dem Leitelement austritt. The present invention relates to the field of gas turbine engines Guide elements such as guide or turbine blades. It affects one of a hot Air flow around the guide element for a gas turbine, which at least in a rear edge area, in which the air flow breaks off from the guide element at least two substantially parallel, and with ribs together there are walls connected to form inner cooling channels, and which is cooled on the inside with cooling medium flowing through the cooling channels, the cooling medium at the rear edge substantially parallel to the walls between them emerges from the guide element.

STAND DER TECHNIKSTATE OF THE ART

Eine Gasturbine umfasst eine Vielzahl von Elementen, welche von heisser Arbeitsluft angeströmt werden. Da die Arbeitsluft eine Temperatur aufweist, welche für viele der Materialien, aus denen solche umströmten Komponenten gebaut sind, insbesondere bei längerer Betriebsdauer zu starken Abnützungserscheinungen führt, ist es nötig, viele dieser Komponenten zu kühlen. Die Kühlung kann dabei als Innenkühlung gestaltet werden, bei der die Elemente als Hohlprofile gestaltet oder einfach mit inneren Kühlkanälen versehen werden, durch welche ein Kühlluftstrom geleitet wird. Alternativ oder ergänzend ist es auch möglich, eine sogenannte Filmkühlung vorzusehen, bei welcher die Elemente mit einem aussenseitigen Kühlluftfilm beaufschlagt werden.A gas turbine comprises a multitude of elements, which consist of hot working air be flown to. Because the working air has a temperature that for many the materials from which such flow-around components are built, in particular leads to severe signs of wear after a long period of operation it is necessary to cool many of these components. The cooling can be used as internal cooling be designed in which the elements are designed as hollow profiles or simple be provided with internal cooling channels through which a cooling air flow is passed becomes. As an alternative or in addition, it is also possible to use what is known as film cooling to provide, in which the elements are acted upon by an outside cooling air film become.

Moderne Gasturbinenschaufeln verwenden meist eine Kombination der obigen Methoden, d.h. es findet ein internes konvektives Kühlsystem Anwendung, welches an kritischen Stellen zusätzlich Öffnungen zur Filmausblasung aufweist. Um den Wirkungsgrad und die Leistung der Gasturbine zu steigern, sowie um die Emissionen zu reduzieren, muss die Menge an verwendeter Kühlluft minimiert werden. Dies bedeutet, dass selbst für grosse Komponenten nur ein kleiner Kühlluftmassenstrom zur Verfügung steht. Um die geringen Kühlmassenströme bei gleichzeitig benötigtem effizientem internem Wärmeübergang zu realisieren und zu kontrollieren, müssen die Strömungsquerschnitte entsprechend verkleinert resp. Drosselquerschnitte eingeführt werden.Modern gas turbine blades usually use a combination of the above methods, i.e. an internal convective cooling system is used, which critical points also has openings for film blowing. To efficiency and to increase the performance of the gas turbine, as well as to reduce emissions reduce, the amount of cooling air used must be minimized. This means, that even for large components only a small cooling air mass flow Available. To the low cooling mass flows at the same time required to realize and control efficient internal heat transfer the flow cross-sections reduced accordingly. Throttle cross sections introduced become.

Bei vielen der bekannten Schaufelauslegungen findet die Drosselung des Kühlmassenstromes im Bereich der gegossenen Schaufelhinterkante, in der Nähe des Kühlluftaustrittes statt. Insbesondere aus herstellungstechnischen Gründen, um Kernbrüche zu vermeiden, wird das Ende der Rippen, welche die druck- und saugseitige Wand verbinden, in axialer Richtung zurückgesetzt, d.h., die Rippen enden bereits im Inneren der Schaufel und reichen nicht bis zur Hinterkante. In many of the known blade designs, the throttling of the cooling mass flow takes place in the area of the cast blade trailing edge, near the Cooling air outlet takes place. In particular for manufacturing reasons, in order To avoid core breaks, the end of the ribs is the pressure and suction side Connect the wall, set back in the axial direction, i.e. the ribs end already inside the shovel and do not reach the rear edge.

Figur 1 zeigt einen Schnitt durch eine Leitschaufel nach dem Stand der Technik, wie sie häufig in Gasturbinen verwendet wird. Es handelt sich um einen axial zur Hauptachse der Turbine und senkrecht zur Schaufelblattebene verlaufenden Schnitt durch eine Leitschaufel, wie sie typischerweise unmittelbar nach der Brennkammer und vor der ersten Laufreihe der Gasturbine zur optimalen Anströmung der Laufschaufeln verwendet werden. Die Schaufel ist als Hohlprofil ausgebildet, welches saugseitig von einer Wand 10, und druckseitig von einer weiteren Wand 11 begrenzt wird. Im Anströmbereich ist die Schaufel verbreitert, die Wände 10 und 11 sind in einer Rundung miteinander verbunden, und zwischen den Wänden 10 und 11 befindet sich ein zentraler, radial verlaufender Einsatz 12, um welchen der Kühlkanal herumführt. Im hinteren Bereich ist die Leitschaufel 30 nur von den zwei mit in axialer Richtung verlaufenden, unterbrochenen Rippen miteinander verbundenen Wänden 10 und 11 begrenzt, dazwischen verlaufen Kühlkanäle. Häufig wird der zentrale Einsatz 12 von annähernd axial verlaufenden Rippen ganz oder teilweise umschlossen. Diese Rippen laufen am hinteren Ende des Einsatzes zusammen (16 in Fig. 1) und verbinden von dort an die saug- und druckseitigen Schaufelwände. Zwischen den Rippen bilden sich annähernd axiale Kanäle aus, in denen die Kühlluft geführt wird.Figure 1 shows a section through a guide vane according to the prior art, such as it is often used in gas turbines. It is an axial to Main axis of the turbine and cut perpendicular to the plane of the airfoil through a guide vane, as is typically immediately after the combustion chamber and in front of the first row of the gas turbine for optimal flow against the blades be used. The blade is designed as a hollow profile, which bounded on the suction side by a wall 10 and on the pressure side by a further wall 11 becomes. In the inflow area, the blade is widened, walls 10 and 11 are in a curve connected to each other, and is located between the walls 10 and 11 there is a central, radially extending insert 12 around which the cooling channel leads around. In the rear area, the guide vane 30 is only one of the two axially Direction, broken ribs interconnected walls 10 and 11 limited, cooling channels run in between. Often the central one Insert 12 completely or partially enclosed by approximately axially extending ribs. These ribs converge at the rear end of the insert (16 in Fig. 1) and from there connect the suction and pressure side bucket walls. Between The ribs form approximately axial channels in which the cooling air is guided becomes.

Im weiteren Verlauf kann die Rippenbank unterbrochen sein, um ein in radialer Richtung verlaufendes Plenum 18 zu erzeugen. Die nachfolgende Rippenbank 17 kann sowohl "in line" oder versetzt zur vorherigen Rippenbank angeordnet werden. Im Bereich der Hinterkante werden die druck- und saugseitigen Wände von sehr kurzen Rippen oder sog. Pinreihen miteinander verbunden. Stand der Technik ist nun, diese Einbauten (Rippen, Pins, etc.) im Inneren der Schaufelenden zu lassen. Damit wird vermieden, dass der zur gusstechnischen Herstellung benötigte Kern exakt an der Hinterkante einen grossen Sprung in der Querschnittsfläche aufweist. Diese starke Unstetigkeit im Kernquerschnittsverlauf führt bei der Herstellung nämlich zu einer hohen Anzahl von Kernbrüchen. Obiges Verfahren hat jedoch den erheblichen Nachteil, dass der Austrittsquerschnitt der Kühlluft und somit der Kühlluftmassenstrom nur unzureichend kontrolliert werden können. In the further course, the fin bank can be interrupted by one in the radial To produce plenum 18. The following ribbed bench 17 can be arranged "in line" or offset to the previous ribbed. In the area of the rear edge, the pressure and suction walls are very short ribs or so-called pin rows connected together. State of the art is well, leave these internals (ribs, pins, etc.) inside the blade ends. This avoids the need for the core required for casting production has a large jump in the cross-sectional area exactly at the rear edge. This strong discontinuity in the cross-sectional shape of the core leads to the manufacture to a high number of core breaks. However, the above procedure has the considerable Disadvantage that the outlet cross section of the cooling air and thus the cooling air mass flow can only be controlled insufficiently.

Die Wände weisen ausserdem meist noch Filmkühlbohrungen 13-15 auf, durch welche Kühlluft auf die Aussenseite strömen kann.The walls also mostly have film cooling holes 13-15, through which Cooling air can flow to the outside.

Diese Gestaltung des internen konvektiven Kühlsystems hat eine Reihe von Nachteilen:

  • Da der Querschnitt klein ist, wirken sich selbst kleine Toleranzen bei der Herstellung (Guss) auf den Kühlluftmassendurchsatz der Schaufel aus.
  • Da die Drosselstelle im Inneren des Leitelements liegt, lässt sich der wirksame Drosselquerschnitt nur schwer messen und kontrollieren.
  • Da die Drosselkante im Inneren des Leitelements liegt, kann der wirksame Drosselquerschnitt nachträglich nur schwer modifiziert werden.
  • Die beiden meist recht dünnen Wände sind äusserst anfällig auf Beschädigungen, welche von Fremdkörpern im Heissgas verursacht werden, und welche u.U. sogar zu einer Veränderung der Drosselquerschnitte führen können.
  • Durch die stufenweise Expansion der Kühlluft (1) am Ende der Rippen und (2) an der Schaufelhinterkante lässt sich der Kühlluftmassenstrom nur schwer kontrollieren und justieren.
This design of the internal convective cooling system has a number of disadvantages:
  • Since the cross-section is small, even small tolerances during manufacture (casting) affect the cooling air mass flow rate of the blade.
  • Since the throttle point is inside the guide element, it is difficult to measure and check the effective throttle cross-section.
  • Since the throttle edge lies inside the guide element, the effective throttle cross-section can only be modified with difficulty afterwards.
  • The two walls, which are usually quite thin, are extremely susceptible to damage caused by foreign bodies in the hot gas and which may even lead to a change in the throttle cross-sections.
  • The gradual expansion of the cooling air (1) at the end of the ribs and (2) at the rear edge of the blade makes it difficult to control and adjust the cooling air mass flow.

DARSTELLUNG DER ERFINDUNGPRESENTATION OF THE INVENTION

Der Erfindung liegt demnach die Aufgabe zugrunde, ein von einem heissen Luftstrom umströmtes Leitelement einer Gasturbine, welches wenigstens in einem hinteren Kantenbereich, bei dem der Luftstrom vom Leitelement abreisst, aus wenigstens zwei im wesentlichen parallel angeordneten, und mit Rippen miteinander in innere Kühlkanäle ausbildender Weise verbundenen Wänden besteht, und welches mit durch die Kühlkanäle strömendem Kühlmedium innenseitig gekühlt wird, wobei das Kühlmedium an der hinteren Kante im wesentlichen parallel zu den Wänden zwischen diesen aus dem Leitelement austritt. The invention is therefore based on the object of a hot air flow flow around the guide element of a gas turbine, which at least in a rear Edge area, at which the air flow breaks off from the guide element, at least two arranged substantially parallel, and with ribs inside each other Cooling channels forming connecting walls, and which with cooling medium flowing through the cooling channels is cooled on the inside, the Coolant at the trailing edge substantially parallel to the walls between this emerges from the guide element.

Diese Aufgabe wird bei einem Leitelement der eingangs genannten Art gelöst, indem wenigstens ein Teil der Rippen mit der hinteren Kante bündig abschliessend angeordnet sind. Der Kern der Erfindung besteht somit darin, einen Teil der die Wände verbindenden Rippen unmittelbar an und im wesentlichen bündig mit der Hinterkante anzuordnen und die Rippen resp. die dazwischen liegenden Kanäle damit besser zugänglich zu machen und die Wände im Kantenbereich besser zu stabilisieren. Auf diese Weise sind die Wände im Hinterkantenbereich wesentlich weniger anfällig auf Beschädigungen durch im Arbeitsluftstrom mitgeführte Fremdkörper. Ausserdem ergibt sich weiterhin der Vorteil, dass der Kühlluftdurchsatz zwischen den an der Hinterkante angeordneten Rippen hindurch nach dem Herstellungsverfahren und bei Wartungen infolge der guten Zugänglichkeit wesentlich einfacher nachbearbeitet bzw. angepasst werden kann.This object is achieved in a guide element of the type mentioned at the outset by at least part of the ribs flush with the rear edge are arranged. The essence of the invention is therefore part of the Ribs connecting walls directly at and essentially flush with the Arrange rear edge and the ribs resp. the channels in between thus making it more accessible and the walls in the edge area better closed stabilize. In this way, the walls in the rear edge area are essential less susceptible to damage from foreign bodies carried in the working air flow. In addition, there is also the advantage that the cooling air throughput between through the ribs arranged on the rear edge through the manufacturing process and much easier for maintenance due to the good accessibility can be reworked or adjusted.

Eine erste bevorzugte Ausführungsform der Erfindung ist dadurch gekennzeichnet, dass der Durchsatz an Kühlmedium durch das Leitelement im wesentlichen durch die Dimensionierung der zwischen den Rippen, hier sog. Drosselrippen, angeordneten Austrittsöffnungen bestimmt ist. Die durch die Anordnung bedingte bessere Zugänglichkeit und Nachbearbeitbarkeit ist insbesondere dann von Vorteil, wenn die Drosselung der Kühlluftführung durch die an der Hinterkante angeordneten Drosselrippen bewirkt wird, und die Drosselung von aussen leicht durch Ausbohren o.ä. eingestellt oder auch gemessen werden kann.A first preferred embodiment of the invention is characterized in that that the throughput of cooling medium through the guide element essentially through the dimensioning of the between the ribs, here so-called throttle ribs Outlet openings is determined. The better one due to the arrangement Accessibility and reworkability is particularly advantageous if the Throttling of the cooling air through the throttling ribs on the rear edge is effected, and the throttling from the outside easily by drilling or the like. can be set or measured.

Eine andere Ausführungsform der Erfindung zeichnet sich dadurch aus, dass die Dicke des Leitelements an der Hinterkante im Bereich von 0.5 bis 5 mm, insbesondere bevorzugt im Bereich von 1.0 bis 2.5 mm liegt, und dass die Schlitzdicke der Kühlluftkanäle zwischen den Wänden beim Austritt im Bereich von 0.3 bis 2 mm, insbesondere im Bereich von 0.8 bis 1.5 mm beträgt. Unter anderem wenn das Leitelement als vor einem Turbinenrotor angeordnete Leitschaufel ausgebildet ist und wenn als Kühlmedium Luft verwendet wird, erweisen sich die erfindungsgemässe Anordnung und diese Dimensionierungen als besonders vorteilhaft.Another embodiment of the invention is characterized in that the Thickness of the guide element at the rear edge in the range from 0.5 to 5 mm, in particular is preferably in the range of 1.0 to 2.5 mm, and that the slot thickness of the Cooling air ducts between the walls at the outlet in the range of 0.3 to 2 mm, is in particular in the range from 0.8 to 1.5 mm. Among other things, if the guiding element is designed as a guide blade arranged in front of a turbine rotor and if air is used as the cooling medium, the ones according to the invention prove Arrangement and these dimensions as particularly advantageous.

Weitere Ausführungsformen des Leitelements ergeben sich aus den abhängigen Ansprüchen. Further embodiments of the guide element result from the dependent ones Claims.

Des weiteren umfasst die Erfindung ein Verfahren zur Herstellung eines von einem heissen Luftstrom umströmten Leitelements einer Gasturbine, welches wenigstens in einem hinteren Kantenbereich, bei dem der Luftstrom vom Leitelement abreisst, aus wenigstens zwei im wesentlichen parallel angeordneten, und mit Rippen miteinander in innere Kühlkanäle ausbildender Weise verbundenen Wänden besteht, und welches mit durch die Kühlkanäle strömendem Kühlmedium innenseitig gekühlt wird, wobei das Kühlemedium an der hinteren Kante im wesentlichen parallel zu den Wänden zwischen diesen aus dem Leitelement austritt, welches sich dadurch auszeichnet, dass das Leitelement in einem Giessverfahren hergestellt wird, dass dabei der hintere Kantenbereich mit einem das Leitelement respektive dessen Wände in Strömungsrichtung verlängernden Überstand gegossen wird, und dass nach dem Giessen der Überstand derart abgetragen wird, dass wenigstens ein Teil der Rippen als Drosselrippen mit der hinteren Kante im wesentlichen bündig abschliessend angeordnet sind. Der Gusskern wird dabei so geformt, dass die Rippengeometrie über die Hinterkante der Schaufel hinaus im Gusskern modelliert wird. Erst nach einer Länge von ca. 0.5 bis 5, vorzugsweise 1 bis 3 Kerndicken wird die Rippengeometrie ausgeblendet. Dieses Verfahren macht die einfache Herstellung eines erfindungsgemässen Leitelements erst möglich. Bei einem normalen Gussverfahren kann nämlich der effektive Drosselquerschnitt nicht einfach direkt an die Austrittskante gelegt werden. Die sprunghafte Querschnittserweiterung am Austritt im Gusskern führt bei der Herstellung zu einem starken Anstieg der Kernbrüche. Dies kann bei Belassung eines Überstandes beim Giessverfahren vermieden werden.The invention further comprises a method for producing one of one hot air flow around the guide element of a gas turbine, which at least in a rear edge area, in which the air flow breaks off from the guide element at least two substantially parallel, and with ribs together there are walls connected to form inner cooling channels, and which is cooled on the inside with cooling medium flowing through the cooling channels, the cooling medium at the rear edge substantially parallel to the Walls between them emerges from the guide element, which is characterized by that the guiding element is manufactured in a casting process that the rear edge area with the guide element or its walls in Flow direction extending supernatant is poured, and that after the Pour the supernatant so that at least part of the ribs arranged as a throttling ribs with the rear edge essentially flush are. The casting core is shaped so that the rib geometry over the rear edge of the blade is modeled in the cast core. Only after one The rib geometry is about 0.5 to 5, preferably 1 to 3 core thicknesses hidden. This method makes it easy to manufacture one according to the invention Guiding element only possible. With a normal casting process, namely the effective throttle cross-section is not simply placed directly on the trailing edge become. The sudden increase in cross-section at the outlet in the casting core leads to manufacturing to a sharp increase in core breaks. This can be done while leaving a protrusion during the casting process can be avoided.

Eine bevorzugte Ausführungsform des Verfahrens ist dadurch gekennzeichnet, dass im Bereich des Überstandes keine Rippen zwischen den Wänden angeordnet sind, und dass der Durchsatz an Kühlmedium durch das fertige Leitelement im wesentlichen durch die Dimensionierung der zwischen den Drosselrippen angeordneten Austrittsöffnungen bestimmt ist. Wenn im Bereich des Überstandes auf jegliche Rippen verzichtet wird, können beim Gussverfahren, insbesondere beim bevorzugten Pressgussverfahren ("investment casting") weitgehend vermieden werden. Es zeigt sich des weiteren, dass insbesondere wenn die Länge des Überstandes im Bereich von 0.5 bis 3 Mal so gross, insbesondere bevorzugt qleich gross, ist wie Schlitzdicke des Kühlluftkanals zwischen den Wänden, derartige Kernbrüche vermieden werden können ohne dass nach der Herstellung eine übermässige Nachbearbeitung notwendig wäre.A preferred embodiment of the method is characterized in that no ribs are arranged between the walls in the area of the overhang, and that the throughput of cooling medium through the finished guide element essentially by the dimensioning of the arranged between the throttle ribs Outlet openings is determined. If in the area of the protrusion on any ribs can be dispensed with in the casting process, in particular in the preferred Press casting processes ("investment casting") are largely avoided. It shows furthermore that especially if the length of the supernatant is in the range from 0.5 to 3 times as large, particularly preferably of the same size, as slot thickness of the cooling air duct between the walls, such core breaks can be avoided can do without excessive post-processing after manufacture would.

Weitere bevorzugte Ausführungsformen des Verfahrens ergeben sich aus den abhängigen Ansprüchen.Further preferred embodiments of the method result from the dependent ones Claims.

KURZE ERLÄUTERUNG DER FIGURENBRIEF EXPLANATION OF THE FIGURES

Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit den Zeichnungen näher erläutert werden.

Fig. 1
zeigt einen Querschnitt durch eine Leitschaufel mit interner Kühlung für eine Gasturbine nach dem Stand der Technik; und
Fig. 2
a) zeigt einen Querschnitt durch eine Leitschaufel mit unmittelbar an der Hinterkante der Schaufel angeordneten Drosselrippen, b) eine Detailansicht des Hinterkantenbereichs des Schnittes nach a), und c) einen Schnitt entlang der Linie X-X in Figur 2a), d.h. im wesentlichen parallel zur Ebene der Schaufel durch den internen Kühlkanal.
The invention will be explained in more detail below using exemplary embodiments in conjunction with the drawings.
Fig. 1
shows a cross section through a vane with internal cooling for a gas turbine according to the prior art; and
Fig. 2
a) shows a cross section through a guide vane with throttle ribs arranged directly on the rear edge of the blade, b) a detailed view of the rear edge region of the section according to a), and c) a section along line XX in FIG. 2a), ie essentially parallel to the plane the bucket through the internal cooling channel.

WEGE ZUR AUSFÜHRUNG DER ERFINDUNGWAYS OF CARRYING OUT THE INVENTION

Figur 2 a) zeigt einen Schnitt durch eine Leitschaufel mit unmittelbar an die Hinterkante grenzenden Rippen 24 zwischen den Wänden 10 und 11. Es handelt sich um einen Figur 2 entsprechenden, axial zur Hauptachse der Turbine und senkrecht zur Schaufelblattebene verlaufenden Schnitt durch eine Leitschaufel. Die Schaufel ist wiederum als Hohlprofil ausgebildet, welches saugseitig von einer Wand 10, und druckseitig von einer weiteren Wand 11 begrenzt wird. Im hinteren Bereich ist die Leitschaufel nur von den zwei mit in radialer Richtung unterbrochenen Rippen miteinander verbundenen Wänden 10 und 11 begrenzt, dazwischen verlaufen Kühlkanäle. Figur 2c) zeigt einem Schnitt entlang der Linie X-X in Figur 2a), d.h. im wesentlichen parallel zur Blattebene. Unmittelbar an den Einsatz 12 angrenzend befinden sich erste Rippen 16. Die zwischen Einsatz 12 und den Wänden 10 und 11 strömende Kühlluft strömt im wesentlichen axial in den Kanälen 27 zwischen den Rippen 16 in den hinteren Bereich der Leitschaufel. Hinter der ersten Reihe von Rippen 16 befindet sich ein vorderes radiales Plenum 18, welches einen Strömungs- und Druckausgleich der Kühlluft in radialer Richtung erlaubt. Danach schliesst eine weitere Reihe von Rippen 17 an, welche in diesem Beispiel alternierend als durchgängige Rippen 17b oder als axial unterteilte Rippen 17a ausgebildet sind. Die einzelnen Rippen der Reihen 16 und 17 weisen vorteilhafterweise ein sog. Teilungsverhältnis, das Verhältnis von der radialen Breite e normal zur Ebene des Blattes zur radialen Beabstandung f, im Bereich von 0.25 bis 0.75 auf.Figure 2 a) shows a section through a guide vane directly to the rear edge bordering ribs 24 between the walls 10 and 11. It is about a figure 2 corresponding axially to the main axis of the turbine and perpendicular to Blade plane running section through a guide blade. The shovel is again formed as a hollow profile, which is on the suction side of a wall 10, and is delimited on the pressure side by a further wall 11. In the back is the Guide vane with each other only from the two with ribs interrupted in the radial direction connected walls 10 and 11 limited, cooling channels run between them. Figure 2c) shows a section along the line X-X in Figure 2a), i.e. essentially parallel to the leaf plane. Immediately adjacent to the insert 12 first ribs 16. The between the insert 12 and the walls 10 and 11th flowing cooling air flows essentially axially in the channels 27 between the Ribs 16 in the rear area of the guide vane. Behind the first row from Ribs 16 there is a front radial plenum 18 which has a flow and pressure equalization of the cooling air in the radial direction allowed. Then one closes another row of ribs 17, which in this example alternate as continuous Ribs 17b or axially divided ribs 17a are formed. The single ones Ribs of the rows 16 and 17 advantageously have a so-called division ratio, the ratio of the radial width e normal to the plane of the sheet radial spacing f, in the range of 0.25 to 0.75.

Es folgt ein weiteres radiales Plenum 19, gefolgt von sogenannten Pins 20, d.h. als einfache Stege ausgebildete Reihen von Rippen, welche eine möglichst gleichmässige Verteilung des Kühlluftstromes an der Hinterkante 21 erlauben. Das Teilungsverhältnis (Durchmesser g zu radialer Beabstandung h) der Pins 20 liegt dabei im Bereich von 0.25-bis 0.7.Another radial plenum 19 follows, followed by so-called pins 20, i.e. as simple webs formed rows of ribs which are as uniform as possible Allow distribution of the cooling air flow at the rear edge 21. The division ratio (Diameter g to radial spacing h) of the pins 20 lies in the Range from 0.25 to 0.7.

Unmittelbar an der Hinterkante und mit dieser bündig abschliessend befindet sich nun eine weitere Reihe von Rippen 24. Die Reihe der hinteren Rippen ist dabei so dimensioniert, dass die Drosselung der Kühlluftströmung des gesamten effektiven Kühlkanalquerschnitts durch die Kanäle 25 zwischen den sog. Drosselrippen 24 bewirkt wird. Dadurch dass die Drosselung an der Hinterkante 21 und mit einer solchen Reihe von Drosselrippen 24 bewirkt wird, ergeben sich eine Reihe von Vorteilen:

  • Der effektive Drosselquerschnitt kann leicht bei der Austrittskante gemessen werden.
  • Es entsteht nur eine Drosselstelle genau na der Hinterkante anstatt zweier Drosselstellen am Ende der Rippen und der Hinterkante.
  • Gegebenenfalls beim Gussverfahren entstandene Ungenauigkeiten der Drosselregion können leicht nachbearbeitet werden, da die Drosselstellen von aussen zugänglich sind.
  • Der Drosselquerschnitt kann bei Bedarf leicht verändert werden.
  • Die Anordnung der Rippen ganz am Ende der Schaufel führt zu einer erhöhten Stabilität der Abrisskante, so können Fremdkörper im Arbeitsluftstrom die Hinterkante weniger beschädigen und die Kühlung der Komponente kann durch derartige Deformationen weniger beeinträchtigt werden.
Another row of ribs 24 is now located directly at the rear edge and flush with it. The row of rear ribs is dimensioned such that the cooling air flow of the entire effective cooling channel cross section is restricted by the channels 25 between the so-called throttle ribs 24 . Because the throttling is effected at the rear edge 21 and with such a row of throttle ribs 24, there are a number of advantages:
  • The effective throttle cross section can easily be measured at the trailing edge.
  • There is only one throttle point exactly after the trailing edge instead of two throttling points at the end of the ribs and the trailing edge.
  • Any inaccuracies in the throttle region that may arise during the casting process can easily be reworked, since the throttle points are accessible from the outside.
  • The throttle cross section can be easily changed if necessary.
  • The arrangement of the ribs at the very end of the blade leads to increased stability of the tear-off edge, foreign objects in the working air flow can damage the rear edge less and the cooling of the component can be less impaired by such deformations.

Die Herstellung einer solchen Schaufel erfolgt meist im Gussverfahren, in der Regel einem Pressgussverfahren ("investment casting"). Bei diesen Gussverfahren kann aber bei der Herstellung der effektive Drosselquerschnitt nicht einfach direkt an die Austrittskante gelegt werden. Die sprunghafte Querschnittserweiterung am Austritt im Gusskern führt bei der Herstellung zu einem starken Anstieg der Kernbrüche. Dies kann aber bei Belassung eines Überstandes beim Giessverfahren vermieden werden. Die im Kern abgebildete Kühlungsgeometrie wird dabei über die eigentliche Begrenzung der Komponente hinaus verlängert. Figur 2b) zeigt den Kantenbereich eines derart über die Hinterkante um die Länge b hinaus verlängerten Elements. Im Bereich des Überstandes sind vorteilhafterweise keine Rippen mehr angeordnet. Der Übergang von der Drosselgeometrie fällt dann nicht mit der Kernhalterung zusammen, sondern es findet zunächst innerhalb der verlängerten Komponente ein Übergang von der Drosselgeometrie auf einen durchgehenden radialen Kanal statt, welcher dann ohne Risiko von Kernbrüchen als Kernhalterung verwendet werden kann. Dieser Übergang kann auf verschiedenste Weise je nach Verfahren optimal zur Kernhalterung gestaltet werden, d.h. es ist nicht zwingend, dass die beiden Wände wie in der in Figur 2b) dargestellt einfach nach hinten gleichmässig verlängert werden, es sind z.B. auch ein graduelles überstehendes Ausweiten, oder Verjüngungen resp. Verdickungen der Wände im Bereich des Überstands denkbar. Die überstehende Geometrie wird nach dem Guss auf die Solllänge der Hinterkante nachbearbeitet, d.h. abgetragen, so dass die Drosselstellen mit der Hinterkante zusammenfallen. Dies kann z.B. zusammen mit den üblicherweise nachträglich notwendigen Nachbearbeitungen wie Erosion und Laserbohren der Filmkühlbohrungen 13-15 geschehen.Such a blade is usually produced using the casting process, as a rule an investment casting process. This casting process can but when making the effective throttle cross section not just straight to the Trailing edge. The sudden cross-sectional expansion at the outlet in the cast core leads to a sharp increase in core breaks during manufacture. However, this can be avoided if a protrusion is left in the casting process become. The cooling geometry shown in the core is based on the actual one Component limit extended. Figure 2b) shows the edge area of an element extended in this way beyond the rear edge by the length b. in the In the region of the protrusion, there are advantageously no more ribs. The transition from the throttle geometry does not then coincide with the core holder, rather, it first occurs within the extended component Transition from the throttle geometry to a continuous radial channel instead, which can then be used as a core holder without the risk of core breakage can. This transition can be optimal in various ways depending on the procedure to be designed to hold the core, i.e. it is not imperative that the two Walls as shown in Figure 2b) simply extended evenly to the rear e.g. also a gradual protruding expansion or rejuvenation resp. Thickening of the walls in the area of the overhang is conceivable. The protruding geometry is after the casting to the target length of the rear edge post-processed, i.e. removed so that the throttling points coincide with the rear edge. This can e.g. together with those that are usually necessary after the fact Post-processing such as erosion and laser drilling of the film cooling holes 13-15 happen.

Im angegebenen Ausführungsbeispiel weist die Hinterkante meist eine Dicke d im Bereich von 0.5 bis 5 mm, bevorzugt im Bereich von 1.0 bis 2.5 mm auf. Die Schlitzdicke c des Kühlluftkanals liegt meist im Bereich von 0.3 bis 2.0 mm, bevorzugt im Bereich von 0.8 bis 1.5 mm. Um beim Gussverfahren Kernbrüche effektiv vermeiden zu können, sollte insbesondere bei den obigen Bemassungen der Überstand b über die Hinterkante hinaus 0.5 bis 5 Mal, vorzugsweise 1 bis 3 Mal, die Länge a der Drosselrippen 24 betragen, besonders vorteilhaft ist es, wenn der Überstand b gleich ist wie die Länge a der Drosselrippen.In the embodiment shown, the rear edge usually has a thickness d im Range from 0.5 to 5 mm, preferably in the range from 1.0 to 2.5 mm. The slit thickness c of the cooling air duct is usually in the range from 0.3 to 2.0 mm, preferably in Range from 0.8 to 1.5 mm. To effectively avoid core breaks during the casting process to be able to, the protrusion b above the rear edge 0.5 to 5 times, preferably 1 to 3 times, the length a of Throttle ribs 24 amount, it is particularly advantageous if the projection b is the same as the length a of the throttle ribs.

BEZEICHNUNGSLISTELIST OF DESIGNATIONS

1010th
saugseitige Wandsuction side wall
1111
druckseitige Wandpressure side wall
1212th
Einsatz bzw. KernUse or core
1313
saugseitige Filmbohrungensuction-side film holes
1414
Filmbohrungen an VorderkanteFilm holes on the front edge
1515
druckseitige Filmbohrungenpressure-side film holes
1616
am Einsatz anschliessende Rippenribs attached to the insert
1717th
ZwischenrippenIntermediate ribs
1818th
vorderes radiales Plenumanterior radial plenum
1919th
hinteres radiales Plenumposterior radial plenum
2020th
PinsPins
2121
Hinterkante des BlattesTrailing edge of the sheet
2222
Austrittsöffnung an der HinterkanteExit opening at the rear edge
2323
ArbeitsluftstromWorking air flow
2424th
Drosselrippen an HinterkanteThrottle ribs on the rear edge
2525th
Kühlluftaustrittsöffnungen an HinterkanteCooling air outlet openings on the rear edge
2626
axiale Kanäle zwischen Rippen 17axial channels between ribs 17
2727
axiale Kanäle zwischen Kippen 16axial channels between tippers 16
2828
eintrittsseitiger Kühlluftstrom inlet-side cooling air flow
2929
austrittsseitiger Kühlluftstromoutlet-side cooling air flow
3030th
Leitschaufelvane
aa
Länge der DrosselrippenThrottle rib length
bb
Länge des Überstandes nach GussLength of the protrusion after casting
cc
Schlitzdicke des Kühlluftkanals beim AustrittSlit thickness of the cooling air duct at the outlet
dd
Dicke der Leitschaufel an der HinterkanteThe thickness of the guide vane at the rear edge
ee
Breite der DrosselrippenWidth of the choke ribs
ff
Rippenteilung der DrosselrippenRib division of the throttle ribs
gG
Breite der Pins 20Pin width 20
hH
Teilung der Pins 20Division of pins 20

Claims (11)

Von einem heissen Luftstrom (23) umströmtes Leitelement (30) einer Gasturbine, welches wenigstens in einem hinteren Kantenbereich (21), bei dem der Luftstrom (23) vom Leitelement (30) abreisst, aus wenigstens zwei im wesentlichen parallel angeordneten, und mit Rippen (16,17,20) miteinander in innere Kühlkanäle (18,19,25,26,27) ausbildender Weise verbundenen Wänden (10,11) besteht, und welches mit durch die Kühlkanäle (18,19,25,26,27) strömendem Kühlmedium (28,29) innenseitig gekühlt wird, wobei das Kühlmedium an der hinteren Kante (21) im wesentlichen parallel zu den Wänden (10,11) zwischen diesen aus dem Leitelement (30) austritt,
dadurch gekennzeichnet, dass
wenigstens ein Teil der Rippen (24) mit der hinteren Kante (21) im we sentlichen bündig abschliessend angeordnet sind.
A hot air flow (23) has a guide element (30) around a gas turbine which, at least in a rear edge region (21), in which the air flow (23) breaks off from the guide element (30), consists of at least two substantially parallel ones and with ribs (16, 17, 20) walls (10, 11) connected to one another to form internal cooling channels (18, 19, 25, 26, 27), and which is connected to the cooling channels (18, 19, 25, 26, 27) flowing cooling medium (28, 29) is cooled on the inside, the cooling medium emerging from the guide element (30) at the rear edge (21) essentially parallel to the walls (10, 11) between them,
characterized in that
at least some of the ribs (24) are arranged so that they are flush with the rear edge (21).
Leitelement (30) nach Anspruch 1, dadurch gekennzeichnet, dass der Durchsatz an Kühlmedium (28,29) durch das Leitelement (30) im wesentlichen durch die Dimensionierung der zwischen den Drosselrippen (24) angeordneten Austrittsöffnungen (25) bestimmt ist.Guide element (30) according to claim 1, characterized in that the Throughput of cooling medium (28, 29) through the guide element (30) essentially by dimensioning the between the throttle ribs (24) arranged outlet openings (25) is determined. Leitelement (30) nach Anspruch 2, dadurch gekennzeichnet, dass die Drosselrippen (24) parallel zur Hinterkante (21) eine Breite (e) aufweisen und um jeweils eine Rippenteilung (f) beabstandet angeordnet
sind, und dass das Verhältnis von Breite (e) zu Rippenteilung (f) im Bereich von 0.25 bis 0.75 liegt.
Guide element (30) according to claim 2, characterized in that the throttle ribs (24) parallel to the rear edge (21) have a width (e) and are spaced apart by a respective rib pitch (f)
and that the ratio of width (e) to rib pitch (f) is in the range of 0.25 to 0.75.
Leitelement (30) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dicke (d) des Leitelements (30) an der Hinterkante (21) im Bereich von 0.5 bis 5 mm, insbesondere bevorzugt im Bereich von 1.0 bis 2.5 mm liegt, und dass die Schlitzdicke (c) der Kühlluftkanäle (25) zwischen den Wänden (10,11) beim Austritt (21) im Bereich von 0.3 bis 2 mm, insbesondere im Bereich von 0.8 bis 1.5 mm beträgt.Guide element (30) according to one of the preceding claims, characterized characterized in that the thickness (d) of the guide element (30) at the rear edge (21) in the range from 0.5 to 5 mm, particularly preferably in Range is from 1.0 to 2.5 mm, and that the slot thickness (c) of Cooling air channels (25) between the walls (10, 11) at the outlet (21) in Range from 0.3 to 2 mm, especially in the range from 0.8 to 1.5 mm is. Leitelement (30) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es als vor einem Turbinenrotor angeordnete Leitschaufel (30) ausgebildet ist und dass als Kühlmedium Luft verwendet wird.Guide element (30) according to one of Claims 1 to 4, characterized in that that it is arranged as a guide vane in front of a turbine rotor (30) and that air is used as the cooling medium. Leitschaufel (30) nach Anspruch 5, dadurch gekennzeichnet, dass die Leitschaufel in ihrem Anströmbereich verbreitert ausgebildet ist und im Anströmbereich die Kühlluft um einen inneren, zentralen, radial verlaufenden Einsatz (12) in saugseitigen und druckseitigen Kühlkanälen strömt, und dass die Kühlluft zwischen am Einsatz (12) anschliessenden Rippen (16), dann zwischen Zwischenrippen (17), dann zwischen Pins (20) zwischen den Wänden (10,11) hindurchströmt bevor sie durch Austrittsöffnungen (25) an der Hinterkante aus der Leitschaufel (30) austritt.Guide vane (30) according to claim 5, characterized in that the Guide vane is widened in its inflow area and in Inflow area the cooling air around an inner, central, radially extending Insert (12) in suction and pressure side cooling channels flows and that the cooling air between the insert (12) Ribs (16), then between intermediate ribs (17), then between Pins (20) flow between the walls (10, 11) before they through outlet openings (25) at the rear edge of the guide vane (30) emerges. Verfahren zur Herstellung eines von einem heissen Luftstrom (23) umströmten Leitelements (30) einer Gasturbine, welches wenigstens in einem hinteren Kantenbereich (21), bei dem der Luftstrom (23) vom Leitelement (30) abreisst, aus wenigstens zwei im wesentlichen parallel angeordneten, und mit Rippen (16,17,20) miteinander in innere Kühlkanäle (18,19,25,26,27) ausbildender Weise verbundenen Wänden (10,11) besteht, und welches mit durch die Kühlkanäle (18,19,25,26,27) strömendem Kühlmedium (28,29) innenseitig gekühlt wird, wobei das Kühlemedium an der hinteren Kante (21) im wesentlichen parallel zu den Wänden (10,11) zwischen diesen aus dem Leitelement (30) austritt,
dadurch gekennzeichnet, dass
das Leitelement (30) in einem Giessverfahren hergestellt wird, dass dabei der hintere Kantenbereich (21) mit einem das Leitelement (30) respektive dessen Wände (10,11) in Strömungsrichtung verlängernden Überstand gegossen wird, und dass nach dem Giessen der Überstand derart abgetragen wird, dass wenigstens ein Teil der Rippen als Drosselrippen (24) mit der hinteren Kante (21) im wesentlichen bündig abschliessend angeordnet sind.
Method for producing a guide element (30) of a gas turbine around which a hot air flow (23) flows and which is arranged at least in a rear edge region (21), in which the air flow (23) breaks off from the guide element (30), from at least two arranged essentially in parallel , and with ribs (16, 17, 20) connected to one another to form inner cooling channels (18, 19, 25, 26, 27) walls (10, 11), and which with through the cooling channels (18, 19, 25, 26, 27) flowing cooling medium (28, 29) is cooled on the inside, the cooling medium emerging at the rear edge (21) essentially parallel to the walls (10, 11) between the guide element (30),
characterized in that
the guide element (30) is produced in a casting process in such a way that the rear edge region (21) is cast with an overhang which extends the guide element (30) or its walls (10, 11) in the flow direction, and that the excess is removed in such a way after the casting is that at least a part of the ribs as throttling ribs (24) with the rear edge (21) are arranged essentially flush.
Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Durchsatz an Kühlmedium (28,29) durch das fertige Leitelement (30) im wesentlichen durch die Dimensionierung der zwischen den Drosselrippen (24) angeordneten Austrittsöffnungen (25) bestimmt ist.A method according to claim 7, characterized in that the throughput of cooling medium (28, 29) through the finished guide element (30) essentially by dimensioning the between the throttle ribs (24) arranged outlet openings (25) is determined. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich beim Gussverfahren um ein Pressgussverfahren handelt, dass der Überstand eine Länge (b) hinter der Hinterkante (21) aufweist, dass die Wände (10,11) beim Austritt (21) um eine Schlitzdicke (c) der Kühlluftkanäle (25) beabstandet sind, und dass insbesondere die Länge (b) des Überstandes im Bereich von 0.5 bis 5 Mal so gross, insbesondere bevorzugt 1 bis 3 Mal so gross, ist wie Schlitzdicke (c).Method according to one of the preceding claims, characterized in that that the casting process is a press casting process the protrusion is a length (b) behind the rear edge (21) has that the walls (10,11) at the outlet (21) around a slot thickness (c) of the cooling air channels (25) are spaced apart, and that in particular the length (b) of the supernatant in the range of 0.5 is up to 5 times as large, particularly preferably 1 to 3 times as large like slot thickness (c). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Drosselrippen (24) parallel zur Hinterkante (21) eine Breite (e) aufweisen und um jeweils eine Rippenteilung (f) beabstandet angeordnet sind, dass das Verhältnis von Breite (e) zu Rippenteilung (f) im Bereich von 0.25 bis 0.75 liegt, dass die Dicke (d) des Leitelements (30) an der Hinterkante (21) im Bereich von 0.5 bis 5 mm, insbesondere bevorzugt im Bereich von 1.0 bis 2.5 mm liegt, und dass die Schlitzdicke (c) der Kühlluftkanäle (25) zwischen den Wänden (10,11) beim Austritt (21) im Bereich von 0.3 bis 2 mm, insbesondere im Bereich von 0.8 bis 1.5 mm beträgt.Method according to one of the preceding claims, characterized in that that the throttle ribs (24) parallel to the rear edge (21) have a width (e) and spaced apart by a respective rib pitch (f) are arranged that the ratio of width (e) to rib pitch (f) is in the range of 0.25 to 0.75 that the thickness (d) of the Guide element (30) on the rear edge (21) in the range from 0.5 to 5 mm, is particularly preferably in the range from 1.0 to 2.5 mm, and that the slot thickness (c) of the cooling air ducts (25) between the walls (10,11) at the outlet (21) in the range from 0.3 to 2 mm, in particular is in the range of 0.8 to 1.5 mm. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass es sich beim Leitelement um eine vor einem Turbinenrotor angeordnete Leitschaufel (30) handelt, und dass als Kühlmedium Luft verwendet wird.Method according to one of the preceding claims, characterized in that that the guide element is one in front of a turbine rotor arranged guide vane (30), and that as a cooling medium Air is used.
EP00811043A 1999-12-27 2000-11-07 Blade for gas turbines with metering section at the trailing edge Expired - Lifetime EP1113145B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19963349 1999-12-27
DE19963349A DE19963349A1 (en) 1999-12-27 1999-12-27 Blade for gas turbines with throttle cross section at the rear edge

Publications (2)

Publication Number Publication Date
EP1113145A1 true EP1113145A1 (en) 2001-07-04
EP1113145B1 EP1113145B1 (en) 2006-04-05

Family

ID=7934726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00811043A Expired - Lifetime EP1113145B1 (en) 1999-12-27 2000-11-07 Blade for gas turbines with metering section at the trailing edge

Country Status (3)

Country Link
US (1) US6481966B2 (en)
EP (1) EP1113145B1 (en)
DE (2) DE19963349A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009109462A1 (en) * 2008-03-07 2009-09-11 Alstom Technology Ltd Vane for a gas turbine
EP1715139A3 (en) * 2005-04-22 2010-04-07 United Technologies Corporation Airfoil trailing edge cooling
WO2010086419A1 (en) 2009-01-30 2010-08-05 Alstom Technology Ltd. Cooled vane for a gas turbine
EP2584145A1 (en) * 2011-10-20 2013-04-24 Siemens Aktiengesellschaft A cooled turbine guide vane or blade for a turbomachine
EP2565382A3 (en) * 2011-08-30 2015-04-22 General Electric Company Airfoil with array of cooling pins

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50106385D1 (en) * 2001-03-26 2005-07-07 Siemens Ag Method for producing a turbine blade
US6974308B2 (en) * 2001-11-14 2005-12-13 Honeywell International, Inc. High effectiveness cooled turbine vane or blade
US6607356B2 (en) * 2002-01-11 2003-08-19 General Electric Company Crossover cooled airfoil trailing edge
US6602047B1 (en) * 2002-02-28 2003-08-05 General Electric Company Methods and apparatus for cooling gas turbine nozzles
US7014424B2 (en) 2003-04-08 2006-03-21 United Technologies Corporation Turbine element
US6932573B2 (en) 2003-04-30 2005-08-23 Siemens Westinghouse Power Corporation Turbine blade having a vortex forming cooling system for a trailing edge
US6902372B2 (en) * 2003-09-04 2005-06-07 Siemens Westinghouse Power Corporation Cooling system for a turbine blade
US7175386B2 (en) * 2003-12-17 2007-02-13 United Technologies Corporation Airfoil with shaped trailing edge pedestals
US20050235492A1 (en) * 2004-04-22 2005-10-27 Arness Brian P Turbine airfoil trailing edge repair and methods therefor
US20080031739A1 (en) * 2006-08-01 2008-02-07 United Technologies Corporation Airfoil with customized convective cooling
US7722327B1 (en) 2007-04-03 2010-05-25 Florida Turbine Technologies, Inc. Multiple vortex cooling circuit for a thin airfoil
US8070441B1 (en) 2007-07-20 2011-12-06 Florida Turbine Technologies, Inc. Turbine airfoil with trailing edge cooling channels
US7934906B2 (en) * 2007-11-14 2011-05-03 Siemens Energy, Inc. Turbine blade tip cooling system
US10156143B2 (en) * 2007-12-06 2018-12-18 United Technologies Corporation Gas turbine engines and related systems involving air-cooled vanes
US20110135446A1 (en) * 2009-12-04 2011-06-09 United Technologies Corporation Castings, Casting Cores, and Methods
US9249675B2 (en) * 2011-08-30 2016-02-02 General Electric Company Pin-fin array
US9366144B2 (en) * 2012-03-20 2016-06-14 United Technologies Corporation Trailing edge cooling
US8951004B2 (en) * 2012-10-23 2015-02-10 Siemens Aktiengesellschaft Cooling arrangement for a gas turbine component
US10557354B2 (en) 2013-08-28 2020-02-11 United Technologies Corporation Gas turbine engine airfoil crossover and pedestal rib cooling arrangement
WO2015088821A1 (en) * 2013-12-12 2015-06-18 United Technologies Corporation Gas turbine engine component cooling passage with asymmetrical pedestals
US20150184518A1 (en) * 2013-12-26 2015-07-02 Ching-Pang Lee Turbine airfoil cooling system with nonlinear trailing edge exit slots
US10704397B2 (en) 2015-04-03 2020-07-07 Siemens Aktiengesellschaft Turbine blade trailing edge with low flow framing channel
US10502066B2 (en) 2015-05-08 2019-12-10 United Technologies Corporation Turbine engine component including an axially aligned skin core passage interrupted by a pedestal
US10323524B2 (en) * 2015-05-08 2019-06-18 United Technologies Corporation Axial skin core cooling passage for a turbine engine component
US10508554B2 (en) 2015-10-27 2019-12-17 General Electric Company Turbine bucket having outlet path in shroud
US9885243B2 (en) 2015-10-27 2018-02-06 General Electric Company Turbine bucket having outlet path in shroud
US10156145B2 (en) * 2015-10-27 2018-12-18 General Electric Company Turbine bucket having cooling passageway
JP6671149B2 (en) * 2015-11-05 2020-03-25 三菱日立パワーシステムズ株式会社 Turbine blade and gas turbine, intermediate product of turbine blade, and method of manufacturing turbine blade
US10370979B2 (en) * 2015-11-23 2019-08-06 United Technologies Corporation Baffle for a component of a gas turbine engine
WO2017095438A1 (en) * 2015-12-04 2017-06-08 Siemens Aktiengesellschaft Turbine airfoil with biased trailing edge cooling arrangement
US10598025B2 (en) * 2016-11-17 2020-03-24 United Technologies Corporation Airfoil with rods adjacent a core structure
US10641103B2 (en) 2017-01-19 2020-05-05 United Technologies Corporation Trailing edge configuration with cast slots and drilled filmholes
US10718217B2 (en) * 2017-06-14 2020-07-21 General Electric Company Engine component with cooling passages
JP7078650B2 (en) * 2017-06-30 2022-05-31 シーメンス・エナジー・グローバル・ゲーエムベーハー・ウント・コ・カーゲー Turbine blades and cast cores with trailing edge mechanics
US10753210B2 (en) * 2018-05-02 2020-08-25 Raytheon Technologies Corporation Airfoil having improved cooling scheme
JP6636668B1 (en) * 2019-03-29 2020-01-29 三菱重工業株式会社 High-temperature component, method for manufacturing high-temperature component, and method for adjusting flow rate
CN115213379B (en) * 2022-01-10 2023-06-20 西北工业大学 Design method of technological rib of monocrystalline blade regulating flange plate mixed crystal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286924A (en) * 1978-01-14 1981-09-01 Rolls-Royce Limited Rotor blade or stator vane for a gas turbine engine
US4292008A (en) * 1977-09-09 1981-09-29 International Harvester Company Gas turbine cooling systems
GB1605180A (en) * 1974-05-16 1983-01-26 Lls Royce Ltd Method for manufacturing a blade for a gas turbine engine
US4835958A (en) * 1978-10-26 1989-06-06 Rice Ivan G Process for directing a combustion gas stream onto rotatable blades of a gas turbine
US5243759A (en) * 1991-10-07 1993-09-14 United Technologies Corporation Method of casting to control the cooling air flow rate of the airfoil trailing edge
US5864949A (en) * 1992-10-27 1999-02-02 United Technologies Corporation Tip seal and anti-contamination for turbine blades
EP0924383A2 (en) * 1997-12-17 1999-06-23 United Technologies Corporation Turbine blade with trailing edge root section cooling

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173120A (en) * 1977-09-09 1979-11-06 International Harvester Company Turbine nozzle and rotor cooling systems
US5368441A (en) * 1992-11-24 1994-11-29 United Technologies Corporation Turbine airfoil including diffusing trailing edge pedestals
US5669759A (en) * 1995-02-03 1997-09-23 United Technologies Corporation Turbine airfoil with enhanced cooling
DE69718673T2 (en) * 1996-06-28 2003-05-22 United Technologies Corp COOLABLE SHOVEL STRUCTURE FOR A GAS TURBINE
US6139269A (en) * 1997-12-17 2000-10-31 United Technologies Corporation Turbine blade with multi-pass cooling and cooling air addition
US6234754B1 (en) * 1999-08-09 2001-05-22 United Technologies Corporation Coolable airfoil structure
US6179565B1 (en) * 1999-08-09 2001-01-30 United Technologies Corporation Coolable airfoil structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1605180A (en) * 1974-05-16 1983-01-26 Lls Royce Ltd Method for manufacturing a blade for a gas turbine engine
US4292008A (en) * 1977-09-09 1981-09-29 International Harvester Company Gas turbine cooling systems
US4286924A (en) * 1978-01-14 1981-09-01 Rolls-Royce Limited Rotor blade or stator vane for a gas turbine engine
US4835958A (en) * 1978-10-26 1989-06-06 Rice Ivan G Process for directing a combustion gas stream onto rotatable blades of a gas turbine
US5243759A (en) * 1991-10-07 1993-09-14 United Technologies Corporation Method of casting to control the cooling air flow rate of the airfoil trailing edge
US5864949A (en) * 1992-10-27 1999-02-02 United Technologies Corporation Tip seal and anti-contamination for turbine blades
EP0924383A2 (en) * 1997-12-17 1999-06-23 United Technologies Corporation Turbine blade with trailing edge root section cooling

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1715139A3 (en) * 2005-04-22 2010-04-07 United Technologies Corporation Airfoil trailing edge cooling
EP2538029A1 (en) * 2005-04-22 2012-12-26 United Technologies Corporation Airfoil trailing edge cooling
WO2009109462A1 (en) * 2008-03-07 2009-09-11 Alstom Technology Ltd Vane for a gas turbine
US8182225B2 (en) 2008-03-07 2012-05-22 Alstomtechnology Ltd Blade for a gas turbine
WO2010086419A1 (en) 2009-01-30 2010-08-05 Alstom Technology Ltd. Cooled vane for a gas turbine
US8721281B2 (en) 2009-01-30 2014-05-13 Alstom Technology Ltd. Cooled blade for a gas turbine
EP2565382A3 (en) * 2011-08-30 2015-04-22 General Electric Company Airfoil with array of cooling pins
EP2584145A1 (en) * 2011-10-20 2013-04-24 Siemens Aktiengesellschaft A cooled turbine guide vane or blade for a turbomachine
WO2013056975A1 (en) * 2011-10-20 2013-04-25 Siemens Aktiengesellschaft A cooled turbine guide vane or blade for a turbomachine
US9896942B2 (en) 2011-10-20 2018-02-20 Siemens Aktiengesellschaft Cooled turbine guide vane or blade for a turbomachine

Also Published As

Publication number Publication date
DE50012523D1 (en) 2006-05-18
EP1113145B1 (en) 2006-04-05
DE19963349A1 (en) 2001-06-28
US20010012484A1 (en) 2001-08-09
US6481966B2 (en) 2002-11-19

Similar Documents

Publication Publication Date Title
EP1113145B1 (en) Blade for gas turbines with metering section at the trailing edge
DE69823236T2 (en) DEVICE FOR COOLING GAS TURBINE SHOVELS AND METHOD FOR THE PRODUCTION THEREOF
EP1223308B1 (en) Turbomachine component
EP2304185B1 (en) Turbine vane for a gas turbine and casting core for the production of such
DE1946535C3 (en) Component for a gas turbine engine
DE60017166T2 (en) GUN CORE FOR AN INNER COOLED TURBINE BLADE WHICH DOES NOT HAVE TO BE FASTENED TO FOOD OPENING
CH697919B1 (en) Turbine blade having a concave cooling flow path and arranged therein opposite swirling currents causing turbulators.
EP2611990B1 (en) Turbine blade for a gas turbine
EP1165939B1 (en) Cast gas turbine blade that is flown through by a coolant and device and method for producing a distribution chamber for the gas turbine blade
EP1267039A1 (en) Cooling configuration for an airfoil trailing edge
DE2241194A1 (en) FLOW MACHINE SHOVEL WITH A WING-SHAPED CROSS-SECTIONAL PROFILE AND WITH A NUMBER OF COOLING DUCTS RUNNING IN THE LENGTH DIRECTION OF THE SHOVEL
EP1201879A2 (en) Cooled component, casting core and method for the manufacture of the same
EP1247602B1 (en) Method for producing an airfoil
EP1292760B1 (en) Configuration of a coolable turbine blade
EP3207217B1 (en) Film-cooled gas turbine component
EP1192333B1 (en) Component that can be subjected to hot gas, especially a turbine blade
WO2010028913A1 (en) Turbine blade having a modular, stepped trailing edge
WO2005005785A1 (en) Cooled blade for a gas turbine
EP3232001A1 (en) Rotor blade for a turbine
DE10244199A1 (en) Device for supplying secondary fluid to transsonic primary flow e.g. for supplying cooling air for film cooling in turbine plant
DE2313047A1 (en) HIGH STRENGTH COOLED TURBINE BLADES
EP2095894A1 (en) Method for manufacturing a turbine blade that is internally cooled
EP1167690A1 (en) Cooling of the trailing edge of a gas turbine airfoil
EP2476863A1 (en) Turbine blade for a gas turbine
WO2010086402A2 (en) Method for producing a component of a gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

17P Request for examination filed

Effective date: 20011214

AKX Designation fees paid

Free format text: DE GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

17Q First examination report despatched

Effective date: 20040507

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50012523

Country of ref document: DE

Date of ref document: 20060518

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060607

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50012523

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50012523

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50012523

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50012523

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50012523

Country of ref document: DE

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171121

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20171123

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012523

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181107