EP1100373B1 - Intrabody navigation system for medical applications - Google Patents
Intrabody navigation system for medical applications Download PDFInfo
- Publication number
- EP1100373B1 EP1100373B1 EP19990929671 EP99929671A EP1100373B1 EP 1100373 B1 EP1100373 B1 EP 1100373B1 EP 19990929671 EP19990929671 EP 19990929671 EP 99929671 A EP99929671 A EP 99929671A EP 1100373 B1 EP1100373 B1 EP 1100373B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- probe
- coils
- catheter
- receiver
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011162 core materials Substances 0 claims description 24
- 229910000529 magnetic ferrites Inorganic materials 0 claims description 8
- 229910000859 α-Fe Inorganic materials 0 claims description 8
- 238000001228 spectrum Methods 0 abstract 2
- 230000001702 transmitter Effects 0 description 49
- 239000011159 matrix materials Substances 0 description 25
- 239000011797 cavity materials Substances 0 description 10
- 210000002216 Heart Anatomy 0 description 9
- 210000004369 Blood Anatomy 0 description 7
- 239000008280 blood Substances 0 description 7
- 239000002529 flux Substances 0 description 7
- 238000005259 measurements Methods 0 description 7
- 230000000747 cardiac Effects 0 description 5
- 230000001808 coupling Effects 0 description 5
- 238000010168 coupling process Methods 0 description 5
- 238000005859 coupling reaction Methods 0 description 5
- 238000003384 imaging method Methods 0 description 5
- 210000004204 Blood Vessels Anatomy 0 description 4
- 239000003570 air Substances 0 description 4
- 230000000875 corresponding Effects 0 description 4
- 239000003292 glue Substances 0 description 4
- 238000000034 methods Methods 0 description 4
- 230000036961 partial Effects 0 description 4
- 239000000463 materials Substances 0 description 3
- 229910000595 mu-metals Inorganic materials 0 description 3
- 239000010933 palladium Substances 0 description 3
- 238000009420 retrofitting Methods 0 description 3
- 210000001519 tissues Anatomy 0 description 3
- 238000004422 calculation algorithm Methods 0 description 2
- 238000004364 calculation methods Methods 0 description 2
- 239000004020 conductor Substances 0 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound   [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0 description 2
- 239000010949 copper Substances 0 description 2
- 229910052802 copper Inorganic materials 0 description 2
- 238000002594 fluoroscopy Methods 0 description 2
- 230000014509 gene expression Effects 0 description 2
- 238000003780 insertion Methods 0 description 2
- 238000007917 intracranial administration Methods 0 description 2
- 239000011133 lead Substances 0 description 2
- 239000002184 metal Substances 0 description 2
- 229910052751 metals Inorganic materials 0 description 2
- 230000001105 regulatory Effects 0 description 2
- 230000035945 sensitivity Effects 0 description 2
- 230000001340 slower Effects 0 description 2
- 239000007787 solids Substances 0 description 2
- 230000001360 synchronised Effects 0 description 2
- 210000004556 Brain Anatomy 0 description 1
- 210000003414 Extremities Anatomy 0 description 1
- 206010018987 Haemorrhages Diseases 0 description 1
- 241000282414 Homo sapiens Species 0 description 1
- 229920000126 Latex Polymers 0 description 1
- 210000003625 Skull Anatomy 0 description 1
- 239000004809 Teflon Substances 0 description 1
- 206010047302 Ventricular tachycardia Diseases 0 description 1
- 230000004323 axial length Effects 0 description 1
- 231100000319 bleeding Toxicity 0 description 1
- 230000000740 bleeding Effects 0 description 1
- 239000002775 capsule Substances 0 description 1
- 230000001721 combination Effects 0 description 1
- 238000003745 diagnosis Methods 0 description 1
- 238000002059 diagnostic imaging Methods 0 description 1
- 238000005553 drilling Methods 0 description 1
- 239000002783 friction material Substances 0 description 1
- 229910001026 inconels Inorganic materials 0 description 1
- 230000001939 inductive effects Effects 0 description 1
- 230000001788 irregular Effects 0 description 1
- 238000003698 laser cutting Methods 0 description 1
- 239000004816 latex Substances 0 description 1
- 239000000203 mixtures Substances 0 description 1
- 230000004048 modification Effects 0 description 1
- 238000006011 modification Methods 0 description 1
- 238000009740 moulding (composite fabrication) Methods 0 description 1
- 229910001000 nickel titaniums Inorganic materials 0 description 1
- 210000000056 organs Anatomy 0 description 1
- 230000003094 perturbing Effects 0 description 1
- 238000000206 photolithography Methods 0 description 1
- 229920001343 polytetrafluoroethylenes Polymers 0 description 1
- 239000000047 products Substances 0 description 1
- 230000001681 protective Effects 0 description 1
- 230000004044 response Effects 0 description 1
- 230000000250 revascularization Effects 0 description 1
- 238000005070 sampling Methods 0 description 1
- 238000000926 separation method Methods 0 description 1
- 229910001220 stainless steel Inorganic materials 0 description 1
- 239000010935 stainless steel Substances 0 description 1
- 230000000638 stimulation Effects 0 description 1
- 239000000126 substances Substances 0 description 1
- 230000001629 suppression Effects 0 description 1
- 229910052719 titanium Inorganic materials 0 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound   [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0 description 1
- 239000010936 titanium Substances 0 description 1
- 238000009966 trimming Methods 0 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
- A61B5/061—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
- A61B5/062—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2051—Electromagnetic tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2072—Reference field transducer attached to an instrument or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radiowaves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
- A61B6/02—Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computerised tomographs
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4245—Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
Abstract
Description
- The present invention relates to electromagnetic tracking devices and, more particularly, to a system for tracking a medical probe such as a catheter as the probe is moved through the body of a patient.
- It is known to track the position and orientation of a moving object with respect to a fixed frame of reference, by equipping the moving object with a transmitter that transmits electromagnetic radiation, placing a receiver in a known and fixed position in the fixed frame of reference, and inferring the continuously changing position and orientation of the object from signals transmitted by the transmitter and received by the receiver. Equivalently, by the principle of reciprocity, the moving object is equipped with a receiver, and a transmitter, is placed in a known and fixed position in the fixed frame of reference. Typically, the transmitter includes three orthogonal magnetic dipole transmitting antennas; the receiver includes three orthogonal magnetic dipole receiving sensors; and the object is close enough to the stationary apparatus (transmitter or receiver), and the frequencies of the signals are sufficiently low, that the signals are near field signals. Also typically, the system used is a closed loop system: the receiver is hardwired to, and explicitly synchronized with, the transmitter. Representative prior art patents in this field include
US 4,287,809 andUS 4,394,831, to Egli et al. ;US 4,737,794, to Jones ;US 4,742,356, to Kuipers ;US 4,849,692, to Blood ; andUS 5,347,289, to Elhardt. Several of the prior art patents, notably Jones, present non-iterative algorithms for computing the position and orientation of magnetic dipole transmitters with respect to magnetic dipole receivers. - An important variant of such systems is described in
US 5,600,330, to Blood. In Blood's system, the transmitter is fixed in the fixed reference frame, and the receiver is attached to the moving object. Blood's transmitting antennas are spatially extended, and so cannot be treated as point sources. Blood also presents an algorithm which allows the orientation, but not the position, of the receiver relative to the transmitter to be calculated non-iteratively. - Systems similar to Blood's are useful for tracking a probe, such as a catheter or an endoscope, as that probe is moved through the body of a medical patient. It is particularly important in this application that the receiver be inside the probe and that the transmitter be external to the patient, because transmitting antennas of sufficient power would not fit inside the confined volume of the probe. A representative prior art system of this type is described in
PCT Publication WO 96/05768 - Perhaps the most important application of this tracking is to intrabody navigation, as described by Acker in
US Patent No. 5,729,129 , with reference toPCT Publication No. WO 95/09562 -
WO 96/05768 WO 96/05768 Figure 3 ofWO 96/05768 - A further, consequent concession of the system of
WO 96/05768 - Another drawback of the system of
WO 96/05768 US Patent No. 5,752,513 , Acker et al. address this problem by overlapping the coplanar transmitting coils. - Acker et al. transit time-multiplexed DC signals. This time multiplexing slows drown the measurement. Frequency multiplexing, as taught in
WO 96/05768 PCT Publication WO 97/36143 - A further source of slowness in calculating the position and orientation of the receiver is the iterative nature of the calculation required for a spatially extended transmitter. As noted above, Blood calculates the position of the receiver iteratively. Even in the DC case, Acker et al. calculate both the position and the orientation of the receiver iteratively.
- There is thus a widely recognized need for, and it would be highly advantageous to have, a faster and more accurate method for tracking a medical probe inside the body of a patient.
-
WO 97/29684 - According to the present invention there is provided a system for tracking as defined in claim 1,
- The invention is herein described, by way of example only, with reference to the accompanying drawings, wherein:
-
FIG 1 is a schematic diagram of a system useful for understanding the present invention; -
FIG. 2A is a partly cut away perspective view of a probe and a receiver; -
FIG. 2B is a circuit diagram of the receiver ofFIG. 2A ; - FIG. 2C illustrates features of the receiver of
FIG. 2A that suppress unwanted electromagnetic coupling; -
FIG. 3 is an axial sectional view of a probe and a receiver; -
FIG. 4A shows two coils of opposite helicities; -
FIG. 4 shows two coils of identical helicities; -
FIG. 5 shows a second example of an embodiment of a receiver; -
FIG. 6 is a plan view of three loop antennas and two phantom loop antennas; -
FIGs. 7A, 7B and 7C show alternative configurations of paired adjacent loop antennas; -
FIG. 8 is a schematic block diagram of driving circuitry -
FIG. 9 shows, a C-mount fluoroscope modified for real-time intrabody navigation -
FIG. 10 shows a coil of the receiver ofFIG. 5 ; -
FIG. 11 shows a CT scanner modified for imaging in support of subsequent intracranial navigation; -
FIG. 12A is a partly cut-away perspective view of a cardiac catheter of the present invention in the retracted position thereof; -
FIG. 12B is a perspective view of the catheter ofFIG. 12A in the extended position thereof; -
FIG. 12C is an end-on view of the catheter ofFIG. 12a in the retracted position thereof; -
FIG. 13A is a partly cut-away side view of an example of the cardiac catheter in the retracted and inflated position thereof; -
FIG. 13B is an end-on view of the catheter ofFIG. 13A in the retracted and inflated position thereof; -
FIG. 14 is a partial perspective view of the C-mount fluoroscope ofFIG. 9 , including a magnetically permeable compensator; -
FIG. 15 is a partial exploded perspective view of a preferred embodiment of the probe and receiver ofFIG. 2A ; -
FIG. 16 illustrates a scheme for retrofitting an apparatus such as the receiver ofFIG. 2A to a catheter. - The present invention is of a system for tracking the position and orientation of an object relative to a fixed frame of reference. Specifically, the present invention can be used to track the motion of a medical probe such as a catheter or an endoscope within the body of a patient.
- The principles and operation of remote tracking according to the present invention may be better understood with reference to the drawings and the accompanying description.
- Referring now to the drawings,
Figure 1 illustrates, in general terms, a system for understanding the present invention. Within a probe 10 is rigidly mounted a receiver 14. Receiver 14 includes three field component sensors 16, 18, and 20, each for sensing a different component of an electromagnetic field. Sensor 16 includes two sensor elements 16a and 16b. Sensor 18 includes two sensor elements 18a and 18b. Sensor 20 includes two sensor elements 20a and 20b. Typically, the sensor elements are coils, and the sensed components are independent magnetic field components. Sensor elements 16a and 16b arc on opposite sides of, and equidistant from, a common reference point 22. Similarly, sensor elements 18a and 18b are on opposite sides of, and equidistant from, point 22, and sensor elements 20a and 20b also are on opposite sides of, and equidistant from, point 22. In the illustrated example, sensors 16, 18 and 20 are disposed collinearly along a longitudinal axis 12 of probe 10, but other configurations are possible, as discussed below. - The system of
Figure 1 also includes a transmitter 24 of electromagnetic radiation. Transmitter 24 includes three substantially coplanar rectangular loop antennas 26, 28 and 30 connected to driving circuitry 32. Loop antennas 26 and 28 are adjacent and are partly overlapped by loop antenna 30. Driving circuitry 32 includes appropriate signal generators and amplifiers for driving each of loop antennas 26, 28 and 30 at a different frequency. The electromagnetic waves generated by transmitter 24 are received by receiver 14. The signals from receiver 14 that correspond to these electromagnetic waves are sent to reception circuitry 34 that includes appropriate amplifiers and A/D converters. Reception circuitry 34 and driving circuitry 32 are controlled by a controller/processor 36 that typically is an appropriately programmed personal computer. Controller/processor 36 directs the generation of transmitted signals by driving circuitry 32 and the reception of received signals by reception circuitry 34. Controller/processor 36 also implements the algorithm described below to infer the position and orientation of probe 10. Note that the system ofFigure 1 is a closed-loop system: the reception of signals from receiver 14 is synchronized with the transmission of electromagnetic waves by transmitter 24 -
Figure 2 shows an embodiment of receiver 14 according to the invention.Figure 2A is a perspective, partly cut away view of probe 10 with receiver 14 mounted in the housing 11 thereof.Figure 2B is a circuit diagram of receiver 14. In this embodiment, sensor elements 16a, 16b, 18a and 18b are coils of conducting wire wound on ferrite cores 70. Coils 16a and 16b are mutually parallel. Coils 18a and 18b are mutually parallel and are perpendicular to coils 16a and 16b. Coils 16a, 16b, 18a and 18b all are perpendicular to axis 12. Instead of sensor 20 with two sensor elements 20a and 20b, the embodiment ofFigure 2 has a single coil 20' of conducting wire wound on a ferrite core 70. Coil 20' is parallel to axis 12 and therefore is perpendicular to coils 16a, 16b, 18a and 18b. Coil 20' is centered on reference point 22. Sensors 16, 18 and 20' are connected to reception circuitry 34 by twisted wire pairs 38. As shown in the circuit diagram ofFigure 2B . coils 16a and 16b are connected in series, and coils 18a and 18b are connected in series. - Because sensors 16, 18 and 20' of
Figure 2 all measure field components at the same reference point 22, coils 16a, 16b, 18a, 18b and 20' can be wound on ferrite cores 70 instead of the air cores ofWO 96/05768 - Wire pairs 38 are twisted in order to suppress electromagnetic coupling between wire pairs 38 and the environment, and in particular to suppress electromagnetic coupling between wire pairs 38 and transmitter 24. Figure 2C is a circuit diagram that shows further features of the present invention that suppress this electromagnetic coupling. Figure 2C is drawn with particular reference to sensor 16, but the same features apply, mutatis mutandis, to sensor 18.
- Coils 16a and 16b are connected in series by inner leads 116a and 116b thereof. Outer lead 216a of coil 16a is connected, by wire 38a of twisted wire pair 38, to a positive input 126a of a differential amplifier 128 of reception circuitry 34. Outer lead 216b of coil 16b is connected, by wire 38b of twisted wire pair 38, to a negative input 126b of differential amplifier 128. Inner leads 116a and 116b also are connected to ground 124 by a wire 122. For illustrational clarity, wire 38a is drawn as a solid line, wire 38b is drawn as a dotted line and wire 122 is drawn as a dashed line.
-
Figure 15 is a partial exploded perspective view of a preferred embodiment of probe 10 and receiver 14. Housing 11 is substantially cylindrical, with two recesses 511 and 513 incised therein. The boundary of each recess 511 or 513 includes a pair of diametrically opposed apertures: apertures 510 and 512 in the boundary of recess 511 and apertures 514 and 516 in the boundary of recess 513. Arrows 530 and 532 show two of the three components of a cylindrical coordinate system for describing position within and along housing 11. Arrow 530 points in the longitudinal direction. Arrow 532 points in the azimuthal direction. Aperture pair 510, 512 is displaced both longitudinally and azimuthally from aperture pair 514, 516. - Coil 16a is a coil of electrically conducting wire that is wound about a core 70a. Core 70a is mounted in apertures 514 and 516: end 518 of core 70a, that extends beyond coil 16a, is mounted in aperture 514 and is secured rigidly in place by a suitable glue, and end 520 of core 70a, that extends beyond coil 16a in the opposite direction, is mounted in aperture 516 and is secured rigidly in place by a suitable glue. Similarly, coil 18a is a coil of electrically conducting wire that is wound about a core 70b. Core 70b is mounted in apertures 510 and 512: end 522 of core 70b, that extends beyond coil 18a, is mounted in aperture 510 and is secured rigidly in place by a suitable glue, and end 524 of core 70b, that extends beyond coil 18a in the opposite direction, is mounted in aperture 512 and is secured rigidly in place by a suitable glue.
-
Figure 15 also shows the preferred azimuthal separation of aperture pair 514, 516 from aperture pair 510, 512. Aperture pair 514, 516 is perpendicular to aperture pair 510, 512, in the sense that aperture pair 514, 516 is displaced 90°, in the direction of arrow 532, from aperture pair 510, 512. This makes core 70a perpendicular to core 70b, and hence makes coils 16a and 18a mutually perpendicular. - In the case of probe 10 being a catheter for invasively probing or treating a body cavity such as a chamber of the heart, it is preferable that housing 11 be made of a nonmagnetic metal such as nitinol, titanium, iconel, phynox or stainless steel. Housing 11 thus is sufficiently flexible to bend under the lateral forces of the walls of blood vessels through which probe 10 is inserted towards the body cavity, and sufficiently resilient to return to its unstressed shape, with coils 16a and 18a mutually perpendicular, when the portion of probe 10 that includes receiver 14 reaches the interior of the body cavity. Surprisingly, it has been found that the use of a conductive metal as the material of housing 11 does not distort the electromagnetic field sensed by receiver 14 despite the current eddies induced in housing 11 by the electromagnetic waves generated by transmitter 24. Apertures 510, 512, 514 and 516 are most conveniently formed by laser cutting. The accuracy of the mutual perpendicularity of coils 16a and 18a obtained in this manner has been found to be superior to the accuracy obtained by forming housing 11 as a solid cylindrical block and drilling mutually perpendicular recesses in the block to receive coils 16a and 18a.
- Coils 16b and 18b are mounted similarly in similar pairs of diametrically opposed, azimuthally and longitudinally displaced apertures. This ensures that coils 16a and 16b are mutually parallel, that coils 18a and 18b are mutually parallel, and that coils 16b and 18b are mutually perpendicular.
- In an alternative structure (not shown) of housing 11, housing 11 is formed as an open, spring-like frame that includes apertures 510, 512, 514 and 516 in the form of small rings that are sized to accept the ends 518, 520, 522 and 524 of cores 70a and 70b. The spring-like nature of this embodiment of housing 11 allows coils 16a and 18a to be mounted therein simply by forcing ends 518, 520, 522 and 524 into their respective apertures, and also allows housing 11 to flex during insertion towards a body cavity of a patient and to return to its unstressed shape upon arrival inside the body cavity.
-
Figure 3 is an axial sectional view of receiver 14 mounted in a variant of probe 10 that has two sections 10a and 10b connected by a flexible connector 40. As inFigure 2 , sensors 16 and 18 include sensor elements 16a, 16b, 18a and 18b that are coils of conducting wire wound on air cores and that are perpendicular to axis 12. Sensor elements 16a, and 16b are mutually parallel, sensor elements 18a and 18b are mutually parallel, and sensor elements 16a and 16b are perpendicular to sensor elements 18a and 18b. Sensor 20 includes two sensor elements: coils 20a and 20b of conducting wire wound on air cores. Coils 20a and 20b are equidistant from reference point 22 and are parallel to axis 12. Like coils 16a and 16b and like coils 18a and 18b, coils 20a and 20b are connected in series. Flexible connector 40 allows this variant of probe 10 to bend as this variant of probe 10 is moved within a medical patient. Sensor element pairs 16, 18 and 20 are disposed symmetrically with respect to reference point 22 in the sense that when probe 10 ofFigure 3 is straight, as drawn, sensor elements 16a and 16b are on opposite sides of, and equidistant from, reference point 22; and likewise sensor elements 18a and 18b are on opposite sides of, and are equidistant from, reference point 22; and sensor elements 20a and 20b are on opposite sides of, and are equidistant from, reference point 22. Note that when probe 10 ofFigure 3 is straight, sensor elements 16a, 16b, 18a, 18b, 20a and 20b all are collinear, along axis 12 that intersects point 22, and so are disposed symmetrically with respect to point 22. - For coil pairs such as pairs 16a and 16b to produce signals representative of a magnetic field component at point 22 when the coil pairs are connected as shown in
Figure 2A , the two coils must have opposite helicity; as illustrated inFigure 4A , so that, in a spatially uniform time varying magnetic field, the signals induced in the two coil pairs 16a and 16b reinforce each other instead of canceling each other. Coil pairs 16a and 16b that have identical helicities, as illustrated inFigure 4B , may be used to measure a magnetic field component gradient at point 22. Alternatively, coil pairs of identical helicities may be used to measure magnetic field components if the top of one coil is connected to the bottom of the other coil. -
Figure 5 illustrates a second class of an example of receiver 14. InFigure 5 , a conceptual cylindrical surface is denoted by dashed lines 42 and dashed circles 44. The embodiment of receiver 14 illustrated inFigure 5 includes three sensors 16, 18 and 20, each with two sensor elements 16c and 16d, 18c and 18d, and 20c and 20d, respectively. Each sensor element is a flat rectangular coil, of many turns of conducting wire, that is bent into an arcuate shape to conform to the shape of the cylindrical surface. Sensor elements 16c, 18c and 20c are interleaved around circle 44a. Sensor elements 16d, 18d and 20d are interleaved around circle 44b. Sensor elements 16c and 16d are disposed symmetrically with respect to reference point 22, meaning that sensor elements 16c and 16d are on opposite sides of reference point 22, are equidistant from reference point 22, and are oriented so that an appropriate 180° rotation about point 22 maps sensor 16c into sensor 16d. Similarly, sensor elements 18c and 18d are disposed symmetrically with respect to reference point 22, and sensor elements 20c and 20d are disposed symmetrically with respect to reference point 22. Sensor elements 16c and 16d are connected in series, in a manner similar to sensor elements 16a and 16b, to respond to one component of the magnetic field. Sensor elements 18c and 18d are connected similarly in series to respond to a second component of the magnetic field that is independent of the first component, and sensor elements 20c and 20d are connected similarly in series to respond to a third component of the magnetic field that is independent of the first two components. Most preferably, sensor elements 16c, 16d, 18c, 18d, 20c and 20d are sized and separated so that these three magnetic field components are orthogonal. In practice, the cylindrical surface whereabout sensor elements 16c, 16d, 18c, 18d, 20c and 20d are disposed could be the inner surface of probe 10 or the outer surface of a cylindrical sleeve adapted to fit inside probe 10. In the case of this embodiment of receiver 14 formed on the outer surface of a cylindrical sleeve, sensor elements 16c, 16d, 18c, 18d, 20c and 20d may be fabricated by any one of several standard methods, including photolithography and laser trimming.Figure 10 illustrates the preferred geometry of sensor elements 16c, 16d, 18c, 18d, 20c and 20d: a flat rectangular spiral 17 of an electrical conductor 19. Only four turns are shown in spiral 17, for illustrational simplicity. Preferably, however, there are several hundred turns in spiral 17. For example, a spiral 17, intended for a cylindrical surface of a diameter of 1.6 millimeters, in which conductor 19 has a width of 0.25 microns, and in which the windings are separated by gaps of 0.25 microns, has 167 turns. -
Figures 12A ,12B and12C illustrate the distal end of a cardiac catheter 300.Figure 12A is a partly cut-away perspective view of catheter300 in the retracted position thereof.Figure 12B is a perspective view of catheter 300 in the extended position thereof.Figure 12C is an end-on view of catheter 300 in the retracted position thereof. Catheter 300 includes a flexible cylindrical inner sleeve 302 slidably mounted in a flexible cylindrical outer sleeve 304. Connecting distal end 306 of inner sleeve 302 to distal end 308 of outer sleeve 304 are four flexible rectangular strips 310. When inner sleeve 302 is in the extended position thereof relative to outer sleeve 304, strips 310 are flush against inner sleeve 302, as shown inFigure 12B . When inner sleeve 302 is in the retracted position thereof relative to outer sleeve 304, strips 310 bow outward in circular arcs, as shown inFigure 12A . - Catheter 300 includes a set of three orthogonal electromagnetic field component sensors 316, 318 and 320, in the manner of receiver 14 of
Figure 1 . First sensor 316 includes coils 316a and 316b mounted on opposite lateral edges 312a and 314a of strip 310a and on opposite lateral edges 312c and 314c of strip 310c. Coil 316a is mounted on lateral edges 312a and 312c. Coil 316b is mounted on lateral edges 314a and 314b. Second sensor 318 includes coils 318a and 318b mounted on opposite lateral edges 312b and 314b of strip 310b and on opposite lateral edges 312d and 314d of strip 310d. Coil 318a is mounted on lateral edges 312b and 312d. Coil 318b is mounted on lateral edges 314b and 314d. Third sensor 320 includes coils 320a and 320b. Inner sleeve 302 is cut away inFigure 12A to show coils 320a and 320b. For illustrational clarity, the wires of coils 316a and 318a are shown inFigures 12A and12B as dashed lines, and only two turns are shown for each coil, although in practice at least nine turns of 45-micron-diameter copper wire are used. Note that the wires of coil 316a run through inner sleeve 302, from lateral edge 312a to lateral edge 312c, and do not terminate at the intersection of lateral edges 312a and 312c with inner sleeve 302. Similarly, the wires of coil 318a do not terminate at the intersection of lateral edges 312b and 312d with inner sleeve 302, but instead run from lateral edge 312b to lateral edge 312d. Also for illustrational clarity, lateral edges 312 are shown much wider than they really are in catheter 300. Coils 320a and 320b are wound around a permeable core (not shown). - In a catheter 300, the length of inner sleeve 302 exceeds the length of outer sleeve 304 by 15.7mm in the extended position. Also in a typical embodiment of catheter 300, each of coils 320a and 320b is about 1.1mm long and about 1.1mm in diameter and includes about 400 turns of 10 micron diameter copper wire.
- Coils 320a and 320b are parallel and equidistant from a central point 322. When catheter 300 is opened to the retracted position thereof, as shown in
Figures 12A and12C , the circular arcs formed by strips 310 are concentric with point 322. This makes coils 316a, 316b, 318a and 318b circular and concentric with point 322, with coils 316a and 316b being mutually parallel, and with coils 318a and 318b being mutually parallel, so that point 322 then becomes the reference point for electromagnetic field measurements. - In the extended position thereof, catheter 300 is thin enough, preferably less than about 2mm in diameter, to be inserted via the blood vessels of a patient into the patient's heart: Once the distal end of catheter 300 is inside the desired chamber of the patient's heart, inner sleeve 302 is withdrawn relative to outer sleeve 304 to put catheter 300 in the retracted position thereof. Sensors 316, 318 and 320 are used in conjunction with transmitter 24 in the manner described below to determine the location and orientation of the distal end of catheter 300 within the patient's heart.
- Mounted on outward faces 324 of strips 310 are four electrodes 326. Mounted on distal end 306 of inner sleeve 302 is an electrode 328. Electrodes 326 and 328 may be used for electrophysiologic mapping of the patient's heart. Alternatively, high RF power levels may be applied to selected heart tissue via electrode 328 to ablate that tissue in the treatment of conditions such as ventricular tachycardia.
-
Figures 13A and13B illustrate the distal end of an alternative embodiment 400 of the cardiac catheter of the present invention.Figure 13A is a partly cut-away side view of catheter 400 in the retracted position thereof.Figure 13B is an end-on view of catheter 400 in the retracted position thereof. Like catheter 300, catheter 400 includes a flexible cylindrical inner sleeve 402 slidably mounted in a flexible cylindrical outer sleeve 404. Connecting distal end 406 of inner sleeve 402 to distal end 408 of outer sleeve 404 is a single flexible member: an inflatable latex balloon 410. When inner sleeve 402 is in the extended position thereof relative to outer sleeve 404, balloon 410 is flush against inner sleeve 402. After the illustrated distal end of catheter 400 has been introduced to the targeted chamber of a patient's heart, inner sleeve 402 is withdrawn to the retracted position thereof, and balloon 410 is inflated to assume a spherical shape. - Like catheter 300, catheter 400 includes a set of three orthogonal electromagnetic field component sensors 416, 418 and 420, in the manner of receiver 14 of
Figure 1 . First sensor 416 includes parallel coils 416a and 416b mounted as shown on outer surface 412 of balloon 410. Second sensor 418 includes parallel coils 418a and 418b mounted orthogonally to coils 416a and 416b on outer surface 412, as shown. Third sensor 420 includes coils 420a and 420b. Balloon 410 and inner sleeve 402 are cut away inFigure 13A to show coils 420a and 420b. Coils 420a and 420b are parallel and equidistant from a central point 422. When catheter 400 is opened to the retracted position thereof and balloon 410 is inflated to a spherical shape, outer surface 412 is a sphere concentric with point 422. This makes coils 416a, 416b, 418a and 418b circular and concentric with point 422, so that point 422 then becomes the reference point for electromagnetic field measurements. - Also as in the case of catheter 300, catheter 400 includes four electrodes 426, similar to electrodes 326, mounted on outer surface 412, and an electrode 428, similar to electrode 328, mounted on distal end 406 of inner sleeve 402.
-
Figure 6 is a plan view of loop antennas 26, 28 and 30. Loop antenna 26 is a rectangle with legs 26a, 26b, 26c and 26d. Loop antenna 28 is a rectangle of the same shape and size as loop antenna 26, and with legs 28a, 28b, 28c and 28d. Legs 26b and 28d are adjacent. Loop antenna 30 also is rectangular, with legs 30a, 30b, 30c and 30d. Leg 30a overlies legs 26a and 28a; leg 30b overlies the upper half of leg 28b; and leg 30d overlies the upper half of leg 26d, so that loop antenna 30 overlaps half of loop antenna 26 and half of loop antenna 28. Also shown in phantom inFigure 6 is a fourth rectangular loop antenna 46 and a fifth rectangular loop antenna 48 that are not part of transmitter 24 but are referred to in the explanation below. Loop antenna 46 is of the same shape and size as loop antenna 30, and overlaps the halves of loop antennas 26 and 28 that are not overlapped by loop antenna 30. Loop antenna 48 matches the outer perimeter defined by loop antennas 26 and 28. - To understand the preferred mode of the operation of the system of the present invention, it is helpful to consider first a less preferred mode, based on time domain multiplexing, of operating a similar system that includes all five loop antennas of
Figure 6 . In this less preferred mode, loop antenna 48 is energized using a sinusoidal current of angular frequency ω1. Then, loop antennas 26 and 28 are energized by oppositely directed sinusoidal currents of angular frequency ω1. Finally, loop antennas 30 and 46 are energized by oppositely directed sinusoidal currents of angular frequency ω1. The idea of this energization sequence is to produce, first, a field above the transmitter that is spatially symmetric in both the horizontal and the vertical direction as seen inFigure 6 , then a field above the transmitter that is antisymmetric in the horizontal direction and symmetric in the vertical direction, and finally a field that is symmetric in the horizontal direction and antisymmetric in the vertical direction. These three fields are linearly independent, and all three fields have significant amplitude all the way across the transmitter. The signals output by the three sensors of receiver 14 in response to the electromagnetic waves so generated are sampled at times tm by reception circuitry 34. The sampled signals are:
where i indexes the sensor that receives the corresponding signal. Coefficients c 0 i,l, ch i,l and cv i,l are the in-phase amplitudes of the received signals. Coefficients c 0 i,2, ch i,2 and cv i,2 are the quadrature amplitudes of the received signals. Because ω1 is sufficiently low that receiver 14 is in the near fields generated by the loop antennas, in principle the quadrature amplitudes should be identically zero. Because of inevitable phase distortions, for example in reception circuitry 34, the quadrature amplitudes generally are not zero. - Note that amplitudes c 0 i,j , ch i,j and cv i,j (j=1,2) could be obtained by using only loop antennas 26, 28 and 30. The sampled signals obtained by energizing loop antennas 26, 28 and 30 separately with identical sinusoidal currents of angular frequency ω1 are:
the coefficients c 1 i , c3 i and c 5 i being in-phase amplitudes and the coefficients c 2 i , c 4 i and c 6 i being quadrature amplitudes. Because the field radiated by loop antennas 26 and 28 when identical currents J flow therein is the same as the field generated by loop antenna 48 when current J flows therein,
By definition,
Finally, the fact that the field radiated by loop antenna 48 could also be emulated by identical currents flowing through loops 30 and 46 gives - In the preferred mode of the operation of the system of the present invention, loop antennas 26, 28 and 30 are energized simultaneously with sinusoidal currents of angular frequencies ω1, ω2 and ω3, respectively. The sampled signals now are S im = c i1cosω1 tm + c i2sinω1 tm + c i3cosω2 tm + ci4 sinω2 tm + ci5cosω3 tm + ci6 sinω3 tm (7) Note that now, amplitudes c i1 and c i2 refer to frequency ω1, amplitudes c i3 and c i4 refer to frequency ω2, and amplitudes ci5 and ci6 refer to frequency ω3. The sampled signals are organized in a matrix s of three rows, one row for each sensor of receiver 14, and as many columns as there are times tm, one column per time. Amplitudes cij are organized in a matrix c of three rows and six columns. The matrices s and c are related by a matrix A of six rows and as many columns as there are in matrix s:
Almost always, there are many more than six columns in matrix s, making equation (8) highly overdetermined. Because the transmission frequencies and the reception times are known, matrix A is known. Equation (8) is solved by right-multiplying both sides by a right inverse of matrix A: a matrix, denoted as A-1 , such that AA-1 = I, where I is the 6x6 identity matrix. Right inverse matrix A-1 is not unique. A particular right inverse matrix A-1 may be selected by criteria that are well known in the art. For example, A-1 may be the right inverse of A of smallest L2 norm. Alternatively, matrix c is determined as the generalized inverse of equation (8):
where the superscript "T" means "transpose". The generalized inverse has the advantage of being an implicit least squares solution of equation (8). - In the special case of evenly sampled times tm , solving equation (8) is mathematically equivalent to the cross-correlation of
WO 96/05768 - Because receiver 14 is in the near field of transmitter 24, coefficients cij of equation (7) are the same as coefficients cj i . It follows that equations (1)-(6) still hold, and either of two 3x3 matrices M can be formed from the elements of matrix c for further processing according to the description in co-pending Israel Patent Application
122578
or a quadrature matrix
Note that because the system is a closed-loop system, there is no sign ambiguity in M, unlike the corresponding matrix of co-pending Israel Patent Application122578 - Let T be the orthonormal matrix that defines the rotation of probe 10 relative to the reference frame of transmitter 24. Write M in the following form:
where T0 is an orthogonal matrix and E is in general a nonorthogonal matrix. In general, T 0 and E are functions of the position of probe 10 relative to the reference frame of transmitter 24. Let
W 2 is real and symmetric, and so can be written as W2 = Pd2PT = (PdPT)2, where d2 is a diagonal matrix whose diagonal elements are the (real and positive) eigenvalues of W 2 and where P is a matrix whose columns are the corresponding eigenvectors of W2 Then W = PdPT = E also is symmetric. Substituting in equation (12) gives:
so that
If T 0 is known, then T , and hence the orientation of probe 10 with respect to the reference frame of transmitter 24, can be computed using equation (15). - For any particular configuration of the antennas of transmitter 24. T 0 may be determined by either of two different calibration procedures.
-
- There are two variants of the theoretical calibration procedure, both of which exploit reciprocity to treat receiver 14 as a transmitter and transmitter 24 as a receiver. The first variant exploits the principle of reciprocity. The sensor elements are modeled as point sources, including as many terms in their multipole expansions as are necessary for accuracy, and their transmitted magnetic fields in the plane of transmitter 24 are calculated at a succession of positions relative thereto, also with probe 10 oriented so that T is a unit matrix. The EMF induced in the antennas of transmitter 24 by these time-varying magnetic fields is calculated using Faraday's law. The transfer function of reception circuitry 34 then is used to compute M at each calibration position, and equation (16) gives T 0 at each calibration position. In the second variant, the magnetic field generated by each antenna of transmitter 24 at the three frequencies ω1, ω2 and ω3 is modeled using the Biot-Savart law. Note that each frequency corresponds to a different sensor 16, 18 or 20. The signal received at each sensor is proportional to the projection of the magnetic field on the sensitivity direction of the sensor when object 10 is oriented so that T is a unit matrix. This gives the corresponding column of M up to a multiplicative constant and up to a correction based on the transfer function of reception circuitry 34.
- To interpolate T 0 at other positions, a functional expression for T 0 is fitted to the measured values of T 0. Preferably, this functional expression is a polynomial. It has been found most preferable to express the Euler angles α,β and y that define T 0 as the following 36-term polynomials. The arguments of these polynomials are not direct functions of Cartesian coordinates x, y and z, but are combinations of certain elements of matrix W that resemble x, y and z, specifically, a = W 13/(W 11+W 33), which resembles x; b = W23 /W22+W33), which resembles y, and c = log(1/W 33), which resembles z. Using a direct product notation, the 36-term polynomials can be expressed as:
where AZcoe, ELcoe and RLcoe are 36-component vectors of the azimuth coefficients, elevation coefficients and roll coefficients that are fitted to the measured or calculated values of the Euler angles. Note that to fit these 36-component vectors, the calibration procedure must be carried out at at least 36 calibration positions. At each calibration position, W is computed from M using equation (13), and the position-like variables a, b and c are computed from W as above. - Similarly, the Cartesian coordinates x, y and z of probe 10 relative to the reference frame of transmitter 24 may be expressed as polynomials. It has been found most preferable to express x, y and z as the, following 36-tern polynomials:
where Xcoe, Ycoe and Zcoe are 36-component vectors of the x-coefficients, the y-coefficients, and the z-coefficients, respectively; and d = log(c). As in the case of the Euler angles, these position coordinate coefficients are determined by either measuring or computing M at at least 36 calibration positions and fitting the resulting values of a, b and c to the known calibration values of x, y and z. Equations (17) through (22) may be used subsequently to infer the Cartesian coordinates and Euler angles of moving and rotating probe 10 noniteratively from measured values of M. -
Figures 7A, 7B and 7C show three alternative configurations of paired adjacent loop antennas 26' and 28'. The arrows indicate the direction of current flow that emulates a single loop antenna coincident with the outer perimeter of antennas 26' and 28'. Other useful coplanar overlapping antenna configurations are described inPCT Publication No. WO 96/03188 -
Figure 8 is a schematic block diagram of driving circuitry 32 for driving a generic antenna 25 that represents any one of loop antennas 26, 28 or 30. A digital signal generator 50 generates samples of a sinusoid that are converted to an analog signal by a D/A converter 52. This analog signal is amplified by an amplifier 54 and sent to the positive input 60 of a differential amplifier 58. Loop antenna 25 is connected both to the output 64 of differential amplifier 58 and to the negative input 62 of differential amplifier 58. Negative input 62 also is grounded via a resistor 66. The feedback loop thus set up drives antenna 25 at the frequency of the sinusoid generated by signal generator 50, and makes antenna 25 appear to be an open circuit at all other frequencies. - Unlike the circuitry of
WO 97/36143 Figure 8 decouples loop antenna 25 from the other loop antennas. The advantage of the present invention overWO 97/36143 WO 97/36143 WO 97/36143 -
Figure 9 shows, schematically, a C-mount fluoroscope 80 modified for simultaneous real-time image acquisition and intrabody navigation. Fluoroscope 80 includes the conventional components of a C-mount fluoroscope: an x-ray source 82 and an image acquisition module 84 mounted on opposite ends of a C-mount 78, and a table 86 whereon the patient lies. Image acquisition module 84 converting x-rays that transit the patient on table 86 into electronic signals representative of a 2D image of the patient. C-mount 78 is pivotable about an axis 76 to allow the imaging of the patient from several angles, thereby allowing the reconstruction of a 3D image of the patient from successive 2D images. In addition, either a receiver 114, similar to receiver 14, or transmitter 24, is rigidly mounted on C-mount 78. Receiver 114 or transmitter 24 serves to define a frame of reference that is fixed relative to C-mount 78. The other components shown inFigure 1 , i.e., driving circuitry 32, reception circuitry 34, and control/processing unit 36, are connected to transmitter 24 and to receiver 14 in probe 10 as described above in connection withFigure 1 . In addition, signals from receiver 114 that correspond to the electromagnetic waves generated by transmitter 24' are sent to reception circuitry 134 that is identical to reception circuitry 34, and controller/processor 36 directs the reception of received signals by reception circuitry 134 and the acquisition of an image of the patient by image acquisition module 84 of fluoroscope 80. - By determining the position and orientation of probe 10 relative to the frame of reference defined by transmitter 24, controller/processor 36 determines the position and orientation of probe 10 relative to each acquired 2D image. Alternatively, the electromagnetic signals are transmitted by a transmitter 24' that is not attached to C-mount 78, and controller/processor 36 determines the position and orientation of probe 10 relative to the 2D images by determining the positions and orientations of receivers 14 and 114 relative to transmitter 24'. Controller/processor 36 synthesizes a combined image that includes both the 3D image of the patient acquired by fluoroscope 80 and an icon representing probe 10 positioned and oriented with respect to the 3D image of the patient in the same way as probe 10 is positioned and oriented with respect to the interior of the patient. Controller/processor 36 then displays this combined image on a monitor 92.
- C-mount fluoroscope 80 is illustrative rather than limitative. The application includes all suitable devices for acquiring 2D or 3D images of the interior of a patient, in modalities including CT, MRI and ultrasound in addition to fluoroscopy.
- Under certain circumstances, the image acquisition and the intrabody navigation may be done sequentially, rather than simultaneously. This is advantageous if the medical imaging facilities and the medical treatment facilities can not be kept in the same location. For example, the human skull is sufficiently rigid that if a receiver of the present invention is rigidly mounted on the head of a patient using an appropriate headband, then the position and orientation of the receiver is a sufficient accurate representation of the position and orientation of the patient's head to allow intracranial navigation.
Figure 11 shows a head 94 of a patient inside a (cut-away) CT scanner 98. As in the case of fluoroscope 80 ofFigure 9 , receiver 114 and transmitter 24 are rigidly attached to CT scanner 98, transmitter 24 being so attached via an arm 100. CT scanner 98 acquires 2D x-ray images of successive horizontal slices of head 94. A receiver 214 is rigidly mounted on head 94 using a headband 96. As the 2D images are acquired, the position and orientation of receiver 214 with respect to each image is determined by the methods described above for determining the position and orientation of probe 10 with respect to the 2D images acquired by fluoroscope 80. These positions and orientations are stored, along with the 2D images, in control/processing unit 36. Subsequently, during medical treatment of head 94 that requires navigation of probe 10 through head 94, the position and orientation of probe 10 in head 94 is determined using signals from receivers 14 and 214 in the manner described above for positioning and orienting probe 10 with respect to C-mount 78 of fluoroscope 80 using receivers 14 and 114. Given, now, for each 2D CT image, the position and orientation of probe 10 with respect to receiver 214 and the position and orientation of receiver 214 with respect to that 2D image, it is trivial to determine the position and orientation of probe 10 with respect to that 2D image. As in the case of the simultaneous imaging and navigation depicted inFigure 9 , controller/processor 36 now synthesizes a combined image that includes both the 3D image of head 94 acquired by CT scanner 98 and an icon representing probe 10 positioned and oriented with respect to the 3D image of head 94 in the same way as probe 10 is positioned and oriented with respect to head 94. Controller/processor 36 then displays this combined image on monitor 92. - As in the case of fluoroscope 80, CT scanner 98 is illustrative rather than limitative. The application includes all suitable devices for acquiring 2D or 3D images of a limb of a patient, in modalities including MRI, ultrasound and fluoroscopy in addition to CT. Note that this method of image acquisition followed by intrabody navigation allows the a centrally located imaging device to serve several medical treatment facilities.
-
Figure 14 is a partially exploded, partial perspective view of a modified C-mount fluoroscope 80'. Like C-mount fluoroscope 80, C-mount fluoroscope 80' includes an x-ray source 84 and an image acquisition module 82 at opposite ends of a C-mount 78. Image acquisition module 82 includes an image intensifier 83, a front face 85 whereof faces x-ray source 84, and a CCD camera 87, mounted on the end of image intensifier 83 that is opposite front face 85, for acquiring images that are intensified by image intensifier 83. Image intensifier 83 is housed in a cylindrical housing 91. In addition, fluoroscope 80' includes an annular compensator 500 made of a magnetically permeable material such as mu-metal. - The need for compensator 500 derives from the fact that front face 85 is electrically conductive. The electromagnetic waves generated by transmitter 24 or 24' induce eddy currents in front face 85 that distort the electromagnetic field sensed by receiver 14. Placing a mass of a magnetically permeable substance such as mu-metal in the proper spatial relationship with front face 85 suppresses this distortion. This is taught, for example, in
U. S. Patent 5,760,335, to Gilboa , which patent is incorporated by reference for all purposes as if fully set forth herein, in the context of shielding a CRT from external radiation without perturbing the electromagnetic field external to the CRT. - Preferably, compensator 500 is a ring, 5 cm in axial length, of mu metal foil 0.5 mm thick. Compensator 500 is slidably mounted on the external surface 89 of cylindrical housing 91, as indicated by double-headed arrows 504, and is held in place by friction. It is straightforward for one ordinarily skilled in the art to select a position of compensator 500 on housing 91 that provides the optimal suppression of distortions of the electromagnetic field outside image intensifier 83 due to eddy currents in front face 85.
- It often is desirable to retrofit a new apparatus such as receiver 14 to an existing catheter rather than to design a new probe 10 that includes both the new apparatus and the functionality of an already existing probe. This retrofit capability is particularly important if probe 10 would have been used for medical applications, and both the apparatus and the existing probe had already been approved for medical applications by the relevant regulatory bodies. Such a retrofit capability then would preclude the need to obtain regulatory approval for the new probe, a process that often is both expensive and time-consuming.
-
Figure 16 illustrates just such a retrofit capability, for adapting a satellite 550 to a substantially cylindrical catheter 552 for invasively probing or treating a body cavity such as a chamber of the heart. Satellite 550 is an instrumentation capsule that may contain receiver 14 or any other medically useful apparatus. For example, satellite 550 may contain an apparatus for ablating cardiac tissue. A catheter such as catheter 552 is introduced to the body cavity of a patient via the patient's blood vessels, via an introducer sheath. It is important that the external diameter of the introducer sheath be minimized, to reduce the risk of bleeding by the patient. Consequently, the external diameter of catheter 552 also must be minimized, and any scheme for retrofitting satellite 550 to catheter 552 must allow satellite 550 to be introduced into the introducer sheath along with catheter 552. It is the latter requirement that generally precludes simply attaching satellite 550 to catheter 552. In addition, if satellite 550 includes receiver 14, with the intention of using receiver 14 to track the position and orientation of catheter 550, then, when satellite 550 and catheter 552 are deployed within the body cavity, satellite 550 must have a fixed position and orientation relative to catheter 552. - The retrofitting scheme of
Figure 16 achieves these ends by providing satellite 550 and catheter 552 with a mechanism for providing only a loose mechanical connection between satellite 550 and catheter 552 as satellite 550 and catheter 552 are introduced to the body cavity, and only then securing satellite 550 to catheter 552 at a fixed position and orientation relative to catheter 552.Figure 16A shows a thin flexible tether 554 attached to proximal end 556 of satellite 550. Tether 554 provides a mechanical link to the outside of the patient. Depending on the instrumentation installed in tether 554, tether 554 may also provide a communications link to the outside of the patient. For example, if satellite 550 includes receiver 14, then extensions of wire pairs 38 are included in tether 554. Rigidly attached to tether 554 is a hollow cylindrical sleeve 558 whose inner diameter is the same as the outer diameter of catheter 552. - The remainder of the mechanism for reversibly securing satellite 550 to catheter 552 is shown in
Figure 16B . Catheter 552 is provided, near distal end 564 thereof, with a pocket 560 made of a flexible, resilient, elastic material. Pocket 560 is attached rigidly to the outer surface of catheter 552. Pocket 560 includes an aperture 562, which is adjacent catheter 552 at the proximal end of catheter 552, and which accommodates tether 554. Pocket 560 is sized to accommodate satellite 550 snugly therein via an opening in distal end 566 of pocket 560. - Satellite 550, catheter 552 and the associated securing mechanism are assembled as shown in
Figure 16C , with tether 554 running through aperture 562, sleeve 558 encircling catheter 552 proximal of pocket 560. and satellite 550 distal of pocket 560. Catheter 552 and tether 554 are shown emerging from the distal end of a protective jacket 568. Preferably, sleeve 558 is made of a low-friction material such as Teflon™, to allow sleeve 558 to slide freely along catheter 552. The assembly shown inFigure 16C is introduced to the introducer sheath with satellite 550 in front of catheter 552. During this introduction, pocket 560 is compressed against the outer surface of catheter 552 by the introducer sheath. Tether 554 is sufficiently flexible to bend along with catheter 552 and jacket 568 as the assembly shown inFigure 16C passes through the patient's blood vessels, but is sufficiently rigid to push satellite 550 ahead of distal end 564 of catheter 552 as catheter 552 is inserted into the patient. As a result, satellite 550 and distal end 564 of catheter 552 reach interior of the targeted body cavity in the configuration illustrated inFigure 16C . At this point, pocket 560 opens, and tether 554 is pulled to withdraw satellite 550 into pocket 560 via the opening in distal end 566 of pocket 560. Satellite 550 and tether 554 now are held by pocket 560, sleeve 558 and jacket 568 in a fixed position and orientation relative to catheter 552, as illustrated inFigure 16D . - Subsequent to treatment, tether 554 is pushed to restore the configuration shown in
figure 16C , to allow catheter 552 and satellite 550 to be withdrawn from the patient. - While the invention has been described with respect to a limited number of embodiments, it will be appreciated that many variations, modifications and other applications of the invention may be made within the scope defined by the appended claims.
Claims (2)
- A system for tracking a position and an orientation of a probe (10), comprising:three sensors (16, 18, 20') each for detecting a different component of a vector force field, two sensors (16, 18) of said three sensors including two sensor elements (16a, 16b, 18a, 18b) disposed symmetrically about a common reference point (22) in the probe (10), said three sensors (16, 18, 20) being mounted inside the probe (10), whereinanother sensor (20') of said three sensors is centered on said common reference point (22), and said sensor elements (16a, 16b, 18a, 18b) and said other sensor (20') are disposed collinearly along a longitudinal axis (12) of the probe (10) characterized in thateach of said sensor elements (16a, 16b, 18a, 18b) exclusively consists of a coil of conducting wire wound on a respective ferrite core (70), and said other sensor (20') exclusively of a single coil of conducting wire wound on a ferrite core, andwherein said single coil of said other sensor (20') is oriented parallel to said longitudinal axis (12), and said coils of said sensor elements are oriented perpendicular to said longitudinal axis (12).
- The system of claim 1, wherein the coils of each sensor element pair are mutually parallel, coils of one sensor element pair being perpendicular to coils of the other sensor element pair.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IL12562698A IL125626D0 (en) | 1998-08-02 | 1998-08-02 | Intrabody navigation system for medical applications |
IL12562698 | 1998-08-02 | ||
IL12681498A IL126814D0 (en) | 1998-10-29 | 1998-10-29 | Intrabody navigation system for medical applications |
IL12681498 | 1998-10-29 | ||
PCT/IL1999/000371 WO2000010456A1 (en) | 1998-08-02 | 1999-07-07 | Intrabody navigation system for medical applications |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20080158218 EP2100557B1 (en) | 1998-08-02 | 1999-07-07 | Intrabody navigation system for medical applications |
EP20100182338 EP2279692A3 (en) | 1998-08-02 | 1999-07-07 | Intrabody navigation system for medical applications |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20080158218 Division EP2100557B1 (en) | 1998-08-02 | 1999-07-07 | Intrabody navigation system for medical applications |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1100373A1 EP1100373A1 (en) | 2001-05-23 |
EP1100373A4 EP1100373A4 (en) | 2005-01-05 |
EP1100373B1 true EP1100373B1 (en) | 2008-09-03 |
Family
ID=26323687
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19990929671 Expired - Lifetime EP1100373B1 (en) | 1998-08-02 | 1999-07-07 | Intrabody navigation system for medical applications |
EP20100182338 Withdrawn EP2279692A3 (en) | 1998-08-02 | 1999-07-07 | Intrabody navigation system for medical applications |
EP20080158218 Expired - Lifetime EP2100557B1 (en) | 1998-08-02 | 1999-07-07 | Intrabody navigation system for medical applications |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20100182338 Withdrawn EP2279692A3 (en) | 1998-08-02 | 1999-07-07 | Intrabody navigation system for medical applications |
EP20080158218 Expired - Lifetime EP2100557B1 (en) | 1998-08-02 | 1999-07-07 | Intrabody navigation system for medical applications |
Country Status (6)
Country | Link |
---|---|
US (6) | US6593884B1 (en) |
EP (3) | EP1100373B1 (en) |
JP (5) | JP2003524443A (en) |
AU (1) | AU4644799A (en) |
DE (1) | DE69939471D1 (en) |
WO (1) | WO2000010456A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008062351A1 (en) * | 2008-12-18 | 2010-06-24 | Siemens Aktiengesellschaft | Minimal-invasive medical device for navigating medical object in patient body, has field coil and/or field generator integrated in patient positioning plate of patient positioning table, where field coil and/or coil includes titanium |
Families Citing this family (486)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003524443A (en) * | 1998-08-02 | 2003-08-19 | スーパー ディメンション リミテッド | Medical body guidance system |
US20070088416A1 (en) | 2001-04-13 | 2007-04-19 | Surgi-Vision, Inc. | Mri compatible medical leads |
US8977355B2 (en) | 2001-04-13 | 2015-03-10 | Greatbatch Ltd. | EMI filter employing a capacitor and an inductor tank circuit having optimum component values |
US8600519B2 (en) | 2001-04-13 | 2013-12-03 | Greatbatch Ltd. | Transient voltage/current protection system for electronic circuits associated with implanted leads |
US8457760B2 (en) | 2001-04-13 | 2013-06-04 | Greatbatch Ltd. | Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment |
US9295828B2 (en) | 2001-04-13 | 2016-03-29 | Greatbatch Ltd. | Self-resonant inductor wound portion of an implantable lead for enhanced MRI compatibility of active implantable medical devices |
US8219208B2 (en) | 2001-04-13 | 2012-07-10 | Greatbatch Ltd. | Frequency selective passive component networks for active implantable medical devices utilizing an energy dissipating surface |
US6701176B1 (en) | 1998-11-04 | 2004-03-02 | Johns Hopkins University School Of Medicine | Magnetic-resonance-guided imaging, electrophysiology, and ablation |
US8989870B2 (en) | 2001-04-13 | 2015-03-24 | Greatbatch Ltd. | Tuned energy balanced system for minimizing heating and/or to provide EMI protection of implanted leads in a high power electromagnetic field environment |
US8509913B2 (en) | 2001-04-13 | 2013-08-13 | Greatbatch Ltd. | Switched diverter circuits for minimizing heating of an implanted lead and/or providing EMI protection in a high power electromagnetic field environment |
US8244370B2 (en) | 2001-04-13 | 2012-08-14 | Greatbatch Ltd. | Band stop filter employing a capacitor and an inductor tank circuit to enhance MRI compatibility of active medical devices |
US7844319B2 (en) * | 1998-11-04 | 2010-11-30 | Susil Robert C | Systems and methods for magnetic-resonance-guided interventional procedures |
US7386339B2 (en) | 1999-05-18 | 2008-06-10 | Mediguide Ltd. | Medical imaging and navigation system |
US7778688B2 (en) | 1999-05-18 | 2010-08-17 | MediGuide, Ltd. | System and method for delivering a stent to a selected position within a lumen |
US9833167B2 (en) | 1999-05-18 | 2017-12-05 | Mediguide Ltd. | Method and system for superimposing virtual anatomical landmarks on an image |
US9572519B2 (en) | 1999-05-18 | 2017-02-21 | Mediguide Ltd. | Method and apparatus for invasive device tracking using organ timing signal generated from MPS sensors |
US7343195B2 (en) * | 1999-05-18 | 2008-03-11 | Mediguide Ltd. | Method and apparatus for real time quantitative three-dimensional image reconstruction of a moving organ and intra-body navigation |
US7840252B2 (en) | 1999-05-18 | 2010-11-23 | MediGuide, Ltd. | Method and system for determining a three dimensional representation of a tubular organ |
AU1607600A (en) | 1999-07-26 | 2001-02-13 | Super Dimension Ltd. | Linking of an intra-body tracking system to external reference coordinates |
US6996430B1 (en) * | 1999-08-16 | 2006-02-07 | Super Dimension Ltd | Method and system for displaying cross-sectional images of a body |
US6702780B1 (en) | 1999-09-08 | 2004-03-09 | Super Dimension Ltd. | Steering configuration for catheter with rigid distal device |
US6493573B1 (en) * | 1999-10-28 | 2002-12-10 | Winchester Development Associates | Method and system for navigating a catheter probe in the presence of field-influencing objects |
AU2472101A (en) | 2000-01-10 | 2001-08-07 | Super Dimension Ltd | Methods and systems for performing medical procedures with reference to projective images and with respect to pre-stored images |
AU4100801A (en) * | 2000-03-09 | 2001-09-17 | Super Dimension Ltd | Object tracking using a single sensor or a pair of sensors |
WO2001075465A1 (en) * | 2000-03-30 | 2001-10-11 | Case Western Reserve University | Mr invasive device and method for active mr guidance of invasive devices with target navigation |
US6858005B2 (en) | 2000-04-03 | 2005-02-22 | Neo Guide Systems, Inc. | Tendon-driven endoscope and methods of insertion |
US6610007B2 (en) | 2000-04-03 | 2003-08-26 | Neoguide Systems, Inc. | Steerable segmented endoscope and method of insertion |
US6468203B2 (en) | 2000-04-03 | 2002-10-22 | Neoguide Systems, Inc. | Steerable endoscope and improved method of insertion |
US8517923B2 (en) | 2000-04-03 | 2013-08-27 | Intuitive Surgical Operations, Inc. | Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities |
US8888688B2 (en) | 2000-04-03 | 2014-11-18 | Intuitive Surgical Operations, Inc. | Connector device for a controllable instrument |
AU5250801A (en) | 2000-04-21 | 2001-11-07 | Super Dimension Ltd. | System and method for intravascular catheter navigation |
DE10027782A1 (en) * | 2000-06-07 | 2001-12-13 | Biotronik Mess & Therapieg | System for determining the intracorporal position of a working catheter |
US7555333B2 (en) | 2000-06-19 | 2009-06-30 | University Of Washington | Integrated optical scanning image acquisition and display |
US6820614B2 (en) | 2000-12-02 | 2004-11-23 | The Bonutti 2003 Trust -A | Tracheal intubination |
GB0031287D0 (en) * | 2000-12-21 | 2001-01-31 | Oxford Instr Ltd | Magnetic field generating system and method |
US7519421B2 (en) * | 2001-01-16 | 2009-04-14 | Kenergy, Inc. | Vagal nerve stimulation using vascular implanted devices for treatment of atrial fibrillation |
US20030018251A1 (en) * | 2001-04-06 | 2003-01-23 | Stephen Solomon | Cardiological mapping and navigation system |
US8447414B2 (en) | 2008-12-17 | 2013-05-21 | Greatbatch Ltd. | Switched safety protection circuit for an AIMD system during exposure to high power electromagnetic fields |
US8903505B2 (en) | 2006-06-08 | 2014-12-02 | Greatbatch Ltd. | Implantable lead bandstop filter employing an inductive coil with parasitic capacitance to enhance MRI compatibility of active medical devices |
US8095224B2 (en) | 2009-03-19 | 2012-01-10 | Greatbatch Ltd. | EMI shielded conduit assembly for an active implantable medical device |
US8882763B2 (en) | 2010-01-12 | 2014-11-11 | Greatbatch Ltd. | Patient attached bonding strap for energy dissipation from a probe or a catheter during magnetic resonance imaging |
CA2482202C (en) | 2001-04-13 | 2012-07-03 | Surgi-Vision, Inc. | Systems and methods for magnetic-resonance-guided interventional procedures |
US8202315B2 (en) | 2001-04-24 | 2012-06-19 | Mitralign, Inc. | Catheter-based annuloplasty using ventricularly positioned catheter |
US6792303B2 (en) | 2001-05-11 | 2004-09-14 | Scimed Life Systems, Inc. | Apparatus for improved sensor accuracy |
IL143260A (en) | 2001-05-20 | 2006-09-05 | Given Imaging Ltd | Array system and method for locating an in vivo signal source |
US6636757B1 (en) * | 2001-06-04 | 2003-10-21 | Surgical Navigation Technologies, Inc. | Method and apparatus for electromagnetic navigation of a surgical probe near a metal object |
ITSV20010020A1 (en) * | 2001-06-08 | 2002-12-09 | Esaote Spa | Machine for the acquisition of images of the internal area of a body in particular for the acquisition of diagnostic images |
US9149175B2 (en) | 2001-07-26 | 2015-10-06 | Given Imaging Ltd. | Apparatus and method for light control in an in-vivo imaging device |
US6619838B2 (en) | 2001-08-22 | 2003-09-16 | Scimed Life Systems, Inc. | Two-piece sensor assembly |
US8409167B2 (en) | 2004-07-19 | 2013-04-02 | Broncus Medical Inc | Devices for delivering substances through an extra-anatomic opening created in an airway |
JP2005501630A (en) | 2001-09-05 | 2005-01-20 | ギブン・イメージング・リミテッドGiven Imaging Ltd. | System and method for three-dimensional display of the body lumen |
US8428685B2 (en) | 2001-09-05 | 2013-04-23 | Given Imaging Ltd. | System and method for magnetically maneuvering an in vivo device |
US7907986B2 (en) | 2001-09-24 | 2011-03-15 | Given Imaging Ltd. | System and method for controlling a device in vivo |
US7194297B2 (en) * | 2001-11-13 | 2007-03-20 | Boston Scientific Scimed, Inc. | Impedance-matching apparatus and construction for intravascular device |
US9750425B2 (en) | 2004-03-23 | 2017-09-05 | Dune Medical Devices Ltd. | Graphical user interfaces (GUI), methods and apparatus for data presentation |
IL162696D0 (en) | 2002-01-09 | 2005-11-20 | Neoguide Systems Inc | Apparatus and method for endoscopiccolectomy |
DE10203371A1 (en) * | 2002-01-29 | 2003-08-07 | Siemens Ag | Intravascular catheter with magnetic component in tip, allows magnetic field generated to be varied after introducing catheter into patient |
US7285117B2 (en) | 2002-03-15 | 2007-10-23 | Boston Scientific Scimed, Inc. | Medical device control systems |
JP3869291B2 (en) * | 2002-03-25 | 2007-01-17 | オリンパス株式会社 | Capsule medical device |
US6774624B2 (en) | 2002-03-27 | 2004-08-10 | Ge Medical Systems Global Technology Company, Llc | Magnetic tracking system |
US7998062B2 (en) | 2004-03-29 | 2011-08-16 | Superdimension, Ltd. | Endoscope structures and techniques for navigating to a target in branched structure |
WO2003086498A2 (en) | 2002-04-17 | 2003-10-23 | Super Dimension Ltd. | Endoscope structures and techniques for navigating to a target in branched structure |
US6887236B2 (en) | 2002-05-03 | 2005-05-03 | Pinhas Gilboa | Multiple-electrode catheter assembly and method of operating such a catheter assembly |
US6904307B2 (en) | 2002-05-29 | 2005-06-07 | Surgi-Vision, Inc. | Magnetic resonance probes |
US6812700B2 (en) * | 2002-08-05 | 2004-11-02 | The Board Of Trustees Of The Leland Stanford Junior University | Correction of local field inhomogeneity in magnetic resonance imaging apparatus |
WO2004017102A2 (en) * | 2002-08-16 | 2004-02-26 | Brown University Research Foundation | Scanning magnetic microscope having improved magnetic sensor |
BR0315392A (en) | 2002-10-21 | 2005-08-23 | Mitralign Inc | Incrementing catheters and methods of performing annuloplasty |
US8864822B2 (en) | 2003-12-23 | 2014-10-21 | Mitralign, Inc. | Devices and methods for introducing elements into tissue |
US20050119735A1 (en) | 2002-10-21 | 2005-06-02 | Spence Paul A. | Tissue fastening systems and methods utilizing magnetic guidance |
CA2504613C (en) * | 2002-11-18 | 2012-01-31 | Mediguide Ltd. | Method and system for mounting an mps sensor on a catheter |
US8862204B2 (en) | 2002-11-18 | 2014-10-14 | Mediguide Ltd. | Reducing mechanical stress on conductors and connection points in a position determinable interventional medical device |
US7599730B2 (en) | 2002-11-19 | 2009-10-06 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US7697972B2 (en) | 2002-11-19 | 2010-04-13 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
EP1578260B1 (en) * | 2002-12-16 | 2012-10-24 | Given Imaging Ltd. | Device, system and method for selective activation of in vivo sensors |
JP2004208858A (en) * | 2002-12-27 | 2004-07-29 | Toshiba Corp | Ultrasonograph and ultrasonic image processing apparatus |
AU2003285701A1 (en) | 2003-01-07 | 2004-07-29 | Koninklijke Philips Electronics N.V. | Method and arrangement for tracking a medical instrument |
US8882657B2 (en) | 2003-03-07 | 2014-11-11 | Intuitive Surgical Operations, Inc. | Instrument having radio frequency identification systems and methods for use |
US20040176683A1 (en) * | 2003-03-07 | 2004-09-09 | Katherine Whitin | Method and apparatus for tracking insertion depth |
US6914427B2 (en) * | 2003-03-14 | 2005-07-05 | The Boeing Company | Eddy current probe having sensing elements defined by first and second elongated coils and an associated inspection method |
US7314448B2 (en) * | 2003-03-28 | 2008-01-01 | Scimed Life Systems, Inc. | Imaging transducer assembly |
US20040213172A1 (en) * | 2003-04-24 | 2004-10-28 | Myers Robert L. | Anti-spoofing system and method |
US7069362B2 (en) * | 2003-05-12 | 2006-06-27 | International Business Machines Corporation | Topology for shared memory computer system |
EP1643906A2 (en) | 2003-06-12 | 2006-04-12 | University of Utah Research Foundation | Apparatus, systems and methods for diagnosing carpal tunnel syndrome |
US7158754B2 (en) * | 2003-07-01 | 2007-01-02 | Ge Medical Systems Global Technology Company, Llc | Electromagnetic tracking system and method using a single-coil transmitter |
JP5033418B2 (en) | 2003-07-02 | 2012-09-26 | ギブン イメージング リミテッドGiven Imaging Ltd. | Imaging sensor array and apparatus and method using the same |
US8308682B2 (en) | 2003-07-18 | 2012-11-13 | Broncus Medical Inc. | Devices for maintaining patency of surgically created channels in tissue |
US7354398B2 (en) * | 2003-07-18 | 2008-04-08 | Pentax Corporation | Capsule-type device and capsule-type device controlling system |
US8403828B2 (en) * | 2003-07-21 | 2013-03-26 | Vanderbilt University | Ophthalmic orbital surgery apparatus and method and image-guide navigation system |
EP2316328B1 (en) | 2003-09-15 | 2012-05-09 | Super Dimension Ltd. | Wrap-around holding device for use with bronchoscopes |
ES2432616T3 (en) | 2003-09-15 | 2013-12-04 | Covidien Lp | Accessory system for use with bronchoscopes |
US6917833B2 (en) | 2003-09-16 | 2005-07-12 | Kenergy, Inc. | Omnidirectional antenna for wireless communication with implanted medical devices |
US20050062469A1 (en) * | 2003-09-23 | 2005-03-24 | Anderson Peter Traneus | System and method for hemisphere disambiguation in electromagnetic tracking systems |
US7425829B2 (en) | 2003-10-14 | 2008-09-16 | Merlin Technology, Inc. | Tracking positions of personnel, vehicles, and inanimate objects |
US20060074449A1 (en) * | 2003-11-03 | 2006-04-06 | Stephen Denker | Intravascular stimulation system with wireless power supply |
US7003350B2 (en) | 2003-11-03 | 2006-02-21 | Kenergy, Inc. | Intravenous cardiac pacing system with wireless power supply |
DE10354496B4 (en) * | 2003-11-21 | 2011-03-31 | Siemens Ag | Medical examination and / or treatment system |
US7901348B2 (en) * | 2003-12-12 | 2011-03-08 | University Of Washington | Catheterscope 3D guidance and interface system |
US7912531B1 (en) * | 2003-12-17 | 2011-03-22 | Advanced Cardiovascular Systems, Inc. | Magnetic resonance imaging coils |
DE10359981A1 (en) * | 2003-12-19 | 2005-07-21 | Siemens Ag | System and method for in vivo positioning and orientation determination of an endoscopy capsule or an endo-robot in the context of a wireless endoscopy |
US7166127B2 (en) * | 2003-12-23 | 2007-01-23 | Mitralign, Inc. | Tissue fastening systems and methods utilizing magnetic guidance |
US20080228266A1 (en) | 2007-03-13 | 2008-09-18 | Mitralign, Inc. | Plication assistance devices and methods |
JP4150663B2 (en) * | 2003-12-25 | 2008-09-17 | オリンパス株式会社 | In-subject position detection system |
JP4373204B2 (en) * | 2003-12-26 | 2009-11-25 | オリンパス株式会社 | In-subject position detection system |
US8764725B2 (en) | 2004-02-09 | 2014-07-01 | Covidien Lp | Directional anchoring mechanism, method and applications thereof |
CA2555473A1 (en) * | 2004-02-17 | 2005-09-01 | Traxtal Technologies Inc. | Method and apparatus for registration, verification, and referencing of internal organs |
JP4639199B2 (en) * | 2004-02-18 | 2011-02-23 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Measured value correction of magnetic positioning device |
US8046050B2 (en) | 2004-03-05 | 2011-10-25 | Biosense Webster, Inc. | Position sensing system for orthopedic applications |
FR2869218B1 (en) * | 2004-04-21 | 2006-06-09 | Europlak Sa | Gastric cercling device or motorized "gastric ring" having at least one received antenna for delivery, remote control and data sending by induction |
US9373166B2 (en) * | 2004-04-23 | 2016-06-21 | Siemens Medical Solutions Usa, Inc. | Registered video endoscopy and virtual endoscopy |
US7496397B2 (en) | 2004-05-06 | 2009-02-24 | Boston Scientific Scimed, Inc. | Intravascular antenna |
US20050251031A1 (en) * | 2004-05-06 | 2005-11-10 | Scimed Life Systems, Inc. | Apparatus and construction for intravascular device |
US7605852B2 (en) | 2004-05-17 | 2009-10-20 | Micron Technology, Inc. | Real-time exposure control for automatic light control |
US20060036163A1 (en) * | 2004-07-19 | 2006-02-16 | Viswanathan Raju R | Method of, and apparatus for, controlling medical navigation systems |
EP1778077B1 (en) * | 2004-07-23 | 2015-01-14 | Varian Medical Systems, Inc. | Wireless markers for anchoring within a human body |
DE102004036217B4 (en) * | 2004-07-26 | 2009-08-06 | Siemens Ag | Interventional, bendable medical device with a receiving unit for a magnetic resonance signal and an evaluation unit |
CN101282760A (en) * | 2005-08-11 | 2008-10-08 | 纳沃特克医药有限公司 | Medical treatment system and method using radioactivity based position sensor |
EP1804659A4 (en) * | 2004-10-19 | 2010-11-03 | Navotek Medical Ltd | Locating a catheter tip using a tracked guide |
EP1922011B1 (en) * | 2005-08-11 | 2012-05-02 | Navotek Medical Ltd. | Localization of a radioactive source |
AT555737T (en) * | 2005-08-11 | 2012-05-15 | Navotek Medical Ltd | Localization of a radioactive source |
BRPI0515007A (en) | 2004-08-12 | 2008-07-01 | Navotek Medical Ltd | computerized system for tracking and tracing of irradiated ionization source, sensor for targeting located on an ionized radiation source, method for determining device location, method of locating device manufacturing, and use of ionizing radiation shield |
US8412311B2 (en) * | 2004-09-13 | 2013-04-02 | The Regents Of The University Of California | Fluoroscopy-free guidewire systems and methods |
AT455499T (en) | 2004-11-05 | 2010-02-15 | Us Gov Health & Human Serv | Access system |
US7805269B2 (en) | 2004-11-12 | 2010-09-28 | Philips Electronics Ltd | Device and method for ensuring the accuracy of a tracking device in a volume |
KR100689707B1 (en) * | 2004-11-12 | 2007-03-08 | 삼성전자주식회사 | Bank selection signal control circuit, semiconductor memory device having the same and method for control bank selection signal |
US7751868B2 (en) | 2004-11-12 | 2010-07-06 | Philips Electronics Ltd | Integrated skin-mounted multifunction device for use in image-guided surgery |
US7621874B2 (en) * | 2004-12-14 | 2009-11-24 | Scimed Life Systems, Inc. | Systems and methods for improved three-dimensional imaging of a body lumen |
US8611983B2 (en) | 2005-01-18 | 2013-12-17 | Philips Electronics Ltd | Method and apparatus for guiding an instrument to a target in the lung |
EP1838215B1 (en) | 2005-01-18 | 2012-08-01 | Philips Electronics LTD | Electromagnetically tracked k-wire device |
US10064540B2 (en) | 2005-02-02 | 2018-09-04 | Intuitive Surgical Operations, Inc. | Visualization apparatus for transseptal access |
US9510732B2 (en) | 2005-10-25 | 2016-12-06 | Intuitive Surgical Operations, Inc. | Methods and apparatus for efficient purging |
US7860555B2 (en) | 2005-02-02 | 2010-12-28 | Voyage Medical, Inc. | Tissue visualization and manipulation system |
US8137333B2 (en) | 2005-10-25 | 2012-03-20 | Voyage Medical, Inc. | Delivery of biological compounds to ischemic and/or infarcted tissue |
US8050746B2 (en) | 2005-02-02 | 2011-11-01 | Voyage Medical, Inc. | Tissue visualization device and method variations |
US7930016B1 (en) | 2005-02-02 | 2011-04-19 | Voyage Medical, Inc. | Tissue closure system |
US7918787B2 (en) | 2005-02-02 | 2011-04-05 | Voyage Medical, Inc. | Tissue visualization and manipulation systems |
US7860556B2 (en) | 2005-02-02 | 2010-12-28 | Voyage Medical, Inc. | Tissue imaging and extraction systems |
US8221310B2 (en) | 2005-10-25 | 2012-07-17 | Voyage Medical, Inc. | Tissue visualization device and method variations |
US9055906B2 (en) | 2006-06-14 | 2015-06-16 | Intuitive Surgical Operations, Inc. | In-vivo visualization systems |
US8078266B2 (en) | 2005-10-25 | 2011-12-13 | Voyage Medical, Inc. | Flow reduction hood systems |
US7967742B2 (en) * | 2005-02-14 | 2011-06-28 | Karl Storz Imaging, Inc. | Method for using variable direction of view endoscopy in conjunction with image guided surgical systems |
US20060189867A1 (en) * | 2005-02-22 | 2006-08-24 | Ian Revie | Probe |
US7530948B2 (en) | 2005-02-28 | 2009-05-12 | University Of Washington | Tethered capsule endoscope for Barrett's Esophagus screening |
US8298224B2 (en) * | 2005-04-21 | 2012-10-30 | Asthmatx, Inc. | Control methods and devices for energy delivery |
US20060264732A1 (en) | 2005-05-05 | 2006-11-23 | Chunwu Wu | System and method for electromagnetic navigation in the vicinity of a metal object |
US9329297B2 (en) | 2005-05-13 | 2016-05-03 | The Charles Machine Works, Inc. | Dipole locator using multiple measurement points |
US8097003B2 (en) | 2005-05-13 | 2012-01-17 | Boston Scientific Scimed, Inc. | Endoscopic apparatus with integrated variceal ligation device |
US8928323B2 (en) | 2005-05-13 | 2015-01-06 | The Charles Machines Works, Inc. | Dipole locator using multiple measurement points |
US7786731B2 (en) | 2005-05-13 | 2010-08-31 | The Charles Machine Works, Inc. | Dipole locator using multiple measurement points |
US7889905B2 (en) | 2005-05-23 | 2011-02-15 | The Penn State Research Foundation | Fast 3D-2D image registration method with application to continuously guided endoscopy |
US7756563B2 (en) * | 2005-05-23 | 2010-07-13 | The Penn State Research Foundation | Guidance method based on 3D-2D pose estimation and 3D-CT registration with application to live bronchoscopy |
WO2007002079A2 (en) | 2005-06-21 | 2007-01-04 | Traxtal Inc. | System, method and apparatus for navigated therapy and diagnosis |
AT492214T (en) | 2005-06-21 | 2011-01-15 | Traxtal Inc | Device and method for a trackable ultrasound |
US7295879B2 (en) * | 2005-06-24 | 2007-11-13 | Kenergy, Inc. | Double helical antenna assembly for a wireless intravascular medical device |
US8951285B2 (en) | 2005-07-05 | 2015-02-10 | Mitralign, Inc. | Tissue anchor, anchoring system and methods of using the same |
DE102005032370A1 (en) * | 2005-07-08 | 2007-01-11 | Siemens Ag | Method for determining the position and orientation of an endoscope capsule for an investigation of the gastrointestinal tract comprises determining the position and orientation of the capsule based on the images produced by an X-ray device |
US8784336B2 (en) | 2005-08-24 | 2014-07-22 | C. R. Bard, Inc. | Stylet apparatuses and methods of manufacture |
EP1924197B1 (en) | 2005-08-24 | 2017-10-11 | Philips Electronics LTD | System for navigated flexible endoscopy |
JP5666091B2 (en) * | 2005-09-08 | 2015-02-12 | コーニンクレッカ フィリップス エヌ ヴェ | Magnetic tracking system for imaging system |
US20070066880A1 (en) * | 2005-09-09 | 2007-03-22 | Warren Lee | Image-based probe guidance system |
US20070066881A1 (en) | 2005-09-13 | 2007-03-22 | Edwards Jerome R | Apparatus and method for image guided accuracy verification |
EP1932462A4 (en) | 2005-10-05 | 2013-02-27 | Olympus Medical Systems Corp | Capsule type medical device, its guidance system and guidance method and examinee insertion device |
US7749265B2 (en) * | 2005-10-05 | 2010-07-06 | Kenergy, Inc. | Radio frequency antenna for a wireless intravascular medical device |
US7301332B2 (en) * | 2005-10-06 | 2007-11-27 | Biosense Webster, Inc. | Magnetic sensor assembly |
AU2006302057B2 (en) | 2005-10-11 | 2013-03-21 | Carnegie Mellon University | Sensor guided catheter navigation system |
US8537203B2 (en) | 2005-11-23 | 2013-09-17 | University Of Washington | Scanning beam with variable sequential framing using interrupted scanning resonance |
US8083879B2 (en) | 2005-11-23 | 2011-12-27 | Intuitive Surgical Operations, Inc. | Non-metallic, multi-strand control cable for steerable instruments |
JP2009519786A (en) * | 2005-12-19 | 2009-05-21 | シドニー ウェスト エリア ヘルス サービス | Inductive coil detection |
WO2007074445A2 (en) | 2005-12-29 | 2007-07-05 | Given Imaging Ltd. | System and method of in-vivo magnetic position determination |
US7957789B2 (en) | 2005-12-30 | 2011-06-07 | Medtronic, Inc. | Therapy delivery system including a navigation element |
US7525309B2 (en) | 2005-12-30 | 2009-04-28 | Depuy Products, Inc. | Magnetic sensor array |
US8862200B2 (en) | 2005-12-30 | 2014-10-14 | DePuy Synthes Products, LLC | Method for determining a position of a magnetic source |
US8219177B2 (en) * | 2006-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
WO2007095637A1 (en) | 2006-02-16 | 2007-08-23 | Catholic Healthcare West (D/B/A St. Joseph's Hospital Medical Center) | System utilizing radio frequency signals for tracking and improving navigation of slender instruments during insertion into the body |
US8219178B2 (en) * | 2007-02-16 | 2012-07-10 | Catholic Healthcare West | Method and system for performing invasive medical procedures using a surgical robot |
US20070208251A1 (en) * | 2006-03-02 | 2007-09-06 | General Electric Company | Transformer-coupled guidewire system and method of use |
EP1991314A2 (en) | 2006-03-03 | 2008-11-19 | University of Washington | Multi-cladding optical fiber scanner |
WO2007109076A1 (en) * | 2006-03-15 | 2007-09-27 | Cherik Bulkes | Composite waveform based method and apparatus for animal tissue stimulation |
US8016749B2 (en) | 2006-03-21 | 2011-09-13 | Boston Scientific Scimed, Inc. | Vision catheter having electromechanical navigation |
US7535228B2 (en) * | 2006-03-21 | 2009-05-19 | Radiation Monitoring Devices, Inc. | Sensor array for nuclear magnetic resonance imaging systems and method |
EP1998702A2 (en) * | 2006-03-29 | 2008-12-10 | Stryker Corporation | Shielded surgical navigation system that determines the position and orientation of the tracked object with real and virtual dipoles |
DE102006019987A1 (en) * | 2006-04-26 | 2007-10-31 | Siemens Ag | Endoscopic capsule for investigation of body openings, has induction coil with elongation along one axis, and magnetic element having magnetic dipole moment aligned perpendicular to longitudinal axis of induction coil |
US20070276218A1 (en) * | 2006-05-04 | 2007-11-29 | Benjamin Yellen | Magnetic markers for position sensing |
WO2007132449A2 (en) * | 2006-05-11 | 2007-11-22 | Yossi Gross | Implantable respiration therapy device |
US8568299B2 (en) | 2006-05-19 | 2013-10-29 | Intuitive Surgical Operations, Inc. | Methods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope |
DE102006023733A1 (en) * | 2006-05-19 | 2007-12-06 | Siemens Ag | Instrument, imaging locating system and locating method |
WO2007146075A2 (en) * | 2006-06-07 | 2007-12-21 | Cherik Bulkes | Analog signal transition detector |
WO2007146076A2 (en) * | 2006-06-07 | 2007-12-21 | Cherik Bulkes | Biological tissue stimulator with flexible electrode carrier |
US20070288077A1 (en) * | 2006-06-07 | 2007-12-13 | Cherik Bulkes | Self-anchoring electrical lead with multiple electrodes |
US7505810B2 (en) | 2006-06-13 | 2009-03-17 | Rhythmia Medical, Inc. | Non-contact cardiac mapping, including preprocessing |
US7515954B2 (en) * | 2006-06-13 | 2009-04-07 | Rhythmia Medical, Inc. | Non-contact cardiac mapping, including moving catheter and multi-beat integration |
US7729752B2 (en) * | 2006-06-13 | 2010-06-01 | Rhythmia Medical, Inc. | Non-contact cardiac mapping, including resolution map |
US7616982B1 (en) * | 2006-06-22 | 2009-11-10 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Determination and application of location and angular orientation of a pill transmitter within a body |
DE102006029122A1 (en) * | 2006-06-22 | 2007-12-27 | Amedo Gmbh | System for determining the position of a medical instrument |
EP2298151B1 (en) * | 2006-06-29 | 2012-06-06 | Olympus Medical Systems Corporation | Capsule medical device and capsule medical device system |
US7517320B2 (en) * | 2006-06-30 | 2009-04-14 | Broncus Technologies, Inc. | Airway bypass site selection and treatment planning |
US20080039904A1 (en) * | 2006-08-08 | 2008-02-14 | Cherik Bulkes | Intravascular implant system |
WO2008028149A2 (en) | 2006-09-01 | 2008-03-06 | Voyage Medical, Inc. | Electrophysiology mapping and visualization system |
US10004388B2 (en) | 2006-09-01 | 2018-06-26 | Intuitive Surgical Operations, Inc. | Coronary sinus cannulation |
US20080097476A1 (en) | 2006-09-01 | 2008-04-24 | Voyage Medical, Inc. | Precision control systems for tissue visualization and manipulation assemblies |
US20080086051A1 (en) * | 2006-09-20 | 2008-04-10 | Ethicon Endo-Surgery, Inc. | System, storage medium for a computer program, and method for displaying medical images |
US20080077184A1 (en) * | 2006-09-27 | 2008-03-27 | Stephen Denker | Intravascular Stimulation System With Wireless Power Supply |
US8116847B2 (en) * | 2006-10-19 | 2012-02-14 | Stryker Corporation | System and method for determining an optimal surgical trajectory |
US7761134B2 (en) | 2006-10-20 | 2010-07-20 | Given Imaging Ltd. | System and method for modeling a tracking curve of an in vivo device |
US7794407B2 (en) | 2006-10-23 | 2010-09-14 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
US8388546B2 (en) | 2006-10-23 | 2013-03-05 | Bard Access Systems, Inc. | Method of locating the tip of a central venous catheter |
US10335131B2 (en) | 2006-10-23 | 2019-07-02 | Intuitive Surgical Operations, Inc. | Methods for preventing tissue migration |
AU2007350982A1 (en) | 2006-11-10 | 2008-10-23 | Dorian Averbuch | Adaptive navigation technique for navigating a catheter through a body channel or cavity |
US20080118116A1 (en) * | 2006-11-20 | 2008-05-22 | General Electric Company | Systems and methods for tracking a surgical instrument and for conveying tracking information via a network |
US20080132757A1 (en) * | 2006-12-01 | 2008-06-05 | General Electric Company | System and Method for Performing Minimally Invasive Surgery Using a Multi-Channel Catheter |
US20080139929A1 (en) * | 2006-12-06 | 2008-06-12 | General Electric Company | System and method for tracking an invasive surgical instrument while imaging a patient |
US20080139915A1 (en) * | 2006-12-07 | 2008-06-12 | Medtronic Vascular, Inc. | Vascular Position Locating and/or Mapping Apparatus and Methods |
US20080140180A1 (en) * | 2006-12-07 | 2008-06-12 | Medtronic Vascular, Inc. | Vascular Position Locating Apparatus and Method |
ES2725779T3 (en) | 2006-12-12 | 2019-09-27 | Dune Medical Devices Ltd | Procedure and apparatus for providing a graphical user interface for data acquisition and presentation |
US20080147173A1 (en) * | 2006-12-18 | 2008-06-19 | Medtronic Vascular, Inc. | Prosthesis Deployment Apparatus and Methods |
US20080183036A1 (en) | 2006-12-18 | 2008-07-31 | Voyage Medical, Inc. | Systems and methods for unobstructed visualization and ablation |
US8068648B2 (en) | 2006-12-21 | 2011-11-29 | Depuy Products, Inc. | Method and system for registering a bone of a patient with a computer assisted orthopaedic surgery system |
US9226648B2 (en) | 2006-12-21 | 2016-01-05 | Intuitive Surgical Operations, Inc. | Off-axis visualization systems |
US8131350B2 (en) | 2006-12-21 | 2012-03-06 | Voyage Medical, Inc. | Stabilization of visualization catheters |
SE531789C2 (en) | 2006-12-22 | 2009-08-04 | Micropos Medical Ab | Method and system for tracking a position of a positioning device and method for calibration of the system |
US7985254B2 (en) | 2007-01-08 | 2011-07-26 | David Tolkowsky | Endobronchial fluid exhaler devices and methods for use thereof |
US8473030B2 (en) * | 2007-01-12 | 2013-06-25 | Medtronic Vascular, Inc. | Vessel position and configuration imaging apparatus and methods |
US20080172119A1 (en) * | 2007-01-12 | 2008-07-17 | Medtronic Vascular, Inc. | Prosthesis Deployment Apparatus and Methods |
US9037215B2 (en) | 2007-01-31 | 2015-05-19 | The Penn State Research Foundation | Methods and apparatus for 3D route planning through hollow organs |
US20100036394A1 (en) * | 2007-01-31 | 2010-02-11 | Yoav Mintz | Magnetic Levitation Based Devices, Systems and Techniques for Probing and Operating in Confined Space, Including Performing Medical Diagnosis and Surgical Procedures |
US8672836B2 (en) * | 2007-01-31 | 2014-03-18 | The Penn State Research Foundation | Method and apparatus for continuous guidance of endoscopy |
US20090156895A1 (en) * | 2007-01-31 | 2009-06-18 | The Penn State Research Foundation | Precise endoscopic planning and visualization |
US20080188921A1 (en) * | 2007-02-02 | 2008-08-07 | Medtronic Vascular, Inc. | Prosthesis Deployment Apparatus and Methods |
US20080190438A1 (en) * | 2007-02-08 | 2008-08-14 | Doron Harlev | Impedance registration and catheter tracking |
US20080221434A1 (en) * | 2007-03-09 | 2008-09-11 | Voegele James W | Displaying an internal image of a body lumen of a patient |
EP2117436A4 (en) * | 2007-03-12 | 2011-03-02 | David Tolkowsky | Devices and methods for performing medical procedures in tree-like luminal structures |
US20080228068A1 (en) * | 2007-03-13 | 2008-09-18 | Viswanathan Raju R | Automated Surgical Navigation with Electro-Anatomical and Pre-Operative Image Data |
US8911461B2 (en) | 2007-03-13 | 2014-12-16 | Mitralign, Inc. | Suture cutter and method of cutting suture |
US20080234544A1 (en) * | 2007-03-20 | 2008-09-25 | Ethicon Endo-Sugery, Inc. | Displaying images interior and exterior to a body lumen of a patient |
US8457718B2 (en) * | 2007-03-21 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Recognizing a real world fiducial in a patient image data |
US8081810B2 (en) * | 2007-03-22 | 2011-12-20 | Ethicon Endo-Surgery, Inc. | Recognizing a real world fiducial in image data of a patient |
US8840566B2 (en) | 2007-04-02 | 2014-09-23 | University Of Washington | Catheter with imaging capability acts as guidewire for cannula tools |
US8239003B2 (en) * | 2007-04-16 | 2012-08-07 | General Electric Company | System and method of integrating electromagnetic microsensors in guidewires |
WO2008134457A1 (en) | 2007-04-27 | 2008-11-06 | Voyage Medical, Inc. | Complex shape steerable tissue visualization and manipulation catheter |
WO2008137710A1 (en) | 2007-05-03 | 2008-11-13 | University Of Washington | High resolution optical coherence tomography based imaging for intraluminal and interstitial use implemented with a reduced form factor |
WO2008137452A1 (en) * | 2007-05-04 | 2008-11-13 | Kenergy Royalty Company, Llc | Implantable high efficiency digital stimulation device |
US8657805B2 (en) | 2007-05-08 | 2014-02-25 | Intuitive Surgical Operations, Inc. | Complex shape steerable tissue visualization and manipulation catheter |
EP3025636B1 (en) | 2007-05-11 | 2017-11-01 | Intuitive Surgical Operations, Inc. | Visual electrode ablation systems |
US8428690B2 (en) | 2007-05-16 | 2013-04-23 | General Electric Company | Intracardiac echocardiography image reconstruction in combination with position tracking system |
US7909767B2 (en) * | 2007-05-16 | 2011-03-22 | General Electric Company | Method for minimizing tracking system interference |
US7940972B2 (en) * | 2007-05-16 | 2011-05-10 | General Electric Company | System and method of extended field of view image acquisition of an imaged subject |
US8213693B1 (en) | 2007-05-16 | 2012-07-03 | General Electric Company | System and method to track and navigate a tool through an imaged subject |
US8790262B2 (en) * | 2007-05-16 | 2014-07-29 | General Electric Company | Method for implementing an imaging and navigation system |
US9055883B2 (en) * | 2007-05-16 | 2015-06-16 | General Electric Company | Surgical navigation system with a trackable ultrasound catheter |
US8057397B2 (en) * | 2007-05-16 | 2011-11-15 | General Electric Company | Navigation and imaging system sychronized with respiratory and/or cardiac activity |
US20080287783A1 (en) * | 2007-05-16 | 2008-11-20 | General Electric Company | System and method of tracking delivery of an imaging probe |
US8989842B2 (en) | 2007-05-16 | 2015-03-24 | General Electric Company | System and method to register a tracking system with intracardiac echocardiography (ICE) imaging system |
US8527032B2 (en) * | 2007-05-16 | 2013-09-03 | General Electric Company | Imaging system and method of delivery of an instrument to an imaged subject |
US20080287805A1 (en) * | 2007-05-16 | 2008-11-20 | General Electric Company | System and method to guide an instrument through an imaged subject |
US8364242B2 (en) | 2007-05-17 | 2013-01-29 | General Electric Company | System and method of combining ultrasound image acquisition with fluoroscopic image acquisition |
US8024026B2 (en) * | 2007-05-31 | 2011-09-20 | General Electric Company | Dynamic reference method and system for use with surgical procedures |
US7665646B2 (en) | 2007-06-18 | 2010-02-23 | Tyco Healthcare Group Lp | Interlocking buttress material retention system |
US20080319307A1 (en) * | 2007-06-19 | 2008-12-25 | Ethicon Endo-Surgery, Inc. | Method for medical imaging using fluorescent nanoparticles |
WO2009074872A2 (en) | 2007-07-09 | 2009-06-18 | Superdimension, Ltd. | Patent breathing modeling |
CN101778607A (en) * | 2007-07-20 | 2010-07-14 | 卡吕普索医疗技术公司 | Implantable devices and methods for external beam radiation treatments |
US7775301B2 (en) | 2007-08-07 | 2010-08-17 | Martin Technology, Inc. | Advanced steering tool system, method and apparatus |
US8155728B2 (en) * | 2007-08-22 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Medical system, method, and storage medium concerning a natural orifice transluminal medical procedure |
US20090062739A1 (en) * | 2007-08-31 | 2009-03-05 | General Electric Company | Catheter Guidewire Tracking System and Method |
US8235985B2 (en) | 2007-08-31 | 2012-08-07 | Voyage Medical, Inc. | Visualization and ablation system variations |
US8905920B2 (en) | 2007-09-27 | 2014-12-09 | Covidien Lp | Bronchoscope adapter and method |
US9547101B2 (en) | 2007-09-28 | 2017-01-17 | The Charles Machine Works, Inc. | System for tracking a downhole tool assembly using dual above-ground receiver assemblies |
US7952357B2 (en) | 2007-09-28 | 2011-05-31 | The Charles Machines Works, Inc. | Receiver system for determining the location of a magnetic field source |
US10398393B2 (en) | 2007-10-02 | 2019-09-03 | Stryker European Holdings I, Llc | Dynamic reference method and system for interventional procedures |
US8315690B2 (en) * | 2007-10-02 | 2012-11-20 | General Electric Company | Dynamic reference method and system for interventional procedures |
US8357152B2 (en) * | 2007-10-08 | 2013-01-22 | Biosense Webster (Israel), Ltd. | Catheter with pressure sensing |
US8535308B2 (en) | 2007-10-08 | 2013-09-17 | Biosense Webster (Israel), Ltd. | High-sensitivity pressure-sensing probe |
US9220398B2 (en) | 2007-10-11 | 2015-12-29 | Intuitive Surgical Operations, Inc. | System for managing Bowden cables in articulating instruments |
US8391952B2 (en) | 2007-10-11 | 2013-03-05 | General Electric Company | Coil arrangement for an electromagnetic tracking system |
US9649048B2 (en) | 2007-11-26 | 2017-05-16 | C. R. Bard, Inc. | Systems and methods for breaching a sterile field for intravascular placement of a catheter |
ES2651898T3 (en) | 2007-11-26 | 2018-01-30 | C.R. Bard Inc. | Integrated system for intravascular catheter placement |
US8781555B2 (en) | 2007-11-26 | 2014-07-15 | C. R. Bard, Inc. | System for placement of a catheter including a signal-generating stylet |
US9521961B2 (en) | 2007-11-26 | 2016-12-20 | C. R. Bard, Inc. | Systems and methods for guiding a medical instrument |
US9456766B2 (en) | 2007-11-26 | 2016-10-04 | C. R. Bard, Inc. | Apparatus for use with needle insertion guidance system |
US10449330B2 (en) | 2007-11-26 | 2019-10-22 | C. R. Bard, Inc. | Magnetic element-equipped needle assemblies |
US8849382B2 (en) | 2007-11-26 | 2014-09-30 | C. R. Bard, Inc. | Apparatus and display methods relating to intravascular placement of a catheter |
US8175679B2 (en) * | 2007-12-26 | 2012-05-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Catheter electrode that can simultaneously emit electrical energy and facilitate visualization by magnetic resonance imaging |
US8103327B2 (en) | 2007-12-28 | 2012-01-24 | Rhythmia Medical, Inc. | Cardiac mapping catheter |
US9675410B2 (en) * | 2007-12-28 | 2017-06-13 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Flexible polymer electrode for MRI-guided positioning and radio frequency ablation |
CA2650705C (en) * | 2008-01-23 | 2017-07-11 | Mediguide Ltd. | Guidewire interconnecting apparatus |
US8858609B2 (en) | 2008-02-07 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Stent delivery under direct visualization |
US8478382B2 (en) | 2008-02-11 | 2013-07-02 | C. R. Bard, Inc. | Systems and methods for positioning a catheter |
US8182418B2 (en) | 2008-02-25 | 2012-05-22 | Intuitive Surgical Operations, Inc. | Systems and methods for articulating an elongate body |
US9427596B2 (en) | 2013-01-16 | 2016-08-30 | Greatbatch Ltd. | Low impedance oxide resistant grounded capacitor for an AIMD |
US10350421B2 (en) | 2013-06-30 | 2019-07-16 | Greatbatch Ltd. | Metallurgically bonded gold pocket pad for grounding an EMI filter to a hermetic terminal for an active implantable medical device |
US9108066B2 (en) | 2008-03-20 | 2015-08-18 | Greatbatch Ltd. | Low impedance oxide resistant grounded capacitor for an AIMD |
US9931514B2 (en) | 2013-06-30 | 2018-04-03 | Greatbatch Ltd. | Low impedance oxide resistant grounded capacitor for an AIMD |
USRE46699E1 (en) | 2013-01-16 | 2018-02-06 | Greatbatch Ltd. | Low impedance oxide resistant grounded capacitor for an AIMD |
US10080889B2 (en) | 2009-03-19 | 2018-09-25 | Greatbatch Ltd. | Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD |
US8538509B2 (en) * | 2008-04-02 | 2013-09-17 | Rhythmia Medical, Inc. | Intracardiac tracking system |
US9575140B2 (en) | 2008-04-03 | 2017-02-21 | Covidien Lp | Magnetic interference detection system and method |
US20090253985A1 (en) * | 2008-04-07 | 2009-10-08 | Magnetecs, Inc. | Apparatus and method for lorentz-active sheath display and control of surgical tools |
US20090259284A1 (en) * | 2008-04-10 | 2009-10-15 | Medtronic Vascular, Inc. | Resonating Stent or Stent Element |
US20090259296A1 (en) * | 2008-04-10 | 2009-10-15 | Medtronic Vascular, Inc. | Gate Cannulation Apparatus and Methods |
US8406490B2 (en) | 2008-04-30 | 2013-03-26 | Given Imaging Ltd. | System and methods for determination of procedure termination |
US8218846B2 (en) | 2008-05-15 | 2012-07-10 | Superdimension, Ltd. | Automatic pathway and waypoint generation and navigation method |
EP2123220A1 (en) * | 2008-05-20 | 2009-11-25 | Oticon A/S | A probe and coil fixed thereto for establishing the spatial location of a probe body and a method of fixedly position a magnetic generating means to a probe body and a system for obtaining geometrical data related to a cavity |
EP2297673A4 (en) | 2008-06-03 | 2017-11-01 | Covidien LP | Feature-based registration method |
US8218847B2 (en) | 2008-06-06 | 2012-07-10 | Superdimension, Ltd. | Hybrid registration method |
US8437832B2 (en) | 2008-06-06 | 2013-05-07 | Biosense Webster, Inc. | Catheter with bendable tip |
WO2009150647A2 (en) | 2008-06-11 | 2009-12-17 | Dune Medical Devices Ltd. | Double registration |
US9002435B2 (en) * | 2008-06-30 | 2015-04-07 | General Electric Company | System and method for integrating electromagnetic microsensors in guidewires |
US9101735B2 (en) | 2008-07-07 | 2015-08-11 | Intuitive Surgical Operations, Inc. | Catheter control systems |
US8932207B2 (en) | 2008-07-10 | 2015-01-13 | Covidien Lp | Integrated multi-functional endoscopic tool |
DE102008035092B4 (en) * | 2008-07-28 | 2015-08-27 | Siemens Aktiengesellschaft | Apparatus for performing a minimally invasive diagnosis or intervention in the interior of a patient with a capsule endoscope and method for determining the actual position of a capsule endoscope in the interior of a patient |
US8926528B2 (en) | 2008-08-06 | 2015-01-06 | Biosense Webster, Inc. | Single-axis sensors on flexible backbone |
IL199900D0 (en) * | 2008-08-18 | 2010-04-15 | Michal Tune | Implantation device for soft tissue markers and other implants |
ES2525525T3 (en) | 2008-08-22 | 2014-12-26 | C.R. Bard, Inc. | Catheter assembly that includes ECG and magnetic sensor assemblies |
US9101734B2 (en) | 2008-09-09 | 2015-08-11 | Biosense Webster, Inc. | Force-sensing catheter with bonded center strut |
US8437833B2 (en) | 2008-10-07 | 2013-05-07 | Bard Access Systems, Inc. | Percutaneous magnetic gastrostomy |
US8333012B2 (en) | 2008-10-10 | 2012-12-18 | Voyage Medical, Inc. | Method of forming electrode placement and connection systems |
US8894643B2 (en) | 2008-10-10 | 2014-11-25 | Intuitive Surgical Operations, Inc. | Integral electrode placement and connection systems |
US8167876B2 (en) * | 2008-10-27 | 2012-05-01 | Rhythmia Medical, Inc. | Tracking system using field mapping |
US9468364B2 (en) | 2008-11-14 | 2016-10-18 | Intuitive Surgical Operations, Inc. | Intravascular catheter with hood and image processing systems |
JP5627067B2 (en) * | 2008-12-01 | 2014-11-19 | オリンパス株式会社 | Living body observation system and driving method of the living body observation system |
US8175681B2 (en) | 2008-12-16 | 2012-05-08 | Medtronic Navigation Inc. | Combination of electromagnetic and electropotential localization |
US8348856B1 (en) | 2008-12-16 | 2013-01-08 | Zanetta Malanowska-Stega | Simultaneous multiple method out-patient uterus biopsy device and method |
US20100160772A1 (en) * | 2008-12-18 | 2010-06-24 | Medtronic, Inc. | Adaptable Image Guided Delivery System |
US20100241028A1 (en) | 2008-12-19 | 2010-09-23 | Superdimension, Ltd. | Navigable Tissue Treatment Tools |
US9326700B2 (en) | 2008-12-23 | 2016-05-03 | Biosense Webster (Israel) Ltd. | Catheter display showing tip angle and pressure |
US20110270083A1 (en) * | 2008-12-30 | 2011-11-03 | Koninklijke Philips Electronics N.V. | System and method for dynamic metal distortion compensation for electromagnetic tracking systems |
US8475450B2 (en) | 2008-12-30 | 2013-07-02 | Biosense Webster, Inc. | Dual-purpose lasso catheter with irrigation |
US8600472B2 (en) | 2008-12-30 | 2013-12-03 | Biosense Webster (Israel), Ltd. | Dual-purpose lasso catheter with irrigation using circumferentially arranged ring bump electrodes |
EP2403403A4 (en) * | 2009-03-04 | 2017-06-28 | Imricor Medical Systems, Inc. | Combined field location and mri tracking |
US8504139B2 (en) | 2009-03-10 | 2013-08-06 | Medtronic Xomed, Inc. | Navigating a surgical instrument |
US9226689B2 (en) | 2009-03-10 | 2016-01-05 | Medtronic Xomed, Inc. | Flexible circuit sheet |
US9226688B2 (en) | 2009-03-10 | 2016-01-05 | Medtronic Xomed, Inc. | Flexible circuit assemblies |
US8611984B2 (en) | 2009-04-08 | 2013-12-17 | Covidien Lp | Locatable catheter |
US9398862B2 (en) | 2009-04-23 | 2016-07-26 | Rhythmia Medical, Inc. | Multi-electrode mapping system |
US8103338B2 (en) | 2009-05-08 | 2012-01-24 | Rhythmia Medical, Inc. | Impedance based anatomy generation |
US8571647B2 (en) | 2009-05-08 | 2013-10-29 | Rhythmia Medical, Inc. | Impedance based anatomy generation |
EP3427687A1 (en) | 2009-05-14 | 2019-01-16 | Covidien LP | Automatic registration technique |
WO2010140441A1 (en) * | 2009-06-01 | 2010-12-09 | オリンパスメディカルシステムズ株式会社 | Medical equipment system and method for calibrating medical instrument |
WO2010144419A2 (en) | 2009-06-08 | 2010-12-16 | Surgivision, Inc. | Mri-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time |
US9445734B2 (en) | 2009-06-12 | 2016-09-20 | Bard Access Systems, Inc. | Devices and methods for endovascular electrography |
US9125578B2 (en) | 2009-06-12 | 2015-09-08 | Bard Access Systems, Inc. | Apparatus and method for catheter navigation and tip location |
RU2691318C2 (en) | 2009-06-12 | 2019-06-11 | Бард Аксесс Системс, Инк. | Method for positioning catheter end |
US9532724B2 (en) | 2009-06-12 | 2017-01-03 | Bard Access Systems, Inc. | Apparatus and method for catheter navigation using endovascular energy mapping |
US8396532B2 (en) | 2009-06-16 | 2013-03-12 | MRI Interventions, Inc. | MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time |
EP2756799B1 (en) * | 2009-06-26 | 2016-04-20 | Cianna Medical, Inc. | System for localizing markers or tissue structures within a body |
US8494614B2 (en) | 2009-08-31 | 2013-07-23 | Regents Of The University Of Minnesota | Combination localization system |
US8494613B2 (en) | 2009-08-31 | 2013-07-23 | Medtronic, Inc. | Combination localization system |
AU2010300677B2 (en) | 2009-09-29 | 2014-09-04 | C.R. Bard, Inc. | Stylets for use with apparatus for intravascular placement of a catheter |
USD699359S1 (en) | 2011-08-09 | 2014-02-11 | C. R. Bard, Inc. | Ultrasound probe head |
USD724745S1 (en) | 2011-08-09 | 2015-03-17 | C. R. Bard, Inc. | Cap for an ultrasound probe |
US8409098B2 (en) * | 2009-10-14 | 2013-04-02 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for collection of cardiac geometry based on optical or magnetic tracking |
US20110112396A1 (en) | 2009-11-09 | 2011-05-12 | Magnetecs, Inc. | System and method for targeting catheter electrodes |
US8469953B2 (en) | 2009-11-16 | 2013-06-25 | Covidien Lp | Twin sealing chamber hub |
US20110130648A1 (en) * | 2009-11-30 | 2011-06-02 | Christopher Thomas Beeckler | Catheter with pressure measuring tip |
US8920415B2 (en) | 2009-12-16 | 2014-12-30 | Biosense Webster (Israel) Ltd. | Catheter with helical electrode |
US8521462B2 (en) | 2009-12-23 | 2013-08-27 | Biosense Webster (Israel), Ltd. | Calibration system for a pressure-sensitive catheter |
US8945010B2 (en) | 2009-12-23 | 2015-02-03 | Covidien Lp | Method of evaluating constipation using an ingestible capsule |
US8529476B2 (en) | 2009-12-28 | 2013-09-10 | Biosense Webster (Israel), Ltd. | Catheter with strain gauge sensor |
US8608735B2 (en) * | 2009-12-30 | 2013-12-17 | Biosense Webster (Israel) Ltd. | Catheter with arcuate end section |
US8381836B2 (en) | 2010-01-19 | 2013-02-26 | Merlin Technology Inc. | Advanced underground homing system, apparatus and method |
US8374670B2 (en) | 2010-01-22 | 2013-02-12 | Biosense Webster, Inc. | Catheter having a force sensing distal tip |
US8428328B2 (en) | 2010-02-01 | 2013-04-23 | Superdimension, Ltd | Region-growing algorithm |
US8694071B2 (en) | 2010-02-12 | 2014-04-08 | Intuitive Surgical Operations, Inc. | Image stabilization techniques and methods |
US8475407B2 (en) | 2010-03-25 | 2013-07-02 | Medtronic, Inc. | Method and apparatus for guiding an external needle to an implantable device |
US9216257B2 (en) * | 2010-03-25 | 2015-12-22 | Medtronic, Inc. | Method and apparatus for guiding an external needle to an implantable device |
US8483802B2 (en) * | 2010-03-25 | 2013-07-09 | Medtronic, Inc. | Method and apparatus for guiding an external needle to an implantable device |
US9339601B2 (en) * | 2010-03-25 | 2016-05-17 | Medtronic, Inc. | Method and apparatus for guiding an external needle to an implantable device |
US9814522B2 (en) | 2010-04-06 | 2017-11-14 | Intuitive Surgical Operations, Inc. | Apparatus and methods for ablation efficacy |
JP5613826B2 (en) * | 2010-04-30 | 2014-10-29 | メドトロニック ゾームド,インコーポレイテッド | Guided malleable surgical instrument |
US8694074B2 (en) | 2010-05-11 | 2014-04-08 | Rhythmia Medical, Inc. | Electrode displacement determination |
JP5980201B2 (en) | 2010-05-28 | 2016-08-31 | シー・アール・バード・インコーポレーテッドC R Bard Incorporated | Insertion guidance system for needles and medical components |
US8798952B2 (en) | 2010-06-10 | 2014-08-05 | Biosense Webster (Israel) Ltd. | Weight-based calibration system for a pressure sensitive catheter |
US8226580B2 (en) | 2010-06-30 | 2012-07-24 | Biosense Webster (Israel), Ltd. | Pressure sensing for a multi-arm catheter |
US9023033B2 (en) | 2010-08-04 | 2015-05-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Magnetically guided catheters |
US8380276B2 (en) | 2010-08-16 | 2013-02-19 | Biosense Webster, Inc. | Catheter with thin film pressure sensing distal tip |
US20130303887A1 (en) | 2010-08-20 | 2013-11-14 | Veran Medical Technologies, Inc. | Apparatus and method for four dimensional soft tissue navigation |
MX338127B (en) | 2010-08-20 | 2016-04-04 | Bard Inc C R | Reconfirmation of ecg-assisted catheter tip placement. |
US8922633B1 (en) | 2010-09-27 | 2014-12-30 | Given Imaging Ltd. | Detection of gastrointestinal sections and transition of an in-vivo device there between |
US8965079B1 (en) | 2010-09-28 | 2015-02-24 | Given Imaging Ltd. | Real time detection of gastrointestinal sections and transitions of an in-vivo device therebetween |
US8878464B2 (en) | 2010-10-01 | 2014-11-04 | Varian Medical Systems Inc. | Laser accelerator driven particle brachytherapy devices, systems, and methods |
US8731859B2 (en) | 2010-10-07 | 2014-05-20 | Biosense Webster (Israel) Ltd. | Calibration system for a force-sensing catheter |
EP2632360A4 (en) | 2010-10-29 | 2014-05-21 | Bard Inc C R | Bioimpedance-assisted placement of a medical device |
US8979772B2 (en) | 2010-11-03 | 2015-03-17 | Biosense Webster (Israel), Ltd. | Zero-drift detection and correction in contact force measurements |
US8617087B2 (en) | 2010-12-03 | 2013-12-31 | Biosense Webster, Inc. | Control handle with rotational cam mechanism for contraction/deflection of medical device |
CN102525386B (en) | 2010-12-17 | 2015-11-25 | 世意法(北京)半导体研发有限责任公司 | Capsule endoscopy |
US8792962B2 (en) * | 2010-12-30 | 2014-07-29 | Biosense Webster, Inc. | Catheter with single axial sensors |
US20120172716A1 (en) * | 2010-12-30 | 2012-07-05 | Ran Sela | Electromagnetic coil sensor for a medical device |
US9002442B2 (en) | 2011-01-13 | 2015-04-07 | Rhythmia Medical, Inc. | Beat alignment and selection for cardiac mapping |
US9277872B2 (en) | 2011-01-13 | 2016-03-08 | Rhythmia Medical, Inc. | Electroanatomical mapping |
EP3323371A1 (en) * | 2011-01-28 | 2018-05-23 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
US9974501B2 (en) * | 2011-01-28 | 2018-05-22 | Medtronic Navigation, Inc. | Method and apparatus for image-based navigation |
US20120197108A1 (en) * | 2011-01-28 | 2012-08-02 | Medtronic Navigation, Inc | Method and Apparatus for Image-Based Navigation |
US8709034B2 (en) | 2011-05-13 | 2014-04-29 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US9345532B2 (en) | 2011-05-13 | 2016-05-24 | Broncus Medical Inc. | Methods and devices for ablation of tissue |
US9220433B2 (en) | 2011-06-30 | 2015-12-29 | Biosense Webster (Israel), Ltd. | Catheter with variable arcuate distal section |
CA2835890A1 (en) | 2011-07-06 | 2013-01-10 | C.R. Bard, Inc. | Needle length determination and calibration for insertion guidance system |
US9138166B2 (en) | 2011-07-29 | 2015-09-22 | Hansen Medical, Inc. | Apparatus and methods for fiber integration and registration |
US9662169B2 (en) | 2011-07-30 | 2017-05-30 | Biosense Webster (Israel) Ltd. | Catheter with flow balancing valve |
CN109276249A (en) | 2011-09-06 | 2019-01-29 | 伊卓诺股份有限公司 | Medical device, the method and magnetizing equipment for obtaining position and/or directional information |
US10238837B2 (en) | 2011-10-14 | 2019-03-26 | Intuitive Surgical Operations, Inc. | Catheters with control modes for interchangeable probes |
US9387048B2 (en) | 2011-10-14 | 2016-07-12 | Intuitive Surgical Operations, Inc. | Catheter sensor systems |
US9452276B2 (en) | 2011-10-14 | 2016-09-27 | Intuitive Surgical Operations, Inc. | Catheter with removable vision probe |
EP3552653A2 (en) | 2011-10-14 | 2019-10-16 | Intuitive Surgical Operations Inc. | Catheter systems |
US9750486B2 (en) | 2011-10-25 | 2017-09-05 | Medtronic Navigation, Inc. | Trackable biopsy needle |
US9211107B2 (en) | 2011-11-07 | 2015-12-15 | C. R. Bard, Inc. | Ruggedized ultrasound hydrogel insert |
WO2013078235A1 (en) | 2011-11-23 | 2013-05-30 | Broncus Medical Inc | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall |
US9427172B2 (en) | 2011-12-30 | 2016-08-30 | Mediguide Ltd. | Roll detection and six degrees of freedom sensor assembly |
US9687289B2 (en) | 2012-01-04 | 2017-06-27 | Biosense Webster (Israel) Ltd. | Contact assessment based on phase measurement |
EP2816966A4 (en) | 2012-02-22 | 2015-11-11 | Veran Medical Technologies Inc | Systems, methods, and devices for four dimensional soft tissue navigation |
US9510772B2 (en) | 2012-04-10 | 2016-12-06 | Cardionxt, Inc. | System and method for localizing medical instruments during cardiovascular medical procedures |
US9370398B2 (en) | 2012-08-07 | 2016-06-21 | Covidien Lp | Microwave ablation catheter and method of utilizing the same |
WO2014067576A1 (en) | 2012-10-31 | 2014-05-08 | Brainlab Ag | Positioning device for a medical field generator |
US20140131418A1 (en) | 2012-11-09 | 2014-05-15 | Covidien Lp | Surgical Stapling Apparatus Including Buttress Attachment |
US9402627B2 (en) | 2012-12-13 | 2016-08-02 | Covidien Lp | Folded buttress for use with a surgical apparatus |
US9204841B2 (en) | 2012-12-31 | 2015-12-08 | Biosense Webster (Israel) Ltd. | Catheter with serially connected sensing structures and methods of calibration and detection |
US9204820B2 (en) | 2012-12-31 | 2015-12-08 | Biosense Webster (Israel) Ltd. | Catheter with combined position and pressure sensing structures |
US9468397B2 (en) | 2013-01-23 | 2016-10-18 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Distributed location sensor |
GB201303917D0 (en) | 2013-03-05 | 2013-04-17 | Ezono Ag | System for image guided procedure |
US9459087B2 (en) | 2013-03-05 | 2016-10-04 | Ezono Ag | Magnetic position detection system |
US9257220B2 (en) | 2013-03-05 | 2016-02-09 | Ezono Ag | Magnetization device and method |
US9057600B2 (en) | 2013-03-13 | 2015-06-16 | Hansen Medical, Inc. | Reducing incremental measurement sensor error |
US9131982B2 (en) * | 2013-03-14 | 2015-09-15 | St. Jude Medical, Cardiology Division, Inc. | Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations |
US9161814B2 (en) | 2013-03-15 | 2015-10-20 | Covidien Lp | Microwave energy-delivery device and system |
US9014851B2 (en) | 2013-03-15 | 2015-04-21 | Hansen Medical, Inc. | Systems and methods for tracking robotically controlled medical instruments |
US9271663B2 (en) | 2013-03-15 | 2016-03-01 | Hansen Medical, Inc. | Flexible instrument localization from both remote and elongation sensors |
US9119650B2 (en) | 2013-03-15 | 2015-09-01 | Covidien Lp | Microwave energy-delivery device and system |
US9301723B2 (en) | 2013-03-15 | 2016-04-05 | Covidien Lp | Microwave energy-delivery device and system |
JP5902878B1 (en) * | 2013-03-15 | 2016-04-13 | メディガイド リミテッド | Medical device guidance system |
US10278729B2 (en) | 2013-04-26 | 2019-05-07 | Medtronic Xomed, Inc. | Medical device and its construction |
JP6240751B2 (en) | 2013-05-06 | 2017-11-29 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Anatomic mapping system for continuous display of recent heart rate characteristics during real-time or playback electrophysiological data visualization |
US9918649B2 (en) | 2013-05-14 | 2018-03-20 | Boston Scientific Scimed Inc. | Representation and identification of activity patterns during electro-physiology mapping using vector fields |
US20150341980A1 (en) * | 2014-05-20 | 2015-11-26 | Allied Telesis Holdings Kabushiki Kaisha | Playback device for a sensor based detection system |
US10084871B2 (en) * | 2013-05-23 | 2018-09-25 | Allied Telesis Holdings Kabushiki Kaisha | Graphical user interface and video frames for a sensor based detection system |
PH12013000136A1 (en) | 2013-05-23 | 2015-01-21 | De Antoni Ferdinand Evert Karoly | A domain agnostic method and system for the capture, storage, and analysis of sensor readings |
US9324145B1 (en) | 2013-08-08 | 2016-04-26 | Given Imaging Ltd. | System and method for detection of transitions in an image stream of the gastrointestinal tract |
WO2015029033A1 (en) | 2013-08-29 | 2015-03-05 | Given Imaging Ltd. | System and method for maneuvering coils power optimization |
WO2015057521A1 (en) | 2013-10-14 | 2015-04-23 | Boston Scientific Scimed, Inc. | High resolution cardiac mapping electrode array catheter |
US20150126852A1 (en) | 2013-11-01 | 2015-05-07 | Covidien Lp | Positioning catheter |
US9993231B2 (en) | 2013-11-20 | 2018-06-12 | Covidien Lp | Devices, systems, and methods for navigating a biopsy tool to a target location and obtaining a tissue sample using the same |
US20150141809A1 (en) | 2013-11-20 | 2015-05-21 | Covidien Lp | Devices, systems, and methods for navigating a biopsy tool to a target location and obtaining a tissue sample using the same |
USD748297S1 (en) * | 2013-12-02 | 2016-01-26 | Bonshine Optical Electron Technology Co., Ltd. | LED bulb |
WO2015089173A1 (en) * | 2013-12-12 | 2015-06-18 | St. Jude Medical, Cardiology Division, Inc. | Medical device with contact force sensing tip |
WO2015120256A2 (en) | 2014-02-06 | 2015-08-13 | C.R. Bard, Inc. | Systems and methods for guidance and placement of an intravascular device |
US10278680B2 (en) | 2014-03-19 | 2019-05-07 | Covidien Lp | Devices, systems, and methods for navigating a biopsy tool to a target location and obtaining a tissue sample using the same |
US20150338447A1 (en) | 2014-05-20 | 2015-11-26 | Allied Telesis Holdings Kabushiki Kaisha | Sensor based detection system |
JP2017522923A (en) | 2014-06-03 | 2017-08-17 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Electrode assembly with atraumatic distal tip |
CN106413539A (en) | 2014-06-04 | 2017-02-15 | 波士顿科学医学有限公司 | Electrode assembly |
US9633431B2 (en) | 2014-07-02 | 2017-04-25 | Covidien Lp | Fluoroscopic pose estimation |
US9629659B2 (en) | 2014-07-09 | 2017-04-25 | Covidien Lp | Instrument fixation device for depth and angle fixation |
DE102014215350A1 (en) | 2014-08-04 | 2016-02-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Coil over cover |
WO2016021633A1 (en) * | 2014-08-05 | 2016-02-11 | 国立大学法人東京医科歯科大学 | Biomagnetism measurement device |
US20160331262A1 (en) | 2015-05-13 | 2016-11-17 | Ep Solutions Sa | Combined Electrophysiological Mapping and Cardiac Ablation Methods, Systems, Components and Devices |
US10426555B2 (en) | 2015-06-03 | 2019-10-01 | Covidien Lp | Medical instrument with sensor for use in a system and method for electromagnetic navigation |
WO2016210325A1 (en) | 2015-06-26 | 2016-12-29 | C.R. Bard, Inc. | Connector interface for ecg-based catheter positioning system |
WO2017017659A1 (en) | 2015-07-30 | 2017-02-02 | St. Jude Medical International Holding S.A R.L. | Roll-sensing sensor assembly |
US20170035379A1 (en) | 2015-08-06 | 2017-02-09 | Covidien Lp | System and method for local three dimensional volume reconstruction using a standard fluoroscope |
AU2019200594A1 (en) | 2018-02-08 | 2019-08-22 | Covidien Lp | System and method for local three dimensional volume reconstruction using a standard fluoroscope |
US10271757B2 (en) | 2015-09-26 | 2019-04-30 | Boston Scientific Scimed Inc. | Multiple rhythm template monitoring |
US10405766B2 (en) | 2015-09-26 | 2019-09-10 | Boston Scientific Scimed, Inc. | Method of exploring or mapping internal cardiac structures |
US10271758B2 (en) | 2015-09-26 | 2019-04-30 | Boston Scientific Scimed, Inc. | Intracardiac EGM signals for beat matching and acceptance |
US10383543B2 (en) * | 2015-11-11 | 2019-08-20 | Biosense Webster (Israel) Ltd. | Symmetric short contact force sensor with four coils |
US20170156685A1 (en) | 2015-12-07 | 2017-06-08 | Covidien Lp | Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated |
US20170202543A1 (en) | 2016-01-15 | 2017-07-20 | Covidien Lp | Navigable endobronchial tool to access tissue outside a bronchus |
US10328195B2 (en) | 2016-05-03 | 2019-06-25 | Covidien Lp | Vascular isolation systems and methods |
US10478254B2 (en) | 2016-05-16 | 2019-11-19 | Covidien Lp | System and method to access lung tissue |
US10470839B2 (en) | 2016-06-02 | 2019-11-12 | Covidien Lp | Assessment of suture or staple line integrity and localization of potential tissue defects along the suture or staple line |
US10478143B2 (en) | 2016-08-02 | 2019-11-19 | Covidien Lp | System and method of generating and updatng a three dimensional model of a luminal network |
US20180036084A1 (en) | 2016-08-02 | 2018-02-08 | Covidien Lp | System and method of using an endoscopic catheter as a port in laparoscopic surgery |
US20180055574A1 (en) | 2016-08-29 | 2018-03-01 | Covidien Lp | Systems, methods, and computer-readable media of providing distance, orientation feedback and motion compensation while navigating in 3d |
US20180055575A1 (en) | 2016-09-01 | 2018-03-01 | Covidien Lp | Systems and methods for providing proximity awareness to pleural boundaries, vascular structures, and other critical intra-thoracic structures during electromagnetic navigation bronchoscopy |
US20180078119A1 (en) | 2016-09-19 | 2018-03-22 | Covidien Lp | System and method for cleansing segments of a luminal network |
US20180085079A1 (en) | 2016-09-27 | 2018-03-29 | Covidien Lp | Fissural assessment and surgical and interventional planning |
US20180085169A1 (en) | 2016-09-27 | 2018-03-29 | Covidien Lp | Systems and methods for detecting pleural invasion for surgical and interventional planning |
EP3531952A2 (en) * | 2016-10-28 | 2019-09-04 | Covidien LP | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same |
US10446931B2 (en) | 2016-10-28 | 2019-10-15 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same |
US10418705B2 (en) | 2016-10-28 | 2019-09-17 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same |
US10368868B2 (en) | 2017-03-09 | 2019-08-06 | Covidien Lp | Structure for attaching buttress material to anvil and cartridge of surgical stapling instrument |
US20180317740A1 (en) | 2017-05-03 | 2018-11-08 | Covidien Lp | Medical image viewer control from surgeon's camera |
US20180333095A1 (en) | 2017-05-19 | 2018-11-22 | Covidien Lp | Systems, devices, and methods for lymph specimen tracking, drainage determination, visualization, and treatment |
US20180338673A1 (en) | 2017-05-26 | 2018-11-29 | Covidien Lp | Surgical sheath and surgical apparatus including the same |
US20180344410A1 (en) | 2017-05-31 | 2018-12-06 | Covidien Lp | Systems and methods for navigational bronchoscopy and selective drug delivery |
US20190125210A1 (en) | 2017-10-26 | 2019-05-02 | Biosense Webster (Israel) Ltd. | Esophageal probe with transmitting coils |
US20190125453A1 (en) | 2017-10-31 | 2019-05-02 | Covidien Lp | Devices and systems for providing sensors in parallel with medical tools |
US20190231287A1 (en) | 2018-02-01 | 2019-08-01 | Covidien Lp | Mapping disease spread |
US20190239961A1 (en) | 2018-02-08 | 2019-08-08 | Covidien Lp | System and method for catheter detection in fluoroscopic images and updating displayed position of catheter |
US20190247125A1 (en) | 2018-02-09 | 2019-08-15 | Covidien Lp | System and method for displaying an alignment ct |
US20190246946A1 (en) | 2018-02-15 | 2019-08-15 | Covidien Lp | 3d reconstruction and guidance based on combined endobronchial ultrasound and magnetic tracking |
US20190340800A1 (en) | 2018-05-02 | 2019-11-07 | Covidien Lp | System and method for constructing virtual radial ultrasound images from ct data and performing a surgical navigation procedure using virtual ultrasound images |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3600625A (en) * | 1968-08-31 | 1971-08-17 | Tokyo Shibaura Electric Co | Projection picture tube with rotating fluorescent screen |
US4287809A (en) | 1979-08-20 | 1981-09-08 | Honeywell Inc. | Helmet-mounted sighting system |
US4394831A (en) | 1981-02-12 | 1983-07-26 | Honeywell Inc. | Helmet metal mass compensation for helmet-mounted sighting system |
US4742356A (en) | 1985-12-09 | 1988-05-03 | Mcdonnell Douglas Corporation | Method and apparatus for determining remote object orientation and position |
US4737794A (en) | 1985-12-09 | 1988-04-12 | Mcdonnell Douglas Corporation | Method and apparatus for determining remote object orientation and position |
US4849692A (en) | 1986-10-09 | 1989-07-18 | Ascension Technology Corporation | Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields |
US4945912A (en) * | 1988-11-25 | 1990-08-07 | Sensor Electronics, Inc. | Catheter with radiofrequency heating applicator |
EP0419729A1 (en) | 1989-09-29 | 1991-04-03 | Siemens Aktiengesellschaft | Position finding of a catheter by means of non-ionising fields |
US5520059A (en) * | 1991-07-29 | 1996-05-28 | Magnetoelastic Devices, Inc. | Circularly magnetized non-contact torque sensor and method for measuring torque using same |
AU3321893A (en) * | 1991-12-23 | 1993-07-28 | Pharmacia Deltec Inc. | Guide wire apparatus with location sensing member |
US5307072A (en) | 1992-07-09 | 1994-04-26 | Polhemus Incorporated | Non-concentricity compensation in position and orientation measurement systems |
US5357253A (en) * | 1993-04-02 | 1994-10-18 | Earth Sounding International | System and method for earth probing with deep subsurface penetration using low frequency electromagnetic signals |
US5405346A (en) * | 1993-05-14 | 1995-04-11 | Fidus Medical Technology Corporation | Tunable microwave ablation catheter |
US5347289A (en) | 1993-06-29 | 1994-09-13 | Honeywell, Inc. | Method and device for measuring the position and orientation of objects in the presence of interfering metals |
IL116699A (en) * | 1996-01-08 | 2001-09-13 | Biosense Ltd | Method of constructing cardiac map |
IL106569A (en) | 1993-08-02 | 1998-02-22 | Elbit Systems Ltd | Compensation of electromagnetic distortion caused by metal mass |
US5425382A (en) * | 1993-09-14 | 1995-06-20 | University Of Washington | Apparatus and method for locating a medical tube in the body of a patient |
US5558091A (en) | 1993-10-06 | 1996-09-24 | Biosense, Inc. | Magnetic determination of position and orientation |
US5840024A (en) * | 1993-10-18 | 1998-11-24 | Olympus Optical Co., Ltd. | Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope |
US5447156A (en) * | 1994-04-04 | 1995-09-05 | General Electric Company | Magnetic resonance (MR) active invasive devices for the generation of selective MR angiograms |
US5600330A (en) | 1994-07-12 | 1997-02-04 | Ascension Technology Corporation | Device for measuring position and orientation using non-dipole magnet IC fields |
AU691654B2 (en) | 1994-07-28 | 1998-05-21 | Super Dimension Inc. | Computerized game board |
DE69514238D1 (en) | 1994-08-19 | 2000-02-03 | Biosense Inc | Medical diagnosis, treatment and presentation system |
US5941251A (en) * | 1994-10-11 | 1999-08-24 | Ep Technologies, Inc. | Systems for locating and guiding operative elements within interior body regions |
US5640170A (en) | 1995-06-05 | 1997-06-17 | Polhemus Incorporated | Position and orientation measuring system having anti-distortion source configuration |
US5729129A (en) * | 1995-06-07 | 1998-03-17 | Biosense, Inc. | Magnetic location system with feedback adjustment of magnetic field generator |
US5752513A (en) * | 1995-06-07 | 1998-05-19 | Biosense, Inc. | Method and apparatus for determining position of object |
US5713369A (en) * | 1995-09-13 | 1998-02-03 | Vance Products Inc. | Uterine endometrial tissue sample brush |
WO1997019362A1 (en) * | 1995-11-24 | 1997-05-29 | Philips Electronics N.V. | Mri-system and catheter for interventional procedures |
SE9504707L (en) * | 1995-12-29 | 1997-06-30 | Alfa Laval Agri Ab | activity Measurement |
IL119262D0 (en) * | 1996-02-15 | 1996-12-05 | Biosense Israel Ltd | Locatable biopsy needle |
JP3964462B2 (en) * | 1996-02-15 | 2007-08-22 | バイオセンス・インコーポレイテッド | Catheter with lumen |
ES2200161T3 (en) | 1996-03-26 | 2004-03-01 | Biosense, Inc. | Correction mutual inductances. |
DE69737287T2 (en) * | 1996-05-06 | 2007-11-15 | Biosense Webster, Inc., Diamond Bar | Radiator calibration |
SE9603314D0 (en) * | 1996-09-12 | 1996-09-12 | Siemens Elema Ab | Method and apparatus for determining the position of a catheter inside the body of a patient |
US5752518A (en) * | 1996-10-28 | 1998-05-19 | Ep Technologies, Inc. | Systems and methods for visualizing interior regions of the body |
PT1491139E (en) * | 1997-01-03 | 2007-09-25 | Biosense Webster Inc | Bend-responsive catheter |
US6585763B1 (en) * | 1997-10-14 | 2003-07-01 | Vascusense, Inc. | Implantable therapeutic device and method |
US6304769B1 (en) * | 1997-10-16 | 2001-10-16 | The Regents Of The University Of California | Magnetically directable remote guidance systems, and methods of use thereof |
US6147480A (en) * | 1997-10-23 | 2000-11-14 | Biosense, Inc. | Detection of metal disturbance |
IL122578A (en) | 1997-12-12 | 2000-08-13 | Super Dimension Ltd | Wireless six-degree-of-freedom locator |
US6517534B1 (en) * | 1998-02-11 | 2003-02-11 | Cosman Company, Inc. | Peri-urethral ablation |
US5966090A (en) * | 1998-03-16 | 1999-10-12 | Mcewan; Thomas E. | Differential pulse radar motion sensor |
JP2003524443A (en) * | 1998-08-02 | 2003-08-19 | スーパー ディメンション リミテッド | Medical body guidance system |
-
1999
- 1999-07-07 JP JP2000565784A patent/JP2003524443A/en active Pending
- 1999-07-07 EP EP19990929671 patent/EP1100373B1/en not_active Expired - Lifetime
- 1999-07-07 EP EP20100182338 patent/EP2279692A3/en not_active Withdrawn
- 1999-07-07 AU AU46447/99A patent/AU4644799A/en not_active Abandoned
- 1999-07-07 US US09/463,177 patent/US6593884B1/en not_active Expired - Lifetime
- 1999-07-07 DE DE1999639471 patent/DE69939471D1/en not_active Expired - Lifetime
- 1999-07-07 EP EP20080158218 patent/EP2100557B1/en not_active Expired - Lifetime
- 1999-07-07 WO PCT/IL1999/000371 patent/WO2000010456A1/en active IP Right Grant
-
2001
- 2001-06-13 US US09/879,108 patent/US20020005719A1/en not_active Abandoned
- 2001-06-13 US US09/879,107 patent/US20010047133A1/en not_active Abandoned
- 2001-06-13 US US09/879,109 patent/US6947788B2/en active Active
-
2003
- 2003-03-27 US US10/397,358 patent/US6833814B2/en active Active
- 2003-04-08 US US10/408,123 patent/US7555330B2/en active Active
-
2005
- 2005-01-06 JP JP2005001770A patent/JP2005128035A/en active Granted
- 2005-01-06 JP JP2005001768A patent/JP2005161076A/en active Granted
- 2005-01-06 JP JP2005001769A patent/JP2005161077A/en active Granted
- 2005-01-06 JP JP2005001767A patent/JP2005185845A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008062351A1 (en) * | 2008-12-18 | 2010-06-24 | Siemens Aktiengesellschaft | Minimal-invasive medical device for navigating medical object in patient body, has field coil and/or field generator integrated in patient positioning plate of patient positioning table, where field coil and/or coil includes titanium |
Also Published As
Publication number | Publication date |
---|---|
US6833814B2 (en) | 2004-12-21 |
US20020005719A1 (en) | 2002-01-17 |
JP2005161076A (en) | 2005-06-23 |
US20010047133A1 (en) | 2001-11-29 |
JP2005161077A (en) | 2005-06-23 |
US20030160721A1 (en) | 2003-08-28 |
EP2279692A2 (en) | 2011-02-02 |
US6947788B2 (en) | 2005-09-20 |
AU4644799A (en) | 2000-03-14 |
EP1100373A4 (en) | 2005-01-05 |
JP2005128035A (en) | 2005-05-19 |
US6593884B1 (en) | 2003-07-15 |
US7555330B2 (en) | 2009-06-30 |
EP1100373A1 (en) | 2001-05-23 |
US20030216639A1 (en) | 2003-11-20 |
JP2005185845A (en) | 2005-07-14 |
US20020042571A1 (en) | 2002-04-11 |
EP2100557B1 (en) | 2012-11-07 |
EP2100557A1 (en) | 2009-09-16 |
WO2000010456A1 (en) | 2000-03-02 |
DE69939471D1 (en) | 2008-10-16 |
EP2279692A3 (en) | 2011-02-23 |
JP2003524443A (en) | 2003-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6728562B1 (en) | Method for creating a virtual electrogram | |
DE102005032755B4 (en) | System for performing and monitoring minimally invasive procedures | |
JP3881028B2 (en) | Movable transmit or receive coils for position detection systems | |
ES2240964T3 (en) | Apparatus and method to treat cardiac arritmias. | |
US6574492B1 (en) | Catheter having multiple arms with electrode and position sensor | |
US7189208B1 (en) | Method for measuring heart electrophysiology | |
EP0836413B1 (en) | System for navigating a catheter probe | |
US5211165A (en) | Tracking system to follow the position and orientation of a device with radiofrequency field gradients | |
EP1895930B1 (en) | Apparatus for shaped magnetic field control for catheter guidance, control and imaging. | |
US6939309B1 (en) | Electrophysiology mapping system | |
JP4878823B2 (en) | Catheter guidewire | |
DE60219905T2 (en) | System and method for determining the dissolution of an implantable medical device | |
US7873401B2 (en) | System and method for a magnetic catheter tip | |
EP1757227A2 (en) | Sensing the position of an object placed within a living body | |
JP3440114B2 (en) | Tracking system for monitoring the position and orientation of the instrument using multiple magnetic resonance detection | |
DE19629890B4 (en) | Magnetic resonance imaging and tracking system | |
AU2005234715B2 (en) | Current-based position sensing | |
US7753852B2 (en) | Atherectomy catheter with combined OCT/IVUS imaging | |
JP3949729B2 (en) | Shape adaptive catheter | |
JP2947908B2 (en) | Real-time display method of the catheter in a blood vessel | |
US20080287805A1 (en) | System and method to guide an instrument through an imaged subject | |
DE69731349T2 (en) | Device for determining the position of a catheter located in the body of a patient | |
US5309913A (en) | Frameless stereotaxy system | |
US6580938B1 (en) | Image-guided thoracic therapy and apparatus therefor | |
AU729805B2 (en) | Independently positionable transducers for location system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
17P | Request for examination filed |
Effective date: 20010202 |
|
AX | Request for extension of the european patent to: |
Free format text: AL;LT;LV;MK;RO;SI |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7A 61B 19/00 B Ipc: 7A 61B 5/05 B Ipc: 7A 61B 5/06 A |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20041117 |
|
17Q | First examination report despatched |
Effective date: 20050509 |
|
17Q | First examination report despatched |
Effective date: 20050509 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 69939471 Country of ref document: DE Date of ref document: 20081016 Kind code of ref document: P |
|
26 | Opposition filed |
Opponent name: SIEMENS AKTIENGESELLSCHAFT Effective date: 20090203 |
|
27O | Opposition rejected |
Effective date: 20100426 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20140206 AND 20140212 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69939471 Country of ref document: DE Representative=s name: HOFFMANN - EITLE, DE Effective date: 20140123 Ref country code: DE Ref legal event code: R081 Ref document number: 69939471 Country of ref document: DE Owner name: COVIDIEN LP, US Free format text: FORMER OWNER: SUPER DIMENSION LTD., HERZELIA, IL Effective date: 20140123 Ref country code: DE Ref legal event code: R081 Ref document number: 69939471 Country of ref document: DE Owner name: COVIDIEN LP, MANSFIELD, US Free format text: FORMER OWNER: SUPER DIMENSION LTD., HERZELIA, IL Effective date: 20140123 Ref country code: DE Ref legal event code: R082 Ref document number: 69939471 Country of ref document: DE Representative=s name: HOFFMANN - EITLE PATENT- UND RECHTSANWAELTE PA, DE Effective date: 20140123 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: COVIDIEN LP, US Effective date: 20140320 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced from national office to epo] |
Ref country code: FR Payment date: 20180621 Year of fee payment: 20 Ref country code: IT Payment date: 20180620 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced from national office to epo] |
Ref country code: GB Payment date: 20180621 Year of fee payment: 20 Ref country code: DE Payment date: 20180620 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69939471 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20190706 |