EP1093560A1 - Four a feu tournant a flux central tubulaire - Google Patents

Four a feu tournant a flux central tubulaire

Info

Publication number
EP1093560A1
EP1093560A1 EP99925058A EP99925058A EP1093560A1 EP 1093560 A1 EP1093560 A1 EP 1093560A1 EP 99925058 A EP99925058 A EP 99925058A EP 99925058 A EP99925058 A EP 99925058A EP 1093560 A1 EP1093560 A1 EP 1093560A1
Authority
EP
European Patent Office
Prior art keywords
flow
section
partition
gas flow
homogeneity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99925058A
Other languages
German (de)
English (en)
Other versions
EP1093560B1 (fr
Inventor
Jean-Christophe Rotger
Christian Dreyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto France SAS
Original Assignee
Aluminium Pechiney SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aluminium Pechiney SA filed Critical Aluminium Pechiney SA
Publication of EP1093560A1 publication Critical patent/EP1093560A1/fr
Application granted granted Critical
Publication of EP1093560B1 publication Critical patent/EP1093560B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/06Details, accessories, or equipment peculiar to furnaces of this type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/02Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge of multiple-chamber type with permanent partitions; Combinations of furnaces

Definitions

  • the invention relates to revolving furnace chambers used for cooking carbonaceous blocks, and more particularly to open-chamber furnaces
  • Open-type rotating chamber furnaces are well known in themselves and described in particular in patent applications FR 2 600 152 (corresponding to American patent US 4 859 175) and WO 91/19147
  • a flow gas consisting of air and / or combustion gases circulates, in the succession of active chambers, in the long direction of the oven, in a succession of hollow heating partitions which communicate with each other from one chamber to another, each chamber being constituted by the juxtaposition in the transverse direction of the furnace, in alternation, of these heating partitions and of cells in which the carbonaceous blocks to be baked are stacked
  • This gas flow is blown upstream of the active chambers and is sucked downstream of these chambers
  • a hollow partition of a chamber is typically in the form of a rectangular parallelepiped 5 m long (long direction of the oven), 5 m high and 0.5 m wide (cross direction of the oven) or 0 , 3 m of gaseous vein and 2 x 0.1 m of wall), subdivided into 4 vertical "wells" thanks to 3 vertical baffles arranged in the transverse direction, each well being delimited either by two baffles, or by a baffle and a walls of the chamber, so as to increase the average path of the cooling air or the combustion gases in said partition and, moreover, to ensure a constant spacing between the longitudinal walls of the partition
  • spacers are also arranged in the transverse direction, in particular between said baffles, to ensure a constant spacing between the longitudinal walls of the partition.
  • a constant concern of the manufacturer of cooked carbonaceous blocks is - at constant quality - to reduce the production costs of these cooked carbonaceous blocks and the investment and / or maintenance costs of the ovens used for their manufacture, in particular by increasing the duration of refractory elements of ovens
  • Another concern is to improve the quality of these cooked carbonaceous blocks, in particular to improve the consistency of quality and the homogeneity of the performances within a same carbonaceous block and from one block to another.
  • the modeling also highlighted the significant pressure drop in the gas flow due to the presence of baffles, which has the double consequence of, on the one hand, increasing the energy required to circulate the flow. gaseous in the succession of partitions, and on the other hand to increase the corresponding overpressure or depression in said partitions, which leads to an increase in thermal leakage in one direction or the other (from said partition to the outside or from the outside to said partition), and therefore the energy consumed.
  • the rotary fire furnace with open type chambers for cooking carbonaceous blocks comprises, in the long direction X of the furnace, a succession of chambers separated by transverse walls provided with openings, each of the chambers comprising, in the transverse direction Y of the furnace, an alternation of hollow partitions ensuring the circulation of a gaseous flow for heating combustion gas or a gaseous flow of cooling air, and of cells containing the carbonaceous blocks to be baked, each of said hollow partitions of a room being in communication with a partition of a chamber upstream and / or a partition of a chamber downstream, so as to form a conduit ensuring the circulation of said gas flow, from upstream to downstream, in the long direction X over all of the chambers simultaneously in activity for said rotating light, each of said partitions of a chamber comprising, in the XZ plane, two vertical side walls, and, in the transverse direction Y, elements ensuring the deflection of said gas flow passing through said partition and maintaining a constant spacing of said side walls and is
  • the invention is distinguished by the elimination of vertical baffles, generally three in number per hollow partition
  • the average path of the gas flow can be broken down into a component in the longitudinal direction X, over a length L, and into a component in the vertical direction Z, over a length 4xC, i.e. in total L + 4xC
  • the gas flow is a tubular flow which changes direction 8 times (X / ZX / Z- X / ZX / X), each baffle bringing a change of direction in the vertical direction Z and in the longitudinal direction X note "ZX", by alternating the longitudinal directions (X) and the vertical directions (Z) the entire gas flow being concentrated, at each passage of baffle, on a straight section S corresponding to a height of 0.2xH- 0.4xH, i.e. 20 to 40% of the total section S
  • the average gas flow follows an average trajectory which is, as a first approximation and taking into account the absence of a vertical baffle, the arithmetic average of the shortest trajectory, that of length L, and of the longest trajectory, that of length equal to L + 2xM, i.e. V_ (L + L + 2xM) or L + M, to compare to the trajectory of the state of the art L + 4xC, with C close to M
  • the gaseous flow of flow rate D is distributed homogeneously over the entire cross section S of said partition in the plane YZ, with a level of homogeneity of said distribution of the flow rate D equal to 0.50 D - 0.125 D / 0.25 S, said level of homogeneity being noted "2y.D - 0.5y D / yS", "2y D - 0.5y D” being the extent of the fraction of the flow rate D corresponding to a fraction y, with y at most equal to 0.25, of said cross section S, which is equal to the product of the height "H" by the width "1" constant hollow partitions
  • the level of overall homogeneity is therefore expressed in fact by the portion of the hollow wall surface, in the XZ plane - or of corresponding volume - where the level of homogeneity reaches at least a given threshold fixed at 0.5 D - 0.125 D / 0.25 S
  • the means according to the invention make it possible to solve the problem posed.
  • the invention ensures a better distribution of the gas flow, and therefore greater temperature uniformity, while reducing the pressure drop, which ultimately leads to both more homogeneous production , a reduction in the operating costs of the ovens and an increase in the life of the ovens.
  • Figures 1, la, 2, 3 and 3a correspond to the ovens according to the state of the art Figures 4, 4a, 5, 6 6a, 7a to 7d and 8 correspond to the ovens according to the invention.
  • Figure 1 is a schematic view, in section along the plane XZ, X being the longitudinal direction and Z the vertical direction, of the portion of the rotary fire oven (1), active simultaneously on 10 chambers (2), each chamber being separated from the next by a transverse wall (32) provided with an opening (320) ensuring the circulation of the gaseous flow of flow D from upstream (on the right in the figure), where air is injected thanks to a supply ramp (231) provided with as many pipes (230) as there are longitudinal hollow partitions (3) provided with baffles (31) (three baffles per hollow partition and per chamber), downstream (at left in the figure) where the gas flow is sucked by means of a suction ramp (211) provided with as many suction pipes (210) as there are longitudinal hollow partitions.
  • Burners (220) positioned substantially in the middle of the series of 10 chambers, bring the upstream gas flow to the desired temperature level, typically of the order of 1100 ° C.
  • the chambers located upstream of the burners are chambers for cooling the carbonaceous blocks, while the chambers downstream of the burners are chambers for cooking the carbonaceous blocks.
  • a gas flow (233) can exit the oven upstream of the burners, and a gas flow of air (213) can enter the oven downstream of the burners .
  • the gas flow of flow D circulating in said hollow partitions is not a constant flow rate, taking into account both these gas flows (213, 233), and taking into account the formation of volatile combustible products during the cooking of the carbon blocks in the chambers in the part downstream of the oven.
  • the gas flow is an air flow (34) upstream of the burners (220), and is a flow of combustion gas (35) mixed with an incident air flow (213) in the downstream part of the furnace, these streams having a flow rate, designated generically by "D"
  • FIG. 1a represents the pressure curve of said gaseous flow with flow rate D, inside said hollow partitions (3).
  • the pressure decreases regularly from upstream to downstream it is higher than the atmospheric pressure and maximum at the level of the blowing of air by the pipes (230), it is close to the atmospheric pressure just upstream of the burners (220 ), where a pressure sensor (234) is installed, it is lower than atmospheric pressure and minimum at the level of the suction of combustion gases by the suction pipes (210)
  • FIG. 2 represents a perspective view, partially exploded, of the upstream part of the series of active chambers, making it possible to observe, in the transverse direction Y, for the same chamber (2), the alternation of hollow heating partitions ( 3) and cells (4) containing the stack of carbon blocks (40)
  • Each hollow partition (3) is limited in the XZ plane by two vertical walls (38), and contains three baffles (31), is provided with openers (30) into which the blowing pipes (230) can be inserted as shown in the figure, or suction pipes (210), the burner injectors (220), or various measurement means ) are the wells (38), that is to say the interior space of the said partition without obstacle so as to be able to introduce the aforementioned devices (blow pipes for example)
  • the successive chambers (2), two of which are shown in the figure, are separated by a wall (32), provided, at n iveau of said hollow partitions (3), of openings (320) allowing the circulation of the gas flow from upstream to downstream, in the direction X
  • FIG. 3 represents a map of the gas flow, obtained by numerical simulation, broken down into fifty elementary threads (6), in a hollow partition according to the prior art shown in Figure 3a, provided with 3 baffles (31) and a number of spacers (33) maintaining a constant spacing between the walls (38) of said partition.
  • FIG. 3a shows the length L and the height H of a hollow partition for a given room, the height C of a baffle, and the height M of the wall (32) at each end of the partition.
  • Figures 4 and 4a are similar to Figures 3 and 3a but relate to the invention. It is easy to verify, in FIG. 4, that the level of homogeneity defined by 0.50.D - 0.125.D / 0.25. S is reached along the length L ', between the abscissae Xi and X. We can see in Figure 4 where the gas flow moves from left to right:
  • a first portion denoted A, of length less than L / 2, and preferably less than L / 3 comprising means (spacers in particular) for transforming an initial flow of section So into a flow of section S extending over all the hollow section and having said level of homogeneity, thanks to the formation of ten flow fractions (7);
  • a second portion denoted B, of length at least equal to L / 3 and preferably at least equal to L / 2, where said level of homogeneity is everywhere reached;
  • C a third portion, denoted C, of as short a length as possible, where the gas flow is reconcentrated, said level of homogeneity is not reached because there may be locally concentrations of flow which may be outside the range 0.50.D and 0.125.D for a fraction of the section of 0.25. S.
  • FIG. 5, corresponding to a second embodiment of the invention, is a partial schematic view, in section in the XZ plane, of the gas flow on the same succession of hollow partitions of simultaneously active chambers for the same rotating light, in the case where the rooms are not separated by a transverse wall.
  • the gas flow retains a substantially constant cross-section S over the whole of its path, a distribution means (232) being used upstream of said rotating light, so as to inject, through slots or transverse openings (2320), a flow gaseous, in the form of a dozen flow fractions (7), having said level of homogeneity, another distribution means (212) being used downstream of said rotating light, so as to suck said gaseous flow through slots or transverse openings (2120) without altering said level of homogeneity Only the gas flows in the hollow partitions at the two ends have been shown
  • the gas flow consists of a set of flow fractions (7), forming a tubular flow (50) substantially oriented along the longitudinal axis X'-X
  • FIG. 6 corresponds to FIG. 1, after modification according to FIG. 5, in particular removal of the transverse walls (32), and introduction of the distribution means (212, 232)
  • FIG. 6a similar to FIG. 1a, represents the static pressure curve of said gas flow, in an oven according to the state of the art (curve I), and in an oven according to the invention (curve II & III), curve II corresponding to the case where the chambers are separated by transverse walls (32) having an orifice (320) for passage of the gas flow, while curve III corresponds to the case of FIGS. 5 and 6 where the gas flow preserves, from upstream to downstream, substantially the same section S
  • FIGS. 7a to 7d illustrate, in section in the XZ plane, spacers or elements ensuring the deflection of said gas flow, or gaseous threads (6) which flow around said spacers (33a, 33b, 33 c, 33d), some (33 c and 33 d) being oblong in shape with a major axis (330), to facilitate the flow of the gas flow and reduce its pressure drop
  • FIG. 8 illustrates the case where, in order to further reduce the pressure drop, oblong elements (33 c, 33d) are used and oriented, so that the orientation of the major axis (330) of said spacers coincides with the direction of the gas flow, in particular in the case where said chambers are separated by walls (32) provided with orifices or openings (320) ensuring the passage of said gas flow from one chamber to another
  • said oven (1) comprises chambers separated by a transverse wall (32) having openings of section So (320) ensuring the passage of said gas flow (34 , 35) from one partition to the next partition, and in which each partition comprises, at its upstream part, a means for obtaining, from an initial flow flow D of section So, a flow of section S> So having said level of homogeneity at least equal to 0.50 D - 0.125 D / 0.25 S
  • said conduit (5) is not of constant section, its section being equal to So, at the level of each transverse wall (32) and S 'So in each hollow partition proper
  • Said means transforms, over a distance less than L / 2, L being the length of said partition, a gas flow of flow rate D and of initial section So at the upstream inlet of said partition, into a flow of section S at least equal at 3 So, and having said level of homogeneity
  • said distance is less than L / 3
  • said means is located on the part denoted 'A "
  • Each partition may include, in its upper part, one or more openings (30), which can be closed by a cover (36) and which give access to wells (37)
  • said means for obtaining said gaseous flow of flow rate D and of section S having said level of homogeneity consists of dividing elements, or spacers (33) dividing, in a number of steps varying from 2 to 4 , said initial flow of section So, as shown in FIGS. 4 and 4a, into a dozen of flow fractions (7)
  • FIG. 4a we can, by way of indication, consider 3 steps for dividing the initial flow So the first comprising 2 spacers or elements (330), the second comprising 6 spacers or elements (331), the third comprising 10 spacers or elements (332), these 10 spacers or elements constituting a front downstream of which - to the right of which in FIG.
  • said duct (5) is of constant section, said walls (32) having openings (320) having substantially said section S, in the plane YZ, of so as to form conduits (5) of substantially constant section S, from upstream to downstream, on all the hollow partitions (3) simultaneously active for said fire, in which said level of homogeneity is obtained by a distribution means removable (232) introduced, upstream of said rotating light, at the upstream end of said conduit (5), so as to inject into each conduit (5) said gas flow with said level of homogeneity, in the form of ten flow fractions (7) - 8 fractions illustrated in Figure 5
  • conduit (5) it may be advantageous, in order to maintain said level of homogeneity over the greatest possible length of conduit (5), to use a removable distribution means (212) also downstream of said rotating light, at the downstream end of said conduit (5) formed by the succession of hollow partitions (3) active for said fire, so as to aspirate said gas flow without disturbing upstream said level of homogeneity of said gas flow
  • said distribution means (212 232) can be an enclosure or a parallelepipedal distribution panel (232), of horizontal plane section, in the XY plane, chosen so that said enclosure can be introduced vertically into said well ( 37) of said partition (3) or between two chambers, and of vertical plane section in the YZ plane slightly less than said section S of said partition in the YZ plane, having a face parallel to the YZ plane provided with openings (2320) with calculated geometry, either for injecting said gas flow, in the form of flow fractions (7), with said level of homogeneity upstream of said conduit (5), or for sucking said gas flow downstream of said conduit (5)
  • said means for maintaining a gaseous flow of flow rate D having said level of homogeneity on said section S comprises a plurality of elements or spacers (33) fixed to said side walls (38) and distributed, as a function of the results of the numerical simulation, in a substantially homogeneous manner on the surface of said side walls (38) in the XZ plane of said partition or of said conduit, in sufficient number to ensure said constant spacing of said side walls (38), so as to divide said gas flow into a number of flow fractions (7) varying from 3 to 20 regularly distributed over all of said section S, and to ensure for said fractions a flow with predetermined orientation, optionally in said long direction X of the furnace, so as to have a substantially tubular flow (50) over all or part of the duct (5) according to the method of the invention
  • said elements or spacers (33) may be profiled so as to reduce the pressure drop of said gas flow, while ensuring the other required functions aimed at maintaining a constant spacing between said side walls (38), and in obtaining or keep for said gas flow said predetermined level of homogeneity on said section S
  • Figures 7a to 7d illustrate, in section in the XZ plane, different profiles of spacers or elements (33a, 33b, 33c, 33d), some (33c and 33d) being oblong in shape with a major axis (330), for facilitate the penetration of the gas flow and reduce its pressure drop
  • the pressure drop P will a priori be in the following order P 3a > P 33b > P-, c and P 3 3d
  • FIG. 4a constitutes the construction plane of the hollow partition (3), in the manner of a brick wall, the hatched elements extending transversely (direction Y-Y ') over the entire width (0.5 m) of said partition - width which includes 0.3m of gaseous vein and 2 x 0.1m of thickness of the hollow partition
  • L 4, 178 m
  • the thickness of each brick made of material refractory 91.5 mm
  • FIG. 4 there are 3 zones, denoted A, B and C, the gas flow flowing from left to right:
  • zone A corresponds to the formation of a gas flow of section S having said level of homogeneity, from a gas flow of section So "S,
  • - zone C corresponds to the part where the gas flow reconcentrates, passing from a section S to a section So, on passing the wall between two successive chambers
  • the oven according to the invention effectively makes it possible to solve the problem posed whether it is the consistency of quality of the carbonaceous blocks, the energy consumption of the oven, or even the lifetime of the oven, on all these levels, the present invention provides an improvement. to existing furnaces according to the state of the art

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Baking, Grill, Roasting (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

Le four pour la cuisson de blocs carbonés comprend, dans le sens long X, une succession de chambres, chacune des chambres comprenant, dans le sens travers Y, une alternance de cloisons creuses (3) assurant la circulation d'un flux gazeux de réchauffage de gaz de combustion ou un flux gazeux d'air de refroidissement, et d'alvéoles contenant les blocs carbonés à cuire, chacune desdites cloisons creuses (3) d'une chambre étant en communication avec une cloison en amont et/ou en aval, de manière à former un conduit assurant la circulation dudit flux gazeux, chacune desdites cloisons d'une chambre comprenant, dans le plan X-Z, deux parois latérales verticales (38), et, dans le sens travers Y, des éléments assurant la déflexion dudit flux gazeux et maintenant un écartement constant desdites parois latérales (38), et est caractérisé en ce que chaque cloison (3) comprend un moyen pour conserver, sur au moins un tiers de la longueur L de ladite cloison, un flux gazeux de débit D réparti de manière homogène sur la totalité de la section droite S de ladite cloison, avec un niveau d'homogénéité de ladite répartition du débit D défini par '2y.D-0,5y.D / y.S', où '2y.D-0,5y.D' désigne l'étendue de la plage du débit D correspondant à une fraction y de ladite section droite S, et où y est au plus égal à 0,25.

Description

FOUR A FEU TOURNANT A FLUX CENTRAL TUBULAIRE
Domaine de l'invention
L'invention concerne les chambres de four à feu tournant utilisés pour la cuisson de blocs carbonés, et plus particulièrement les fours à chambre de type ouvert
Etat de la technique
Les fours à feu tournant à chambre de type ouvert sont bien connus en eux-mêmes et décrits notamment dans les demandes de brevets FR 2 600 152 (correspondant au brevet américain US 4 859 175) et WO 91/19147 Dans ces fours, un flux gazeux constitué d'air et/ou des gaz de combustion circule, dans la succession de chambres actives, dans le sens long du four, dans une succession de cloisons chauffantes creuses qui communiquent entre elles d'une chambre à l'autre, chaque chambre étant constituée par la juxtaposition dans le sens travers du four, en alternance, de ces cloisons chauffantes et d'alvéoles dans lesquelles sont empilés les blocs carbonés à cuire Ce flux gazeux est soufflé en amont des chambres actives et est aspiré en aval de ces chambres
Une cloison creuse d'une chambre se présente typiquement sous la forme d'un parallélépipède rectangle de 5 m de longueur (sens long du four), 5 m de hauteur et de 0,5 m de largeur (sens travers du four) soit 0,3 m de veine gazeuse et 2 fois 0,1 m de paroi), subdivisé en 4 " puits " verticaux grâce à 3 chicanes verticales disposées dans le sens travers, chaque puits étant délimité soit par deux chicanes, soit par une chicane et un des murs de la chambre, de manière à augmenter le parcours moyen de l'air de refroidissement ou des gaz de combustion dans ladite cloison et, en outre, à assurer un écartement constant entre les parois longitudinales de la cloison
Outre les chicanes, des entretoises sont disposées également dans le sens travers, notamment entre lesdites chicanes, pour assurer un écartement constant entre les parois longitudinales de la cloison Problème posé
Une préoccupation constante du fabricant de blocs carbonés cuits est - à qualité constante - de diminuer les coûts de production de ces blocs carbonés cuits et les coûts d'investissement et/ou d'entretien des fours servant à leur fabrication, notamment en augmentant la durée de vie des éléments réfractaires des fours
Une autre préoccupation est d'améliorer la qualité de ces blocs carbonés cuits, en particulier d'améliorer la constance de qualité et l'homogénéité des performances au sein d'un même bloc carboné et d'un bloc à l'autre
Dans ce but, la demanderesse a eu l'idée de modéliser la circulation des fluides gazeux dans les cloisons de fours existants, connaissant les dimensions et emplacements des chicanes et entretoises
D'une part, elle a eu la surprise de constater que, dans les cloisons creuses selon l'état de l'art, la répartition du flux gazeux était loin d'être homogène et uniforme, de sorte que, en régime permanent, la majeure partie du flux ou du débit gazeux s'écoulait selon des chemins préférentiels, laissant une part non négligeable des parois de la cloison sans contact avec ledit flux gazeux Or, ces parois séparent les blocs carbonés des alvéoles dudit flux gazeux de chauffage ou refroidissement et assurent l'échange thermique entre flux gazeux et blocs carbonés On comprend mieux dès lors que cette hétérogénéité thermique des parois puisse, soit entraîner une qualité variable des blocs carbonés, soit nécessiter - ce qui est en pratique le cas - une augmentation de la puissance de chauffage ou de refroidissement de manière à ce que, même les blocs placés en position défavorable sur le plan de l'échange thermique, puissent satisfaire aux exigences de qualité requises
D'autre part, la modélisation a aussi mis en lumière la perte de charge importante du flux gazeux à cause de la présence de chicanes, ce qui a pour double conséquence d'une part d'augmenter l'énergie nécessaire pour faire circuler le flux gazeux dans la succession de cloisons, et d'autre part d'augmenter la surpression ou la dépression correspondante dans lesdites cloisons, ce qui entraîne une augmentation des fuites thermiques dans un sens ou dans l'autre (de ladite cloison vers l'extérieur ou de l'extérieur vers ladite cloison), et donc l'énergie consommée.
En outre, comme les cloisons sont soumises fréquemment à de grand écarts de température et qu'elles se détériorent en conséquence bien qu'elles soient faites en briques réfractaires, elles doivent être remplacées périodiquement. La demanderesse a donc aussi recherché les moyens pour avoir un four plus économique, non seulement en coût de fonctionnement, mais aussi en coût d'entretien ou d'investissement.
Enfin, elle a essayé de concevoir des moyens pour résoudre ces problèmes (répartition de flux gazeux hétérogène au sein des cloisons, ...), non seulement de manière à concevoir de nouveaux fours ne présentant pas les inconvénients des fours connus, mais encore et surtout de manière à pouvoir adapter et modifier les fours anciens existants, et obtenir des fours plus économiques à la fois en coûts de fonctionnement et en coûts d'entretien Compte tenu de la validité de la modélisation reconnue par la demanderesse, et de la difficulté et du coût très élevé de toute expérimentation avec des fours réels, la demanderesse a recherché la solution au problème posé à l'aide de ces mêmes instruments de modélisation qui ont permis de découvrir l'origine des problèmes à résoudre.
Description de l'invention
Selon l'invention, le four à feu tournant à chambres de type ouvert pour la cuisson de blocs carbonés comprend, dans le sens long X du four, une succession de chambres séparées par des murs transversaux munis d'ouvertures, chacune des chambres comprenant, dans le sens travers Y du four, une alternance de cloisons creuses assurant la circulation d'un flux gazeux de réchauffage de gaz de combustion ou un flux gazeux d'air de refroidissement, et d'alvéoles contenant les blocs carbonés à cuire, chacune desdites cloisons creuses d'une chambre étant en communication avec une cloison d'une chambre en amont et/ou une cloison d'une chambre en aval, de manière a former un conduit assurant la circulation dudit flux gazeux, d'amont en aval, dans le sens long X sur l'ensemble des chambres simultanément en activité pour ledit feu tournant, chacune desdites cloisons d'une chambre comprenant, dans le plan X-Z, deux parois latérales verticales, et, dans le sens travers Y, des éléments assurant la deflexion dudit flux gazeux parcourant ladite cloison et maintenant un écartement constant desdites parois latérales et est caractérise en ce que chaque cloison comprend un moyen pour conserver, sur une longueur L' égale au moins un tiers de la longueur L de ladite cloison et, typiquement par un choix approprie desdits éléments assurant ladite deflexion, un flux gazeux de débit D reparti de manière homogène sur la totalité de la section droite S de ladite cloison dans le plan Y-Z, avec un niveau d'homogeneite de ladite répartition du débit D défini par l'expression " 2y D - 0,5y D / y S ", ou " 2y D - 0,5y D " désigne l'étendue de la plage du débit D correspondant a une fraction y de ladite section droite S et ou y est au plus égal a 0,25
Par rapport a l'état de la technique, l'invention se distingue par la suppression des chicanes verticales, généralement au nombre de trois par cloison creuse
Selon l'état de la technique, si on désigne par L la longueur de la cloison creuse dans le sens X, par H sa hauteur dans le sens Z, et si, en première approximation, on assimile la hauteur C des chicanes dans le sens Z a la hauteur M des murs transversaux aux extrémités de ladite cloison, le parcours moyen du flux gazeux peut se décomposer en une composante selon la direction longitudinale X, sur une longueur L, et en une composante selon la direction verticale Z, sur une longueur 4xC, soit au total L + 4xC
Les valeurs de C et M sont typiquement comprises entre 0,6xH et 0,8xH Ainsi, avec 3 chicanes, le flux gazeux est un flux tubulaire qui change 8 fois de direction (X/Z-X/Z- X/Z-X/X), chaque chicane apportant un changement de direction dans le sens vertical Z et dans le sens longitudinal X note " Z-X ", en alternant les directions longitudinales (X) et les directions verticales (Z) la totalité du flux gazeux étant concentrée, a chaque passage de chicane, sur une section droite S correspondant à une hauteur de 0,2xH- 0,4xH, c'est à dire 20 à 40 % de la section totale S
Selon l'invention, par contre, et dans le cas où un même type de cloison creuse est conservé, le flux gazeux moyen suit une trajectoire moyenne qui est, en première approximation et compte tenu de l'absence de chicane verticale, la moyenne arithmétique de la trajectoire la plus courte, soit celle de longueur L, et de la trajectoire la plus longue, soit celle de longueur égale à L + 2xM, c'est à dire V_ (L+L+2xM) ou L+M, à comparer à la trajectoire de l'état de la technique L+4xC, avec C voisin de M
En outre, typiquement, par un choix approprié desdits éléments assurant ladite déflexion, le flux gazeux de débit D est réparti de manière homogène sur la totalité de la section droite S de ladite cloison dans le plan Y-Z, avec un niveau d'homogénéité de ladite répartition du débit D égal à 0,50 D - 0, 125 D /0,25 S, ledit niveau d'homogénéité étant noté " 2y.D - 0,5y D / y.S ", " 2y D - 0,5y D " étant l'étendue de la fraction du débit D correspondant à une fraction y, avec y au plus égal à 0,25, de ladite section droite S, qui est égale au produit de la hauteur " H " par la largeur " 1 " constante des cloisons creuses
Compte tenu du fait que les éléments de déflexion sont orientés dans le sens transversal Y et de la symétrie qui en résulte, la formule donnant le niveau d'homogénéité vaut aussi dans le plan X-Z, la section S étant alors remplacée par la hauteur " H ", et y étant alors une fraction de cette hauteur H
Ladite section droite S étant toujours prise dans le plan Y-Z, et les éléments assurant la déflexion étant dans le sens transversal Y, il est donc possible de représenter, par simulation numérique, la répartition du débit D dans le plan X-Z d'une cloison creuse, comme illustré dans les figures 3 et 4 représentant des coupes ou sections des fours ou cloisons creuses dans le plan X-Z La modélisation des flux gazeux est effectuée a partir d'une décomposition du flux gazeux total en un nombre N de filets gazeux élémentaires - par exemple une cinquantaine de filets comme illustre sur les figures 3 et 4, et elle conduit a une visualisation des trajectoires de chacun de ces filets dans le plan X-Z, et donc a la répartition des filets gazeux élémentaires, a la même manière de l'espacement entre des courbes de niveau sur une carte A partir de la, il est aise de calculer le niveau d'homogeneite réel sur toute fraction " y " de la hauteur H en comptant le nombre " n " de filets élémentaires pour obtenir la fraction n/N correspondant a la fraction de hauteur " y " qui a ete fixée a 0,25
Ce choix de 0,25 et l'expression correspondante du niveau d'homogeneite traduit le niveau d'homogeneite trouve nécessaire selon l'invention pour obtenir les avantages de l'invention II est évident, compte tenu de la loi de la moyenne, que, si la valeur de " y " augmente, le niveau d'homogeneite, plus facile a obtenir, est moindre Ainsi, le niveau exprime par " 0,8 D - 0,2 D / 0,4 S " correspond a un niveau d'homogeneite moins eleve que celui exprime par " 0,5 D - 0, 125 D / 0,25 S " dans la mesure ou, plus la fraction " y " est élevée, plus grande est la probabilité qu'un flux voisin de y D s'y trouve, l'ensemble du flux D étant par définition présent pour y=l Inversement, le niveau d'homogeneite augmenterait fortement pour un niveau d'homogeneite tel que " 0,20 D - 0,05 D / 0, 10 S " ou " y " a une valeur faible, ce niveau d'homogeneite n'étant pas forcement accessible sur une grande portion de longueur L', ni forcement nécessaire pour obtenir une augmentation significative des avantages selon l'invention
Le niveau d'homogeneite global s'exprime donc en fait par la portion de la surface de paroi creuse, dans le plan X-Z - ou de volume correspondant - ou le niveau d'homogeneite atteint au moins un seuil donne fixe a 0,5 D - 0,125 D / 0,25 S
Selon l'invention, sur au moins un tiers de cette surface ou ce qui revient au même, sur un tiers de la longueur L de ladite paroi creuse, au moins ledit niveau d'homogeneite est atteint Les moyens selon l'invention permettent de résoudre le problème posé. En effet, d'une part, l'invention assure une meilleure répartition du flux gazeux, et donc une plus grande homogénéité de la température, tout en réduisant la perte de charge, ce qui conduit en définitive à la fois à une production plus homogène, à une réduction des coûts de fonctionnement des fours et à une augmentation de la durée de vie des fours.
Description des figures
Les figures 1, la, 2, 3 et 3a correspondent aux fours selon l'état de la technique Les figures 4, 4a, 5, 6 6a, 7a à 7d et 8 correspondent aux fours selon l'invention.
La figure 1 est une vue schématique, en coupe selon le plan X-Z, X étant la direction longitudinale et Z la direction verticale, de la portion de four à feu tournant (1), active simultanément sur 10 chambres (2), chaque chambre étant séparée de la suivant par un mur transversal (32) muni d'une ouverture (320) assurant la circulation du flux gazeux de débit D de l'amont (à droite sur la figure), où de l'air est injecté grâce à une rampe de soufflage (231) munies d'autant de pipes (230) qu'il y a de cloisons creuses (3) longitudinales munies de chicanes (31) (trois chicanes par cloison creuse et par chambre), vers l'aval (à gauche sur la figure) où le flux gazeux est aspiré au moyen d'une rampe d'aspiration (211) dotée d'autant de pipes d'aspiration (210) qu'il y a de cloisons creuses longitudinales.
Des brûleurs (220), positionnés sensiblement au milieu de la série des 10 chambres, portent le flux gazeux amont au niveau de température souhaité, typiquement de l'ordre de 1 100°C. Les chambres situées en amont des brûleurs sont des chambres de refroidissement des blocs carbonés, tandis que les chambres en aval des brûleurs sont des chambres de cuisson des blocs carbonés.
Compte tenu de la pression dans le four, comme représenté à la figure la, un flux gazeux (233) peut sortir du four en amont des brûleurs, et un flux gazeux d'air (213) peut pénétrer dans le four an aval des brûleurs. Ainsi, le flux gazeux de débit D circulant dans lesdites cloisons creuses n'est pas un flux de débit constant, compte tenu à la fois de ces flux gazeux (213, 233), et compte tenu de la formation de produits volatils combustibles durant la cuisson des blocs carbonés dans les chambres dans la partie aval du four Le flux gazeux est un flux d'air (34) en amont des brûleurs (220), et est un flux de gaz de combustion (35) mélangé à un flux d'air incident (213) dans la partie aval du four, ces flux ayant un débit, désigné, de manière générique par " D "
La figure la représente la courbe de pression dudit flux gazeux de débit D, à l'intérieur desdites cloisons creuses (3). La pression décroît régulièrement de l'amont vers l'aval elle est supérieure à la pression atmosphérique et maximale au niveau du soufflage de l'air par les pipes (230), elle est voisine à la pression atmosphérique juste en amont des brûleurs (220), où est implanté un capteur de pression (234), elle est inférieure à la pression atmosphérique et minimale au niveau de l'aspiration des gaz de combustion par les pipes d'aspiration (210)
La figure 2 représente une vue en perspective, partiellement éclatée, de la partie amont de la série de chambres actives, permettant d'observer, dans le sens transversal Y, pour une même chambre (2), l'alternance de cloisons chauffantes creuses (3) et d'alvéoles (4) contenant l'empilement des blocs carbonés (40) Chaque cloison creuse (3) est limitée dans le plan X-Z par deux parois verticales (38), et contient trois chicanes (31), est munie d'ouvreaux (30) dans lesquels peuvent être introduites les pipes de soufflage (230) comme représenté sur la figure, ou d'aspiration (210), les injecteurs des brûleurs (220), ou divers moyens de mesure Au droit des ouvreaux (30) se trouvent les puits (38), c'est-à-dire l'espace intérieur de ladite cloison dépourvue d'obstacle de façon à pouvoir y introduire les dispositifs précités (pipes de soufflage par exemple) Les chambres (2) successives, dont deux sont représentées sur la figure, sont séparées par un mur (32), doté, au niveau desdites cloisons creuses (3), d'ouvertures (320) permettant la circulation du flux gazeux d'amont vers l'aval, dans le sens X'-X
La figure 3 représente une cartographie du flux gazeux, obtenu par simulation numérique, décomposé en cinquante filets élémentaires (6), dans une cloison creuse selon l'état de la technique représentée à la figure 3a, munie de 3 chicanes (31) et d'un certain nombre d'entretoises (33) maintenant un écartement constant entre les parois (38) de ladite cloison. La figure 3a ont été portés la longueur L et la hauteur H d'une cloison creuse pour une chambre donnée, la hauteur C d'une chicane, et la hauteur M du mur (32) à chaque extrémité de la cloison.
Les figures 4 et 4a sont analogues aux figures 3 et 3a mais sont relatives à l'invention. Il est aisé de vérifier, sur la figure 4, que le niveau d'homogénéité défini par 0,50.D - 0, 125.D / 0,25. S est atteint sur la longueur L', entre les abscisses Xi et X . On distingue, sur la figure 4 où le flux gazeux se déplace de gauche à droite :
- une première portion, notée A, de longueur inférieure à L/2, et de préférence inférieure à L/3 comprenant des moyens (entretoises notamment) pour transformer un flux initial de section So en un flux de section S s'étendant sur toute la section creuse et ayant ledit niveau d'homogénéité, grâce à la formation d'une dizaine de fractions de flux (7) ; - une seconde portion, notée B, de longueur au moins égale à L/3 et de préférence au moins égale à L/2, où ledit niveau d'homogénéité est partout atteint ;
- une troisième portion, notée C, de longueur aussi réduite que possible, où le flux gazeux se reconcentre, ledit niveau d'homogénéité n'est pas atteint car il peut y avoir localement des concentrations de flux qui peuvent se situer hors de la plage 0,50.D et 0, 125.D pour une fraction de la section de 0,25. S.
La figure 5, correspondant à une seconde modalité de l'invention, est une vue schématique partielle, en coupe dans le plan X-Z, du flux gazeux sur une même succession de cloisons creuses de chambres simultanément actives pour un même feu tournant, dans le cas où les chambres ne sont pas séparées par un mur transversal. Le flux gazeux conserve une section S sensiblement constante sur l'ensemble de son parcours, un moyen de répartition (232) étant utilisé en amont dudit feu tournant, de manière à injecter, grâce à des fentes ou ouvertures transversales (2320), un flux gazeux, sous forme d'une dizaine de fractions de flux (7), ayant ledit niveau d'homogénéité, un autre moyen de répartition (212) étant utilisé en aval dudit feu tournant, de manière à aspirer ledit flux gazeux par des fentes ou ouvertures transversales (2120) sans altérer ledit niveau d'homogénéité Seuls les flux gazeux dans les cloisons creuses aux deux extrémités ont été représentés Le flux gazeux est constitué d'un ensemble de fractions de flux (7), formant un flux tubulaire (50) sensiblement orienté selon l'axe longitudinal X'-X
La figure 6 correspond à la figure 1, après modification selon la figure 5, notamment suppression des murs transversaux (32), et introduction des moyens de répartition (212, 232) N'ont pas été représentés sur cette figure des moyens pour assurer, au niveau des brûleurs (220), un chauffage homogène dudit flux gazeux La figure 6a, analogue à la figure la, représente la courbe de pression statique dudit flux gazeux, dans un four selon avec l'état de la technique (courbe I), et dans un four selon l'invention (courbe II & III), la courbe II correspondant au cas où les chambres sont séparées par des murs transversaux (32) présentant un orifice (320) de passage du flux gazeux, alors que la courbe III correspond au cas des figures 5 et 6 où le flux gazeux conserve, d'amont en aval, sensiblement la même section S
Les figures 7a à 7d illustrent, en coupe dans le plan X-Z, des entretoises ou éléments assurant la déflexion dudit flux gazeux, ou des filets gazeux (6) qui s'écoulent autour desdites entretoises (33a, 33b, 33 c, 33d), certaines (33 c et 33 d) étant de forme oblongue avec un grand axe (330), pour faciliter l'écoulement du flux gazeux et réduire sa perte de charge
La figure 8 illustre la cas où, de manière à diminuer encore la perte de charge, des éléments de forme oblongue (33 c, 33d) sont utilisés et orientés, de façon à ce que l'orientation du grand axe (330) desdites entretoises coïncide avec la direction du flux gazeux, en particulier dans le cas où lesdites chambres sont séparées par des murs (32) munis d'orifices ou ouvertures (320) assurant le passage dudit flux gazeux d'une chambre à une autre
Description détaillée de l'invention Selon une première modalité de l'invention, illustrée notamment aux figures 4 et 4a, ledit four (1) comprend des chambres séparées par un mur transversal (32) présentant des ouvertures de section So (320) assurant le passage dudit flux gazeux (34, 35) d'une cloison a la cloison suivante, et dans lequel chaque cloison comprend, a sa partie amont, un moyen pour obtenir, a partir d'un flux initial de débit D de section So, un flux de section S > So ayant ledit niveau d'homogeneite au moins égal a 0,50 D - 0, 125 D / 0,25 S Selon cette modalité, ledit conduit (5) n'est pas de section constante, sa section valant So, au niveau de chaque mur transversal (32) et S » So dans chaque cloison creuse proprement dite
Ledit moyen transforme, sur une distance inférieure a L/2, L étant la longueur de ladite cloison, un flux gazeux de débit D et de section initiale So a l'entrée amont de ladite cloison, en un flux de section S au moins égale a 3 So, et présentant ledit niveau d'homogeneite De préférence ladite distance est inférieure a L/3 Sur la figure 4, ledit moyen se trouve sur la partie notée ' A "
Chaque cloison peut comprendre, dans sa partie supérieure, un ou plusieurs ouvreaux (30), qui peuvent être obtures par un couvercle (36) et qui donnent accès a des puits (37)
Selon l'invention, ledit moyen pour obtenir ledit flux gazeux de débit D et de section S présentant ledit niveau d'homogeneite est constitue d'éléments diviseurs, ou entretoises (33) divisant, en un nombre d'étapes variant de 2 a 4, ledit flux initial de section So, comme représente aux figures 4 et 4a, en une dizaine de fractions de flux (7) Sur la figure 4a, on peut, a titre indicatif, considérer 3 étapes pour diviser le flux initial So la première comprenant 2 entretoises ou éléments (330), la seconde comprenant 6 entretoises ou éléments (331), la troisième comprenant 10 entretoises ou éléments (332), ces 10 entretoises ou éléments constituant un front en aval duquel - a droite duquel sur la figure 4a - ledit niveau d'homogeneite est obtenu Le flux initial So est ainsi divise en 1 1 fractions de flux (7) sur l'ensemble de la section S Selon une autre modalité de l'invention, comme représente aux figures 5 et 6, ledit conduit (5) est de section constante, lesdits murs (32) présentant des ouvertures (320) ayant sensiblement ladite section S, dans le plan Y-Z, de manière a former des conduits (5) de section S sensiblement constante, d'amont en aval, sur l'ensemble des cloisons creuses (3) simultanément actives pour ledit feu, dans lequel ledit niveau d'homogeneite est obtenu par un moyen de répartition amovible (232) introduit, en amont dudit feu tournant, a l'extrémité amont dudit conduit (5), de manière a injecter dans chaque conduit (5) ledit flux gazeux avec ledit niveau d'homogeneite, sous forme d'une dizaine de fractions de flux (7) - 8 fractions illustrées sur la figure 5
En outre, il peut être avantageux, pour conserver ledit niveau d'homogeneite sur la plus grande longueur possible de conduit (5) d'utiliser un moyen de répartition amovible (212) également en aval dudit feu tournant, a l'extrémité aval dudit conduit (5) forme par la succession de cloisons creuses (3) actives pour ledit feu, de manière a aspirer ledit flux gazeux sans perturber en amont ledit niveau d'homogeneite dudit flux gazeux
Selon l'invention, ledit moyen de répartition (212 232) peut être une enceinte ou un panneau de répartition parallelepipedique (232), de section plane horizontale, dans le plan X-Y, choisie pour que ladite enceinte puisse être introduite verticalement dans ledit puits (37) de ladite cloison (3) ou entre deux chambres, et de section plane verticale dans le plan Y-Z légèrement inférieur a ladite section S de ladite cloison dans le plan Y-Z, ayant une face parallèle au plan Y-Z munie d'ouvertures (2320) a géométrie calculée, soit pour injecter ledit flux gazeux, sous forme de fractions de flux (7), avec ledit niveau d'homogeneite en amont dudit conduit (5), ou pour aspirer ledit flux gazeux en aval dudit conduit (5)
Quelle que soit la modalité de l'invention, ledit moyen pour conserver un flux gazeux de débit D ayant ledit niveau d'homogeneite sur ladite section S comprend une pluralité d'éléments ou entretoises (33) fixes aux dites parois latérales (38) et reparties, en fonction des résultats de la simulation numérique, de manière sensiblement homogène a la surface des dites parois latérales (38) dans le plan X-Z de ladite cloison ou dudit conduit, en nombre suffisant pour assurer ledit écartement constant desdites parois latérales (38), de façon a diviser ledit flux gazeux en un nombre de fractions de flux (7) variant de 3 a 20 régulièrement reparties sur toute ladite section S, et a assurer pour lesdites fractions un écoulement a orientation prédéterminée, éventuellement selon ledit sens long X du four, de manière a avoir un écoulement sensiblement tubulaire (50) sur tout ou partie du conduit (5) selon la modalité de l'invention
Selon la première modalité de l'invention, illustrée a la figure 4, on observe, sur toute section S, une dizaine de fractions de flux (7) dans la partie notée " B " de longueur L' sur laquelle ledit niveau d'homogeneite est atteint, chaque fraction de flux (7) pouvant regrouper plusieurs filets élémentaires (6) représentes en trait continu a la figure 4
En ce qui concerne la seconde modalité, elle a ete illustrée schematiquement a la figure 5 avec également une dizaine de fractions de flux (7), bien que les entretoises n'aient pas ete indiquées sur la figure
Il peut être avantageux que lesdits éléments ou entretoises (33) soient profiles de manière a diminuer la perte de charge dudit flux gazeux, tout en assurant les autres fonctions requises visant a maintenir un écartement constant entre lesdites parois latérales (38), et a obtenir ou conserver pour ledit flux gazeux ledit niveau d'homogeneite prédétermine sur ladite section S
Les figures 7a à 7d illustrent, en coupe dans le plan X-Z, différents profils d'entretoises ou éléments (33a, 33b, 33c, 33d), certaines (33c et 33d) étant de forme oblongue avec un grand axe (330), pour faciliter la pénétration du flux gazeux et réduire sa perte de charge La perte de charge P sera a priori dans l'ordre suivant P 3a > P33b > P-,c et P33d
Il peut être également avantageux, de manière a diminuer encore la perte de charge, d'utiliser des éléments de forme oblongue (33c, 33d) et de les orienter, comme illustre a la figure 8, de façon a ce que l'orientation du grand axe (330) desdites entretoises coïncide avec la direction du flux gazeux, en particulier dans le cas ou lesdites chambres sont séparées par des murs (32) munis d'orifices ou ouvertures (320) assurant le passage dudit flux gazeux d'une chambre à une autre
Exemple de réalisation
On a modélisé puis construit un four (1), du type de celui représenté à la figure 1, et comprenant des cloisons creuses selon les figures 4 et 4a de l'invention, construites avec des briques et entretoises en matériau réfractaire La figure 4a constitue le plan de construction de la cloison creuse (3), à la manière d'un mur de briques, les éléments hachurés s'étendant transversalement (direction Y-Y') sur toute la largeur (0,5 m) de ladite cloison - largeur qui comprend 0,3m de veine gazeuse et 2 x 0, 1m d'épaisseur de la cloison creuse L'échelle des figures 4 et 4a est donnée par L = 4, 178 m, et par l'épaisseur de chaque brique en matériau réfractaire = 91,5 mm
Préalablement à la construction du four, la modélisation des écoulements du flux gazeux dans les cloisons creuses a été réalisée en divisant le flux total en une cinquantaine de flux élémentaires ou filets gazeux (6), la représentation d'une configuration selon l'invention obtenue par ladite modélisation a conduit à la figure 4 où la trajectoire de chaque filet gazeux (6) est représentée Ladite modélisation a été effectuée à l'aide de moyens informatiques connus en eux-mêmes
Sur la figure 4, on distingue 3 zones, notées A, B et C, le flux gazeux s' écoulant de gauche à droite :
- la zone A correspond à la formation d'un flux gazeux de section S présentant ledit niveau d'homogénéité, à partir d'un flux gazeux de section So « S,
- la zone B correspond à un écoulement sensiblement tubulaire dudit flux gazeux, qui présente ledit niveau d'homogénéité (avec y = 0,25) sur une longueur L' de la cloison,
- la zone C correspond à la partie où le flux gazeux se reconcentre, passant d'une section S à une section So, au passage du mur entre deux chambres successives
Avantages de l'invention Le four selon l'invention permet effectivement de résoudre le problème posé que ce soit la constance de qualité des blocs carbonés, la consommation énergétique du four, ou encore la durée de vie du four, sur tous ces plans, la présente invention apporte une amélioration aux fours existants selon l'état de la technique
La consommation énergétique du four est significativement réduite à la fois grâce à une meilleure homogénéité de la température, ce qui évite les surchauffes locales inutiles, et à cause d'une moindre perte de charge (voir figure 6a)
Le gain global, tant en ce qui concerne la consommation énergétique du four et la consommation de réfractaires, est d'au moins 10 %, ce qui est considérable dans ce type d'industrie

Claims

REVENDICATIONS
1 Four a feu tournant (1) a chambres de type ouvert (2) pour la cuisson de blocs carbones (40) comprenant, dans le sens long X du four, une succession de chambres (2) séparées par des murs transversaux (32) munis d'ouvertures (320), chacune des chambres comprenant, dans le sens travers Y du four, une alternance de cloisons creuses (3) assurant la circulation d'un flux gazeux de rechauffage (35) de gaz de combustion ou un flux gazeux d'air de refroidissement (34), et d'alvéoles (4) contenant les blocs carbones (40) a cuire, chacune desdites cloisons creuses (3) d'une chambre (2) étant en communication avec une cloison d'une chambre en amont et/ou une cloison d'une chambre en aval, de manière a former un conduit (5) assurant la circulation dudit flux gazeux (34,35), d'amont en aval, dans le sens long X sur l'ensemble des chambres simultanément en activité pour ledit feu tournant, chacune desdites cloisons d'une chambre comprenant, dans le plan X-Z, deux parois latérales verticales (38), et, dans le sens travers Y, des éléments assurant la deflexion dudit flux gazeux parcourant ladite cloison et maintenant un écartement constant desdites parois latérales (38), caractérise en ce que chaque cloison (3) comprend un moyen pour conserver, sur au moins un tiers de la longueur L de ladite cloison, un flux gazeux de débit D reparti de manière homogène sur la totalité de la section droite S de ladite cloison dans le plan Y-Z, avec un niveau d'homogeneite de ladite répartition du débit D défini par l'expression " 2y D - 0,5y D / y S ", ou " 2y D - 0,5y D " désigne l'étendue de la plage du débit D correspondant a une fraction y de ladite section droite S, et ou y est au plus égal a 0,25
2 Four selon la revendication 1, comprenant des chambres séparées par un mur transversal (32) présentant des ouvertures de section So (320) assurant le passage dudit flux gazeux (34, 35) d'une cloison a la cloison suivante, et dans lequel chaque cloison comprend, a sa partie amont, un moyen pour obtenir, a partir d'un flux initial de débit D de section So, un flux de section S > So ayant un niveau d'homogeneite au moins égal a 0,50 D - 0, 125 D /0,25 S 3 Four selon la revendication 2 dans lequel ledit moyen transforme, sur une distance inférieure à la demi-longueur L/2 de ladite cloison, un flux gazeux de débit D et de section initiale So à l'entrée amont de ladite cloison, en un flux de section S au moins égale à 3 So, et présentant ledit niveau d'homogénéité
4 Four selon la revendication 2 dans lequel ledit moyen pour obtenir ledit flux gazeux de débit D et de section S présentant ledit niveau d'homogénéité est constitué d'éléments diviseurs, ou entretoises, divisant, en un nombre d'étapes variant de 2 à 4, ledit flux initial de section So
5 Four selon la revendication 1 dans lequel ledit conduit est de section constante, lesdits murs (32) présentant des ouvertures (320) ayant sensiblement ladite section S, dans le plan Y-Z, de manière à former des conduits (5) de section S sensiblement constante par la succession de cloisons creuses (3) simultanément actives pour ledit feu, dans lequel ledit niveau d'homogénéité est obtenu par un moyen de répartition amovible introduit, en amont dudit feu tournant, à l'extrémité amont dudit conduit (5), de manière à injecter dans chaque conduit (5) ledit flux gazeux avec ledit niveau d'homogénéité
6 Four selon la revendication 5 dans lequel ledit niveau d'homogénéité est obtenu, en outre, en utilisant ledit moyen de répartition amovible introduit, en aval dudit feu tournant, à l'extrémité aval dudit conduit (5) formé par la succession de cloisons creuses (3) actives pour ledit feu, de manière à aspirer ledit flux gazeux sans perturber en amont ledit niveau d'homogénéité dudit flux gazeux
7 Four selon une quelconque des revendications 5 et 6 dans lequel ledit moyen de répartition est une enceinte ou un panneau de répartition parallélépipédique (232), de section plane horizontale, dans le plan X-Y, choisie pour que ladite enceinte puisse être introduite verticalement dans ledit puits (37) de ladite cloison (3) ou entre deux chambres, et de section plane verticale dans le plan Y-Z légèrement inférieur à ladite section S de ladite cloison dans le plan Y-Z, ayant une face parallèle au plan Y-Z munie d'ouvertures (2320) à géométrie calculée, soit pour injecter ledit flux gazeux avec ledit niveau d'homogeneite en amont dudit conduit (5), ou pour aspirer ledit flux gazeux en aval dudit conduit (5)
8 Four selon la revendications 1 a 7 dans lequel ledit moyen pour conserver un flux gazeux de débit D ayant ledit niveau d'homogeneite sur ladite section S comprend une pluralité d'éléments ou entretoises (33) fixes aux dites parois latérales (38) et reparties de manière homogène a la surface des dites parois latérales (38) dans le plan X-Z de ladite cloison ou dudit conduit, en nombre suffisant pour assurer ledit écartement constant desdites parois latérales (38) de façon a diviser ledit flux gazeux en un nombre de fractions de flux variant de 3 a 20 régulièrement reparties sur toute ladite section S, et a assurer pour lesdites fractions un écoulement a orientation prédéterminée, éventuellement selon ledit sens long X du four
9 Four selon une quelconque des revendications 4 et 8 dans lequel lesdits éléments ou entretoises (33) sont profiles de manière a diminuer la perte de charge dudit flux gazeux, tout en assurant les autres fonctions requises visant a maintenir un écartement constant entre lesdites parois latérales (38), et a obtenir ou conserver pour ledit flux gazeux ledit niveau d'homogeneite prédétermine sur ladite section S
EP99925058A 1998-06-11 1999-06-08 Four a feu tournant a flux central tubulaire Expired - Lifetime EP1093560B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9807536 1998-06-11
FR9807536A FR2779811B1 (fr) 1998-06-11 1998-06-11 Four a feu tournant a flux central tubulaire
PCT/FR1999/001339 WO1999064804A1 (fr) 1998-06-11 1999-06-08 Four a feu tournant a flux central tubulaire

Publications (2)

Publication Number Publication Date
EP1093560A1 true EP1093560A1 (fr) 2001-04-25
EP1093560B1 EP1093560B1 (fr) 2003-03-26

Family

ID=9527418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99925058A Expired - Lifetime EP1093560B1 (fr) 1998-06-11 1999-06-08 Four a feu tournant a flux central tubulaire

Country Status (17)

Country Link
US (1) US6027339A (fr)
EP (1) EP1093560B1 (fr)
CN (1) CN100445680C (fr)
AR (1) AR018655A1 (fr)
AU (1) AU745152C (fr)
BR (1) BR9911134A (fr)
CA (1) CA2334994C (fr)
DE (1) DE69906296T2 (fr)
EG (1) EG21714A (fr)
ES (1) ES2191433T3 (fr)
FR (1) FR2779811B1 (fr)
GC (1) GC0000056A (fr)
NO (1) NO322639B1 (fr)
NZ (1) NZ508349A (fr)
TW (1) TW432194B (fr)
WO (1) WO1999064804A1 (fr)
ZA (1) ZA200007066B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010128226A1 (fr) 2009-06-15 2010-11-11 Alcan International Limited Procede de regulation d'un four de cuisson d'anodes et four adapte a sa mise en oeuvre
WO2012013873A1 (fr) * 2010-07-27 2012-02-02 Rio Tinto Alcan International Limited Procede et un systeme de regulation de la cuisson de blocs carbones dans une installation
US8651856B2 (en) 2007-09-18 2014-02-18 Innovatherm Prof. Dr. Leisenberg Gmbh Method and device for heat recovery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825455B1 (fr) * 2001-05-30 2003-07-11 Pechiney Aluminium Procede et dispositif de refroidissement des alveoles d'un four a chambres
US7104789B1 (en) * 2005-03-17 2006-09-12 Harbison-Walker Refractories Company Wall structure for carbon baking furnace
FR2928206B1 (fr) * 2008-02-29 2011-04-22 Solios Carbone Procede de detection de cloison au moins partiellement bouchee pour four a chambres
EP2475948B1 (fr) * 2009-09-07 2014-12-10 Solios Carbone Methode de caracterisation de la combustion dans des lignes de cloisons d'un four a chambres a feu(x) tournant(s)
RU2600607C2 (ru) * 2011-09-08 2016-10-27 Солиос Карбон Устройство и способ оптимизации горения в линиях перегородок многокамерной печи для обжига углеродистых блоков
US20130108974A1 (en) * 2011-10-26 2013-05-02 Fluor Technologies Corporation Carbon baking heat recovery firing system
FR3135089A1 (fr) * 2022-04-27 2023-11-03 Fives Ecl Unité de remplissage de coke de pétrole et procédé de remplissage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1351305A (en) * 1919-03-19 1920-08-31 Albert G Smith Furnace construction
DE468252C (de) * 1925-06-18 1928-11-09 Antonius Ludovicus Geldens Ziegelringofen mit doppelten Trennwaenden zwischen den Brennkammern und in verschiedenen Hoehen angeordneten Roststaeben
US3975149A (en) * 1975-04-23 1976-08-17 Aluminum Company Of America Ring furnace
US4253823A (en) * 1979-05-17 1981-03-03 Alcan Research & Development Limited Procedure and apparatus for baking carbon bodies
NO152029C (no) * 1982-11-05 1985-07-17 Ardal Og Sunndal Verk Ringkammerovn og fremgangsmaate for drift av denne
FR2535834B1 (fr) * 1982-11-09 1987-11-06 Pechiney Aluminium Four a chambres ouvertes pour la cuisson de blocs carbones, comportant une pipe de soufflage
EP0252856B1 (fr) * 1986-06-17 1989-08-30 Aluminium Pechiney Dispositif et procédé d'optimisation de la combustion dans les fours à chambres pour la cuisson de blocs carbones
FR2600152B1 (fr) * 1986-06-17 1988-08-26 Pechiney Aluminium Dispositif et procede d'optimisation de la combustion dans les fours a chambres pour la cuisson de blocs carbones
FR2629906B1 (fr) * 1988-04-08 1991-02-08 Pechiney Aluminium Procede de construction de fours a chambres ouvertes permettant d'eviter leur deformation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9964804A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8651856B2 (en) 2007-09-18 2014-02-18 Innovatherm Prof. Dr. Leisenberg Gmbh Method and device for heat recovery
WO2010128226A1 (fr) 2009-06-15 2010-11-11 Alcan International Limited Procede de regulation d'un four de cuisson d'anodes et four adapte a sa mise en oeuvre
WO2012013873A1 (fr) * 2010-07-27 2012-02-02 Rio Tinto Alcan International Limited Procede et un systeme de regulation de la cuisson de blocs carbones dans une installation
FR2963413A1 (fr) * 2010-07-27 2012-02-03 Alcan Int Ltd Procede et un systeme de regulation de la cuisson de blocs carbones dans une installation

Also Published As

Publication number Publication date
GC0000056A (en) 2004-06-30
AU4147899A (en) 1999-12-30
CN1305579A (zh) 2001-07-25
ZA200007066B (en) 2002-02-28
ES2191433T3 (es) 2003-09-01
NO322639B1 (no) 2006-11-13
CN100445680C (zh) 2008-12-24
EG21714A (en) 2002-02-27
NO20006234L (no) 2000-12-07
CA2334994C (fr) 2009-02-03
FR2779811B1 (fr) 2000-07-28
DE69906296T2 (de) 2003-12-04
EP1093560B1 (fr) 2003-03-26
NO20006234D0 (no) 2000-12-07
AU745152B2 (en) 2002-03-14
BR9911134A (pt) 2001-10-23
US6027339A (en) 2000-02-22
WO1999064804A1 (fr) 1999-12-16
CA2334994A1 (fr) 1999-12-16
DE69906296D1 (de) 2003-04-30
NZ508349A (en) 2003-10-31
TW432194B (en) 2001-05-01
AR018655A1 (es) 2001-11-28
FR2779811A1 (fr) 1999-12-17
AU745152C (en) 2002-09-26

Similar Documents

Publication Publication Date Title
EP1093560B1 (fr) Four a feu tournant a flux central tubulaire
EP0090790B1 (fr) Appareil pour le traitement thermique d'objets par convection
CA2324935C (fr) Procede et dispositif de regulation des fours de cuisson a feu tournant
EP1203921B1 (fr) Dispositif de chauffage indirect au combustible fossile, de produits au defilé, notamment de bandes
CA2114196C (fr) Four a vapeur a chauffage direct au gaz
KR20170107022A (ko) 휘발성 유기 화합물 연소 장치, 보일러, 탱커 및 휘발성 유기 화합물 연소 방법
US20130112119A9 (en) Clean burning furnace method and apparatus
KR101266325B1 (ko) 가스 튀김기
JP2007040692A (ja) 陶芸窯
FR3056883B1 (fr) Module de cuisson de four pour produits de boulangerie, viennoiserie et similaires et four tunnel lineaire comportant au moins un tel module
JP4587859B2 (ja) シール室
JP7099864B2 (ja) 多管式貫流ボイラー
KR102621868B1 (ko) 가스버너
FR3033027A1 (fr) Alambic equipe d'un tour a feu avec isolation renforcee
EP3052860B1 (fr) Procede d'injection de combustible gazeux dans un four a chambres a feu(x) tournant(s)
WO2023007087A1 (fr) Dispositif de chauffage à accumulation
EP1906125B1 (fr) Four portique
JP2016077425A (ja) フライヤー
EP1077267B1 (fr) Installation de traitement thermique de pièces métalliques en lots ou unitaires au défilé
FR2740203A1 (fr) Dispositif de chauffage par combustion catalytique de gaz
US1129656A (en) Means for saving fuel and promoting combustion in furnaces and the like.
EP1055084A1 (fr) Procede de chauffage de produits dans une enceinte et bruleur pour la mise en oeuvre de ce procede
FR2963413A1 (fr) Procede et un systeme de regulation de la cuisson de blocs carbones dans une installation
EP1310754A1 (fr) Four a sole annulaire
BE458993A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR NL

17Q First examination report despatched

Effective date: 20010521

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: RING TYPE FURNACE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FR NL

REF Corresponds to:

Ref document number: 69906296

Country of ref document: DE

Date of ref document: 20030430

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2191433

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031230

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100628

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20121116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130627

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130702

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130626

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69906296

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69906296

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630