EP1078299A1 - Dispositif electrochimique, du type systeme electrocommandable a proprietes optiques et/ou energetiques variables - Google Patents

Dispositif electrochimique, du type systeme electrocommandable a proprietes optiques et/ou energetiques variables

Info

Publication number
EP1078299A1
EP1078299A1 EP00910992A EP00910992A EP1078299A1 EP 1078299 A1 EP1078299 A1 EP 1078299A1 EP 00910992 A EP00910992 A EP 00910992A EP 00910992 A EP00910992 A EP 00910992A EP 1078299 A1 EP1078299 A1 EP 1078299A1
Authority
EP
European Patent Office
Prior art keywords
layer
layers
type
glazing
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00910992A
Other languages
German (de)
English (en)
Inventor
Claude Morin
Fabien Beteille
Jean-Christophe Giron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sage Electrochromics Inc
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1078299A1 publication Critical patent/EP1078299A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10376Laminated safety glass or glazing containing metal wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10495Variable transmission optoelectronic, i.e. optical valve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making

Definitions

  • the invention relates to electrochemical devices, in particular of the type comprising those comprising at least one carrier substrate provided with a stack of functional layers including at least one electroconductive layer and at least one electrochemically active layer. More particularly targeted are electrically controllable systems with variable optical and / or energy properties, in applications to glazing or mirrors.
  • the glazing whose transmission / absorption can be modulated in at least part of the solar spectrum make it possible to control the solar contribution inside the rooms or compartments / compartments when they are mounted in exterior glazing of building or windows of means of transport such as cars, trains, planes, etc., and thus avoid excessive heating of these in case of strong sunshine.
  • they allow a control of the degree of vision, which makes it possible to avoid the glare when they are assembled in external windows in the event of strong sunshine.
  • They can also have a particularly interesting shutter effect, both as exterior glazing as if they are used in interior glazing, for example to equip interior partitions between rooms (offices in a building), or to insulate compartments in trains or planes for example.
  • glazing with variable light transmission / reflection to make mirrors, which can be darkened if necessary to avoid dazzling the driver of the car. They can also be used for road signs, for any display panel, for example in order to make the drawing / message appear only intermittently to better attract attention.
  • Viologenic systems make it possible to modulate the transmission or absorption, essentially in the visible domain, of the glazings which incorporate them. They generally comprise a single “active layer” based on polymer, gel or liquid containing both an active material called cathodic like viologenic molecules, and an active material called anodic like dimethylferrocene or phenazines. Examples are described in patents EP-0 612 826 and US-5 239 406.
  • Electrochromic systems in a known manner, comprise a layer of an electrochromic material capable of reversibly and simultaneously inserting ions and electrons and whose oxidation states corresponding to the inserted and uninserted states are of distinct coloration, one of the states exhibiting one light transmission higher than the other, the insertion or removal reaction being controlled by an adequate power supply.
  • the electrochromic material usually based on tungsten oxide, must thus be brought into contact with an electron source such as a transparent electroconductive layer and with a source of ions (cations or anions) such as 'an ion conductive electrolyte.
  • electrochromic a counter-electrode also capable of reversibly inserting cations, symmetrically with respect to the layer of electrochromic material, so that, macroscopically, the electrolyte appears as a simple medium for ions.
  • the counter-electrode must consist of either a neutral layer in coloring, or at least transparent or little colored when the electrochromic layer is in the colored state. Since tungsten oxide is a cathodic electrochromic material, that is to say that its colored state corresponds to the most reduced state, an anodic electrochromic material based on nickel oxide or iridium oxide is generally used for the counter electrode.
  • active systems A common point between these different systems hereinafter referred to as “active” systems is that their transmission / absorption state is controlled by imposing a potential difference at their terminals generally constituted by two electroconductive layers enclosing the layer or layers electrochemically active.
  • transparency is preferred for these electroconductive layers (or at least one of them, if the other is chosen such that it reflects in the visible for application to mirrors).
  • a material is required that is both sufficiently conductive and sufficiently transparent in the thickness ranges that are usually encountered in the field of thin layers.
  • a doped metal oxide material such as fluorine-doped tin oxide (Sn ⁇ 2: F) or tin-doped indium oxide (ITO), which can be deposit on different substrates hot (in particular by pyrolysis on glass like the CVD technique) or cold (vacuum techniques of the sputtering type).
  • the “switching” or the “response time” being the period of time necessary for the whole active system to have changed state of coloring
  • they would contribute to create an edge phenomenon that is to say the fact that the system changes its state in a non-uniform manner in its surface, with a change in "coloring" within the meaning of the invention which is almost immediate in the zones close to the current leads supplying the electroconductive layers, arranged at the periphery of the systems, and which progressively propagates towards the center of the surface of the active systems.
  • the end user generally wishes a response time as rapid as possible, and may prefer, moreover, a uniform gradual change in coloring over the entire surface of the active glazing.
  • the object of the invention is therefore to improve the performance of the electrically conductive layers of the “active” systems defined below, in particular “active” glazing incorporating the latter, an improvement aimed in particular at their electrical conductivity combined with their optical properties.
  • the invention firstly relates to an electrochemical device, in particular an electrically controllable system with variable energy and / or optical properties, comprising at least one carrier substrate provided with a stack of functional layers including at least one electrically conductive layer A based of metal oxide (s) and at least one electrochemically active layer F.
  • the invention consists in that said layer A forms part of a “multi-component” electrode E associating with layer A at least one material B more electrically conductive than it and / or at least one network C of conductive wires or conductive strips.
  • the term "more conductive" includes a material B which, in the form of a layer, has a resistance by "square
  • the material B defined above can be associated with the layer A in two different ways: according to a first variant, it can be in the form of at least one layer associated with A, in electrical contact with the latter.
  • a second variant consists in incorporating the material B into the layer A, in particular in the form of fibers, of particles of small dimensions. It is thus possible to use a layer A based on doped oxide, for example Sn ⁇ 2: F, which is deposited in known manner by liquid pyrolysis from suitable organometallic precursors, by adding to the liquid phase containing these precursors metallic fibers or particles, or by spraying them onto the surface of the substrate at the same time as the liquid phase (for example fibers with a diameter of the order of 10 ⁇ m and a length of around 1 mm). The fibers are found in the layer with a random distribution, "percolating" on the surface of the substrate thus coated. In this case, the doped metal oxide of layer A also fulfills the function of fixing the metal fibers B.
  • doped oxide for example Sn ⁇ 2: F
  • the third variant consists in combining the type layer (s)
  • this network can be made up of linear elements visible to the eye in the immediate vicinity , but discreet enough to be compatible with most of the applications targeted in glazing for buildings or vehicles. It is therefore advantageous to configure the dimensioning and the arrangement of these elements so that they are as visible as possible. Generally, it can be achieved that this network is almost indistinguishable, at least when the system is in the colored state.
  • the additional conductive element namely the material B or the network C, makes it possible to cross the overall electrode thus constituted a threshold of conductivity such that one achieves that the the entire electrode is at the same potential difference almost at the same time, as soon as the system is powered up, which significantly reduces the switching time and decreases or even eliminates the phenomenon of “coloring front” mentioned above.
  • the layer (s) A is (are) based on metal oxide made conductive by doping. It can be, in particular doped tin oxide, in particular with a halogen of the fluorine type (Sn ⁇ 2: F) or with antimony SnO 2 : Sb, or zinc oxide doped for example with aluminum (ZnO: A1), or tin (ZnO: Sn), or fluorine
  • ZnO F
  • ZnO In
  • It can also be indium oxide doped with tin such as ITO.
  • the layer (s) B is (are) essentially metallic (s), in particular based on at least one noble metal or based on an alloy containing a noble metal of the silver Ag type. or Au gold or copper Cu or aluminum Al.
  • a layer based on a silver alloy with another metal such as nickel or titanium is chosen.
  • the layer is thus much less sensitive to oxidation, especially when it is in electrical contact with layers of electrochromic materials of an "all-solid" system.
  • Gold is also a material less sensitive to oxidation than pure silver, it is however less satisfactory on the optical level, it is less neutral in transmission.
  • a type A layer and a type B layer is particularly advantageous: as already seen, it makes it possible to sufficiently amplify the electrical conductivity of type A layers with thin layers B therefore not too disturbing optically . It is also a new means for incorporating B layers, in particular silver layers, into electrodes, the use of which has hitherto posed the problem of their protection against attack, in particular with regard to oxidizing agents.
  • the type A layers to “protect” the type B layers, in particular with respect to oxidation / degradation, the A layers having a dual function of protection and electrical conductor, or even a triple function, also with an optical function this time when the thicknesses of the type A layers are adjusted as a function of those of the type B layers to best optimize the optical appearance of the assembly by interferential interaction between these various layers . It is thus possible to reduce, for example, the light reflection induced by layer B.
  • the characteristics of the layers incorporated in the multi-component electrodes of the invention are chosen so that they are essentially transparent in the visible.
  • the small elements of the fiber, particle, grain type which are incorporated into the layer may be of the same metal as that evoked by the layer B: Ag, Au, Cu, Al, or else based on Steel, of alloy with Ni, Cr
  • the network C according to the third variant of the invention comprises, according to a first embodiment, a plurality of conductive strips, in particular essentially parallel to each other and obtained by screen printing from a pasty suspension of silver-type metal and a low-melting frit in an organic type binder.
  • the serigraphy can be carried out on a carrier substrate of the glass type, it can then be covered with at least one electroconductive layer A in order to constitute an electrode according to the invention.
  • a variant consists in doing the opposite operation, namely depositing the network C on the electrically conductive layer A.
  • the technique of deposition by screen printing on glass is in itself known for depositing conductive networks for other applications, and very particularly for constituting heating systems for vehicle glazing, to allow demisting or defrosting using the Joule effect. For more details on this technique, one can refer, for example, to patents FR-1 464 585 and EP-0 785 700.
  • the network C comprises a plurality of conductive wires of essentially metallic type, preferably deposited on the surface of a sheet based on a polymer of thermoplastic type.
  • conductive wires of essentially metallic type, preferably deposited on the surface of a sheet based on a polymer of thermoplastic type.
  • films for example of polyvinyl butyral, which are associated by laminating with glasses to form laminated glazings, the network having a defogging function / defrost by Joule effect.
  • the wires can be laid in a wavy form or in a straight line.
  • the method consists in using a heated pressure roller to press the wire on the surface of the thermoplastic film, a pressure roller supplied with wire from a supply reel by means of a wire guide device.
  • the network C can be taken in a broader sense, and in particular be two-dimensional, in the form of fabric, net, veil obtained by weaving or knitting, sufficiently fine and / or of sufficiently large mesh size to do not obstruct visibility. It may also involve introducing this type of material between the sheet based on thermoplastic polymer which is used in particular for laminating the system and the type A layer.
  • This type of flexible material can preferably be obtained from metallic wires, in particular with a diameter of between 10 ⁇ m and 100 ⁇ m.
  • the size of the stitches, the spacing of the knitting, the way in which the weaving is done can be modulated as appropriate.
  • wires of diameter 15 to 25 ⁇ m are preferred, with a knitting structure and inter-mesh spacings of the order of 1 to 3 mm.
  • the "network” also includes metallic layers sufficiently thick to greatly reduce light transmission, and even to be opaque, and which undergo treatments in order to make them discontinuous. It may be an etching treatment of a metal layer deposited by sputtering, the etching can be carried out by laser in order to leave “threads” (for example 0.3 mm wide and spaced from each other 1.5 mm) or a two-dimensional grid.
  • the layer metal can be stainless steel, copper, silver copper, aluminum, gold in particular.
  • the metallic layer can also be treated by piercing it with regularly distributed orifices.
  • This metallic layer can also be replaced by a perforated metal sheet inserted between the stack of the active system and the laminating interlayer (sheet thicker than a layer, for example with a thickness of 10 to 100 ⁇ m).
  • conductive wires for example in tungsten, on substrates already optionally provided with a conductive layer of the doped metal oxide type, and to maintain them at the periphery of the glazing with an adhesive.
  • double-sided suitable can also act as a seal.
  • the multi-component electrode comprises at least one layer A and at least one layer B in electrical contact, at least one of them being possibly in contact with at least one layer D of dielectric material, the set of layers A, B and D superimposed preferably forming a stack of layers in interferential interaction.
  • stacks of layers quite similar to those used as a low-emissivity / sunscreen stack for building or vehicle glazing, these schematically presenting stacks of the type: dielectric coating ® / silver / dielectric coating (D with optionally at the Ag / dielectric interface a thin layer of protective metal.
  • the dielectric coating can be a layer or a superposition of layers based on metal oxide (Sn ⁇ 2, ZnO, ⁇ O2, Si ⁇ 2, Ta2 ⁇ , Nb2 ⁇ , ...) or of oxynitride or silicon nitride (SiON, Si3N 4 ) or mixture.
  • metal oxide Si ⁇ 2, ZnO, ⁇ O2, Si ⁇ 2, Ta2 ⁇ , Nb2 ⁇ , ...) or of oxynitride or silicon nitride (SiON, Si3N 4 ) or mixture.
  • these layers D then fulfill an optical and / or anchoring function of the type B layers to the substrate and / or fulfill a barrier function to the migration of species originating from the substrate (for example alkalis originating from glass).
  • the dielectric materials can be in the form of oxide, oxycarbide or oxynitride of metal or silicon or be based on silicon nitride.
  • Examples of this type of electrode are for example ITO / Ag / ITO or Ag / ITO or dielectric / Ag / ITO with possible interposition of thin layers of partially oxidized metal at the Ag / ITO interface, the second layer of ITO protecting the silver layer, while participating in the electrical conductivity of the assembly.
  • the multi-component electrodes according to the invention are provided with appropriate current leads, in a manner known in the art, in particular in the form of foils or metal braids.
  • the invention applies in particular to an electrochromic system with at least one carrier substrate and a stack of functional layers comprising at least, successively, a first electroconductive layer, an electrochemically active layer capable of reversibly inserting ions such as H + , Li + , OH "of the anodic or respectively cathodic electrochromic material type, an electrolyte layer, a second electrochemically active layer capable of '' reversibly insert ions such as H + , Li + , OH- of the cathodic or respectively anodic electrochromic material type, and a second electroconductive layer, with at least one of the electroconductive layers in the form of an oxide-based layer A ( s) metallic (s) and forming part of a multicomponent electrode E.
  • any viologen system with at least one carrier substrate and a stack of functional layers comprising at least successively a first electroconductive layer, a film with viologenic properties in the form of a polymer, a gel or of a suspension in liquid medium, a second electroconductive layer, with at least one of the two electroconductive layers of type A based on metal oxide (s) and forming part of a multi-component electrode E.
  • the invention thus relates to all types of “active” systems described in the preamble to the present application.
  • the stack of functional layers is arranged between two substrates, each of which can be rigid, of the glass or rigid polymer type such as polycarbonate or PMMA (polymethyl methacrylate), semi-rigid, or flexible.
  • the PET polyethylene terephthalate
  • the stack of functional layers is arranged between two substrates, each of which can be rigid, of the glass or rigid polymer type such as polycarbonate or PMMA (polymethyl methacrylate), semi-rigid, or flexible.
  • PET polyethylene terephthalate
  • they can also be absorbent or not.
  • the invention also relates to glazing incorporating the active device / system described above, said device using as carrier substrate at least one of the rigid substrates constituting the glazing and / or at least one flexible substrate associated by lamination with one of the rigid substrates constituting said glazing.
  • the invention also relates to the use of the device and of the glazing described above for making glazing for buildings, in particular external glazing of internal partition or of glass door, or roofs, glazing fitted to internal partitions or windows or roofs of means of transport of the train, airplane, car, boat type, display screen glazing type of computer or television screen, touch screen, glasses, camera lenses or solar panel protections.
  • the invention also relates to the use of the device described above for making electrochemical energy storage devices of the battery, fuel cell, and the batteries and cells themselves. Indeed, it is very particularly advantageous, for an application to batteries, to use the variant of the invention consisting in using an electrode comprising a perforated metal sheet or metal grid. As the batteries are often produced on fairly fine plastic substrates (of the PET type of around 30 ⁇ m), the conductive layers, if they are folded, risk losing their electrical continuity. A thicker metallic “grid” allows to better guarantee this continuity.
  • Gl figure 1 a viologen glazing according to the invention
  • FIG. 2 a first “all-solid” type electrochromic glazing according to the invention
  • CI Figure 3 the optical and electrical characteristics of the glazing according to Figure 2, or Figure 4: a second electrochromic glazing type "all-solid" according to the invention.
  • FIGS. 1 a and 1 b represent a viologen system in cross section using an “active” layer 3 based on polymer of the type of that described in the aforementioned patent application EP-0 612 826, disposed between two substrates of clear silica-soda-lime glass 1, 5 4 mm thick, (Figure lb is a sectional view perpendicular to Figure la).
  • the conductive strips have a width of 0.3 mm, are essentially parallel to each other and separated from each other by a distance of about 2 mm.
  • a peripheral seal 8 seals the system.
  • the layers of SnO2: F can be replaced by a layer of ITO or SnO2: Sb for example, and have a thickness of approximately 400 nm.
  • a screen-printed network amplifying the conductivity of the electrode we can allow our to deposit lower thicknesses of conductive layers while retaining the advantage of the invention, namely a reduction in the phenomenon of coloring front and less switching time. Reducing the layer thicknesses of Sn ⁇ 2: F (or ITO) thus significantly reduces the cost of active glazing.
  • FIG. 2 represents an embodiment of electrochromic glazing according to the invention: it is an electrochromic glazing with laminated structure with two glasses, in a configuration suitable for example for using as auto roof glazing : two clear glasses 21, 22 are shown, an electrochromic functional system 23 of the “all-solid” type consisting of the following stack of functional layers, and a PU polyurethane sheet 24 (the PU sheet can be replaced by a sheet ethylene vinyl acetate EVA or polyvinyl butyral PVB): * • • • a first electroconductive layer 25 in SnO 2 : F of 400 nm deposited by CVD on glass 22,
  • the glass 22 / functional system 23 assembly is then laminated to the glass 21 by means of the sheet 24 made of PU at least 1.24 mm thick which has been functionalized by depositing a network 31 of parallel metallic wires between them and linear.
  • the sheet 24 made of PU at least 1.24 mm thick which has been functionalized by depositing a network 31 of parallel metallic wires between them and linear.
  • It can also be an EVA or PVB sheet, as said above, for example with a thickness of the order of 0.76 mm).
  • the network is deposited in a known manner by the method described in the patents mentioned above.
  • the current leads are, in known manner, two foils arranged on the opposite edges of the sheet 24 of PU, applied using a soldering iron. It can for example also be braids of metal wires. The electrical contact between these current leads (not shown) and the underlying electroconductive layer is obtained by pressure, during lamination.
  • the glazing therefore uses a standard electrode on the glass 22, namely a monolayer of Sn ⁇ 2: F (or ITO for example) and a second electrode according to the invention associating an electroconductive layer of ITO with a network of metallic wires.
  • This configuration makes it possible to use layers of ITO on the side of the PU film thinner than what would be necessary in the absence of the conductive network 31.
  • This network is for example made up of linear parallel wires , made of tungsten or copper, possibly covered with graphite, with an average diameter of 25 ⁇ m (for example between 10 and 50 ⁇ m). Each line is spaced from the adjacent line by a distance of 2 mm (for example between 1 and 5 mm). This dimensioning is appropriate so that the network, although visible from very close, remains very discreet and even indistinguishable in the colored state, sufficient aesthetic requirement in the context of auto roof glazing.
  • FIG. 3 gives indications on the optical and electrical behavior of a glazing according to this example, of dimensions 35 ⁇ 35 cm 2 .
  • Graph 3 characterizes the optical appearance and the electrical behavior of the glazing during switching.
  • the abscissa corresponds to the time T expressed in seconds and the ordinate (left) to the light transmission value TL expressed in% and to the right to the intensity i in mA at the terminals of the glazing.
  • Curve C1 corresponds to the modification TL at the edge of the glazing
  • curve C2 corresponds to the modification of TL at the center of the glazing. We can verify that these two curves are (almost) superimposed, which proves the absence or almost absence of coloring front.
  • Curve C3 shows the evolution of the intensity i of the current.
  • FIG. 4 represents another variant of electrochromic glazing
  • the silver layer 25 (b) is provided with a thin metal layer 25 (d) intended to protect it during the deposition of the layer 25 (c) in ITO, when the latter is deposited in reactive mode in presence of oxygen.
  • a thin metal layer 25 (d) intended to protect it during the deposition of the layer 25 (c) in ITO, when the latter is deposited in reactive mode in presence of oxygen.
  • the layer 25 (c) on the silver is conductive, to ensure energization of the rest of the functional layers of the system, which is not necessary for layer 25 (a) under silver, which essentially has an optical role and which is an insulating dielectric.
  • the second electrode 30 ′ is also a multilayer stack, for example deposited by sputtering and composed of a first layer 30 (a) of ITO of 50 nm, of a second layer 30 (b) of silver of 10 nm and finally a third layer 30 (c) made of 34 nm ITO.
  • the layer 30 (a) and the layer 30 (c) are conductive, although they fulfill the same optical role with respect to the layer of Ag 31 (a) as the layers 25 (a) and 25 (c) with respect to the silver layer 25 (b), because it is simpler to end the stack with a conductive layer in order to affix the connection elements there, which are here metallic foils arranged on the polymer sheet serving as a laminating interlayer.
  • the invention makes it possible to use layers of ITO or SnO2: F which are much thinner, which has a non-negligible impact on the cost of the final glazing.
  • the invention also makes it possible to use layers of Ag, which are very efficient electrically, without having the known drawbacks thereof (very reflective optical appearance, certain brittleness, etc.).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

L'invention a pour objet un dispositif électrochimique, notamment système électrocommandable à propriétés optiques et/ou énergétiques variables, comportant au moins un substrat porteur muni d'un empilement de couches fonctionnelles dont au moins une couche A électroconductrice à base d'oxyde(s) métallique(s) et au moins une couche F électrochimiquement active. Ladite couche A fait partie d'une électrode multi-composante E associant à la couche A au moins un matériau B plus conducteur qu'elle et/ou au moins un réseau C de fils conducteurs ou de bandes conductrices. L'invention a également pour objet ses applications, notamment dans des vitrages.

Description

DISPOSITIF ELECTROCHIMIQUE, DU TYPE SYSTEME
ELECTROCOMMANDABLE A PROPRIETES
OPTIQUES ET/OU ENERGETIQUES VARIABLES
L'invention concerne des dispositifs électrochimiques, notamment du type de ceux comprenant au moins un substrat porteur muni d'un empilement de couches fonctionnelles dont au moins une couche électroconductrice et au moins une couche électrochimiquement active. Sont plus particulièrement visés les systèmes électrocommandables à propriétés optiques et/ ou énergétiques variables, dans des applications à des vitrages ou à des miroirs.
Il existe en effet une demande de plus en plus accrue pour des vitrages dits « intelligents » dont on peut moduler les propriétés.
Ainsi, sur le plan thermique, les vitrages dont on peut moduler la transmission/ absorption dans au moins une partie du spectre solaire permettent de contrôler l'apport solaire à l'intérieur des pièces ou habitacles/ compartiments quand ils sont montés en vitrages extérieurs de bâtiment ou fenêtres de moyens de transport du type voiture, trains, avion, ... , et d'éviter ainsi un échauffement excessif de ceux-ci en cas de fort ensoleillement. Sur le plan optique, ils permettent un contrôle du degré de vision, ce qui permet d'éviter l'éblouissement quand ils sont montés en vitrages extérieurs en cas de fort ensoleillement. Ils peuvent aussi avoir un effet de volet particulièrement intéressant, aussi bien en tant que vitrages extérieurs que s'ils sont utilisés en vitrages intérieurs, par exemple pour équiper des cloisons intérieures entre des pièces (bureaux dans un bâtiment), ou pour isoler des compartiments dans des trains ou des avions par exemple.
Beaucoup d'autres applications existent : on peut par exemple utiliser les vitrages à transmission /réflexion lumineuse variable pour faire des rétroviseurs, pouvant s'obscurcir en cas de besoin pour éviter d'éblouir le conducteur de la voiture. On peut aussi les utiliser pour des panneaux de signalisation routiers, pour tout panneau d'affichage, par exemple afin de ne faire apparaître le dessin/le message que par intermittence pour mieux attirer l'attention.
Une application particulièrement intéressante des systèmes à absorption lumineuse variable concerne les écrans de visualisation, notamment tous ceux équipant les télévisions et les matériels informatiques. En effet, ce type de vitrage permet d'améliorer le contraste de l'image, notamment en prenant en compte la luminosité ambiante.
L'intérêt que peuvent susciter de tels vitrages justifie que beaucoup de systèmes aient déjà été étudiés.
Deux systèmes intéressent plus particulièrement l'invention : les systèmes viologènes et les systèmes électrochromes. Les systèmes viologènes permettent de moduler la transmission ou l'absorption, essentiellement dans le domaine du visible, des vitrages qui les incorporent. Ils comprennent généralement une seule « couche active » à base de polymère, de gel ou de liquide contenant à la fois un matériau actif dit cathodique comme des molécules viologènes, et un matériau actif dit anodique comme le diméthylferrocène ou les phénazines. Des exemples en sont décrits dans les brevets EP-0 612 826 et US-5 239 406.
Les systèmes électrochromes, de manière connue, comportent une couche d'un matériau électrochrome capable d'insérer réversiblement et simultanément des ions et des électrons et dont les états d'oxydation correspondant aux états insérés et désinsérés sont de coloration distincte, un des états présentant une transmission lumineuse plus élevée que l'autre, la réaction d'insertion ou de désinsertion étant commandée par une alimentation électrique adéquate. Le matériau électrochrome, usuellement à base d'oxyde de tungstène, doit ainsi être mis au contact d'une source d'électrons telle qu'une couche électroconductrice transparente et d'une source d'ions (des cations ou des anions) telle qu'un électrolyte conducteur ionique.
Par ailleurs, il est connu que pour assurer au moins une centaine de commutations, il doit être associé à la couche de matériau électrochrome une contre-électrode capable elle aussi d'insérer de façon réversible des cations, symétriquement par rapport à la couche de matériau électrochrome, de sorte que, macroscopiquement, l'électrolyte apparaît comme un simple médium des ions. La contre-électrode doit être constituée ou d'une couche neutre en coloration, ou du moins transparente ou peu colorée quand la couche électrochrome est à l'état coloré. L'oxyde de tungstène étant un matériau électrochrome cathodique, c'est-à-dire que son état coloré correspond l'état le plus réduit, un matériau électrochrome anodique à base d'oxyde de nickel ou d'oxyde d'iridium est généralement utilisé pour la contre- électrode. Il a également été proposé d'utiliser un matériau optiquement neutre dans les états d'oxydation concernés, comme par exemple l'oxyde de cérium ou des matériaux organiques comme les polymères conducteurs électroniques (poly aniline...) ou le bleu de prusse. On trouvera la description de tels systèmes par exemple dans les brevets européens EP-0 338 876, EP-0 408 427, EP-0 575 207 et EP-0 628 849.
Actuellement, on peut ranger ces systèmes dans deux catégories, selon le type d'électrolyte qu'ils utilisent : ** soit l'électrolyte se présente sous la forme d'un polymère ou d'un gel, par exemple un polymère à conduction protonique tel que ceux décrits dans les brevets européens EP-0 253 713 et EP-0 670 346, ou un polymère à conduction d'ions lithium tels que ceux décrits dans les brevets EP-0 382 623, EP-0 518 754 ou EP-0 532 408, *• soit l'électrolyte est une couche -minérale, conducteur ionique mais isolant électroniquement, on parle alors de systèmes électrochromes « tout-solide ». Pour la description d'un système électrochrome « tout- solide », on pourra se reporter aux demandes de brevets européens EP-0 867 752 et EP-0 831 360. D'autres types de systèmes électrochromes existent. On peut citer ainsi les systèmes électrochromes « tout polymère », ou deux couches électroconductrices sont disposées de part et d'autre d'un empilement comprenant un polymère à coloration cathodique, un polymère isolant électronique conducteur ionique (de H+ ou Li+ tout particulièrement), et enfin un polymère à coloration anodique (comme la polyaniline ou le polypyrrole).
Enfin, il existe aussi des systèmes « actifs » au sens de l'invention qui combient des matériaux viologènes et des matériaux électrochromes, par exemple présentant la séquence électrode conductrice / couche minérale ou polymère à propriétés électrochromes / couches (liquide, gel, polymère) à propriétés viologènes / électrode conductrice.
Ces systèmes à matériau(x) d'insertion réversible sont particulièrement intéressants en ce sens qu'ils permettent de moduler l'absorption dans un domaine de longueurs d'onde plus large que les systèmes viologènes : ils peuvent absorber de manière variable non seulement dans le visible, mais aussi, notamment, dans l'infrarouge, ce qui peut leur conférer un rôle optique et/ ou thermique efficace.
Un point commun entre ces différents systèmes désignés ci-après sous le terme de systèmes « actifs » est qu'on pilote leur état de transmission/ absorption en imposant une différence de potentiel à leurs bornes constituées généralement par deux couches électroconductrices enserrant la ou les couches électrochimiquement actives. Quand ces systèmes font partie de vitrages « actifs », on privilégie la transparence pour ces couches électroconductrices (ou au moins l'une d'entre elles, si l'autre est choisie telle qu'elle réfléchisse dans le visible pour une application à des miroirs). Pour choisir la nature de ces couches électroconductrices, il faut alors un matériau à la fois suffisamment conducteur et suffisamment transparent dans des gammes d'épaisseur que l'on rencontre habituellement dans le domaine des couches minces. Le choix se porte habituellement sur un matériau d'oxyde métallique dopé, comme l'oxyde d'étain dopé au fluor (Snθ2 :F) ou l'oxyde d'indium dopé à l'étain (ITO), que l'on peut déposer sur différents substrats à chaud (notamment par pyrolyse sur du verre comme la technique CVD) ou à froid (les techniques sous vide du type pulvérisation cathodique).
Cependant, il s'est avéré que dans des épaisseurs où elles restent transparentes, les couches à base de ce type de matériau ne sont pas pleinement satisfaisantes, même si elles permettent aux systèmes actifs de fonctionner. Insuffisamment conductrices, elles contribueraient à augmenter le temps de réponse des systèmes actifs quand on applique à leurs bornes l'alimentation électrique appropriée pour les faire changer d'état de transmission/ absorption (état ci-après désigné sous le terme d'état de « coloration », même si la modification des propriétés s'opère aussi hors du domaine du visible, pour plus de simplicité).
Outre donc le fait qu'elles ralentiraient la vitesse de commutation des systèmes, (la « commutation » ou le « temps de réponse » étant la période de temps nécessaire pour que tout le système actif ait changé d'état de coloration), elles contribueraient à créer un phénomène de bord, c'est-à-dire le fait que le système change d'état de façon non uniforme dans sa surface, avec un changement de « coloration » au sens de l'invention qui est quasiment immédiat dans les zones proches des amenées de courant alimentant les couches électroconductrices, disposées en périphérie des systèmes, et qui se propage progressivement vers le centre de la surface des systèmes actifs. Or, dans certaines applications, notamment des vitrages pour le bâtiment ou l'automobile, l'utilisateur final souhaite généralement un temps de réponse aussi rapide que possible, et peut préférer, en outre, un changement de coloration progressive uniforme sur toute la surface du vitrage actif.
L'invention a alors pour but d'améliorer les performances des couches électroconductrices des systèmes « actifs » définis ci-dessous, tout particulièrement des vitrages « actifs » intégrant ces derniers, amélioration visant notamment leur conductivité électrique conjuguée à leur propriétés optiques.
L'invention a tout d'abord pour objet un dispositif électrochimique, notamment un système électrocommandable à propriétés énergétiques et/ ou optiques variables, comportant au moins un substrat porteur muni d'un empilement de couches fonctionnelles dont au moins une couche A électroconductrice à base d'oxyde(s) métallique(s) et au moins une couche F électrochimiquement active. L'invention consiste en ce que ladite couche A fasse partie d'une électrode « multi-composante » E associant à la couche A au moins un matériau B plus électroconducteur qu'elle et/ ou au moins un réseau C de fils conducteurs ou de bandes conductrices. Au sens de l'invention, on comprend par « plus conducteur » un matériau B qui, sous forme de couche, présente une résistance par « carré
R » carré inférieure à celle de la couche A. Au sens de l'invention toujours,
« l'association » signifie que les éléments concernés sont électriquement connectés entre eux, soit par contact direct, soit par l'intermédiaire d'éléments/couches conducteurs(trices) également.
En effet, augmenter l'épaisseur de la couche A pour en amplifier la conductivité (ce qui revient à abaisser sa résistance par carré) est une solution qui présente des limites : d'abord en termes de coût, de temps de fabrication de la couche en question, ensuite en termes d'aspect optique : à partir d'une certaine épaisseur, les couches de ce type commencent à absorber dans le visible. Or, pour des vitrages actifs tout particulièrement, selon leurs applications, on cherche généralement à assurer une transmission lumineuse maximale à l'état « non coloré ». La solution selon l'invention a alors consisté à mettre au point deux variantes, alternatives ou cumulatives, pour concilier conductivité et transparence.
Le matériau B défini plus haut peut être associé à la couche A de deux façons différentes : selon une première variante, il peut se trouver sous forme d'au moins une couche associée à A, en contact électrique avec celle-ci.
Les caractéristiques et épaisseurs des couches peuvent alors être ajustées au mieux pour que, globalement, l'électrode multi-composante qui les associe présente les niveaux de transparence et de résistance par carré requises. Une seconde variante consiste à incorporer le matériau B dans la couche A, notamment sous forme de fibres, de particules de petites dimensions. On peut ainsi utiliser une couche A à base d'oxyde dopé, par exemple de Snθ2 :F, que l'on dépose de façon connue par pyrolyse liquide à partir de précurseurs organo-métalliques appropriés, en ajoutant à la phase liquide contenant ces précurseurs des fibres ou particules métalliques, ou en les pulvérisant à la surface du substrat en même temps que la phase liquide (par exemple des fibres de diamètre de l'ordre de 10 μm et de longueur d'environ 1 mm). Les fibres se retrouvent dans la couche avec une distribution aléatoire, « percolant » sur la surface du substrat ainsi revêtu. Dans ce cas de figure, l'oxyde métallique dopé de la couche A remplit aussi la fonction de fixation des fibres métalliques B.
La troisième variante consiste à combiner la ou les couches de type
A avec un réseau d'éléments conducteurs, notamment à base de métal intrinsèquement plus conducteur que le matériau de type A. En fait, comme détaillé ci-après, ce réseau peut être constitué d'éléments linéaires visibles à l'œil à proximité immédiate, mais suffisamment discrets pour être compatibles avec la majeure partie des applications visées dans les vitrages pour bâtiment ou pour véhicules. Il est alors avantageux de configurer le dimensionnement et la disposition de ces éléments pour qu'ils soient le moins visibles possible. Généralement, on peut parvenir à ce que ce réseau soit quasiment indiscernable, au moins quand le système est à l'état coloré.
A noter que, dans un même système actif, ces différentes variantes sont alternatives ou cumulatives.
Le point commun entre ces variantes est que l'élément conducteur additionnel, à savoir le matériau B ou le réseau C, permet de faire franchir à l'électrode globale ainsi constituée un seuil de conductivité tel que l'on parvient à ce que l'ensemble de l'électrode soit à la même différence de potentiel quasiment en même temps, dès la mise sous tension du système, ce qui réduit significativement le temps de commutation et diminue ou même supprime le phénomène de « front de coloration » mentionné plus haut. Et ce résultat technique très intéressant ne s'obtient pas au détriment de la qualité optique du système : ** soit cet élément additionnel est lui-même peu ou pas absorbant dans le visible, car étant transparent, il ne modifie pas sensiblement l'aspect du vitrage ni la plage de transmission/ absorption dans laquelle il peut varier sous l'effet d'une alimentation électrique (couche de type B), **- soit cet élément additionnel est suffisamment discret pour ne pas perturber l'esthétique globale du système actif (réseau de type C).
Avantageusement la (les) couche (s) A est (sont) à base d'oxyde métallique rendu conducteur par dopage. Il peut s'agir, notamment d'oxyde d'étain dopé, notamment avec un halogène du type fluor (Snθ2 :F) ou avec de l'antimoine SnO2 :Sb, soit d'oxyde de zinc dopé par exemple avec de raluminium (ZnO :A1), ou de l'étain (ZnO :Sn), ou du fluor
(ZnO :F), ou de l'indium (ZnO :In). Il peut aussi s'agir d'oxyde d'indium dopé à l'étain comme l'ITO.
Avantageusement la ou les couche (s) B, selon la première variante, est (sont) essentiellement métallique (s), notamment à base d'au moins un métal noble ou à base d'un alliage contenant un métal noble du type argent Ag ou or Au ou cuivre Cu ou aluminium Al. De préférence, on choisit une couche à base d'un alliage d'argent avec un autre métal comme le nickel ou le titane. En effet, la couche se trouve ainsi beaucoup moins sensible vis-à-vis de l'oxydation, notamment quand elle se trouve en contact électrique avec des couches de matériaux électrochromes d'un système « tout-solide ». L'or est également un matériau moins sensible à l'oxydation que de l'argent pur, il est cependant moins satisfaisant sur le plan optique, il est moins neutre en transmission. La combinaison d'une couche de type A et d'une couche de type B est particulièrement intéressante : comme déjà vu, elle permet d'amplifier suffisamment la conductivité électrique de couches de type A avec des couches B peu épaisses donc pas trop perturbatrices optiquement. C'est aussi un nouveau moyen pour incorporer dans des électrodes des couches B, notamment des couches en argent, dont l'emploi posait jusque là le problème de leur protection vis-à-vis des agressions, notamment vis-à-vis d'agents oxydants. Ainsi, on va pouvoir utiliser les couches de type A pour « protéger » les couches de type B, notamment vis-à-vis de l'oxydation/ de la dégradation, les couches A ayant une double fonction de protection et de conducteur électrique, voire une triple fonction, avec également une fonction optique cette fois quand on ajuste les épaisseurs des couches de type A en fonction de celles des couches de type B pour optimiser au mieux l'aspect optique de l'ensemble par interaction interférentielle entre ces diverses couches. On peut ainsi réduire, par exemple, la réflexion lumineuse induite par la couche B.
Comme mentionné plus haut, les caractéristiques des couches incorporées dans les électrodes multi- composantes de l'invention sont choisies de façon à ce qu'elles soient essentiellement transparentes dans le visible. Selon la seconde variante, les petits éléments de type fibres, particules, grains que l'on incorpore à la couche peuvent être du même métal que celui évoqué par la couche B : Ag, Au, Cu, Al, ou encore à base d'acier, d'alliage au Ni, Cr Avantageusement, le réseau C selon la troisième variante de l'invention comporte, selon un premier mode de réalisation, une pluralité de bandes conductrices, notamment essentiellement parallèles entre elles et obtenues par sérigraphie à partir d'une suspension pâteuse de métal de type argent et d'une fritte à bas point de fusion dans un liant de type organique. La sérigraphie peut s'effectuer sur un substrat porteur de type verrier, on peut ensuite le recouvrir d'au moins une couche électroconductrice A afin de constituer une électrode selon l'invention. Une variante consiste à faire l'opération inverse, à savoir déposer le réseau C sur la couche électroconductrice A. La technique de dépôt par sérigraphie sur verre est en soi connue pour déposer des réseaux conducteurs pour d'autres applications, et tout particulièrement pour constituer des réseaux chauffants pour vitrage de véhicule, afin de permettre le désembuage ou le dégivrage par effet Joule. Pour plus de détails sur cette technique, on peut se reporter, par exemple, aux brevets FR- 1 464 585 et EP-0 785 700. La fonction recherchée étant ici différente, il appartient au spécialiste de déterminer la largeur de bande et l'espacement entre bandes les plus appropriés pour avoir le meilleur compromis entre conductivité et esthétique (par exemple une largeur de bande de 0, 1 à 0,5 mm et un espacement entre bandes de 1 à 5 mm). Selon un second mode de réalisation, le réseau C comporte une pluralité de fils conducteurs de type essentiellement métallique, déposés de préférence à la surface d'une feuille à base de polymère de type thermoplastique. Comme pour le premier mode de réalisation, on sait par des techniques connues déposer des fils conducteurs sur des films par exemple en polyvinylbutyral, que l'on associe par feuilletage à des verres pour constituer des vitrages feuilletés, le réseau ayant une fonction de désembuage/dégivrage par effet Joule. On peut donc adapter ces techniques, éventuellement en ajustant la configuration, l'espacement, le dimensionnement des fils, pour concevoir un réseau que l'on vient plaquer, associé au film thermoplastique, à la couche de type A elle-même disposée sur le reste de l'empilement de couches fonctionnelles du système actif, notamment par une technique de feuilletage. Pour plus de détails sur la technique de dépôt de ces fils, on peut se reporter, notamment, aux brevets EP-0 785 700, EP-0 553 025, EP-0 506 521 et
EP-0 496 669. Les fils peuvent être déposés sous forme ondulée ou en ligne droite. Schématiquement, le procédé consiste à utiliser un galet de pression chauffé pour presser le fil à la surface du film thermoplastique, galet de pression alimenté en fil à partir d'une bobine d'alimentation grâce à un dispositif guide-fil.
Selon un autre mode de réalisation, le réseau C peut être pris dans un sens plus large, et notamment être bidimensionnel, sous forme de tissu, filet, voile obtenu par tissage ou tricotage, suffisamment fin et/ou de taille de maille suffisamment grande pour ne pas gêner la visibilité. Il peut aussi s'agir d'introduire ce type de matériau entre la feuille à base de polymère thermoplastique qui sert notamment au feuilletage du système et la couche de type A.
Ce type de matériau, souple, peut être obtenu de préférence à partir de fils métalliques, notamment de diamètre compris entre 10 μm et 100 μm. La taille des mailles, l'espacement du tricotage, la façon dont le tissage est fait peuvent être modulés de façon appropriée. Ainsi, on préfère des fils de diamètre de 15 à 25 μm, avec une structure de tricot et des espacements inter-mailles de l'ordre de 1 à 3 mm.
Le « réseau » comprend également des couches métalliques suffisamment épaisses pour diminuer fortement la transmission lumineuse, et même pour être opaques, et qui subissent des traitements afin de les rendre discontinues. Il peut s'agir d'un traitement de gravure d'une couche métallique déposée par pulvérisation cathodique, la gravure pouvant être effectuée par laser afin de laisser des « fils » (par exemple de largeur 0,3 mm et distants les uns des autres de 1 ,5 mm) ou une grille bidimensionnelle. Le métal de la couche peut être de l'acier inox, du cuivre, du cuivre argenté, de aluminium, de l'or notamment.
On peut aussi traiter la couche métallique en la perçant d'orifices régulièrement répartis. Cette couche métallique peut également être remplacée par une feuille métallique percée intercalée entre l'empilement du système actif et l'intercalaire de feuilletage (feuille plus épaisse qu'une couche, par exemple d'une épaisseur de 10 à 100 μm).
On peut aussi adapter la technologie de sérigraphie décrite plus haut, quand le substrat est suffisamment rigide comme du verre, en faisant des rayures peu profondes à la surface du verre par gravure, rayures en forme de lignes parallèles que l'on vient remplir de la pâte de sérigraphie, ce qui conduit à un réseau sérigraphié particulièrement discret et conducteur tout à la fois. Avantageusement, on peut prévoir que le réseau C bidimensionnel du type grille, tissu, même s'il est auto-supporté, puisse être incrusté à la surface du film de polymère thermoplastique servant au feuilletage du vitrage. Il peut être pré-incrusté, comme les fils conducteurs mentionnés plus haut. Il peut aussi se trouver incrusté dans le film au cours du feuilletage.
Plutôt que de sérigraphier des fils conducteurs, on peut choisir de déposer ces fils, par exemple en tungstène, sur des substrats déjà éventuellement munis d'une couche conductrice du type oxyde métallique dopé, et de les maintenir à la périphérie du vitrage par un adhésif double- face approprié pouvant également jouer le rôle de joint.
Selon un mode de réalisation préféré de la première variante selon l'invention, l'électrode multi-composante comprend au moins une couche A et au moins une couche B en contact électrique, l'une au moins d'entre elles étant éventuellement en contact avec au moins une couche D en matériau diélectrique, l'ensemble des couches A, B et D superposées formant de préférence un empilement de couches en interaction interférentielle. En fait, on peut ici retrouver des empilements de couches assez similaires à ceux utilisés en tant qu'empilement bas-émissif/ antisolaire pour vitrages de bâtiment ou de véhicule, ceux-ci présentant schématiquement des empilements du type : revêtement diélectrique ® / argent / revêtement diélectrique (D avec optionnellement à l'interface Ag/ diélectrique une couche fine de métal de protection. Le revêtement diélectrique peut être une couche ou une superposition de couches à base d'oxyde métallique (Snθ2, ZnO, ΗO2, Siθ2, Ta2θδ, Nb2θδ, ...) ou d'oxynitrure ou nitrure de silicium (SiON, Si3N4) ou mélange. On peut se reporter, par exemple aux empilements décrits dans les brevets EP-0 611 213, EP-0 678 484 et EP-0 718 200, ou encore ceux équipant les vitrages commercialisés sous le nom de la gamme « Planitherm » par Saint-Gobain Vitrage. Ici, on détourne leur application, et il est donc nécessaire d'adapter ces empilements, une ou des couches d'oxyde dopé conducteur (de type A) venant remplacer l'un et/ ou l'autre des revêtements diélectriques ® et (D mentionnés plus haut. Il faut éviter d'interposer des couches isolantes électriquement entre la superposition de couches conductrices et le reste des couches actives du système. Par contre, rien n'empêche d'ajouter à des empilements conducteurs du type
(couche A/ couche B) ou (couche A/ couche B/ couche A) des couches en diélectrique, isolant, du côté opposé, du reste des couches fonctionnelles, du côté tourné vers le substrat porteur par exemple. On peut ainsi avoir des empilements de type : substrat/ diélectrique D/couche B (type Ag)/couche A (type ITO)/reste de l'empilement fonctionnel de système actif.
Ces couches D remplissent alors une fonction optique et/ou d'ancrage des couches de type B au substrat et/ ou remplissent une fonction de barrière à la migration d'espèces provenant du substrat (par exemple d'alcalins provenant du verre). Comme évoqué plus haut, les matériaux diélectriques peuvent être sous forme d'oxyde, d'oxycarbure ou d'oxynitrure de métal ou de silicium ou être à base de nitrure de silicium.
Des exemples de ce type d'électrode sont par exemple ITO /Ag/ITO ou Ag/ITO ou diélectrique /Ag/ITO avec éventuelle interposition de fines couches de métal partiellement oxydées à l'interface Ag/ITO, la seconde couche d'ITO venant protéger la couche d'argent, tout en participant à la conductivité électrique de l'ensemble.
Les électrodes multi-composantes selon l'invention sont munies d'amenées de courant appropriées, de façon connue de l'art, notamment sous forme de clinquants ou de tresses métalliques.
Comme évoqué plus haut, l'invention s'applique notamment à un système électrochrome avec au moins un substrat porteur et un empilement de couches fonctionnelles comprenant au moins, successivement, une première couche électroconductrice, une couche électrochimiquement active susceptible d'insérer réversiblement des ions tels que H+, Li+, OH" du type matériau électrochrome anodique ou respectivement cathodique, une couche d'électrolyte, une seconde couche électrochimiquement active susceptible d'insérer réversiblement des ions tels que H+, Li+, OH- du type matériau électrochrome cathodique ou respectivement anodique, et une seconde couche électroconductrice, avec au moins une des couches électroconductrices sous forme d'une couche A à base d'oxyde(s) métallique(s) et faisant partie d'une électrode multi- composante E.
Elle s'applique également à tout système viologène, avec au moins un substrat porteur et un empilement de couches fonctionnelles comprenant au moins, successivement, une première couche électroconductrice, un film à propriétés viologènes sous forme d'un polymère, d'un gel ou d'une suspension en milieu liquide, une seconde couche électroconductrice, avec au moins une des deux couches électroconductrices de type A à base d'oxyde(s) métallique(s) et faisant partie d'une électrode multi-composante E.
L'invention concerne ainsi tous les types de systèmes « actifs » décrits dans le préambule de la présente demande.
Avantageusement selon l'invention, l'empilement de couches fonctionnelles est disposé entre deux substrats, chacun d'eux pouvant être rigide, du type verre ou polymère rigide comme le polycarbonate ou le PMMA (polyméthacrylate de méthyle), semi-rigide, ou souple du type PET (polyéthylènetéréphtalate), étant de préférence tous transparents. Ils peuvent aussi être absorbants ou non.
L'invention a également pour objet le vitrage incorporant le dispositif/ système actif décrit plus haut, ledit dispositif utilisant comme substrat porteur au moins un des substrats rigides constitutifs du vitrage et/ ou au moins un substrat souple associé par feuilletage à un des substrats rigides constitutifs dudit vitrage.
L'invention a également pour objet l'utilisation du dispositif et du vitrage décrits plus haut pour faire des vitrages pour bâtiment, notamment des vitrages extérieurs de cloison interne ou de porte vitrée, ou de toitures, des vitrages équipant les cloisons internes ou les fenêtres ou les toitures de moyens de transport du type train, avion, voiture, bateau, des vitrages d'écran de visualisation du type écran d'ordinateur ou de télévision, écran tactile, des lunettes, des objectifs d'appareils photographiques ou des protections de panneaux solaires.
L'invention a également pour objet l'utilisation du dispositif précédemment décrit pour faire des dispositifs électrochimiques de stockage d'énergie du type batterie, pile à combustible, et les batteries et piles elles-mêmes. En effet, il est tout particulièrement intéressant, pour une application à des batteries, d'utiliser la variante de l'invention consistant à utiliser une électrode comprenant une feuille métallique percée ou grille métallique. Les batteries étant souvent réalisées sur des substrats plastiques assez fins (du type PET d'environ 30 μm), les couches conductrices, si elles sont pliées, risquent de perdre leur continuité électrique. Une « grille » métallique plus épaisse permet de mieux garantir cette continuité.
D'autres détails et caractéristiques avantageuses de l'invention ressortent de la description faite ci-après de différents modes de réalisation non limitatifs, en référence aux dessins annexés qui représentent :
Gl figure 1 : un vitrage viologène selon l'invention
D figure 2 : un premier vitrage électrochrome de type « tout-solide » selon l'invention,
CI figure 3 : les caractéristiques optiques et électriques du vitrage selon la figure 2, ni figure 4 : un second vitrage électrochrome de type « tout-solide » selon l'invention.
Toutes les figures sont très schématiques afin d'en faciliter la lecture et ne respectent pas nécessairement l'échelle entre les différents éléments qu'elles représentent. EXEMPLE 1
Les figures la et lb représentent un système viologène en coupe transversale utilisant une couche « active » 3 à base de polymère du type de celle décrite dans la demande de brevet pré-mentionné EP-0 612 826, disposée entre deux substrats en verre clair silico-sodo-calcique 1 , 5 de 4 mm d'épaisseur, (la figure lb est une vue en coupe perpendiculaire à la figure la).
Les deux substrats 1 , 5, préalablement recouverts chacune d'une couche 2, 4 en Snθ2 :F déposée de façon connue par CVD, ont été ensuite chacun muni d'un réseau 6, 7 de bandes conductrices à partir d'une pâte à l'argent par une technique bien connue de sérigraphie. Les bandes conductrices ont une largeur 0,3 mm, sont essentiellement parallèles entre elles et séparées les unes des autres d'une distance d'environ 2 mm. Un joint périphérique 8 assure l'étanchéité du système.
On a ainsi deux électrodes multi-composantes associant un réseau conducteur sérigraphié et une couche en oxyde dopé. Les couches de Snθ2 :F peuvent être remplacées par une couche de d'ITO ou SnÛ2 :Sb par exemple, et ont une épaisseur d'environ 400 nm. A noter qu'en ajoutant aussi un réseau sérigraphié amplifiant la conductivité de l'électrode, on peut se permettre de déposer des épaisseurs inférieures de couches conductrices tout en gardant le bénéfice de l'invention, à savoir une diminution du phénomène de front de coloration et un temps de commutation moindre. Diminuer ainsi les épaisseurs de couche de Snθ2 :F (ou d'ITO) permet de diminuer significativement le coût du vitrage actif. Les amenées de courant sont constituées par une sérigraphie perpendiculaire aux bandes conductrices sérigraphiées, parallèles et équidistantes de 2 mm. EXEMPLE 2 La figure 2 représente un mode de réalisation de vitrage électrochrome selon l'invention : il s'agit d'un vitrage électrochrome à structure feuilletée à deux verres, dans une configuration adaptée par exemple à une utilisant en tant que vitrage de toit auto : sont représentés deux verres clairs 21, 22, un système fonctionnel électrochrome 23 de type « tout-solide » constitué de l'empilement de couches fonctionnelles suivant, et une feuille de polyuréthane PU 24 (la feuille de PU peut être remplacée par une feuille d'éthylènevinylacétate EVA ou de polyvinylbutyral PVB) : *• une première couche électroconductrice 25 en SnO2 :F de 400 nm déposée par CVD sur le verre 22,
** une première couche 26 de matériau électrochrome anodique en oxyde d'iridium (hydraté) IrOxHy de 40 nm, (elle peut être remplacée par une couche en oxyde de nickel hydraté), ** une couche 27 en oxyde de tungstène de 100 nm,
** une seconde couche 28 en oxyde de tantale hydraté de 100 nm,
** une seconde couche 29 de matériau électrochrome cathodique à base d'oxyde de tungstène HxWOβ de 370 nm,
** une seconde couche 30 d'ITO de 50 nm. L'ensemble verre 22 /système fonctionnel 23 est ensuite feuilleté au verre 21 par l'intermédiaire de la feuille 24 en PU d'épaisseur 1,24 mm au moins qui a été fonctionnalisée par dépôt d'un réseau 31 de fils métalliques parallèles entre eux et linéaires. (Il peut aussi s'agir d'une feuille d'EVA ou de PVB, comme dit plus haut, par exemple d'une épaisseur de l'ordre de 0,76 mm).
Le dépôt du réseau se fait de manière connue par le procédé décrit dans les brevets mentionnés plus haut. Les amenées de courant sont, de manière connue, deux clinquants disposés sur les bords opposés de la feuille 24 en PU, appliqués à l'aide d'un fer à souder. Il peut par exemple aussi s'agir de tresses de fils métalliques. Le contact électrique entre ces amenées de courant (non représentées) et la couche électroconductrice sous-jacente est obtenu par pression, lors du feuilletage.
Le vitrage utilise donc une électrode standard sur le verre 22, à savoir une monocouche de Snθ2 :F (ou d'ITO par exemple) et une seconde électrode selon l'invention associant une couche électroconductrice en ITO avec un réseau de fils métalliques. Comme dans l'exemple 1, cette configuration permet d'utiliser des couches d'ITO du côté du film en PU plus minces que ce qui serait nécessaire en l'absence du réseau conducteur 31. Ce réseau est par exemple constitué de fils parallèles linéaires, en tungstène ou en cuivre, éventuellement recouverts de graphite, d'un diamètre moyen de 25 μm (par exemple entre 10 et 50 μm). Chaque ligne est espacée de la ligne adjacente d'une distance de 2 mm (par exemple entre 1 et 5 mm). Ce dimensionnement est approprié pour que le réseau, bien que visible de très près, reste très discret et même indiscernable à l'état coloré, exigence esthétique suffisante dans le cadre d'un vitrage de toit auto.
La figure 3 donne des indications sur le comportement optique et électrique d'un vitrage selon cet exemple, de dimensions 35 x 35 cm2. Le graphe 3 caractérise l'aspect optique et le comportement électrique du vitrage pendant une commutation. L'abscisse correspond au temps T exprimé en secondes et l'ordonnée (à gauche) à la valeur de transmission lumineuse TL exprimée en % et à droite à l'intensité i en mA aux bornes du vitrage. La courbe Cl correspond à la modification TL au bord du vitrage, et la courbe C2 à la modification de TL au centre du vitrage. On peut vérifier que ces deux courbes sont (quasiment) superposées, ce qui prouve l'absence ou la quasi absence de front de coloration. La courbe C3 montre l'évolution de l'intensité i du courant. EXEMPLE 3 La figure 4 représente une autre variante de vitrage électrochrome
« tout- solide » selon l'invention. On retrouve, comme à la figure 2 et à l'exemple 2, deux verres 21 , 22 associés par feuilletage à l'aide d'un film 24 en PU (ou PVB : polyvinylbutyral), la couche 26 en matériau électrochrome anodique, la couche 29 en matériau électrochrome cathodique séparées par les couches 27, 28, formant l'électrolyte. Par contre, l'électrode 25' disposée sur le verre 22 est maintenant constituée d'un empilement de couches comprenant une couche 25 (a) en Snθ2 de 34 nm, surmontée d'une couche 25(b) en argent de 10 nm, elle-même surmontée d'une couche 25(c) en ITO de 50 nm. Ce tri-couche est obtenu par pulvérisation cathodique assistée par champ magnétique, de manière connue. Optionnellement, la couche 25(b) en argent est munie d'une couche mince en métal 25(d) destinée à la protéger lors du dépôt de la couche 25(c) en ITO, lorsque celle-ci est déposée en mode réactif en présence d'oxygène. On a ainsi un empilement rendu très conducteur par la présence de la couche d'Ag, dont on abaisse la réflexion lumineuse grâce à la couche de Snθ2 sous-jacente et à la couche d'ITO qui la surmonte, qui servent de couches antireflet, par un choix approprié de leurs épaisseurs. A noter qu'ici il est nécessaire que la couche 25(c) sur l'argent soit conductrice, pour assurer une mise sous tension du reste des couches fonctionnelles du système, ce qui n'est pas nécessaire pour la couche 25 (a) sous l'argent, qui a essentiellement un rôle optique et qui est un diélectrique isolant. On peut bien sûr prévoir de la remplacer (totalement ou partiellement) par de TITO ou du Snθ2 :F pour lui conserver son rôle optique tout en renforçant encore la conductivité de l'ensemble des couches 25(a), 25(b), 25(c) de l'électrode multi-composante.
La seconde électrode 30' est également un empilement multi- couches, par exemple déposé par pulvérisation cathodique et composée d'une première couche 30(a) en ITO de 50 nm, d'une seconde couche 30(b) en argent de 10 nm et enfin d'une troisième couche 30(c) en ITO de 34 nm. Ici, il est préférable que la couche 30(a) et la couche 30(c) soient conductrices, bien qu'elles remplissent le même rôle optique vis-à-vis de la couche d'Ag 31 (a) que les couches 25(a) et 25(c) vis-à-vis de la couche d'argent 25(b), car il est plus simple de terminer l'empilement par une couche conductrice pour y apposer les éléments de connectique, qui sont ici des clinquants métalliques disposés sur la feuille de polymère servant d'intercalaire de feuilletage.
Avant l'invention, un tel système fonctionnait avec une première couche d'ITO (côté verre 21) de 150 nm et une seconde couche d'ITO (côté PU 24) de 300 nm. On voit donc que l'invention permet d'utiliser des couches d'ITO ou de Snθ2 :F bien plus fines, ce qui a un impact non négligeable sur le coût du vitrage final. L'invention permet aussi d'utiliser des couches d'Ag, très performantes électriquement, sans en avoir les inconvénients connus (aspect optique très réfléchissant, certaine fragilité, ...).

Claims

REVENDICATIONS
1. Dispositif électrochimique, notamment système électrocommandable à propriétés optiques et/ ou énergétiques variables, comportant au moins un substrat porteur muni d'un empilement de couches fonctionnelles dont au moins une couche A électroconductrice à base d'oxyde(s) métallique(s) et au moins une couche F électrochimiquement active, caractérisé en ce que ladite couche A fait partie d'une électrode multi-composante E associant à la couche A au moins un matériau B plus conducteur qu'elle et/ou au moins un réseau C de fils conducteurs ou de bandes conductrices.
2. Dispositif selon la revendication 1 , caractérisé en ce que le matériau B est sous forme d'au moins une couche associée à la couche A, en contact électrique avec elle.
3. Dispositif selon la revendication 1 , caractérisé en ce que le matériau B est incorporé dans la couche A, notamment sous forme de fibres, de particules.
4. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la (les) couche(s) A est (sont) à bases d'oxydes métalliques dopés choisis parmi un au moins des oxydes dopés suivants : oxyde d'étain dopé, notamment au fluor ou à l'antimoine, oxyde de zinc dopé, notamment à raluminium, à l'étain, au fluor, oxyde d'indium dopé, notamment à l'étain ITO.
5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le matériau B est essentiellement métallique, notamment à base de métaux ou de leurs alliages comme Ag, Au, Cu, Al, des alliages d'Ag avec un autre métal notamment le nickel ou le titane.
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que ladite électrode multi-composante E est essentiellement transparente dans le visible.
7. Dispositif selon l'une des revendications précédentes, caractérisé en ce que ledit réseau C comporte une pluralité de bandes conductrices, notamment essentiellement parallèles entre elles, obtenues par sérigraphie à partir d'une suspension pâteuse de métal de type argent et d'une fritte à bas point de fusion dans un liant de type organique.
8. Dispositif selon la revendication 7, caractérisé en ce que le réseau C est sérigraphié sur le substrat porteur de type verrier puis recouvert d'au moins une couche électroconductrice A afin de constituer une électrode E ou est déposé sur la couche électroconductrice A recouvrant le substrat porteur.
9. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le réseau C comporte une pluralité de fils conducteurs sous forme de fils essentiellement métalliques déposés en surface d'une feuille à base de polymère de type thermoplas tique.
10. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le réseau C est à base d'un tissu, filet, voile métallique, notamment obtenu à partir de fils métalliques de diamètre compris entre 10 et 100 μm, et de préférence déposé en surface d'une feuille à base de polymère de type thermoplastique.
1 1. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le réseau C est obtenu par gravure ou perçage d'une couche métallique ou d'une feuille métallique.
12. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'électrode multi-composante E comprend au moins une couche A et au moins une couche B en contact électrique, l'une au moins de ces couches étant éventuellement en contact avec au moins une couche D en matériau diélectrique, l'ensemble des couches A, B et D formant de préférence un empilement de couches en interaction interférentielle .
13. Dispositif selon la revendication 12, caractérisé en ce que la ou les couche (s) D ont une fonction optique et/ ou d'ancrage des autres couches B au substrat porteur et/ ou une fonction de barrière à la migration d'espèces provenant du verre du type alcalins, notamment sous forme d'oxyde, oxycarbure ou oxynitrure de métal ou de silicium ou nitrure de silicium.
14. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la ou les électrode(s) E multi-composante(s) comprend (comprennent) la séquence ITO/Ag/ITO ou Ag/ITO avec interposition éventuelle de fines couches de métal partiellement oxydé à l'interface Ag/ITO.
15. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la ou les électrode(s) E multi-composante(s) est (sont) munie(s) d'amenées de courant, notamment sous forme de clinquants ou de tresses en métal.
16. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il s'agit d'un système électrochrome, notamment un système électrochrome « tout-solide » ou « tout-polymère », avec au moins un substrat porteur et un empilement de couches fonctionnelles comprenant au moins, successivement, une première couche électroconductrice, une couche électrochimiquement active susceptible d'insérer réversiblement des ions tels que H+, Li+, OH" du type matériau électrochrome à coloration anodique ou respectivement cathodique, une couche d'électrolyte, une seconde couche électrochimiquement active susceptible d'insérer réversiblement des ions tels que H+, Li+, OH" du type matériau électrochrome à coloration cathodique ou respectivement anodique, et une seconde couche électroconductrice, avec au moins une des deux couches électroconductrices sous forme d'une couche A à base d'oxyde(s) métallique(s) et faisant partie d'une électrode multi-composante E.
17. Dispositif selon l'une des revendications 1 à 15, caractérisé en ce qu'il s'agit d'un système viologène, avec au moins un substrat porteur et un empilement de couches fonctionnelles comprenant au moins, successivement, une première couche électroconductrice, un film à propriétés viologènes sous forme d'un polymère, d'un gel ou d'une suspension en milieu liquide, une seconde couche électroconductrice, avec au moins une des deux couches électroconductrices de type A à base d'oxyde(s) métallique(s) et faisant partie d'une électrode multi-composante E.
18. Dispositif selon l'une des revendications précédentes, caractérisé en ce que l'empilement de couches fonctionnelles est disposé entre deux substrats, chacun d'eux pouvant être rigide, du type verre ou polymère rigide comme le polycarbonate ou le PMMA, semi-rigide, ou souple du type PET, et étant de préférence tous transparents, absorbants ou non.
19. Vitrage caractérisé en ce qu'il incorpore le dispositif selon l'une des revendications précédentes, ledit dispositif utilisant comme substrat porteur au moins un des substrats rigides constitutifs du vitrage et/ ou au moins un substrat souple associé par feuilletage à un des substrats rigides constitutifs dudit vitrage.
20. Utilisation du dispositif selon l'une des revendications 1 à 18 ou du vitrage selon la revendication 19 pour faire des vitrages pour bâtiment, notamment des vitrages extérieurs ou de cloison interne ou de porte vitrée ou de toitures, des vitrages équipant les cloisons internes ou les fenêtres ou les toitures de moyens de transport du type train, avion, voiture, bateau, des vitrages d'écran de visualisation du type écran d'ordinateur ou de télévision, écran tactile, pour faire des lunettes ou des objectifs d'appareils photographiques ou des protections de panneaux solaires.
21. Utilisation du dispositif selon l'une des revendications 1 à 18 pour faire des dispositifs électrochimiques de stockage d'énergie du type batterie, pile à combustible.
EP00910992A 1999-03-19 2000-03-17 Dispositif electrochimique, du type systeme electrocommandable a proprietes optiques et/ou energetiques variables Withdrawn EP1078299A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9903420A FR2791147B1 (fr) 1999-03-19 1999-03-19 Dispositif electrochimique du type dispositif electrocommandable a proprietes optiques et/ou energetiques variables
FR9903420 1999-03-19
PCT/FR2000/000675 WO2000057243A1 (fr) 1999-03-19 2000-03-17 Dispositif electrochimique, du type systeme electrocommandable a proprietes optiques et/ou energetiques variables

Publications (1)

Publication Number Publication Date
EP1078299A1 true EP1078299A1 (fr) 2001-02-28

Family

ID=9543388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00910992A Withdrawn EP1078299A1 (fr) 1999-03-19 2000-03-17 Dispositif electrochimique, du type systeme electrocommandable a proprietes optiques et/ou energetiques variables

Country Status (9)

Country Link
US (3) US6747779B1 (fr)
EP (1) EP1078299A1 (fr)
JP (1) JP4851009B2 (fr)
KR (1) KR100715331B1 (fr)
AU (1) AU774653B2 (fr)
CA (1) CA2332622A1 (fr)
FR (1) FR2791147B1 (fr)
PL (1) PL207628B1 (fr)
WO (1) WO2000057243A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217959A (zh) * 2017-06-05 2017-09-29 哈尔滨工业大学 一种智能动态颜色可调节Low‑E玻璃

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2746934B1 (fr) * 1996-03-27 1998-05-07 Saint Gobain Vitrage Dispositif electrochimique
FR2791147B1 (fr) * 1999-03-19 2002-08-30 Saint Gobain Vitrage Dispositif electrochimique du type dispositif electrocommandable a proprietes optiques et/ou energetiques variables
FR2811778B1 (fr) * 2000-07-13 2003-06-20 Saint Gobain Dispositif electrochimique du type electrochrome ou dispositif photovoltaique et ses moyens de connexion electrique
FR2815374B1 (fr) 2000-10-18 2003-06-06 Saint Gobain Vitrage feuillete et ses moyens d'etancheification peripherique
FR2821937B1 (fr) 2001-03-07 2003-06-06 Saint Gobain Dispositif electrocommandable a proprietes optiques et/ou energetiques variables
SK286645B6 (sk) 2002-02-20 2009-03-05 Saint Gobain Glass France Zasklenie obsahujúce zasklievací element s celotvarovanou obvodovou plastickou časťou a jeho použitie
FR2840078B1 (fr) * 2002-05-22 2004-08-13 Saint Gobain Dispositif electrocommandable a proprietes optiques et/ou energetiques variables
FR2857467B1 (fr) * 2003-07-09 2005-08-19 Saint Gobain Dispositif electrocommandable a proprietes optiques et/ou energetiques variables
FR2857617B1 (fr) * 2003-07-16 2006-10-27 Saint Gobain Vitrage de securite fonctionnalise
DE102004038916A1 (de) * 2003-09-03 2005-03-31 Volkswagen Ag Anzeigeeinrichtung für ein Kraftfahrzeug
US8472792B2 (en) 2003-12-08 2013-06-25 Divx, Llc Multimedia distribution system
DE102004005611B4 (de) * 2004-02-05 2006-04-27 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparente Scheibe mit partiell abdunkelbarem Sichtfeld und Verfahren zum Steuern eines elektrochrom verfärbbaren Flächenelements in einer transparenten Scheibe, insbesondere einer Windschutzscheibe
US7864398B2 (en) * 2004-06-08 2011-01-04 Gentex Corporation Electro-optical element including metallic films and methods for applying the same
FR2886419B1 (fr) * 2005-05-27 2009-07-31 Saint Gobain Electrode de dispositifs electrochimiques/ electrocommandables
US7248392B2 (en) * 2005-07-01 2007-07-24 Ppg Industries Ohio, Inc. Vision panel having a multi-layer primer
US7586664B2 (en) * 2005-07-01 2009-09-08 Ppg Industries Ohio, Inc. Transparent electrode for an electrochromic switchable cell
US7173750B2 (en) * 2005-07-01 2007-02-06 Ppg Industries Ohio, Inc. Electrochromic vision panel having a plurality of connectors
FR2904123B1 (fr) * 2006-07-21 2008-09-12 Saint Gobain Dispositif electrochimique / electrocommandable du type vitrage et a proprietes optiques et/ou energetiques variables.
DE102006045514B4 (de) * 2006-08-16 2012-04-05 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparente Flächenelektrode
US8076571B2 (en) * 2006-11-02 2011-12-13 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080105298A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080178932A1 (en) * 2006-11-02 2008-07-31 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US20080302414A1 (en) * 2006-11-02 2008-12-11 Den Boer Willem Front electrode for use in photovoltaic device and method of making same
US7964788B2 (en) * 2006-11-02 2011-06-21 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US8012317B2 (en) * 2006-11-02 2011-09-06 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US8203073B2 (en) * 2006-11-02 2012-06-19 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080105293A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080105299A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode with thin metal film layer and high work-function buffer layer for use in photovoltaic device and method of making same
FR2908229B1 (fr) * 2006-11-03 2023-04-28 Saint Gobain Couche transparente a haute conductivite electrique avec grille metallique a tenue electrochimique optimisee adaptee pour subir un traitement thermique de type bombage, ou trempe
FR2908228B1 (fr) * 2006-11-03 2012-06-01 Saint Gobain Couche transparente a haute conductivite electrique avec grille metallique a tenue electrochimique optimisee
KR101127277B1 (ko) * 2006-12-05 2012-03-29 주식회사 엘지화학 전기변색소자용 전극 및 이를 구비한 전기변색소자
US8334452B2 (en) 2007-01-08 2012-12-18 Guardian Industries Corp. Zinc oxide based front electrode doped with yttrium for use in photovoltaic device or the like
US20080169021A1 (en) * 2007-01-16 2008-07-17 Guardian Industries Corp. Method of making TCO front electrode for use in photovoltaic device or the like
US20080223430A1 (en) * 2007-03-14 2008-09-18 Guardian Industries Corp. Buffer layer for front electrode structure in photovoltaic device or the like
US20080308146A1 (en) * 2007-06-14 2008-12-18 Guardian Industries Corp. Front electrode including pyrolytic transparent conductive coating on textured glass substrate for use in photovoltaic device and method of making same
US7888594B2 (en) * 2007-11-20 2011-02-15 Guardian Industries Corp. Photovoltaic device including front electrode having titanium oxide inclusive layer with high refractive index
DE102008004942A1 (de) * 2007-12-10 2009-06-25 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Mehrschichtelement mit einer ersten transparenten Flächenelektrode
US20090194155A1 (en) * 2008-02-01 2009-08-06 Guardian Industries Corp. Front electrode having etched surface for use in photovoltaic device and method of making same
US20090194157A1 (en) * 2008-02-01 2009-08-06 Guardian Industries Corp. Front electrode having etched surface for use in photovoltaic device and method of making same
FR2928463B1 (fr) * 2008-03-04 2010-12-03 Saint Gobain Dispositif electrochrome comportant un maillage.
DE102008039337A1 (de) * 2008-03-20 2009-09-24 Siemens Aktiengesellschaft Vorrichtung zum Besprühen, Verfahren dazu sowie organisches elektronisches Bauelement
US9782949B2 (en) 2008-05-30 2017-10-10 Corning Incorporated Glass laminated articles and layered articles
FR2934062B1 (fr) * 2008-07-17 2010-08-13 Saint Gobain Dispositif electrochrome a reflexion infrarouge controlee
US8022291B2 (en) * 2008-10-15 2011-09-20 Guardian Industries Corp. Method of making front electrode of photovoltaic device having etched surface and corresponding photovoltaic device
EP2396697A4 (fr) * 2009-02-10 2012-08-22 Applied Nanotech Holdings Inc Dispositif électrochromique
US11599003B2 (en) 2011-09-30 2023-03-07 View, Inc. Fabrication of electrochromic devices
US9007674B2 (en) 2011-09-30 2015-04-14 View, Inc. Defect-mitigation layers in electrochromic devices
DE102009025972B4 (de) 2009-06-15 2018-12-27 Sage Electrochromics, Inc. Verbundglasscheibe und deren Verwendung
DE102009026148A1 (de) * 2009-07-10 2011-01-13 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Elektrochrome Schichtstruktur und Verfahren zu dessen Herstellung
FR2948356B1 (fr) 2009-07-22 2011-08-19 Saint Gobain Dispositif electrochrome
KR101761850B1 (ko) * 2009-10-05 2017-08-04 라이즈 아크레오 에이비 전기화학 장치
US20110186120A1 (en) * 2009-11-05 2011-08-04 Guardian Industries Corp. Textured coating with various feature sizes made by using multiple-agent etchant for thin-film solar cells and/or methods of making the same
US20110168252A1 (en) * 2009-11-05 2011-07-14 Guardian Industries Corp. Textured coating with etching-blocking layer for thin-film solar cells and/or methods of making the same
US8502066B2 (en) * 2009-11-05 2013-08-06 Guardian Industries Corp. High haze transparent contact including insertion layer for solar cells, and/or method of making the same
WO2011101427A1 (fr) 2010-02-19 2011-08-25 Saint-Gobain Glass France Vitrage électrochrome comprenant des cellules connectées en série ainsi que procédé de fabrication à cet effet
US8736942B2 (en) 2010-03-12 2014-05-27 Battelle Memorial Institute Electrochromic device capable of controlling visible and infrared radiations
CN101833211B (zh) * 2010-04-01 2011-11-02 中国科学院宁波材料技术与工程研究所 一种智能调光玻璃
US20120013981A1 (en) * 2010-07-19 2012-01-19 Sol-Grid, Llc Photochromic optical elements
US9709867B2 (en) 2010-10-05 2017-07-18 Rise Acreo Ab Display device
FR2968413B1 (fr) 2010-12-06 2012-12-07 Saint Gobain Dispositif electrochimique a proprietes de transmission optique et/ou energetique electrocommandables
DE102011015950A1 (de) * 2011-04-02 2012-10-04 Daimler Ag Optisches Bauteil und Verfahren zu dessen Herstellung
KR101993852B1 (ko) 2011-04-05 2019-09-30 린텍 코포레이션 전극 표면의 자가 배열 전해질에 기반한 전기 화학적 장치의 제조 방법
US8546275B2 (en) 2011-09-19 2013-10-01 Intermolecular, Inc. Atomic layer deposition of hafnium and zirconium oxides for memory applications
US10802371B2 (en) 2011-12-12 2020-10-13 View, Inc. Thin-film devices and fabrication
ES2807609T3 (es) * 2013-06-20 2021-02-23 Chromogenics Ab Dispositivos electrocrómicos y sus procedimientos de fabricación
KR102081125B1 (ko) * 2013-11-25 2020-02-25 엘지디스플레이 주식회사 전자기기
KR101534992B1 (ko) 2013-12-31 2015-07-07 현대자동차주식회사 렌즈 표면의 나노패턴 형성방법 및 나노패턴이 형성된 렌즈
FR3023932B1 (fr) * 2014-07-16 2016-07-08 Commissariat Energie Atomique Dispositif electrochrome comprenant un systeme de chauffage integre
WO2016126321A1 (fr) 2015-02-06 2016-08-11 Delphi Technologies, Inc. Procédé et dispositif pour commander un véhicule autonome
US20180012492A1 (en) 2015-02-06 2018-01-11 Delphi Technologies, Inc. Method of automatically controlling an autonomous vehicle based on electronic messages from roadside infrastructure or other vehicles
WO2016126322A1 (fr) * 2015-02-06 2016-08-11 Delphi Technologies, Inc. Véhicule autonome à capteurs dissimulés
WO2016137453A1 (fr) * 2015-02-25 2016-09-01 Hewlett-Packard Development Company, L.P. Affichages électroniques
US10969645B2 (en) 2015-03-20 2021-04-06 View, Inc. Faster switching low-defect electrochromic windows
EP3347183B1 (fr) 2015-09-07 2020-12-16 SABIC Global Technologies B.V. Vitrage en plastic de hayons comprenant un système d'éclairage
EP3347219B1 (fr) 2015-09-07 2021-04-14 SABIC Global Technologies B.V. Éléments aérodynamiques de vitrages plastiques de hayons arrière
WO2017042698A1 (fr) 2015-09-07 2017-03-16 Sabic Global Technologies B.V. Surfaces de vitrage en matière plastique de hayons arrière
US11267173B2 (en) 2015-09-07 2022-03-08 Sabic Global Technologies B.V. Molding of plastic glazing of tailgates
KR102215029B1 (ko) 2015-11-23 2021-02-15 사빅 글로벌 테크놀러지스 비.브이. 플라스틱 글레이징을 갖는 윈도우를 위한 라이팅 시스템
JP6839581B2 (ja) 2016-04-01 2021-03-10 日東電工株式会社 エレクトロクロミック調光部材、光透過性導電フィルムおよびエレクトロクロミック調光素子
EP3500891A4 (fr) 2016-08-22 2020-03-25 View, Inc. Fenêtres électrochromiques à blindage électromagnétique
KR102126688B1 (ko) 2017-04-27 2020-07-07 주식회사 엘지화학 전기변색필름
EP3955053B1 (fr) 2018-07-16 2023-11-08 Huntsman International LLC Methode de fabrication d'un film polymere conducteur ionique
KR102042797B1 (ko) * 2018-08-17 2019-11-27 (주)오리온엔이에스 복합 전해질층을 포함하는 전기 변색소자 및 그 제조방법
US11156892B2 (en) * 2018-11-01 2021-10-26 Orion Nes Co., Ltd Electrochromic device comprising hybrid electrolyte layer and method for fabricating the same
TWI725667B (zh) 2018-12-28 2021-04-21 美商塞奇電致變色公司 形成電化學裝置之方法
WO2020141860A1 (fr) 2018-12-31 2020-07-09 주식회사 동진쎄미켐 Dispositif électrochromique et son procédé de fabrication
FR3093720B1 (fr) 2019-03-14 2021-06-18 Saint Gobain Procédé de protection d’un substrat en verre revêtu d’un empilement électrochrome et procédé de fabrication d’un vitrage isolant
WO2020247274A1 (fr) * 2019-06-05 2020-12-10 Heliotrope Technologies, Inc. Dispositif électrochrome comprenant des conducteurs transparents ayant une résistance de feuille réduite dans une direction d'écoulement de courant
KR102101874B1 (ko) * 2019-09-11 2020-04-20 주식회사 스위스 저항이 낮은 투명전극 구조를 가지는 전기변색소자
FR3106006B1 (fr) 2020-01-02 2023-10-27 Saint Gobain Système optique, vitrage isolant comportant un tel système optique, procédé de fabrication de ce vitrage isolant et procédé de protection d’un système optique
US11500257B2 (en) * 2020-04-06 2022-11-15 Xiamen University Of Technology Inorganic solid-state electrochromic module containing inorganic transparent conductive film
US11852945B2 (en) 2020-10-14 2023-12-26 Vitro Flat Glass Llc Seal for electrochromic device
CN112363358B (zh) * 2020-11-03 2023-07-07 深圳市光羿科技有限公司 一种导电基材及电致变色器件
CN114568915B (zh) * 2020-11-30 2023-09-22 宸美(厦门)光电有限公司 电子窗帘及电子装置
FR3140954A1 (fr) 2022-10-13 2024-04-19 Saint-Gobain Glass France Vitrage electrochrome
FR3140955A1 (fr) 2022-10-13 2024-04-19 Saint-Gobain Glass France Vitrage electrochrome

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3800065A (en) * 1973-03-26 1974-03-26 Anaconda Co Grounded power cable
DE2606963C3 (de) * 1976-02-20 1981-07-23 Siemens AG, 1000 Berlin und 8000 München Verfahren zur Herstellung einer hartlötbaren Dickschichtschaltung auf ein vorzugsweise aus einer Oxidkeramik bestehendes Trägerplättchen
JPS5756824A (en) * 1980-09-24 1982-04-05 Sharp Corp Ecd display device
US4326017A (en) * 1981-01-26 1982-04-20 General Electric Company Positive electrode for lead acid battery
JPS59184328A (ja) * 1983-04-04 1984-10-19 Nissan Motor Co Ltd 透過度可変ガラス
US5554176A (en) * 1986-05-15 1996-09-10 Telectronics Pacing Systems, Inc. Implantable electrode and sensor lead apparatus
JPS63157719A (ja) * 1986-12-22 1988-06-30 Nippon Steel Corp 角管の製造方法
US4874229A (en) * 1987-03-31 1989-10-17 Toyoda Gosei Co., Ltd. Planar dimmer
JPS63157719U (fr) * 1987-03-31 1988-10-17
JPS6490422A (en) * 1987-09-30 1989-04-06 Sekisui Chemical Co Ltd Electrochromic element
JP2503553B2 (ja) * 1987-11-30 1996-06-05 凸版印刷株式会社 エレクトロクロミック表示体
US5355245A (en) * 1988-02-12 1994-10-11 Donnelly Corporation Ultraviolet protected electrochemichromic rearview mirror
EP0400797A3 (fr) * 1989-05-30 1991-10-02 Ford Motor Company Limited Dispositif électrochromique
US5293546A (en) * 1991-04-17 1994-03-08 Martin Marietta Corporation Oxide coated metal grid electrode structure in display devices
KR100271537B1 (ko) * 1992-04-10 2000-11-15 존 이. 밴 다인 전자크롬장치 및 그 제조방법
EP0676059B1 (fr) * 1992-12-24 2003-10-15 Sun Active Glass Electrochromics, Inc. Dispositifs electrochromiques
DE69426040T2 (de) * 1993-02-26 2001-05-17 Donnelly Corp., Holland Elektrochrome polymerische Festfilme, Herstellung elektrochromer Vorrichtungen mit solchen Filmen, und Verfahren zur Herstellung solcher Festfilme und Vorrichtungen
FR2708170B1 (fr) * 1993-07-19 1995-09-08 Innovation Dev Cie Gle Circuits électroniques à très haute conductibilité et de grande finesse, leurs procédés de fabrication, et dispositifs les comprenant.
US6352755B1 (en) * 1994-10-04 2002-03-05 Ppg Industries Ohio, Inc. Alkali metal diffusion barrier layer
FR2746934B1 (fr) * 1996-03-27 1998-05-07 Saint Gobain Vitrage Dispositif electrochimique
FR2753545B1 (fr) 1996-09-18 1998-10-16 Saint Gobain Vitrage Dispositif electrochimique
US6166848A (en) * 1997-04-02 2000-12-26 Gentex Corporation Electrochromic rearview mirror incorporating a third surface metal reflector and a display/signal light
US6700692B2 (en) * 1997-04-02 2004-03-02 Gentex Corporation Electrochromic rearview mirror assembly incorporating a display/signal light
US6317248B1 (en) * 1998-07-02 2001-11-13 Donnelly Corporation Busbars for electrically powered cells
FR2781084B1 (fr) 1998-07-10 2007-08-31 Saint Gobain Vitrage Procede de traitement d'un dispositif electrochimique
FR2791147B1 (fr) 1999-03-19 2002-08-30 Saint Gobain Vitrage Dispositif electrochimique du type dispositif electrocommandable a proprietes optiques et/ou energetiques variables
TW565812B (en) * 2000-07-21 2003-12-11 Ebauchesfabrik Eta Ag Display assembly including an electro-optical cell and a photovoltaic cell
US6301039B1 (en) * 2000-09-13 2001-10-09 Rockwell Technologies, Llc Reversible electrochemical mirror (REM) state monitoring

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO0057243A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107217959A (zh) * 2017-06-05 2017-09-29 哈尔滨工业大学 一种智能动态颜色可调节Low‑E玻璃

Also Published As

Publication number Publication date
US20040191618A1 (en) 2004-09-30
PL344188A1 (en) 2001-10-08
US7012728B2 (en) 2006-03-14
FR2791147B1 (fr) 2002-08-30
FR2791147A1 (fr) 2000-09-22
US7265889B2 (en) 2007-09-04
AU774653B2 (en) 2004-07-01
JP2002540459A (ja) 2002-11-26
JP4851009B2 (ja) 2012-01-11
WO2000057243A1 (fr) 2000-09-28
US20060033978A1 (en) 2006-02-16
KR100715331B1 (ko) 2007-05-08
AU3300500A (en) 2000-10-09
US6747779B1 (en) 2004-06-08
PL207628B1 (pl) 2011-01-31
KR20010043668A (ko) 2001-05-25
CA2332622A1 (fr) 2000-09-28

Similar Documents

Publication Publication Date Title
EP1078299A1 (fr) Dispositif electrochimique, du type systeme electrocommandable a proprietes optiques et/ou energetiques variables
EP2263118B1 (fr) Dispositif electrochrome comportant un maillage
EP2047325B1 (fr) Dispositif electrochimique / electrocommandable du type vitrage et a proprietes optiques et/ou energetiques variables
EP2084574B1 (fr) Couche transparente a haute conductivite electrique avec grille metallique a tenue electrochimique optimisee
EP2307926B1 (fr) Dispositif électrochrome à réflexion infrarouge contrôlée
EP1952194B1 (fr) Systeme electrochrome sur substrat plastique
WO2002006889A1 (fr) Dispositif electrochimique du type electrochrome ou dispositif photovoltaïque et ses moyens de connexion electrique
EP0825478A1 (fr) Vitrage à propriétés optiques et/ou énergétiques variables
FR2904704A1 (fr) Dispositif electrochimique, et/ou elelctrocommandable du type vitrage et a proprietes optiques et/ou energetiques variables
CA2648396A1 (fr) Vitrage feuillete et ses moyens d'etancheification et de renforcement peripherique
EP0823653A1 (fr) Eléments à propriétés optiques/énergétiques variables
EP2201425B1 (fr) Perfectionnements apportés à des écrans de visualisation
CZ20004187A3 (cs) Elektrochemické zařízení typu elektricky regulovatelného systému typu majícího proměnlivé optické a/nebo energetické vlastnosti

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20101117

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAGE ELECTROCHROMICS, INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171003

RIC1 Information provided on ipc code assigned before grant

Ipc: G02F 1/155 20060101AFI20001003BHEP

Ipc: G02F 1/153 20060101ALI20001003BHEP

Ipc: H01M 4/74 20060101ALI20001003BHEP