EP1052725A1 - Method of manufacturing a microwave reflective surface - Google Patents

Method of manufacturing a microwave reflective surface Download PDF

Info

Publication number
EP1052725A1
EP1052725A1 EP00401204A EP00401204A EP1052725A1 EP 1052725 A1 EP1052725 A1 EP 1052725A1 EP 00401204 A EP00401204 A EP 00401204A EP 00401204 A EP00401204 A EP 00401204A EP 1052725 A1 EP1052725 A1 EP 1052725A1
Authority
EP
European Patent Office
Prior art keywords
interlacing
wires
metal
filler metal
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00401204A
Other languages
German (de)
French (fr)
Other versions
EP1052725B1 (en
Inventor
Jean-Louis Van Den Berghe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space SAS
Original Assignee
EADS Launch Vehicles SA
Aerospatiale Matra Lanceurs Strategiques et Spatiaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Launch Vehicles SA, Aerospatiale Matra Lanceurs Strategiques et Spatiaux filed Critical EADS Launch Vehicles SA
Publication of EP1052725A1 publication Critical patent/EP1052725A1/en
Application granted granted Critical
Publication of EP1052725B1 publication Critical patent/EP1052725B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal

Definitions

  • the present invention relates to surfaces reflecting waves electromagnetic, such as antenna reflectors, shields electromagnetic, waveguides, etc ... as well as a method for the realization of these surfaces.
  • reflective surfaces - which are made by shaped metal sheets, for example by stamping, giving them a self-supporting structure.
  • Such surfaces have a large mass, so that their dimensions are generally limited. In addition, due to their mass, they cannot be on board spacecraft.
  • parasitic electrical discharges may occur between the ends opposite broken carbon fibers - these fibers being conductive - which generates parasites in said reflected radiation.
  • the metallization of said composite supports present in general a surface condition so smooth that thermal radiation received by such a reflector is concentrated in the focus of the latter. Also, when the source of the reflector is at the focus, it is necessary to thermally protect said source, for example by covering the surface active reflector by diffusing paint.
  • the object of the present invention is to remedy the drawbacks reflective surfaces with composite support, while allowing to obtain reflective surfaces of comparable lightness.
  • the rigid surface reflecting the electromagnetic waves is remarkable in that it consists of an interlacing of electrically conductive wires which are superficially made of a stable metallic diffusion alloy ensuring the joining of said wires together and the rigidity of said surface.
  • This flexible interlacing can be achieved in different ways, by example by knitting, covering, braiding, coating, weaving or even by implementing methods of manufacturing fibrous products non-woven.
  • the interlacing in the form of a knitted fabric was found particularly advantageous, especially with regard to dissemination of the heat flux received by said reflecting surface.
  • the electrically conductive wires can consist of a metallic core covered with said filler metal. In this case, the metal superficial is therefore that of the soul.
  • the wires are electrically conductors can consist of a plurality of layers coaxial, at least some of which are made of a material - electrically conductive or possibly insulating - different from said surface metal.
  • metals used to make wires electrically conductors we can cite metals that are good conductors of electricity, such as gold, silver, copper, etc ... or even low-alloys coefficient of thermal expansion, such as certain ferro-nickel, or still other metals or metal alloys.
  • the filler metals are chosen from metals or alloys low melting point, such as tin or indium, which can form a stable alloy by diffusion with the surface metal.
  • the cross section of the electrically conductive wires can be circular, with a diameter preferably between 6 and 20 microns, or flattened, with a thickness also preferably between 6 and 20 microns and a width preferably between 0.2 and 1.5 mm. In these cases, the thickness of the coating of the filler metal can be between 10 Angström and 1 micron.
  • the surface according to the present invention can be uniform, without holes.
  • a relatively tight interlacing is expected and the application of said uniform pressure makes it possible to close off any possible days of interlacing.
  • said surface may include holes, planned at the time of the said interlacing.
  • the surface obtained by the interlacing stiffened is reinforced by a reinforcement attached to one of the faces said interlacing and secured to it.
  • the stiffened interlacing does not form while the active reflecting part of said surface.
  • Such reinforcement may have a composite fiber - polymerized matrix structure. It is then advantageous that the joining of the surface and the reinforcement is obtained by bonding using the resin of said matrix, the reinforcement being formed on said surface.
  • the temperature resin polymerization is lower than the melting temperature of stable diffusion metallic alloy.
  • antenna reflectors capable of operating at frequencies between 18 GHz and more than 45 GHz.
  • Figure 1 shows, in plan, an example of electrically interlaced wires conductors used in the implementation of the present invention.
  • Figure 2 shows, also in plan, a variant of the interlacing of figure 1.
  • Figures 3 and 4 are sections respectively along the lines III-III and IV-IV of Figures 1 and 2.
  • Figures 5 and 6 illustrate, in section, alternative embodiments conducting wires used to form the interlacing of Figures 1 and 2.
  • FIGS. 7A to 7F illustrate different phases of the method of realization of an antenna reflector according to the present invention.
  • FIG 1 there is shown an interlacing 1 of electrically wires conductors 2 and 3 crisscrossed.
  • the interlacing 1 is represented in the form of a weaving with warp 2 and weft 3, although the interlacing 1 could advantageously consist of knitted stitches.
  • the wires electrically conductors 2 and 3 provide voids between them 4.
  • each wire 2 and 3 comprises a core 5, for example of copper, coated on the surface with a coating 6 of a metal with a low melting point, such as indium.
  • the diameter d of the wires 2 and 3 can preferably be between 6 and 20 microns, while the thickness e of the coating 6 can be between 10 Angstrom and 1 micron.
  • the interlacing 7 is similar at the interlacing 1 of Figure 1 with the difference that the conductors wefts and warps 2 and 3 are woven more tightly so as to practically eliminate the voids 4.
  • Figure 3 illustrates the contact of wires 2 and 3 at one of their points crossover, while Figure 4 illustrates the contact of two wires 2 and 3 parallel.
  • the stiffening will fix the final shape of said interlacing.
  • the wires 2 and 3 have a circular section.
  • said wires could have an oblong section.
  • the thickness l of said section can be between 6 and 20 microns and the width L can be between 0.2 and 1.5 mm, the thickness l being the same as before.
  • the wires 2 and 3 could have a structure with several superimposed layers.
  • an alternative embodiment of said wires 2 and 3 has been shown in which an intermediate layer 8 is interposed between the core 5 and the coating surface 6.
  • layer 8 must be of a metal capable of forming a stable diffusion alloy with the coating 6.
  • the rise in temperature in the oven 14 leading to soldering by diffusion of the interlacing 1, 7 can be 0.1 ° C per minute, from the room temperature up to the desired temperature for diffusion, compatible with the temperature of the subsequent polymerization of the resin reinforcement 15.
  • the interlacing 1, 7 is maintained at this desired diffusion temperature for a period suitable for diffusion brazing, after which the cooling can be natural.

Abstract

The coated and woven structure provides a sufficiently rigid structure with a very lightweight design. The rigid reflecting surface for electromagnetic waves consists of interlaced electrical conductors (2,3) which are formed superficially of a stable metallic diffusion alloy. This ensures the solid fastening together of the structure with the conductors held together, and also the rigidity of the resultant surface. The electrical conductors may either be woven together, or knitted together in order to form this mesh. The transverse dimension of the conductors in at least one direction is less than 20 microns. The mesh may be supported on an insulating reinforcing layer, which may comprise a polymerised composite fibre matrix. The thickness of the metal surface coating forming the conductors may be between 10 Angstroms and 20 microns.

Description

La présente invention concerne les surfaces réfléchissant les ondes électromagnétiques, telles que les réflecteurs d'antenne, les blindages électromagnétiques, les guides d'ondes, etc ... ainsi qu'un procédé pour la réalisation de ces surfaces.The present invention relates to surfaces reflecting waves electromagnetic, such as antenna reflectors, shields electromagnetic, waveguides, etc ... as well as a method for the realization of these surfaces.

On connaít déjà des surfaces réfléchissant les ondes électromagnétiques --ci-après dénommées surfaces réfléchissantes--, qui sont réalisées par des feuilles de métal mises en forme, par exemple par emboutissage, leur conférant une structure autoporteuse. Cependant, de telles surfaces présentent une masse importante, de sorte que leurs dimensions sont généralement limitées. De plus, du fait de leur masse, elles ne peuvent être montées à bord d'engins spatiaux.We already know surfaces reflecting electromagnetic waves - hereinafter called reflective surfaces -, which are made by shaped metal sheets, for example by stamping, giving them a self-supporting structure. However, such surfaces have a large mass, so that their dimensions are generally limited. In addition, due to their mass, they cannot be on board spacecraft.

Aussi, pour remédier à ces inconvénients de masse et de limitation de dimensions, on a déjà proposé de réaliser des surfaces réfléchissantes en métallisant, par toute méthode connue (projection, galvanoplastie, dépôt sous vide, peinture conductrice, etc ...) des supports en une matière composite fibres de carbone - matrice de résine polymérisée. On peut ainsi obtenir des surfaces réfléchissantes de masse acceptable et de dimensions désirées. Cependant, ces surfaces réfléchissantes présentent des inconvénients. Tout d'abord, on constate que les portions rectilignes des fibres de carbone desdits supports introduisent une polarisation parasite indésirable dans le rayonnement électromagnétique réfléchi par lesdites surfaces. Ceci est dû au fait que les fibres de carbone réfléchissent en partie le rayonnement électromagnétique incident, alors que la résine polymérisée de la matrice, disposée entre lesdites fibres, est relativement transparente audit rayonnement. Also, to remedy these disadvantages of mass and limitation of dimensions, it has already been proposed to produce reflective surfaces by metallizing, by any known method (projection, electroplating, vacuum deposition, conductive paint, etc.) of the supports in one carbon fiber composite material - polymerized resin matrix. We can thus obtain reflective surfaces of acceptable mass and desired dimensions. However, these reflective surfaces have disadvantages. First, we see that the straight portions carbon fibers of said supports introduce a parasitic polarization undesirable in the electromagnetic radiation reflected by said surfaces. This is due to the fact that the carbon fibers reflect in part of the incident electromagnetic radiation, while the polymerized resin of the matrix, disposed between said fibers, is relatively transparent to said radiation.

De plus, il peut se produire des décharges électriques parasites locales entre les extrémités en regard de fibres de carbone rompues --ces fibres étant conductrices-- ce qui engendre des parasites dans ledit rayonnement réfléchi.In addition, parasitic electrical discharges may occur between the ends opposite broken carbon fibers - these fibers being conductive - which generates parasites in said reflected radiation.

Enfin, la métallisation desdits supports composites présente en général un état de surface tellement lisse que le rayonnement thermique reçu par un tel réflecteur est concentré au foyer de ce dernier. Aussi, lorsque la source du réflecteur se trouve au foyer, il est nécessaire de protéger thermiquement ladite source, par exemple en recouvrant la surface active du réflecteur par une peinture diffusante.Finally, the metallization of said composite supports present in general a surface condition so smooth that thermal radiation received by such a reflector is concentrated in the focus of the latter. Also, when the source of the reflector is at the focus, it is necessary to thermally protect said source, for example by covering the surface active reflector by diffusing paint.

La présente invention a pour objet de remédier aux inconvénients des surfaces réfléchissantes à support composite, tout en permettant d'obtenir des surfaces réfléchissantes de légèreté comparable.The object of the present invention is to remedy the drawbacks reflective surfaces with composite support, while allowing to obtain reflective surfaces of comparable lightness.

A cette fin, selon l'invention, la surface rigide réfléchissant les ondes électromagnétiques, notamment pour réflecteur d'antenne, blindage électromagnétique et guide d'ondes, est remarquable en ce qu'elle est constituée d'un entrelacs de fils électriquement conducteurs qui sont constitués superficiellement d'un alliage métallique stable de diffusion assurant la solidarisation desdits fils entre eux et la rigidité de ladite surface.To this end, according to the invention, the rigid surface reflecting the electromagnetic waves, especially for antenna reflector, shielding electromagnetic and waveguide, is remarkable in that it consists of an interlacing of electrically conductive wires which are superficially made of a stable metallic diffusion alloy ensuring the joining of said wires together and the rigidity of said surface.

Ainsi, grâce à la présente invention, on élimine les fibres de carbone et leurs inconvénients (polarisation parasite et décharges de rupture). Par ailleurs, puisque, dans ledit entrelacs, les fils conducteurs se croisent en formant des microfacettes, la surface, lorsqu'elle se présente sous la forme d'un réflecteur d'antenne, ne focalise plus l'énergie calorifique au seul foyer ; au contraire, cette énergie thermique passe par une tache focale. Il en résulte que la source est soumise à un flux thermique plus faible et que la protection thermique de la source et du réflecteur peut être moins complexe. Il n'est plus nécessaire de recouvrir la surface active du réflecteur de peinture diffusante, ce qui évite les distorsions engendrées par celle-ci.Thus, thanks to the present invention, carbon fibers are eliminated and their disadvantages (parasitic polarization and bursts of rupture). Furthermore, since, in said interlacing, the conducting wires are cross by forming microfacets, the surface, when it occurs in the form of an antenna reflector, no longer focuses the heat energy at home alone; on the contrary, this thermal energy goes through a focal spot. As a result, the source is subjected to a thermal flux lower and that the thermal protection of the source and the reflector may be less complex. It is no longer necessary to cover the surface active diffusing paint reflector, which prevents distortion generated by it.

Pour obtenir la surface réfléchissante rigide conforme à la présente invention, on peut :

  • réaliser un entrelacs souple de fils électriquement conducteurs dont la superficie est métallique et revêtue d'un métal d'apport, ledit métal d'apport ayant un point de fusion inférieur à celui du métal superficiel desdits fils et ledit métal d'apport et ledit métal superficiel étant aptes à diffuser réciproquement l'un dans l'autre lorsqu'ils sont portés à une température au moins égale au point de fusion dudit métal d'apport pour former un alliage métallique stable de diffusion, dont la température de fusion est supérieure au point de fusion dudit métal d'apport et croít en direction du point de fusion dudit métal superficiel avec l'intensité de ladite diffusion ;
  • conformer ledit entrelacs souple à la forme souhaitée pour ladite surface rigide réfléchissant les ondes électromagnétiques ; et
  • élever la température dudit entrelacs souple, ainsi conformé, au-delà du point de fusion dudit métal d'apport pour obtenir la formation dudit alliage métallique de diffusion, entraínant la solidarisation desdits fils entre eux et la rigidification dudit entrelacs, qui forme alors ladite surface rigide.
To obtain the rigid reflecting surface in accordance with the present invention, it is possible:
  • making a flexible interlacing of electrically conductive wires whose surface is metallic and coated with a filler metal, said filler metal having a melting point lower than that of the surface metal of said wires and said filler metal and said metal surface capable of diffusing into each other when brought to a temperature at least equal to the melting point of said filler metal to form a stable diffusion metallic alloy, the melting temperature of which is higher than melting point of said filler metal and increases in the direction of the melting point of said surface metal with the intensity of said diffusion;
  • conforming said flexible interlacing to the shape desired for said rigid surface reflecting electromagnetic waves; and
  • raise the temperature of said flexible interlacing, thus shaped, beyond the melting point of said filler metal to obtain the formation of said metallic diffusion alloy, causing the joining of said wires together and the stiffening of said interlacing, which then forms said surface rigid.

Cet entrelacs souple peut être réalisé de différentes manières, par exemple par tricotage, guipage, tressage, nappage, tissage ou bien encore par la mise en oeuvre des méthodes de fabrication de produits fibreux non tissés. Toutefois, l'entrelacs sous forme d'un tricot s'est révélé particulièrement avantageux, notamment en ce qui concerne la diffusion du flux thermique reçu par ladite surface réfléchissante.This flexible interlacing can be achieved in different ways, by example by knitting, covering, braiding, coating, weaving or even by implementing methods of manufacturing fibrous products non-woven. However, the interlacing in the form of a knitted fabric was found particularly advantageous, especially with regard to dissemination of the heat flux received by said reflecting surface.

Les fils électriquement conducteurs peuvent être constitués d'une âme métallique recouverte dudit métal d'apport. Dans ce cas, le métal superficiel est donc celui de l'âme. Cependant, en variante, les fils électriquement conducteurs peuvent être constitués d'une pluralité de couches coaxiales, dont au moins certaines sont réalisées en une matière --électriquement conductrice ou éventuellement isolante-- différente dudit métal superficiel.The electrically conductive wires can consist of a metallic core covered with said filler metal. In this case, the metal superficial is therefore that of the soul. Alternatively, however, the wires are electrically conductors can consist of a plurality of layers coaxial, at least some of which are made of a material - electrically conductive or possibly insulating - different from said surface metal.

Parmi les métaux utilisés pour la réalisation des fils électriquement conducteurs, on peut citer les métaux bons conducteurs de l'électricité, tels que l'or, l'argent, le cuivre, etc ... ou bien encore les alliages à faible coefficient de dilatation thermique, tels que certains ferro-nickel, ou bien encore d'autres métaux ou alliages métalliques.Among the metals used to make wires electrically conductors, we can cite metals that are good conductors of electricity, such as gold, silver, copper, etc ... or even low-alloys coefficient of thermal expansion, such as certain ferro-nickel, or still other metals or metal alloys.

Les métaux d'apport sont choisis parmi les métaux ou des alliages à bas point de fusion, tels que l'étain ou l'indium, susceptibles de former un alliage stable par diffusion avec le métal superficiel.The filler metals are chosen from metals or alloys low melting point, such as tin or indium, which can form a stable alloy by diffusion with the surface metal.

D'excellents résultats ont été obtenus, en choisissant le cuivre comme métal superficiel et l'indium comme métal d'apport.Excellent results have been obtained by choosing copper as the surface metal and indium as the filler metal.

La section des fils électriquement conducteurs peut être circulaire, avec un diamètre compris de préférence entre 6 et 20 microns, ou bien aplatie, avec une épaisseur comprise également de préférence entre 6 et 20 microns et une largeur comprise de préférence entre 0,2 et 1,5 mm. Dans ces cas, l'épaisseur du revêtement du métal d'apport peut être comprise entre 10 Angström et 1 micron.The cross section of the electrically conductive wires can be circular, with a diameter preferably between 6 and 20 microns, or flattened, with a thickness also preferably between 6 and 20 microns and a width preferably between 0.2 and 1.5 mm. In these cases, the thickness of the coating of the filler metal can be between 10 Angström and 1 micron.

De préférence, afin de communiquer à ladite surface une épaisseur souhaitée, on prévoit d'appliquer une pression uniforme sur l'entrelacs souple conformé, pendant l'élévation de température.Preferably, in order to impart a thickness to said surface desired, we plan to apply uniform pressure on the interlacing flexible conformed, during the rise in temperature.

La surface conforme à la présente invention peut être uniforme, sans trous. Dans ce cas, on prévoit un entrelacs relativement serré et l'application de ladite pression uniforme permet d'obturer les éventuels jours de l'entrelacs. En variante, ladite surface peut comporter des trous, prévus au moment de la réalisation dudit entrelacs. The surface according to the present invention can be uniform, without holes. In this case, a relatively tight interlacing is expected and the application of said uniform pressure makes it possible to close off any possible days of interlacing. As a variant, said surface may include holes, planned at the time of the said interlacing.

Dans un mode de réalisation préféré, la surface obtenue par l'entrelacs rigidifié est renforcée par un renfort accolé contre l'une des faces dudit entrelacs et solidarisé de celle-ci. Ainsi, l'entrelacs rigidifié ne forme alors que la partie réfléchissante active de ladite surface. Un tel renfort peut présenter une structure composite fibres - matrice polymérisée. Il est alors avantageux que la solidarisation de la surface et du renfort soit obtenue par collage à l'aide de la résine de ladite matrice, le renfort étant formé sur ladite surface. Il faut bien entendu, à cet effet, que la température de polymérisation de la résine soit inférieure à la température de fusion de l'alliage métallique stable de diffusion.In a preferred embodiment, the surface obtained by the interlacing stiffened is reinforced by a reinforcement attached to one of the faces said interlacing and secured to it. Thus, the stiffened interlacing does not form while the active reflecting part of said surface. Such reinforcement may have a composite fiber - polymerized matrix structure. It is then advantageous that the joining of the surface and the reinforcement is obtained by bonding using the resin of said matrix, the reinforcement being formed on said surface. Of course, for this purpose, the temperature resin polymerization is lower than the melting temperature of stable diffusion metallic alloy.

On voit ainsi que, grâce à l'invention, on obtient une surface réfléchissant les ondes électromagnétiques par brasage par diffusion des fils électriquement conducteurs de l'entrelacs.It is thus seen that, thanks to the invention, a reflective surface is obtained electromagnetic waves by brazing by diffusion of electrically conductive interlacing wires.

Par la mise en oeuvre de la présente invention, on a obtenu, entre autres, des réflecteurs d'antenne pouvant fonctionner à des fréquences comprises entre 18 GHz et plus de 45 GHz.By implementing the present invention, between others, antenna reflectors capable of operating at frequencies between 18 GHz and more than 45 GHz.

Les figures du dessin annexé feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.The figures in the accompanying drawing will make it clear how the invention can be realized. In these figures, identical references denote similar elements.

La figure 1 montre, en plan, un exemple d'entrelacs de fils électriquement conducteurs utilisé dans la mise en oeuvre de la présente invention.Figure 1 shows, in plan, an example of electrically interlaced wires conductors used in the implementation of the present invention.

La figure 2 montre, également en plan, une variante de l'entrelacs de la figure 1.Figure 2 shows, also in plan, a variant of the interlacing of figure 1.

Les figures 3 et 4 sont des coupes respectivement suivant les lignes III-III et IV-IV des figures 1 et 2.Figures 3 and 4 are sections respectively along the lines III-III and IV-IV of Figures 1 and 2.

Les figures 5 et 6 illustrent, en coupe, des variantes de réalisation des fils conducteurs utilisés pour former l'entrelacs des figures 1 et 2. Figures 5 and 6 illustrate, in section, alternative embodiments conducting wires used to form the interlacing of Figures 1 and 2.

Les figures 7A à 7F illustrent différentes phases du procédé de réalisation d'un réflecteur d'antenne conforme à la présente invention.FIGS. 7A to 7F illustrate different phases of the method of realization of an antenna reflector according to the present invention.

Sur la figure 1, on a représenté un entrelacs 1 de fils électriquement conducteurs 2 et 3 entrecroisés. Sur cette figure 1, à des fins de simplification de dessin, l'entrelacs 1 est représenté sous la forme d'un tissage à fils de chaíne 2 et à fils de trame 3, bien que l'entrelacs 1 pourrait être avantageusement constitué de mailles tricotées.In Figure 1, there is shown an interlacing 1 of electrically wires conductors 2 and 3 crisscrossed. In this figure 1, for the purposes of simplification of drawing, the interlacing 1 is represented in the form of a weaving with warp 2 and weft 3, although the interlacing 1 could advantageously consist of knitted stitches.

On remarquera que, dans l'entrelacs 1 de la figure 1, les fils électriquement conducteurs 2 et 3 ménagent entre eux des vides 4.It will be noted that, in the interlacing 1 of FIG. 1, the wires electrically conductors 2 and 3 provide voids between them 4.

Comme on peut le voir sur les figures 3 et 4, chaque fil 2 et 3 comporte une âme 5, par exemple de cuivre, revêtue superficiellement d'un revêtement 6 en un métal à bas point de fusion, tel que l'indium. Le diamètre d des fils 2 et 3 peut être compris de préférence entre 6 et 20 microns, tandis que l'épaisseur e du revêtement 6 peut être comprise entre 10 Angström et 1 micron.As can be seen in FIGS. 3 and 4, each wire 2 and 3 comprises a core 5, for example of copper, coated on the surface with a coating 6 of a metal with a low melting point, such as indium. The diameter d of the wires 2 and 3 can preferably be between 6 and 20 microns, while the thickness e of the coating 6 can be between 10 Angstrom and 1 micron.

Dans le mode de réalisation de la figure 2, l'entrelacs 7 est semblable à l'entrelacs 1 de la figure 1 à la différence près que les fils conducteurs de trames et de chaínes 2 et 3 sont tissés de façon plus serrée de façon à pratiquement éliminer les vides 4.In the embodiment of Figure 2, the interlacing 7 is similar at the interlacing 1 of Figure 1 with the difference that the conductors wefts and warps 2 and 3 are woven more tightly so as to practically eliminate the voids 4.

On sait que lorsqu'ils sont chauffés à une température au moins égale au point de fusion de l'indium, l'indium et le cuivre diffusent l'un dans l'autre pour former un alliage de diffusion stable dont le point de fusion est compris entre celui de l'indium et celui du cuivre et est d'autant plus élevé que température à laquelle sont soumis le cuivre et l'indium est plus élevée.We know that when they are heated to a temperature at least equal to the melting point of indium, indium and copper diffuse one in the other to form a stable diffusion alloy whose point of fusion is between that of indium and that of copper and is all the more higher than temperature to which copper and indium are subjected is higher.

On conçoit donc aisément que, si les entrelacs 1 et 7 sont soumis à une élévation de température, au-delà du point de fusion de l'indium, en étant soumis à une pression uniforme, les fils conducteurs 2 et 3 au contact les uns des autres vont être l'objet de la formation superficielle d'un alliage stable de diffusion indium-cuivre.It is therefore easy to see that, if the interlacing 1 and 7 are subject at a rise in temperature, beyond the melting point of indium, in being subjected to a uniform pressure, the conducting wires 2 and 3 in contact each other are going to be the object of the surface formation of a stable alloy of indium-copper diffusion.

La figure 3 illustre le contact des fils 2 et 3 à un de leurs points de croisement, tandis que la figure 4 illustre le contact de deux fils 2 et 3 parallèles.Figure 3 illustrates the contact of wires 2 and 3 at one of their points crossover, while Figure 4 illustrates the contact of two wires 2 and 3 parallel.

Après formation de cet alliage stable, les fils 2 et 3 des entrelacs 1 et 7 sont solidarisés les uns des autres, ce qui rigidifie lesdits entrelacs.After formation of this stable alloy, the wires 2 and 3 of the interlacing 1 and 7 are joined to each other, which stiffens said interlacing.

Bien entendu, si pendant l'élévation de température, les entrelacs 1 et 7 sont conformés à des formes désirées pour l'entrelacs rigidifié, la rigidification fixera la forme définitive desdits entrelacs.Of course, if during the rise in temperature, the interlacing 1 and 7 are shaped to desired shapes for the stiffened interlacing, the stiffening will fix the final shape of said interlacing.

Sur les figures 3 et 4, on a supposé que les fils 2 et 3 présentaient une section circulaire. Comme on peut le voir en variante sur la figure 5, lesdits fils pourraient présenter une section oblongue. Dans ce cas, l'épaisseur ℓ de ladite section peut être comprise entre 6 et 20 microns et la largeur L peut être comprise entre 0,2 et 1,5 mm, l'épaisseur ℓ étant la même que précédemment. Par ailleurs, au lieu de ne comporter qu'une âme 5 et un revêtement superficiel 6, les fils 2 et 3 pourraient présenter une structure à plusieurs couches superposées. Sur la figure 6, on a représenté une variante de réalisation desdits fils 2 et 3 dans laquelle une couche intermédiaire 8 est interposée entre l'âme 5 et le revêtement superficiel 6. Bien entendu, dans ce cas, la couche 8 doit être en un métal apte à former un alliage de diffusion stable avec le revêtement 6.In FIGS. 3 and 4, it has been assumed that the wires 2 and 3 have a circular section. As can be seen in a variant in the figure 5, said wires could have an oblong section. In this case, the thickness ℓ of said section can be between 6 and 20 microns and the width L can be between 0.2 and 1.5 mm, the thickness ℓ being the same as before. In addition, instead of comprising that a core 5 and a surface coating 6, the wires 2 and 3 could have a structure with several superimposed layers. In Figure 6, an alternative embodiment of said wires 2 and 3 has been shown in which an intermediate layer 8 is interposed between the core 5 and the coating surface 6. Of course, in this case, layer 8 must be of a metal capable of forming a stable diffusion alloy with the coating 6.

Sur les figures 7A à 7F, on a représenté un moule 10 correspondant à la forme convexe d'un réflecteur d'antenne. Pour obtenir ledit réflecteur d'antenne, on effectue les opérations suivantes :

  • sur le moule 10, on applique un entrelacs 1, 7 de fils électriquement conducteurs 2 et 3, en tendant ledit entrelacs (figure 7A) ;
  • puis on fixe périphériquement ledit entrelacs 1, 7 ainsi appliqué sur le moule 10 par tout moyen 11 désiré, par exemple un cordon de mastic (voir figure 7B) ;
  • sur l'entrelacs 1, 7 ainsi fixé sur le moule 10, on applique une peau de matage 12 --préalablement réalisée sur le moule 10-- que l'on fixe par tout moyen approprié 13, par exemple également un cordon de mastic (figures 7B et 7C) ;
  • l'ensemble du moule 10, de l'entrelacs 1, 7 et de la peau de matage 12 est alors introduit dans un autoclave 14, dans lequel ledit ensemble est soumis à une élévation de température, au-delà du point de fusion de l'indium, tout en lui appliquant une pression uniforme P1, par exemple par l'intermédiaire d'une vessie à vide (non représentée), agissant sur la peau de matage 12 ;
  • dans ces conditions, de la façon décrite ci-dessus, il se forme superficiellement un alliage métallique de diffusion cuivre-indium à la surface des fils électriquement conducteurs 2 et 3 de sorte que l'entrelacs 1, 7 se rigidifie à la forme du moule 10 ;
  • après démarouflage (figure 7D), il est alors possible de napper, sur la face convexe de l'entrelacs 1, 7, un renfort 15 de matière composite fibres - matrice polymérisable (voir la figure 7E) ;
  • après nappage du renfort composite 15, celui-ci est polymérisé dans un autoclave 16 avec application d'une pression P2 ;
  • pendant la polymérisation du renfort 15, la résine solidarise l'entrelacs 1, 7 dudit renfort 15 et l'on obtient ainsi une surface réfléchissant les ondes électromagnétiques, constituée dudit entrelacs 1, 7 et de son renfort arrière 15.
In FIGS. 7A to 7F, a mold 10 has been shown corresponding to the convex shape of an antenna reflector. To obtain said antenna reflector, the following operations are carried out:
  • on the mold 10, an interlacing 1, 7 of electrically conductive wires 2 and 3 is applied, by stretching said interlacing (FIG. 7A);
  • then said interlacing 1, 7 is thus peripherally applied to the mold 10 by any desired means 11, for example a bead of mastic (see FIG. 7B);
  • on the interlacing 1, 7 thus fixed on the mold 10, a matting skin 12 is applied - previously made on the mold 10 - which is fixed by any suitable means 13, for example also a bead of mastic ( Figures 7B and 7C);
  • the whole of the mold 10, of the interlacing 1, 7 and of the matting skin 12 is then introduced into an autoclave 14, in which the said assembly is subjected to a rise in temperature, beyond the melting point of the indium, while applying a uniform pressure P1, for example by means of a vacuum bladder (not shown), acting on the matting skin 12;
  • under these conditions, as described above, a metallic alloy of copper-indium diffusion is formed on the surface of the electrically conducting wires 2 and 3 so that the interlacing 1, 7 stiffens to the shape of the mold 10;
  • after demouflaging (FIG. 7D), it is then possible to coat, on the convex face of the interlacing 1, 7, a reinforcement 15 of composite material fibers - polymerizable matrix (see FIG. 7E);
  • after coating of the composite reinforcement 15, the latter is polymerized in an autoclave 16 with the application of a pressure P2;
  • during the polymerization of the reinforcement 15, the resin secures the interlacing 1, 7 of said reinforcement 15 and one thus obtains a surface reflecting electromagnetic waves, consisting of said interlacing 1, 7 and its rear reinforcement 15.

L'élévation de température dans l'étuve 14 conduisant au brasage par diffusion de l'entrelacs 1, 7 peut être de 0,1 °C par minute, depuis la température ambiante jusqu'à la température désirée pour la diffusion, compatible avec la température de la polymérisation ultérieure de la résine du renfort 15.The rise in temperature in the oven 14 leading to soldering by diffusion of the interlacing 1, 7 can be 0.1 ° C per minute, from the room temperature up to the desired temperature for diffusion, compatible with the temperature of the subsequent polymerization of the resin reinforcement 15.

L'entrelacs 1, 7 est maintenu à cette température de diffusion désirée pendant une durée adaptée au brasage par diffusion, après quoi le refroidissement peut être naturel.The interlacing 1, 7 is maintained at this desired diffusion temperature for a period suitable for diffusion brazing, after which the cooling can be natural.

Claims (11)

Surface rigide réfléchissant les ondes électromagnétiques, notamment pour réflecteur d'antenne, blindage électromagnétique et guide d'ondes,
caractérisée en ce qu'elle est constituée d'un entrelacs (1, 7) de fils électriquement conducteurs (2, 3) qui sont constitués superficiellement d'un alliage métallique stable de diffusion assurant la solidarisation desdits fils entre eux et la rigidité de ladite surface.
Rigid surface reflecting electromagnetic waves, especially for antenna reflector, electromagnetic shielding and waveguide,
characterized in that it consists of an interlacing (1, 7) of electrically conductive wires (2, 3) which are made up superficially of a stable metallic diffusion alloy ensuring the joining of said wires together and the rigidity of said area.
Surface selon la revendication 1,
caractérisée en ce que ledit entrelacs est un tricot desdits fils électriquement conducteurs.
Surface according to claim 1,
characterized in that said interlacing is a knitting of said electrically conductive son.
Surface selon l'une des revendications 1 ou 2,
caractérisée en ce qu'au moins l'une des dimensions transversales (d, ℓ) de la section desdits fils est inférieure à 20 microns.
Surface according to either of Claims 1 or 2,
characterized in that at least one of the transverse dimensions ( d, ℓ) of the section of said wires is less than 20 microns.
Surface selon l'une des revendications 1 à 3,
caractérisée en ce qu'elle est uniforme.
Surface according to one of claims 1 to 3,
characterized in that it is uniform.
Surface selon l'une des revendications 1 à 3,
caractérisée en ce qu'elle comporte des trous.
Surface according to one of claims 1 to 3,
characterized in that it has holes.
Surface selon l'une des revendications 1 à 5,
caractérisée en ce qu'elle comporte un renfort (15) accolé contre l'une de ses faces et solidarisé de cette dernière.
Surface according to one of claims 1 to 5,
characterized in that it comprises a reinforcement (15) placed against one of its faces and secured to the latter.
Surface selon la revendication 6,
caractérisée en ce que ledit renfort (15) présente une structure composite fibres - matrice polymérisée.
Surface according to claim 6,
characterized in that said reinforcement (15) has a composite fiber - polymerized matrix structure.
Procédé pour la réalisation d'une surface rigide réfléchissant les ondes électromagnétiques,
caractérisé : en ce qu'on réalise un entrelacs (1, 7) souple de fils électriquement conducteurs (2, 3) dont la superficie est métallique et revêtue d'un métal d'apport (6), ledit métal d'apport (6) ayant un point de fusion inférieur à celui du métal superficiel desdits fils et ledit métal d'apport (6) et ledit métal superficiel (5) étant aptes à diffuser réciproquement l'un dans l'autre lorsqu'ils sont portés à une température au moins égale au point de fusion dudit métal d'apport (6) pour former un alliage métallique stable de diffusion, dont la température de fusion est supérieure au point de fusion dudit métal d'apport (6) et croít en direction du point de fusion dudit métal superficiel avec l'intensité de ladite diffusion ; en ce qu'on conforme ledit entrelacs souple (1, 7) à la forme souhaitée pour ladite surface rigide réfléchissant les ondes électromagnétiques ; et en ce qu'on élève la température dudit entrelacs souple (1, 7), ainsi conformé, au-delà du point de fusion dudit métal d'apport (6) pour obtenir la formation dudit alliage métallique de diffusion, entraínant la solidarisation desdits fils (2, 3) entre eux et la rigidification dudit entrelacs (1, 7), qui forme alors ladite surface rigide.
Method for producing a rigid surface reflecting electromagnetic waves,
characterized: in that a flexible interlacing (1, 7) of electrically conductive wires (2, 3) is made, the surface of which is metallic and coated with a filler metal (6), said filler metal (6) having a melting point lower than that of the surface metal of said wires and said filler metal (6) and said surface metal (5) being capable of diffusing into each other when brought to a temperature at least equal to the melting point of said filler metal (6) to form a stable diffusion metal alloy, the melting temperature of which is higher than the melting point of said filler metal (6) and increases in the direction of the melting point of said surface metal with the intensity of said diffusion; in that said flexible interlacing (1, 7) conforms to the shape desired for said rigid surface reflecting the electromagnetic waves; and in that one raises the temperature of said flexible interlacing (1, 7), thus shaped, beyond the melting point of said filler metal (6) to obtain the formation of said metallic diffusion alloy, causing the joining of said wires (2, 3) between them and the stiffening of said interlacing (1, 7), which then forms said rigid surface.
Procédé selon la revendication 8,
caractérisé en ce que l'épaisseur (e) du revêtement de métal d'apport (6) est comprise entre 10 Angström et 1 micron, lorsque la section desdits fils a une dimension (d, ℓ) au plus égale à 20 microns.
Method according to claim 8,
characterized in that the thickness ( e ) of the filler metal coating (6) is between 10 Angstrom and 1 micron, when the section of said wires has a dimension ( d, ℓ) at most equal to 20 microns.
Procédé selon l'une des revendications 8 ou 9,
caractérisé en ce que, pendant l'élévation de température, l'entrelacs souple (1, 7) conformé est soumis à pression.
Method according to one of claims 8 or 9,
characterized in that, during the rise in temperature, the flexible flexible interlacing (1, 7) is subjected to pressure.
Procédé selon l'une des revendications 8 à 10 pour l'obtention de la surface conforme à la revendication 7,
caractérisé en ce que ladite structure composite de renfort est réalisée directement sur ledit entrelacs (1, 7) rigidifié et est solidarisée de ce dernier par la résine de ladite matrice.
Method according to one of claims 8 to 10 for obtaining the surface according to claim 7,
characterized in that said reinforcing composite structure is produced directly on said interlacing (1, 7) stiffened and is joined to the latter by the resin of said matrix.
EP00401204A 1999-05-10 2000-05-02 Method of manufacturing a microwave reflective surface Expired - Lifetime EP1052725B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9905901 1999-05-10
FR9905901A FR2793608B1 (en) 1999-05-10 1999-05-10 SURFACE REFLECTING ELECTROMAGNETIC WAVES AND METHOD FOR THE PRODUCTION THEREOF

Publications (2)

Publication Number Publication Date
EP1052725A1 true EP1052725A1 (en) 2000-11-15
EP1052725B1 EP1052725B1 (en) 2006-08-30

Family

ID=9545388

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00401204A Expired - Lifetime EP1052725B1 (en) 1999-05-10 2000-05-02 Method of manufacturing a microwave reflective surface

Country Status (7)

Country Link
US (1) US6348901B1 (en)
EP (1) EP1052725B1 (en)
JP (1) JP2000349540A (en)
CA (1) CA2308787C (en)
DE (1) DE60030354T2 (en)
ES (1) ES2269076T3 (en)
FR (1) FR2793608B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821490A1 (en) * 2001-02-23 2002-08-30 Lacroix Soc E Unfoldable electro-magnetic reflector incorporating a telescopic arm in the unfoldable support frame for the fabric element which forms the reflector surface
FR2821488A1 (en) * 2001-02-23 2002-08-30 Lacroix Soc E Unfoldable electro-magnetic reflector incorporating a telescopic arm in the unfoldable support frame for the fabric element which forms the reflector surface
FR2821491A1 (en) * 2001-02-23 2002-08-30 Lacroix Soc E Unfoldable electro-magnetic reflector incorporating a telescopic arm in the unfoldable support frame for the fabric element which forms the reflector surface
WO2002069441A1 (en) * 2001-02-23 2002-09-06 Etienne Lacroix Tous Artifices S.A. Unfoldable electromagnetic reflector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060270301A1 (en) * 2005-05-25 2006-11-30 Northrop Grumman Corporation Reflective surface for deployable reflector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2275359A1 (en) * 1974-06-19 1976-01-16 Greze Andre Fabric cabable of reflecting radar waves - has metallic component incorporated in it
US4609923A (en) * 1983-09-09 1986-09-02 Harris Corporation Gold-plated tungsten knit RF reflective surface
US4926910A (en) * 1987-11-23 1990-05-22 Lockheed Missiles & Space Company, Inc. Radio-frequency reflective fabric
GB2256529A (en) * 1991-04-02 1992-12-09 Marconi Electronic Devices Antenna arrangements
US5771027A (en) * 1994-03-03 1998-06-23 Composite Optics, Inc. Composite antenna

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4191604A (en) * 1976-01-07 1980-03-04 General Dynamics Corporation Pomona Division Method of constructing three-dimensionally curved, knit wire reflector
US4526817A (en) * 1982-11-01 1985-07-02 Material Sciences Corporation Process for surface diffusing steel products in coil form

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2275359A1 (en) * 1974-06-19 1976-01-16 Greze Andre Fabric cabable of reflecting radar waves - has metallic component incorporated in it
US4609923A (en) * 1983-09-09 1986-09-02 Harris Corporation Gold-plated tungsten knit RF reflective surface
US4926910A (en) * 1987-11-23 1990-05-22 Lockheed Missiles & Space Company, Inc. Radio-frequency reflective fabric
GB2256529A (en) * 1991-04-02 1992-12-09 Marconi Electronic Devices Antenna arrangements
US5771027A (en) * 1994-03-03 1998-06-23 Composite Optics, Inc. Composite antenna

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821490A1 (en) * 2001-02-23 2002-08-30 Lacroix Soc E Unfoldable electro-magnetic reflector incorporating a telescopic arm in the unfoldable support frame for the fabric element which forms the reflector surface
FR2821488A1 (en) * 2001-02-23 2002-08-30 Lacroix Soc E Unfoldable electro-magnetic reflector incorporating a telescopic arm in the unfoldable support frame for the fabric element which forms the reflector surface
FR2821491A1 (en) * 2001-02-23 2002-08-30 Lacroix Soc E Unfoldable electro-magnetic reflector incorporating a telescopic arm in the unfoldable support frame for the fabric element which forms the reflector surface
WO2002069441A1 (en) * 2001-02-23 2002-09-06 Etienne Lacroix Tous Artifices S.A. Unfoldable electromagnetic reflector
US6791486B2 (en) 2001-02-23 2004-09-14 Etienne Lacroix Tous Artifices S.A. Unfoldable electromagnetic reflector
EP1458052A1 (en) * 2001-02-23 2004-09-15 Etienne Lacroix - Tous Artifices Sa Unfoldable electromagnetic reflector

Also Published As

Publication number Publication date
CA2308787A1 (en) 2000-11-10
CA2308787C (en) 2008-03-18
FR2793608A1 (en) 2000-11-17
JP2000349540A (en) 2000-12-15
EP1052725B1 (en) 2006-08-30
FR2793608B1 (en) 2001-09-14
US6348901B1 (en) 2002-02-19
ES2269076T3 (en) 2007-04-01
DE60030354D1 (en) 2006-10-12
DE60030354T2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
EP1145842B1 (en) Laminated glazing
EP0038746B1 (en) Porous layer used in composite sound absorbing structures and process for making it
EP0312439B2 (en) Improvements in or relating to tempering glass
EP0230839B1 (en) Bicycle fork or similar article based on resin reinforced by a textile structure, and process for its manufacture
FR2678111A1 (en) RECONFIGURABLE ANTENNA REFLECTOR IN SERVICE.
FR2549296A1 (en) METHOD FOR MANUFACTURING A SOLAR CELL
EP0193478B1 (en) Textile reinforcement for the manufacture of layered products
WO2003026869A1 (en) Method for making a plastic pane with electrical conductor structure and plastic pane with embedded wires
EP0717419A1 (en) Shielded electrical conductor harness and it's manufacturing process
EP2936565A1 (en) Device for interconnecting photovoltaic cells having contacts on their back side, and module comprising such a device
FR2558991A1 (en) REFLECTOR ANTENNA FOR OPERATION IN MULTIPLE FREQUENCY RANGES
EP1052725B1 (en) Method of manufacturing a microwave reflective surface
FR2493090A1 (en) Electric resistor fabric encapsulated in polymer - esp. in elastomer when flexible resistance heating sheet or panel is required
FR2666032A1 (en) PROCESS FOR APPLYING A COATING ON A SUBSTRATE, DEVICE FOR CARRYING OUT THE METHOD AND COATING OBTAINED BY THE PROCESS.
EP2108724B1 (en) Weaving method for making a heating textile web and heating textile web
EP0117804B1 (en) Manufacturing method of a microwave cavity, and cavity obtained thereby
WO2016087721A1 (en) Method for manufacturing an antenna reflector shell, in particular of a space vehicle
FR2966319A1 (en) Fabric for shielding electromagnetic waves from e.g. telecommunication system, has composite wires intersecting to form mesh, where each composite wire includes two textile wires mounted around conducting core in twisted manner
FR2695789A1 (en) Heated mirror - with reflection surface contg. sufficient chromium oxide to produce required electrical resistance conferring required heating effect
EP0689785B1 (en) Vandal resistant seat-element
FR3136695A1 (en) METHOD FOR OBTAINING A HEATED FLOOR FOR VEHICLES, AND HEATED FLOOR FOR VEHICLES
WO2023247455A1 (en) Method for obtaining underfloor heating for vehicles, and underfloor heating for vehicles
WO2013017602A1 (en) Parabolic mirror
FR2642222A1 (en) Conducting ribbons for lines of electric fencing and net produced, at least partially, from such ribbons
CA3223958A1 (en) Knitted three-dimensional electroconductive mat for use as a lightning-resistant wall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20001206

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS LAUNCH VEHICLES

AKX Designation fees paid

Free format text: DE ES GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS SPACE TRANSPORTATION SA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS SPACE TRANSPORTATION SAS

17Q First examination report despatched

Effective date: 20050531

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060830

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60030354

Country of ref document: DE

Date of ref document: 20061012

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ASTRIUM SAS

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2269076

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170511

Year of fee payment: 18

Ref country code: GB

Payment date: 20170517

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170608

Year of fee payment: 18

Ref country code: IT

Payment date: 20170517

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60030354

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180502

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180502

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180503