EP1045214B1 - Absorption heat pump and method for operating an absorption heat pump - Google Patents

Absorption heat pump and method for operating an absorption heat pump Download PDF

Info

Publication number
EP1045214B1
EP1045214B1 EP00104384A EP00104384A EP1045214B1 EP 1045214 B1 EP1045214 B1 EP 1045214B1 EP 00104384 A EP00104384 A EP 00104384A EP 00104384 A EP00104384 A EP 00104384A EP 1045214 B1 EP1045214 B1 EP 1045214B1
Authority
EP
European Patent Office
Prior art keywords
temperature
coolant
measured
vaporiser
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00104384A
Other languages
German (de)
French (fr)
Other versions
EP1045214A2 (en
EP1045214A3 (en
Inventor
Andreas Bangheri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heliotherm Solartechnik Ges mbH
Original Assignee
Heliotherm Warmepumpentechnik Gesmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heliotherm Warmepumpentechnik Gesmbh filed Critical Heliotherm Warmepumpentechnik Gesmbh
Publication of EP1045214A2 publication Critical patent/EP1045214A2/en
Publication of EP1045214A3 publication Critical patent/EP1045214A3/en
Application granted granted Critical
Publication of EP1045214B1 publication Critical patent/EP1045214B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type

Definitions

  • the present invention relates to an absorption heat pump and a method of operating an absorption heat pump.
  • a solution containing a refrigerant for example, by means of a gas or oil burner, heated electrically or with the aid of additional heat exchanger by means of waste heat or solar energy in a digester to expel refrigerant as refrigerant vapor from the solution.
  • the refrigerant vapor is brought by this process to a high temperature level or high pressure level.
  • the refrigerant vapor is then condensed in a condenser against a heating medium and thus supplies heat to the heating means.
  • the highly cooled and expanded refrigerant is an evaporator, in which it is evaporated against a medium which supplies ambient energy to the refrigerant, and then fed to at least one absorber.
  • the refrigerant depleted solution from the digester is fed via a heat exchanger to the absorber, where the refrigerant depleted solution with refrigerant which has passed through the evaporator unites.
  • the resulting heat of solution is provided to the expeller process and the consumer or discharged only to the consumer.
  • the resulting rich in refrigerant solution from the absorber is pumped by means of a solution pump from the low pressure level of the absorber, which corresponds approximately to the Verdamphengstik, to a high pressure level and fed again to the digester.
  • the heating means heated in the condenser is supplied to a consumer and the heating means cooled by the consumer are returned to the condenser.
  • the concentration stratification prevailing during operation of the absorption heat pump is reduced in the digester and brought to the level of the solution poor in refrigerant.
  • a concentration stratification required for the stationary operating state can be built up in the digester. After a shutdown of the digester, therefore, when restarting such a system considerable start-up times and energy losses are to be accepted.
  • EP-B-0 202 432 proposes a cyclic absorption heat pump system in which the high-pressure part and the low-pressure part are locked at standstill by means of solenoid valves in order to minimize the restarting losses.
  • a disadvantage of this technique is that when the burner power is changed, e.g. may be caused by temperature fluctuations, a heat pump operation is not always guaranteed.
  • US-A-4596122 discloses an absorption heat pump according to the preamble of claim 2.
  • the invention is therefore an object of the invention to provide an absorption heat pump and a method for operating an absorption heat pump of the type described above, in which or at which the energy losses incurred during startup of the absorption heat pump are minimized while still reliable operation of the heat pump is guaranteed.
  • This object is achieved in a method for operating an absorption heat pump, as defined in the preamble of claim 1, which is based on EP-B-0 202 432, solved in that the outside temperature and the temperature of the heating medium are measured and the performance of the Burner is set in response to the measured temperature values, that the amount of refrigerant supplied to the evaporator is controlled, that the amount of the refrigerant-depleted solution supplied to the at least one absorber is controlled, and further that the delivery rate of the solution pump is controlled.
  • an absorption heat pump as defined in the preamble of claim 22, which is also based on EP-B-0 202 432, by further comprising: a first control device which arranges an outdoor one Outside sensor for measuring the outside temperature, at least one Schuffenschler for measuring the temperature of the heating means, and a first controller for controlling the power of the burner in dependence on the measured temperature values, a second control device for controlling the amount of refrigerant supplied to the evaporator, a third control device for controlling the amount of the refrigerant-depleted solution fed to the at least one absorber, and a fourth regulating device for controlling the delivery rate of the solution pump.
  • the inventive solution which allows modulating operation of the absorption heat pump by means of said control and regulating circuits, transient start-up losses are minimized while at the same time ensuring reliable heat pump operation.
  • a clocking operation as was provided in the systems proposed in the prior art, is prevented by the modulating technique.
  • control and regulation processes involved in the inventive concept ie the burner control, the condensate throttle control, the solution throttle control and the solution pump control, are separated from each other described. It is understood, however, that in the method and the apparatus according to the invention all four of said control and regulation processes are implemented simultaneously.
  • an absorption heat pump includes a digester 1 in which a solution containing a refrigerant is heated by means of a burner 2 to expel refrigerant as refrigerant vapor from the solution.
  • the refrigerant vapor in a line 30 is fed via a rectifier 3 to a condenser 13, in which the refrigerant vapor is condensed against a heating medium.
  • the heating means heated in this way is in turn fed into a line 32, the so-called supply, to a consumer 34, for example a radiator.
  • Heating means which has passed through the consumer 34, returns via a line 36, the so-called return, back to the absorption heat pump.
  • the heating medium cooled in the consumer 34 can be heated in an exhaust gas heat exchanger 9 against hot exhaust gas leaving the burner 2, which is discharged or otherwise disposed of or processed at 44, before it is fed to an absorber 6.
  • the absorber 6 which may be, for example, a plate heat exchanger, the heating means in a line 38 again supplied to the capacitor 13, so that there is a closed Schuffenzhou.
  • the in the condenser 13 against the heating means strongly cooled and expanded refrigerant is fed in a line 40 to the aftercooler 10, of which from it is fed via a throttle point 12 to an evaporator 11.
  • the refrigerant which may in particular be heat in the environment (indicated at 42 in FIG 1) of the consumer 34 to be heated building, for example in the soil, in water, in air , especially stored in brine.
  • Refrigerant leaving the evaporator 11 is again passed through the aftercooler 10 and from there to the absorber 6.
  • the absorber 6 or, as shown in FIG. 1, in a mixer 46 arranged in front of the absorber, the refrigerant is mixed with solvent which has left the digester 1 via a line 48.
  • the resulting heat of solution is made available to the expeller process in the boiler 1 and the consumer 34 or discharged only to the consumer 34.
  • the solution rich in refrigerant leaving the absorber 6 is pumped to a high pressure level after passing a solution reservoir 7 by means of a solution pump 8 from the low pressure level of the absorber 6 which approximately corresponds to the evaporation pressure, and fed again to the digester 1.
  • the refrigerant-rich solution of the absorber 6 as shown in FIG. 1 through the rectifier 3 and a heat exchanger 4 are passed, in which the refrigerant-rich solution is subjected to a heat exchange against the boiler 1 leaving the refrigerant vapor or the boiler 1 leaving solvent.
  • Refrigerant which is already condensed in the rectifier 3, is fed back to the digester 1 via a return 50.
  • the aim of the Absorptions termepumpenbrenner horrung is to achieve a heat demand of the building to be heated adapted control of the burner power, so as to ensure a continuous operation of the absorption heat pump.
  • the presently described concept is based, unlike the known systems described above, on the realization that it is quite useful and energetically rewarding with appropriate control and regulation of the system, the absorption heat pump with a reduced heating demand not completely off but herunterzuregeln, since otherwise the losses occurring at a restart of the system outweigh the energy savings achieved by the shutdown.
  • an outside sensor 14 for measuring the ambient temperature and a heating medium sensor for measuring the temperature of the heating means are provided, wherein the heating medium sensor may be implemented as a return sensor 15 for detecting the return temperature or as a flow sensor 16 for detecting the return temperature.
  • the outside sensor 14 and the return sensor 15 and / or the flow sensor 16 are connected to a controller 17 whose output is connected to the burner 2.
  • this is a controllable burner with a power consumption of, for example, 4 to 18 kW.
  • the controller 17 compares the measured return or flow temperature with a setpoint and throttles the burner power at approach of the return flow or the flow temperature to the setpoint. The control can be done in accordance with preset heating curves.
  • the burner output can be directly related to the measured outside temperature by assigning certain outside temperature values to certain burner power consumption values.
  • an external temperature of +15 ° C could be assigned a burner output of 4 kW, while at an outside temperature of -15 ° C the burner output should be 13 kW.
  • the flow and / or the return temperature can serve as setting parameters for the performance of the burner.
  • an outside temperature of +15 ° C can be assigned a return temperature of 25 ° C
  • an outside temperature of -15 ° C is assigned a return temperature of 45 ° C.
  • the temperature spread of the heating means i.
  • the difference between flow and return temperature serve as a control parameter.
  • the aforementioned types of control can be implemented individually or jointly.
  • the described burner control thus adapts the entire heat energy generated by the absorption process modulating the heat demand of the building to be heated, for example, by individual settings (for example, radiators are closed) or by external influence (variation of solar radiation, etc.) can constantly change.
  • the condensate throttle is controlled according to the presently described concept.
  • the condensate throttle control also has the task of avoiding an unnecessarily high condensation pressure and thus contributes to an improvement of the overall efficiency.
  • the condensate throttle can be done with the aid of several different control parameters.
  • a pressure sensor 18 by means of a pressure sensor 18, the pressure p KKein of the refrigerant vapor entering the condenser 13 is measured.
  • This pressure value pKKin can then be converted into a temperature value TKN with the aid of the Ziegler fundamental equation familiar to the person skilled in the art .
  • a regulator 19 in the illustrated example, a PID controller, then the calculated temperature value T KKein is compared with a reference temperature to form an output signal for controlling a continuously controllable actuator.
  • the temperature T flow of the emerging from the condenser 13 heating means which is measured by means of a temperature sensor 16. If the temperature difference T KKein -T supply is less than a predetermined desired value of, for example, 1 to 4 K, then the amount of the refrigerant supplied to the evaporator 11 is reduced by means of the controllable throttle point 12, which may be designed, for example, as a pulse width modulated valve. If, on the other hand, the said temperature difference is greater than the predetermined desired value, the quantity of refrigerant supplied to the evaporator 11 is increased. By means of the setpoint ensures that always sets a condensate supercooling of about 2 to 5 K. If the difference T KNo - T flow is equal to the specified value, the valve position is optimal.
  • FIG. 3 A variant of the condensate throttle control of FIG. 2 is shown in FIG. 3 outlined.
  • a temperature sensor 20 is provided here, which detects the temperature T KKaus of the refrigerant exiting from the condenser 13. This temperature T KKaus is again compared with the temperature T flow of the emerging from the condenser 13 heating medium. Based on the determined with a controller 19 temperature difference between the flow temperature T flow , which corresponds to the condensation temperature, and the temperature T KKaus the condensate can be the prevailing condensate supercooling rate.
  • the throttling point 12 can be opened or closed completely or partially based on a comparison between said temperature difference and this setpoint.
  • the nominal value of condensate subcooling is preferably in the range between 2 and 5 K.
  • FIG. 4 Another variant of the condensate throttle control of FIG. 2 is shown in FIG. 4 shown.
  • the embodiment of FIG. 4 differs from that of FIG. 3 in that the temperature of the heating means is not measured at the outlet of the condenser 13 but at its inlet.
  • the measured by a temperature sensor 20 temperature T KKaus exiting the condenser 13 refrigerant is then compared with the measured by a temperature sensor 21 temperature T HNo of entering the condenser 13 heating means, for which purpose the controller 19 preferably comprises a differential former.
  • the controller 19 preferably comprises a differential former.
  • a closure of the solution throttle has correspondingly opposite effects.
  • the temperature T KVein of the refrigerant supplied to the evaporator 11 is measured by means of a temperature sensor 22. With the aid of a second temperature sensor 23, the temperature T KVaus of the exiting the evaporator 11 refrigerant is detected.
  • a PID controller 26 forms a difference from the two measured temperature values and applies a control signal to the solution throttle 5 based on the result of the subtraction.
  • the ascertained temperature difference is compared with a predetermined desired value, similar to the method described above, with a particularly preferred range for this desired value ranging from 7 to 10 K in the presently described embodiment.
  • the solution throttle 5 is closed; If the determined temperature difference is smaller than the predetermined desired value, the solution throttle 5 is opened.
  • the control of the solution throttle 5 can moreover also by a measurement of the flow temperature, as described with reference to FIGS. 2 and 3 were influenced by the setpoint for the difference between the temperature T KVein of the evaporator 11 supplied refrigerant and the temperature T KVaus of the exiting the evaporator 11 refrigerant in dependence on the flow temperature T flow is varied.
  • control can be designed so that the setpoint for said temperature difference at the evaporator at a flow temperature of 30 ° C, for example, 14 K, while this setpoint is lowered at a flow temperature of 50 ° C to eg 7 K.
  • the temperature T KVein measured by the temperature sensor 22 of the refrigerant supplied to the evaporator 11 is compared with the temperature T MV of the medium supplied to the evaporator 11 (brine, water, air, etc.) measured by means of a temperature sensor 24. Based on this comparison, the controller 26 delivers a control signal to the solution throttle 5 as a function of a predetermined desired value.
  • FIG. 7 Another variant of the solution throttle control is shown in FIG. 7, in which the pressure p KVaus of the refrigerant emerging from the aftercooler 10 and by means of a temperature sensor 24 are measured by means of a pressure sensor 28, the temperature T KVaus of emerging from the evaporator 11 refrigerant.
  • the measured pressure value can then, as described above with reference to the presently used condensate throttle control, be converted into a temperature value and compared by subtraction with the temperature value measured by means of the temperature sensor 24.
  • the thus determined temperature difference is then compared with a predetermined setpoint value to obtain a control signal for the solution throttle 5.
  • FIG. 7 Another variant of the solution throttle control is shown in FIG. 7, in which the pressure p KVaus of the refrigerant emerging from the aftercooler 10 and by means of a temperature sensor 24 are measured by means of a pressure sensor 28, the temperature T KVaus of emerging from the evaporator 11 refrigerant.
  • the measured pressure value can then, as described above with reference to the
  • both transducers could be further modified in that both transducers are arranged at substantially the same point of the process flow.
  • both the pressure sensor 28 and the temperature sensor 24 could be placed between the aftercooler 10 and the mixer 46 or between the evaporator 11 and the aftercooler 10.
  • FIG. Figure 8 shows an embodiment of the solution pump control used in the present absorption heat pump concept.
  • the solution rich in refrigerant leaving the absorber 6 after passing through the solution reservoir 7 is pumped by means of a solution pump 8 from the low pressure level of the absorber 6 to a high pressure level and supplied again to the digester 1.
  • the solution pump control is detected by means of a arranged in the solution reservoir float 7 29, advantageously a magnetic inductive float, the level of the solution reservoir 7 and based on the measured level, the speed of the solution pump 8 and thus the solution mass flow adapted to the process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

A burner (2) vaporises a refrigerant solution into an condenser (13) containing a heat exchanger feeding a radiator (34) and absorber (6) back to the boiler (1) in a closed circuit. Refrigerant then passes through a throttle valve (12) and an evaporator (11) to provide cooling. The system is controlled by a regulator (17) according to data from an outside thermostat (14), a back flow thermostat (15) a forward flow thermostat (16).

Description

Die vorliegende Erfindung betrifft eine Absorptionswärmepumpe sowie ein Verfahren zum Betrieb einer Absorptionswärmepumpe.The present invention relates to an absorption heat pump and a method of operating an absorption heat pump.

Bei Absorptionswärmepumpenanlagen wird in einem Kocher eine ein Kältemittel enthaltende Lösung beispielsweise mittels eines Gas- oder Ölbrenners, elektrisch oder auch unter Zuhilfenahme zusätzlicher Wärmetauscher mittels Abwärme oder Solarenergie erwärmt, um Kältemittel als Kältemitteldampf aus der Lösung auszutreiben. Der Kältemitteldampf wird durch diesen Vorgang auf ein Hochtemperaturniveau bzw. Hochdruckniveau gebracht. Der Kältemitteldampf wird dann in einem Kondensator gegen ein Heizmittel kondensiert und führt so dem Heizmittel Wärme zu. Das stark abgekühlte und entspannte Kältemittel wird einem Verdampfer, in welchem es gegen ein Medium, das dem Kältemittel Umgebungsenergie zuführt, verdampft und anschließend mindestens einem Absorber zugeführt.In absorption heat pump systems, a solution containing a refrigerant, for example, by means of a gas or oil burner, heated electrically or with the aid of additional heat exchanger by means of waste heat or solar energy in a digester to expel refrigerant as refrigerant vapor from the solution. The refrigerant vapor is brought by this process to a high temperature level or high pressure level. The refrigerant vapor is then condensed in a condenser against a heating medium and thus supplies heat to the heating means. The highly cooled and expanded refrigerant is an evaporator, in which it is evaporated against a medium which supplies ambient energy to the refrigerant, and then fed to at least one absorber.

Die an Kältemittel verarmte Lösung aus dem Kocher wird über einen Wärmetauscher dem Absorber zuführt, wo sich die an Kältemittel verarmte Lösung mit Kältemittel, welches den Verdampfer durchlaufen hat, vereinigt. Die dabei entstehende Lösungswärme wird dem Austreiberprozeß und dem Verbraucher zur Verfügung gestellt oder nur an den Verbraucher abgeführt. Die dabei entstehende an Kältemittel reiche Lösung von dem Absorber wird mittels einer Lösungspumpe von dem Niederdruckniveau des Absorbers, welches ungefähr dem Verdampfüngsdruck entspricht, auf ein Hochdruckniveau gepumpt und erneut dem Kocher zugeführt. Schließlich wird das in dem Kondensator erwärmte Heizmittel einem Verbraucher zugeführt und das von dem Verbraucher abgekühlte Heizmittel zu dem Kondensator zurückgeleitet.The refrigerant depleted solution from the digester is fed via a heat exchanger to the absorber, where the refrigerant depleted solution with refrigerant which has passed through the evaporator unites. The resulting heat of solution is provided to the expeller process and the consumer or discharged only to the consumer. The resulting rich in refrigerant solution from the absorber is pumped by means of a solution pump from the low pressure level of the absorber, which corresponds approximately to the Verdampfüngsdruck, to a high pressure level and fed again to the digester. Finally, the heating means heated in the condenser is supplied to a consumer and the heating means cooled by the consumer are returned to the condenser.

Wird bei einer Absorptionswärmepumpenanlage die Beheizung des Kochers abgeschaltet, so wird die im Betrieb der Absorptionswärmepumpe vorherrschende Konzentrationsschichtung im Kocher abgebaut und auf das Niveau der an Kältemittel armen Lösung gebracht. Während eines instationären Anfahrvorgangs kann erst durch allmähliches Zuführen von reicher Lösung eine für den stationären Betriebszustand erforderliche Konzentrationsschichtung im Kocher aufgebaut werden. Nach einem Abschalten des Kochers sind daher bei Wiederinbetriebnahme einer solchen Anlage erhebliche Anfahrzeiten und Energieverluste in Kauf zu nehmen.If the heating of the digester is switched off in an absorption heat pump system, the concentration stratification prevailing during operation of the absorption heat pump is reduced in the digester and brought to the level of the solution poor in refrigerant. During a transient start-up process, it is only by gradually supplying rich solution that a concentration stratification required for the stationary operating state can be built up in the digester. After a shutdown of the digester, therefore, when restarting such a system considerable start-up times and energy losses are to be accepted.

Um diese Probleme zu überwinden, wird in EP-B-0 202 432 eine taktende Absorptionswärmepumpenanlage vorgeschlagen, bei welcher der Hochdruckteil und der Niederdruckteil im Stillstand mittels Magnetventilen versperrt sind, um die Wiederanfahrverluste zu minimieren. Nachteilig bei dieser Technik ist, daß bei einer Veränderung der Brennerleistung, die z.B. durch Temperaturschwankungen verursacht sein kann, ein Wärmepumpenbetrieb nicht immer gewährleistet ist.In order to overcome these problems, EP-B-0 202 432 proposes a cyclic absorption heat pump system in which the high-pressure part and the low-pressure part are locked at standstill by means of solenoid valves in order to minimize the restarting losses. A disadvantage of this technique is that when the burner power is changed, e.g. may be caused by temperature fluctuations, a heat pump operation is not always guaranteed.

US-A-4596122 offenbart eine Absorptionswärmepumpe gemäß Oberbegriffs des Anspruchs 2.US-A-4596122 discloses an absorption heat pump according to the preamble of claim 2.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Absorptionswärmepumpe sowie ein Verfahren zum Betrieb einer Absorptionswärmepumpe der eingangs beschriebenen Art zu schaffen, bei welcher bzw. bei welchem die beim Anfahren der Absorptionswärmepumpe entstehenden Energieverluste minimiert werden während dennoch fortwährend ein zuverlässiger Betrieb der Wärmepumpe gewährleistet ist.The invention is therefore an object of the invention to provide an absorption heat pump and a method for operating an absorption heat pump of the type described above, in which or at which the energy losses incurred during startup of the absorption heat pump are minimized while still reliable operation of the heat pump is guaranteed.

Diese Aufgabe wird bei einem Verfahren zum Betrieb einer Absorptionswärmepumpe, wie es im Oberbegriff von Anspruch 1, der auf EP-B-0 202 432 basiert, definiert ist, dadurch gelöst, daß die Außentemperatur und die Temperatur des Heizmittels gemessen werden und die Leistung des Brenners in Abhängigkeit von den gemessenen Temperaturwerten eingestellt wird, daß die Menge des dem Verdampfer zugeführten Kältemittels geregelt wird, daß die Menge der dem mindestens einen Absorber zugeführten, an Kältemittel verarmten Lösung geregelt wird, und daß ferner die Fördermenge der Lösungspumpe geregelt wird.This object is achieved in a method for operating an absorption heat pump, as defined in the preamble of claim 1, which is based on EP-B-0 202 432, solved in that the outside temperature and the temperature of the heating medium are measured and the performance of the Burner is set in response to the measured temperature values, that the amount of refrigerant supplied to the evaporator is controlled, that the amount of the refrigerant-depleted solution supplied to the at least one absorber is controlled, and further that the delivery rate of the solution pump is controlled.

Entsprechend wird die gestellte Aufgabe ferner bei einer Absorptionswärmepumpe, wie sie im Oberbegriff von Anspruch 22, der ebenfalls auf EP-B-0 202 432 basiert, definiert ist, dadurch gelöst, daß ferner vorgesehen sind: eine erste Regeleinrichtung, die einen im Freien angeordneten Außenfühler zum Messen der Außentemperatur, mindestens einen Heizmittelfühler zum Messen der Temperatur des Heizmittels, sowie einen ersten Regler zum Regeln der Leistung des Brenners in Abhängigkeit von den gemessenen Temperaturwerten umfaßt, eine zweite Regeleinrichtung zum Regeln der Menge des dem Verdampfer zugeführten Kältemittels, eine dritte Regeleinrichtung zum Regeln der Menge der dem mindestens einen Absorber zugeführten, an Kältemittel verarmten Lösung, sowie eine vierte Regeleinrichtung zum Regeln der Fördermenge der Lösungspumpe.Accordingly, this object is further achieved with an absorption heat pump as defined in the preamble of claim 22, which is also based on EP-B-0 202 432, by further comprising: a first control device which arranges an outdoor one Outside sensor for measuring the outside temperature, at least one Heizmittelfühler for measuring the temperature of the heating means, and a first controller for controlling the power of the burner in dependence on the measured temperature values, a second control device for controlling the amount of refrigerant supplied to the evaporator, a third control device for controlling the amount of the refrigerant-depleted solution fed to the at least one absorber, and a fourth regulating device for controlling the delivery rate of the solution pump.

Durch die erfindungsgemäße Lösung, die mittels der genannten Steuer- und Regelkreise einen modulierenden Betrieb der Absorptionswärmepumpe ermöglicht, werden instationäre Anfahrverluste minimiert, während gleichzeitig ein zuverlässiger Wärmepumpenbetrieb gewährleistet wird. Ein Taktbetrieb, wie er bei den im Stand der Technik vorgeschlagenen Anlagen vorgesehen war, wird durch die modulierende Technik unterbunden.The inventive solution, which allows modulating operation of the absorption heat pump by means of said control and regulating circuits, transient start-up losses are minimized while at the same time ensuring reliable heat pump operation. A clocking operation, as was provided in the systems proposed in the prior art, is prevented by the modulating technique.

Aus Gründen der Übersichtlichkeit werden die bei dem erfindungsgemäßen Konzept beteiligten Steuerungs- und Regelungsvorgänge, d.h. die Brennersteuerung, die Kondensatdrosselregelung, die Lösungsdrosselregelung sowie die Lösungspumpenregelung, getrennt voneinander beschrieben. Es versteht sich jedoch, daß bei dem erfindungsgemäßen Verfahren und der erfindungsgemäßen Vorrichtung alle vier der genannten Steuerungs- und Regelungsvorgänge gleichzeitig implementiert sind.For reasons of clarity, the control and regulation processes involved in the inventive concept, ie the burner control, the condensate throttle control, the solution throttle control and the solution pump control, are separated from each other described. It is understood, however, that in the method and the apparatus according to the invention all four of said control and regulation processes are implemented simultaneously.

Die Erfindung, deren bevorzugte Ausführungsbeispiele in den Unteransprüchen angegeben sind, wird nachstehend unter Bezugnahme auf die Zeichnungen im Einzelnen erläutert, wobei

FIG. 1
eine schematische Darstellung des Aufbaus einer Absorptionswärmepumpe sowie einer darin verwendeten Brennersteuerung nach der Erfindung zeigt;
FIG. 2
bis 4 Darstellungen ähnlich FIG. 1 sind, in welchen Ausführungsbeispiele der gemäß dem vorliegend beschriebenen Absorptionswärmepumpenkonzept verwendeten Kondensatdrosselregelung veranschaulicht sind;
FIG. 5
bis 7 Darstellungen ähnlich FIG. 1 sind, in welchen Ausführungsbeispiele der gemäß dem vorliegend beschriebenen Absorptionswärmepumpenkonzept eingesetzten Lösungsdrosselregelung veranschaulicht sind; und
FIG. 8
eine Darstellung ähnlich FIG. 1 ist, in welcher ein Ausführungsbeispiel einer gemäß dem vorliegend beschriebenen Absorptionswärmepumpenkonzept verwendeten Lösungspumpenregelung dargestellt ist.
The invention, whose preferred embodiments are given in the subclaims, will be explained below with reference to the drawings in detail, wherein
FIG. 1
a schematic representation of the structure of an absorption heat pump and a burner controller used therein according to the invention;
FIG. 2
to 4 representations similar to FIG. 1, in which embodiments the condensate restrictor used in accordance with the presently described absorption heat pump concept are illustrated;
FIG. 5
to 7 representations similar to FIG. 1, in which embodiments of the solution throttle control system used according to the presently described absorption heat pump concept are illustrated; and
FIG. 8th
a representation similar to FIG. 1, in which an embodiment of a solution pump control system used in accordance with the presently described absorption heat pump concept is illustrated.

Wie in FIG. 1 schematisch angedeutet ist, umfaßt eine Absorptionswärmepumpe einen Kocher oder Austreiber 1, in welchem mittels eines Brenners 2 eine ein Kältemittel enthaltende Lösung erwärmt wird, um Kältemittel als Kältemitteldampf aus der Lösung auszutreiben. Bei der Ausgestaltung nach FIG. 1 wird der Kältemitteldampf in einer Leitung 30 über einen Rektifikator 3 einem Kondensator 13 zugeleitet, in welchem der Kältemitteldampf gegen ein Heizmittel kondensiert wird. Das auf diese Weise erwärmte Heizmittel wird wiederum in einer Leitung 32, dem sogenannten Vorlauf, einem Verbraucher 34, beispielsweise einem Radiator, zugeführt.As shown in FIG. 1, an absorption heat pump includes a digester 1 in which a solution containing a refrigerant is heated by means of a burner 2 to expel refrigerant as refrigerant vapor from the solution. In the embodiment of FIG. 1, the refrigerant vapor in a line 30 is fed via a rectifier 3 to a condenser 13, in which the refrigerant vapor is condensed against a heating medium. The heating means heated in this way is in turn fed into a line 32, the so-called supply, to a consumer 34, for example a radiator.

Heizmittel, welches den Verbraucher 34 passiert hat, kehrt über eine Leitung 36, den sogenannten Rücklauf, zurück zu der Absorptionswärmepumpe. Insbesondere kann das in dem Verbraucher 34 abgekühlte Heizmittel in einem Abgaswärmetauscher 9 gegen aus dem Brenner 2 austretendes heißes Abgas, welches bei 44 in die Atmosphäre entlassen oder anderweitig entsorgt oder verarbeitet wird, wird, erwärmt werden, bevor es einem Absorber 6 zugeführt wird. Nach Passieren des Absorbers 6, bei dem es sich beispielsweise um einen Plattenwärmetauscher handeln kann, wird das Heizmittel in einer Leitung 38 erneut dem Kondensator 13 zugeleitet, so daß sich ein geschlossener Heizmittelkreis ergibt.Heating means, which has passed through the consumer 34, returns via a line 36, the so-called return, back to the absorption heat pump. In particular, the heating medium cooled in the consumer 34 can be heated in an exhaust gas heat exchanger 9 against hot exhaust gas leaving the burner 2, which is discharged or otherwise disposed of or processed at 44, before it is fed to an absorber 6. After passing through the absorber 6, which may be, for example, a plate heat exchanger, the heating means in a line 38 again supplied to the capacitor 13, so that there is a closed Heizmittelkreis.

Das in dem Kondensator 13 gegen das sich erwärmende Heizmittel stark abgekühlte und entspannte Kältemittel wird in einer Leitung 40 einem Nachkühler 10 zugeleitet, von welchem aus es über eine Drosselstelle 12 einem Verdampfer 11 zugeführt wird. In dem Verdampfer 11 wird dem Kältemittel Umgebungsenergie zugeführt, wobei es sich hier insbesondere um Wärme handeln kann, die in der Umgebung (in FIG. 1 bei 42 angedeutet) des durch den Verbraucher 34 zu beheizenden Gebäudes z.B. im Erdreich, in Wasser, in Luft, insbesondere in Sole gespeichert ist.The in the condenser 13 against the heating means strongly cooled and expanded refrigerant is fed in a line 40 to the aftercooler 10, of which from it is fed via a throttle point 12 to an evaporator 11. In the evaporator 11 ambient energy is supplied to the refrigerant, which may in particular be heat in the environment (indicated at 42 in FIG 1) of the consumer 34 to be heated building, for example in the soil, in water, in air , especially stored in brine.

Kältemittel, welches den Verdampfer 11 verläßt, wird erneut durch den Nachkühler 10 geleitet und von dort zu dem Absorber 6. In dem Absorber 6 oder, wie es in FIG. 1 dargestellt ist, in einem vor dem Absorber angeordneten Mischer 46 wird das Kältemittel mit Lösungsmittel gemischt, welches den Kocher 1 über eine Leitung 48 verlassen hat. Die dabei entstehende Lösungswärme wird dem Austreiberprozeß im Kocher 1 und dem Verbraucher 34 zur Verfügung gestellt oder nur an den Verbraucher 34 abgeführt. Die den Absorber 6 verlassende an Kältemittel reiche Lösung wird nach Passieren eines Lösungsvorratsbehälters 7 mittels einer Lösungspumpe 8 von dem Niederdruckniveau des Absorbers 6, welches ungefähr dem Verdampfungsdruck entspricht, auf ein Hochdruckniveau gepumpt und erneut dem Kocher 1 zugeführt. Hierbei kann die an Kältemittel reiche Lösung von dem Absorber 6 wie in FIG. 1 dargestellt über den Rektifikator 3 und einen Wärmetauscher 4 geleitet werden, in welchen die an Kältemittel reiche Lösung einem Wärmeaustausch gegen den den Kocher 1 verlassenden Kältemitteldampf bzw. das den Kocher 1 verlassende Lösungsmittel unterzogen wird. Kältemittel, welches bereits im Rektifikator 3 kondensiert, wird über einen Rücklauf 50 erneut dem Kocher 1 zugeleitet.Refrigerant leaving the evaporator 11 is again passed through the aftercooler 10 and from there to the absorber 6. In the absorber 6 or, as shown in FIG. 1, in a mixer 46 arranged in front of the absorber, the refrigerant is mixed with solvent which has left the digester 1 via a line 48. The resulting heat of solution is made available to the expeller process in the boiler 1 and the consumer 34 or discharged only to the consumer 34. The solution rich in refrigerant leaving the absorber 6 is pumped to a high pressure level after passing a solution reservoir 7 by means of a solution pump 8 from the low pressure level of the absorber 6 which approximately corresponds to the evaporation pressure, and fed again to the digester 1. Here, the refrigerant-rich solution of the absorber 6 as shown in FIG. 1 through the rectifier 3 and a heat exchanger 4 are passed, in which the refrigerant-rich solution is subjected to a heat exchange against the boiler 1 leaving the refrigerant vapor or the boiler 1 leaving solvent. Refrigerant, which is already condensed in the rectifier 3, is fed back to the digester 1 via a return 50.

Der bis hier beschriebene generelle Aufbau der vorliegenden Absorptionswärmepumpe ist allen nachstehend beschriebenen Ausführungsbeispielen gemein und wird daher bei der Beschreibung der übrigen Zeichnungen nicht erneut beschrieben werden. Die folgende Beschreibung konzentriert sich in erster Linie auf die einzelnen Steuerungs- und Regelungsaspekte des erfindungsgemäßen Konzepts. Wie bereits erwähnt, sind in den einzelnen Zeichnungen nicht alle Steuerungs- und Regelungsaspekte gleichzeitig dargestellt sondern werden die Brennersteuerung, die Kondensatdrosselregelung, die Lösungsdrosselregelung sowie die Lösungspumpenregelung nacheinander anhand von schematischen Teilzeichnungen erläutert.The general structure of the present absorption heat pump described so far is common to all embodiments described below and will therefore not be described again in the description of the remaining drawings. The following description focuses primarily on the individual control and regulation aspects of the inventive concept. As already mentioned, not all control and control aspects are shown simultaneously in the individual drawings, but the burner control, the condensate throttle control, the solution throttle control and the solution pump control are explained in succession with reference to schematic partial drawings.

Unter Bezugnahme auf FIG. 1 werden zunächst die die Brennersteuerung betreffenden Komponenten beschrieben. Ziel der Absorptionswärmepumpenbrennersteuerung ist es, eine dem Wärmebedarf des zu beheizenden Gebäudes angepaßte Regelung der Brennerleistung zu erreichen, um so ein kontinuierliches Arbeiten der Absorptionswärmepumpe zu gewährleisten. Das vorliegend beschriebene Konzept basiert, anders als die eingangs beschriebenen bekannten Systeme, auf der Erkenntnis, daß es bei geeigneter Steuerung und Regelung der Anlage durchaus sinnvoll und energetisch lohnend ist, die Absorptionswärmepumpe bei einem verminderten Heizbedarf nicht gänzlich abzuschalten sondern herunterzuregeln, da die andernfalls bei einem erneuten Anfahren der Anlage auftretenden Verluste die durch die Abschaltung erzielte Energieeinsparung überwiegen.With reference to FIG. 1, the components relating to the burner control will be described first. The aim of the Absorptionswärmepumpenbrennersteuerung is to achieve a heat demand of the building to be heated adapted control of the burner power, so as to ensure a continuous operation of the absorption heat pump. The presently described concept is based, unlike the known systems described above, on the realization that it is quite useful and energetically rewarding with appropriate control and regulation of the system, the absorption heat pump with a reduced heating demand not completely off but herunterzuregeln, since otherwise the losses occurring at a restart of the system outweigh the energy savings achieved by the shutdown.

Bei Einrichtung gemäß FIG. 1 sind ein Außenfühler 14 zum Messen der Umgebungstemperatur und ein Heizmittelfühler zum Messen der Temperatur des Heizmittels vorgesehen, wobei der Heizmittelfühler als ein Rücklauffühler 15 zur Erfassung der Rücklauftemperatur oder als ein Vorlauffühler 16 zum Erfassung der Rücklauftemperatur ausgeführt sein kann. Der Außenfühler 14 sowie der Rücklauffühler 15 und/oder der Vorlauffühler 16 sind mit einem Regler 17 verbunden, dessen Ausgang mit dem Brenner 2 verbunden ist. Bei dem Brenner 2 handelt es sich hierbei um einen regelbaren Brenner mit einer Leistungsaufnahme von beispielsweise 4 bis 18 kW. Der Regler 17 vergleicht die gemessene Rücklauf- oder Vorlauftemperatur mit einem Sollwert und drosselt die Brennerleistung bei Annäherung der Rücklauf- bzw. der Vorlauftemperatur an den Sollwert. Die Regelung kann hierbei entsprechend voreingestellter Heizkurven erfolgen. So kann einerseits die Brennerleistung direkt mit der gemessenen Außentemperatur in Beziehung gesetzt werden, indem bestimmten Außentemperaturwerten bestimmte Werte für die Leistungsaufnahme des Brenners zugeordnet werden. So könnte beispielsweise einer Außentemperatur von +15 °C eine Brennerleistung von 4 kW zugeordnet werden, während bei einer Außentemperatur von -15 °C die Brennerleistung 13 kW betragen soll. Als Stellparameter für die Leistung des Brenners können jedoch auch die Vorlauf- und/oder die Rücklauftemperatur dienen. So kann beispielsweise einer Außentemperatur von +15 °C eine Rücklauftemperatur von 25 °C zugeordnet sein, während einer Außentemperatur von -15 °C eine Rücklauftemperatur von 45 °C zugeordnet ist. Neben dem Vergleich von Sollwert und Istwert der Rücklauf- oder der Vorlauftemperatur kann jedoch auch die Temperaturspreizung des Heizmittels, d.h. die Differenz zwischen Vorlauf- und Rücklauftemperatur, als Regelparameter dienen. Die genannten Regelungsarten können hierbei einzeln oder gemeinsam implementiert sein. Die beschriebene Brennersteuerung paßt somit die gesamte durch den Absorptionsprozeß erzeugte Wärmeenergie modulierend dem Wärmebedarf des zu beheizenden Gebäudes an, der sich beispielsweise durch individuelle Einstellungen (z.B. Heizkörper werden geschlossen) oder aber durch Fremdeinwirkung (Variation der Sonneneinstrahlung etc.) ständig ändern kann.In the device according to FIG. 1, an outside sensor 14 for measuring the ambient temperature and a heating medium sensor for measuring the temperature of the heating means are provided, wherein the heating medium sensor may be implemented as a return sensor 15 for detecting the return temperature or as a flow sensor 16 for detecting the return temperature. The outside sensor 14 and the return sensor 15 and / or the flow sensor 16 are connected to a controller 17 whose output is connected to the burner 2. In the burner 2, this is a controllable burner with a power consumption of, for example, 4 to 18 kW. The controller 17 compares the measured return or flow temperature with a setpoint and throttles the burner power at approach of the return flow or the flow temperature to the setpoint. The control can be done in accordance with preset heating curves. Thus, on the one hand, the burner output can be directly related to the measured outside temperature by assigning certain outside temperature values to certain burner power consumption values. For example, an external temperature of +15 ° C could be assigned a burner output of 4 kW, while at an outside temperature of -15 ° C the burner output should be 13 kW. However, the flow and / or the return temperature can serve as setting parameters for the performance of the burner. For example, an outside temperature of +15 ° C can be assigned a return temperature of 25 ° C, while an outside temperature of -15 ° C is assigned a return temperature of 45 ° C. In addition to the comparison of setpoint and actual value of the return or the flow temperature, however, the temperature spread of the heating means, i. the difference between flow and return temperature, serve as a control parameter. The aforementioned types of control can be implemented individually or jointly. The described burner control thus adapts the entire heat energy generated by the absorption process modulating the heat demand of the building to be heated, for example, by individual settings (for example, radiators are closed) or by external influence (variation of solar radiation, etc.) can constantly change.

Um bei der vorstehend beschriebenen modulierenden Brennersteuerung die Kondensation des Kältemittels im Kondensator über den gesamten modulierenden Wärmepumpenbetrieb zu gewährleisten, wird gemäß dem vorliegend beschriebenen Konzept die Kondensatdrossel geregelt. Die Kondensatdrosselregelung hat auch die Aufgabe, einen unnötig hohen Kondensationsdruck zu vermeiden und trägt damit zu einer Verbesserung des Gesamtwirkungsgrades bei.In order to ensure the condensation of the refrigerant in the condenser over the entire modulating heat pump operation in the modulating burner control described above, the condensate throttle is controlled according to the presently described concept. The condensate throttle control also has the task of avoiding an unnecessarily high condensation pressure and thus contributes to an improvement of the overall efficiency.

Wie im folgenden unter Bezugnahme auf die FIGN. 2 bis 4 im Einzelnen erläutert wird, kann die Kondensatdrossel unter Zuhilfenahme mehrerer unterschiedlicher Regelparameter erfolgen. Insbesondere kann, wie es in FIG. 2 veranschaulicht ist, mittels eines Drucksensors 18 der Druck pKKein des in den Kondensator 13 eintretenden Kältemitteldampfes gemessen werden. Dieser Druckwert pKKein kann dann unter Zuhilfenahme der dem Fachmann geläufigen Fundamentalgleichung von Ziegler in einen Temperaturwert TKKein umgerechnet werden. Mittels eines Reglers 19, im veranschaulichten Beispiel ein PID-Regler, wird dann der so errechnete Temperaturwert TKKein mit einer Referenztemperatur verglichen, um ein Ausgangssignal zur Ansteuerung eines stetig regelbaren Stellorgans zu bilden. Bei der in FIG. 2 dargestellten Ausführungsform wird als die Referenztemperatur die Temperatur TVorlauf des aus dem Kondensator 13 austretenden Heizmittels benutzt, die mittels eines Temperaturfühlers 16 gemessen wird. Ist die Temperaturdifferenz TKKein - TVorlauf kleiner als ein vorgegebener Sollwert von z.B. 1 bis 4 K, so wird die Menge des dem Verdampfer 11 zugeführten Kältemittels mittels der regelbaren Drosselstelle 12, die beispielsweise als pulsweitenmodulicrtes Ventil ausgeführt sein kann, verkleinert. Ist hingegen die besagte Temperaturdifferenz größer als der vorgegebene Sollwert, so wird die Menge des dem Verdampfer 11 zugeführten Kältemittels vergrößert. Mittels des Sollwerts wird gewährleistet, daß sich immer eine Kondensatunterkühlung von ca. 2 bis 5 K einstellt. Ist die Differenz TKKein - TVorlauf gleich dem vorgegebenen Sollwert, so ist die Ventilstellung optimal.As in the following with reference to the FIGN. 2 to 4 is explained in detail, the condensate throttle can be done with the aid of several different control parameters. In particular, as shown in FIG. 2, by means of a pressure sensor 18, the pressure p KKein of the refrigerant vapor entering the condenser 13 is measured. This pressure value pKKin can then be converted into a temperature value TKN with the aid of the Ziegler fundamental equation familiar to the person skilled in the art . By means of a regulator 19, in the illustrated example, a PID controller, then the calculated temperature value T KKein is compared with a reference temperature to form an output signal for controlling a continuously controllable actuator. In the in FIG. 2 embodiment is used as the reference temperature, the temperature T flow of the emerging from the condenser 13 heating means, which is measured by means of a temperature sensor 16. If the temperature difference T KKein -T supply is less than a predetermined desired value of, for example, 1 to 4 K, then the amount of the refrigerant supplied to the evaporator 11 is reduced by means of the controllable throttle point 12, which may be designed, for example, as a pulse width modulated valve. If, on the other hand, the said temperature difference is greater than the predetermined desired value, the quantity of refrigerant supplied to the evaporator 11 is increased. By means of the setpoint ensures that always sets a condensate supercooling of about 2 to 5 K. If the difference T KNo - T flow is equal to the specified value, the valve position is optimal.

Eine Variante der Kondensatdrosselregelung von FIG. 2 ist in FIG. 3 skizziert. Anstelle des Drucksensors 18 (FIG. 2) ist hier ein Temperatursensor 20 vorgesehen, der die Temperatur TKKaus des aus dem Kondensator 13 austretenden Kältemittels erfaßt. Diese Temperatur TKKaus wird wiederum mit der Temperatur TVorlauf des aus dem Kondensator 13 austretenden Heizmittels verglichen. Anhand der mit einem Regler 19 ermittelten Temperaturdifferenz zwischen der Vorlauftemperatur TVorlauf, die der Kondensationstemperatur entspricht, und der Temperatur TKKaus des Kondensats läßt sich die herrschende Kondensatunterkühlung bewerten. Wird für die Kondensatunterkühlung ein Sollwert vorgegeben, so kann die Drosselstelle 12 basierend auf einem Vergleich zwischen der genannten Temperaturdifferenz mit diesem Sollwert ganz oder teilweise geöffnet oder geschlossen werden. Der Sollwert der Kondensatunterkühlung liegt vorzugsweise im Bereich zwischen 2 und 5 K.A variant of the condensate throttle control of FIG. 2 is shown in FIG. 3 outlined. Instead of the pressure sensor 18 (FIG. 2), a temperature sensor 20 is provided here, which detects the temperature T KKaus of the refrigerant exiting from the condenser 13. This temperature T KKaus is again compared with the temperature T flow of the emerging from the condenser 13 heating medium. Based on the determined with a controller 19 temperature difference between the flow temperature T flow , which corresponds to the condensation temperature, and the temperature T KKaus the condensate can be the prevailing condensate supercooling rate. If a setpoint is specified for the condensate subcooling, then the throttling point 12 can be opened or closed completely or partially based on a comparison between said temperature difference and this setpoint. The nominal value of condensate subcooling is preferably in the range between 2 and 5 K.

Eine weitere Variante der Kondensatdrosselregelung von FIG. 2 ist in FIG. 4 dargestellt. Das Ausführungsbeispiel der FIG. 4 unterscheidet sich von dem der FIG. 3 darin, daß die Temperatur des Heizmittels nicht am Auslaß des Kondensators 13 sondern an dessen Einlaß gemessen wird. Die mittels eines Temperatursensors 20 gemessene Temperatur TKKaus des aus dem Kondensator 13 austretenden Kältemittels wird dann mit der mittels eines Temperatursensors 21 gemessenen Temperatur THKein des in den Kondensator 13 eintretenden Heizmittels verglichen, wobei zu diesem Zweck der Regler 19 vorzugsweise einen Differenzbildner umfaßt. Wie bei den obigen Ausführungsbeispielen kann die sich aus dem Vergleich der beiden genannten Temperaturen ergebende Temperaturdifferenz wiederum mit einem Sollwert verglichen und die Drosselstelle in Abhängigkeit von diesem Vergleich geregelt werden.Another variant of the condensate throttle control of FIG. 2 is shown in FIG. 4 shown. The embodiment of FIG. 4 differs from that of FIG. 3 in that the temperature of the heating means is not measured at the outlet of the condenser 13 but at its inlet. The measured by a temperature sensor 20 temperature T KKaus exiting the condenser 13 refrigerant is then compared with the measured by a temperature sensor 21 temperature T HNo of entering the condenser 13 heating means, for which purpose the controller 19 preferably comprises a differential former. As in the above embodiments, the resulting from the comparison of the two temperatures mentioned temperature difference again with a Setpoint compared and the throttle point are regulated in dependence on this comparison.

Bezugnehmend auf die FIGN. 5 bis 7 wird nachstehend die bei dem vorliegenden Absorptionswärmepumpenkonzept eingesetzte Lösungsdrosselregelung erläutert. Die in den Zeichnungen gezeigte Lösungsdrossel 5 bestimmt den Strom der aus dem Kocher 1 über den Wärmetauscher 4 ausgeleiteten, an Kältemittel armen Lösung, die in dem Mischer 46 (FIG. 1) mit aus dem Nachkühler 10 austretenden Kältemittel gemischt wird, bevor sie in den Absorber 6 eingeleitet wird. Durch Verstellung der Lösungsdrossel 5 wird der bei niedrigem Druck betriebene Absorber bzw. der Verdampfungsdruck beeinflußt. Ziel dieser Regelung ist es, den Niederdruck in jedem Betriebszustand der Wärmepumpe so zu halten, daß der Verdampfer 11 die maximal mögliche Energie aufnimmt und gleichzeitig gewährleistet ist, daß sich nicht ein unnötig hoher Massenstrom der an Kältemittel armen Lösung einstellt. Wird die Lösungsdrossel 5 geöffnet, so hat dies eine Reihe von Auswirkungen:

  • der Durchfluß und somit die Konzentration der an Kältemittel armen Lösung nehmen zu,
  • der spezifische Lösungsumlauf wird größer,
  • das Lösungsfeld wird weiter zusammengezogen,
  • die Konzentrationsdifferenz und damit auch die Temperaturdifferenz zwischen Kesselfuß und Kesselkopf des Kochers verringert sich,
  • die Konzentration der "reichen" Lösung im Absorber wird kleiner
  • der Niederdruck sinkt.
Referring to the FIGN. 5-7, the solution throttle control employed in the present absorption heat pump concept will be explained below. The solution throttle 5 shown in the drawings determines the flow of the low-refrigerant solution discharged from the digester 1 through the heat exchanger 4 and mixed in the mixer 46 (FIG.1) with the refrigerant exiting the after-cooler 10 before entering the refrigerant Absorber 6 is initiated. By adjusting the solution throttle 5 of operated at low pressure absorber or the evaporation pressure is affected. The aim of this scheme is to keep the low pressure in each operating state of the heat pump so that the evaporator 11 absorbs the maximum possible energy and at the same time ensures that does not set an unnecessarily high mass flow of the refrigerant-poor solution. When the solution throttle 5 is opened, this has a number of effects:
  • the flow and thus the concentration of the refrigerant-poor solution increase,
  • the specific solution circulation gets bigger,
  • the solution field is further contracted,
  • the difference in concentration and thus also the temperature difference between boiler foot and boiler head of the cooker decreases,
  • the concentration of the "rich" solution in the absorber becomes smaller
  • the low pressure drops.

Eine Schließung der Lösungsdrossel hat entsprechend gegenteilige Effekte.A closure of the solution throttle has correspondingly opposite effects.

Entsprechend FIG. 5 wird mittels eines Temperaturfühlers 22 die Temperatur TKVein des dem Verdampfer 11 zugeführten Kältemittels gemessen. Mit Hilfe eines zweiten Temperaturfühlers 23 wird die Temperatur TKVaus des aus dem Verdampfer 11 austretenden Kältemittels erfaßt. Ein PID Regler 26 bildet aus den beiden gemessenen Temperaturwerten eine Differenz und legt basierend auf dem Ergebnis der Differenzbildung ein Stellsignal an die Lösungsdrossel 5 an. Insbesondere wird die ermittelte Temperaturdifferenz ähnlich wie bei den oben beschriebenen Verfahren mit einem vorgegebenen Sollwert verglichen, wobei bei der vorliegend beschriebenen Ausgestaltung ein besonders bevorzugter Bereich für diesen Sollwert von 7 bis 10 K reicht. Ist die ermittelte Temperaturdifferenz größer als der vorgegebene Sollwert, so wird die Lösungsdrossel 5 geschlossen; ist die ermittelte Temperaturdifferenz kleiner als der vorgegebene Sollwert, wird die Lösungsdrossel 5 geöffnet. Die Regelung der Lösungsdrossel 5 kann darüberhinaus auch durch eine Messung der Vorlauftemperatur, wie sie unter Bezugnahme auf die FIGN. 2 und 3 erläutert wurde, beeinflußt werden, indem der Sollwert für die Differenz zwischen der Temperatur TKVein des dem Verdampfer 11 zugeführten Kältemittels und der Temperatur TKVaus des aus dem Verdampfer 11 austretenden Kältemittels in Abhängigkeit von der Vorlauftemperatur TVorlauf variiert wird. Beispielsweise kann die Regelung so angelegt sein, daß der Sollwert für die genannte Temperaturdifferenz am Verdampfer bei einer Vorlauftemperatur von 30 °C z.B. 14 K beträgt, während dieser Sollwert bei einer Vorlauftemperatur von 50 °C auf z.B. 7 K abgesenkt wird.According to FIG. 5, the temperature T KVein of the refrigerant supplied to the evaporator 11 is measured by means of a temperature sensor 22. With the aid of a second temperature sensor 23, the temperature T KVaus of the exiting the evaporator 11 refrigerant is detected. A PID controller 26 forms a difference from the two measured temperature values and applies a control signal to the solution throttle 5 based on the result of the subtraction. In particular, the ascertained temperature difference is compared with a predetermined desired value, similar to the method described above, with a particularly preferred range for this desired value ranging from 7 to 10 K in the presently described embodiment. If the determined temperature difference is greater than the predetermined desired value, the solution throttle 5 is closed; If the determined temperature difference is smaller than the predetermined desired value, the solution throttle 5 is opened. The control of the solution throttle 5 can moreover also by a measurement of the flow temperature, as described with reference to FIGS. 2 and 3 were influenced by the setpoint for the difference between the temperature T KVein of the evaporator 11 supplied refrigerant and the temperature T KVaus of the exiting the evaporator 11 refrigerant in dependence on the flow temperature T flow is varied. For example, the control can be designed so that the setpoint for said temperature difference at the evaporator at a flow temperature of 30 ° C, for example, 14 K, while this setpoint is lowered at a flow temperature of 50 ° C to eg 7 K.

Bei der in FIG. 6 skizzierten Variante der Lösungsdrosselregelung gemäß FIG. 5 wird die mittels des Temperaturfühlers 22 gemessene Temperatur TKVein des dem Verdampfer 11 zugeführten Kältemittels mit der mittels eines Temperaturfühlers 24 gemessenen Temperatur TMVein des dem Verdampfer 11 zugeführten Mediums (Sole, Wasser, Luft etc.) verglichen. Basierend auf diesem Vergleich liefert der Regler 26 in Abhängigkeit von einem vorgegebenen Sollwert ein Stellsignal an die Lösungsdrossel 5.In the in FIG. 6 sketched variant of the solution throttle control according to FIG. 5, the temperature T KVein measured by the temperature sensor 22 of the refrigerant supplied to the evaporator 11 is compared with the temperature T MV of the medium supplied to the evaporator 11 (brine, water, air, etc.) measured by means of a temperature sensor 24. Based on this comparison, the controller 26 delivers a control signal to the solution throttle 5 as a function of a predetermined desired value.

Eine weitere Variante der Lösungsdrosselregelung ist in FIG. 7 dargestellt, wobei hier mittels eines Druckaufnehmers 28 der Druck pKVaus des aus dem Nachkühler 10 austretenden Kältemittels sowie mittels eines Temperaturfühlers 24 die Temperatur TKVaus des aus dem Verdampfer 11 austretenden Kältemittels gemessen werden. Der gemessene Druckwert kann dann ähnlich wie es oben unter Bezugnahme auf die vorliegend eingesetzte Kondensatdrosselregelung beschrieben wurde, in einen Temperaturwert umgerechnet und durch Differenzbildung mit dem mittels des Temperaturfühlers 24 gemessenen Temperaturwert verglichen werden. Die so ermittelte Temperaturdifferenz wird dann mit einem vorgegebenen Sollwert verglichen, um ein Steuersignal für die Lösungsdrossel 5 zu erhalten. Die in FIG. 7 gezeigte Anordnung des Druckaufnehmers 28 und des Temperaturfühlers 24 könnte ferner dahingehend abgewandelt werden, daß beide Aufnehmer an im wesentlichen der gleichen Stelle des Prozeßablaufs angeordnet werden. Insbesondere könnten sowohl der Druckaufnehmer 28 als auch der Temperaturfühler 24 zwischen dem Nachkühler 10 und dem Mischer 46 oder aber zwischen dem Verdampfer 11 und dem Nachkühler 10 plaziert werden.Another variant of the solution throttle control is shown in FIG. 7, in which the pressure p KVaus of the refrigerant emerging from the aftercooler 10 and by means of a temperature sensor 24 are measured by means of a pressure sensor 28, the temperature T KVaus of emerging from the evaporator 11 refrigerant. The measured pressure value can then, as described above with reference to the presently used condensate throttle control, be converted into a temperature value and compared by subtraction with the temperature value measured by means of the temperature sensor 24. The thus determined temperature difference is then compared with a predetermined setpoint value to obtain a control signal for the solution throttle 5. The in FIG. 7 arrangement of the pressure transducer 28 and the temperature sensor 24 could be further modified in that both transducers are arranged at substantially the same point of the process flow. In particular, both the pressure sensor 28 and the temperature sensor 24 could be placed between the aftercooler 10 and the mixer 46 or between the evaporator 11 and the aftercooler 10.

FIG. 8 zeigt ein Ausführungsbeispiel der bei dem vorliegenden Absorptionswärmepumpenkonzept eingesetzten Lösungspumpenregelung. Wie unter Bezugnahme auf FIG. 1 erläutert wurde, wird die den Absorber 6 verlassende, an Kältemittel reiche Lösung nach Passieren des Lösungsvorratsbehälters 7 mittels einer Lösungspumpe 8 von dem Niederdruckniveau des Absorbers 6 auf ein Hochdruckniveau gepumpt und erneut dem Kocher 1 zugeführt. Bei dem in FIG. 8 dargestellten Ausführungsbeispiel der Lösungspumpenregelung wird mittels eines in dem Lösungsvorratsbehälter 7 angeordneten Schwimmers 29, vorteilhafterweise eines magnetinduktiven Schwimmers, der Füllstand des Lösungsvorratsbehälters 7 erfaßt und basierend auf dem gemessenen Füllstand die Drehzahl der Lösungspumpe 8 und somit der Lösungsmassenstrom dem Prozeß angepaßt.FIG. Figure 8 shows an embodiment of the solution pump control used in the present absorption heat pump concept. As with reference to FIG. 1, the solution rich in refrigerant leaving the absorber 6 after passing through the solution reservoir 7 is pumped by means of a solution pump 8 from the low pressure level of the absorber 6 to a high pressure level and supplied again to the digester 1. In the case of FIG. 8 illustrated embodiment of the solution pump control is detected by means of a arranged in the solution reservoir float 7 29, advantageously a magnetic inductive float, the level of the solution reservoir 7 and based on the measured level, the speed of the solution pump 8 and thus the solution mass flow adapted to the process.

Claims (34)

  1. Method for operating an adsorption heat pump in which
    (a) a coolant containing solution is heated within a boiler (1) by means of a burner (2) to expel coolant as coolant vapour;
    (b) the coolant vapour is condensed within a condenser (13) against a heating medium to provide heat to the heating medium;
    (c) the coolant is passed from the condenser to a vaporiser (11) in which it is vaporised against a medium, and subsequently is passed to at least one absorber (6);
    (d) coolant depleted solution is passed from the boiler via a heat exchanger (4) to the at least one absorber wherein the coolant-depleted solution is combined with coolant which has passed the vaporiser;
    (e) coolant-rich solution is pumped from the absorber to a high-pressure level by means of a solution pump (8) and again is provided to the boiler; and
    (f) the heating medium which has been warmed within the condenser (13) is provided to a user, and the heating medium, which has been cooled by the user is returned to the condenser;
    characterised in that
    (g) the ambient temperature and the temperature of the heating medium are measured, and the power output of the burner (2) is adjusted in dependency of the measured temperature values.
    (h) the amount of coolant provided to the vaporiser (11) is regulated (19);
    (i) the amount of coolant depleted solution which is provided to the at least one absorber (6) is regulated; and
    (j) the delivery of the solution pump (8) is regulated.
  2. Method as in claim 1, characterised in that the_ coolant leaving the condenser (13) is passed into indirect heat exchange with coolant leaving the vaporiser before it is passed to the vaporiser (11).
  3. Method as in claim 1 or 2, characterised in that the temperature (Treturn) of the heating medium is measured after having passed the user (return temperature)
  4. Method as in claim 3, characterised in that the return temperature (Treturn) repeatedly is measured and
    (g1) the measured value of the return temperature is compared to a set-point; and
    (g2) the burner output is throttled when the measured value of the return temperature approaches the set-point temperature of the return temperature.
  5. Method as in any one of claims 1 to 4, characterised in that the temperature (Tflow) of the heating medium passed from the condenser to the user is measured (flow temperature).
  6. Method as in claim 5, characterised in that the flow temperature (Tflow) is repeatedly measured and
    (g1) the measured value of the flow temperature is compared to a set-point; and
    (g2) the burner output is throttled when the measured value of the flow temperature approaches the set-point of the flow temperature.
  7. Method as in any one of the preceding claims, characterised in that the return temperature (Treturn) and the flow temperature (Tflow) are measured repeatedly and
    (g1) for each measurement the difference of the measured values of the flow temperature and the return temperature is formed; and
    (g2) the burner output is reduced when the difference of one measurement is smaller than that of a preceding measurement.
  8. Method as in any one of the preceding claims, characterised in that the ambient temperature (TA) repeatedly is measured and the burner output is increased when the ambient temperature decreases.
  9. Method as in any one of the preceding claims, characterised in that
    (h1) the pressure (pCCin) of the coolant vapour entering the condenser (13) and the temperature (Tflow) of the heating medium leaving the condenser are measured and
    (h2) the amount of coolant provided to the vaporiser (11) is adjusted in dependency of the measured pressure and temperature values (pCCin, Tflow).
  10. Method as in claim 9, characterised in that
    (h21) the measured pressure value (pCCin) is converted into a temperature value (TCCin), and using the thus calculated temperature value (in Kelvin) and the flow temperature (in Kelvin) a set-point A is calculated according to the following formula (I) A = T c c in T flow B
    Figure imgb0006
    wherein B has a value of between 0.5 and 10 K, preferably between 1 and 4 K; and
    (h22) the amount of coolant provided to the vaporiser (11) is increased when A is greater than zero; and
    (h23) the amount of coolant provided to the vaporiser (11) is reduced when A is less than zero.
  11. Method as in any one of claims 1 to 8, characterised in that
    (h1) the temperature (TCCout) of the coolant leaving the condenser (13) and the temperature (Tflow) of the heating medium leaving the condenser are measured; and
    (h2) the throttle (12) is adjusted in dependency of the measured temperature values (Tccout, Tflow).
  12. Method as in claim 11, characterised in that
    (h21) the difference of the measured temperature values is compared with a set-point D in accordance with the following formula (II) C = ( T flow T C C out ) D
    Figure imgb0007
    to obtain a set-point C, wherein D has a value of between 1 and 10 K, preferably between 2 and 5 K; and
    (h22) the amount of coolant provided to the vaporiser (11) is increased when C is greater than zero; and
    (h23) the amount of coolant provided to the vaporiser (11) is reduced when C is less than zero.
  13. Method as in any one of claims 1 to 8, characterised in that
    (h1) the temperature (TCCout) of the coolant leaving the condenser and the temperature (THCin) of the heating medium entering the condenser (13) are measured; and
    (h2) the throttle (12) is adjusted in dependency of the measured temperature values (Tccout, THCin).
  14. Method as in claim 13, characterised in that
    (h21) the difference of the measured temperature (TCCout) of the coolant leaving the condenser and the temperature (THCin) of the heating medium entering the condenser (13) is calculated; and
    (h22) the throttle (12) is adjusted in dependency of the calculated difference.
  15. Method as in claim 14, characterised in that the said measuring and calculating operations are repeatedly conducted, and the open area of the throttle (12) is reduced when the temperature difference increases, and is increased, respectively, when the temperature difference decreases.
  16. Method as in any one of the preceding claims, characterised in that
    (i1) the temperature (TCVin) of the coolant provided to the vaporiser (11) and the temperature (TCVout) of the coolant leaving the vaporiser (11) are measured; and
    (i2) the amount of coolant depleted solution provided to the at least one absorber (6) is adjusted in dependency of the measured temperature values (TCVin, TCVout).
  17. Method as in claim 16, characterised in that
    (i21) the difference of the measured temperatures (TCVin, TCVout) is compared with a set-point F in accordance with the following formula (III) E = ( T C V in T C V out ) F
    Figure imgb0008
    in order to obtain a set-point E; and
    (i22) the amount of coolant depleted solution provided to the at least one absorber (6) is increased when E is greater than zero; and
    (123) the amount of coolant depleted solution provided to the at least one absorber (6) is reduced when E is less than zero;
  18. Method as in any one of claims 1 to 15, characterised in that
    (i1) the temperature (TCVin) of the coolant provided to the vaporiser (11) as well as the temperature (TMVin) of the medium provided the vaporiser (11) are measured; and
    (i2) the amount of coolant depleted solution provided to the at least one absorber (6) is adjusted in dependency of the measured temperature values (TCVin, TMVin).
  19. Method as in claim 18, characterised in that
    (i21) the difference of the measured temperature values (TCVin, TMVin) is compared with a set-point H in accordance with the following formula (IV): G = ( T M V in T C V in ) H
    Figure imgb0009
    to obtain a set-point G; and
    (i22) the amount of coolant depleted solution provided to the at least one absorber (6) is increased when G is greater than zero; and
    (i23) the amount of coolant depleted solution provided to the at least one absorber (6) is reduced when G is less than zero.
  20. Method as in any one of claims 1 to 15, characterised in that
    (i1) the pressure (pCVout) of the coolant leaving the vaporiser (11) as well as the temperature (Tcvout) of the coolant leaving the vaporiser (11) are measured, and
    (i2) the amount of the coolant-depleted solution provided to the at least one absorber (6) is adjusted in dependency of the measured pressure and temperature values (pCVout, TCVout).)
  21. Method as in claim 20, characterised in that
    (j21) the measured pressure value (pCVout) is converted into a temperature value Tvaporisation, and using the thus calculated temperature value (in Kelvin) and the temperature (TCVout) of the coolant leaving the vaporiser (11) a set-point L is calculated in accordance with the following formula (V) L = T vaporisation T C V out M
    Figure imgb0010
    wherein M preferably has a value of between 4 and 15 K; and
    (j22) the amount of coolant-depleted solution provided to the at least one absorber (6) is increased when L is less than zero; and
    (j23) the amount of coolant-depleted solution provided to the at least one absorber (6) is decreased when L is greater than zero.
  22. Method as in any one of the preceding claims, characterised in that
    (j1) the coolant-rich solution coming from the absorber is passed through a solution storage vessel (7),
    (j2) the liquid level within the solution storage vessel is measured, and
    (j3) the discharge flow of the solution pump (8) is adjusted in dependency of the measured liquid level.
  23. Adsorption heat pump comprising
    (a) a boiler (1) for reception of a coolant-containing solution;
    (b) a burner (2) for providing heat to the boiler (1) to produce coolant vapour;
    (c) a condenser (13);
    (d) conduit means (30) for passage of the coolant vapour from the boiler to the condenser;
    (e) conduit means (32, 36) for passage of a heating medium which has been warmed within the condenser by means of condensing coolant vapour from the condenser to a user (34) as well as for returning of heating medium which has been cooled by the user to the condenser;
    (f) a vaporiser (11) for vaporisation of the coolant against a medium;
    (g) a throttle (12) and conduit means (40) for passage of coolant from the condenser (13) to the throttle (12) and from the throttle to the vaporiser (11);
    (h) at least one absorber (6) as well as conduit means for passage of coolant from the vaporiser to the absorber;
    (i) conduit means (48, 38) for passage of solution which has been depleted in coolant within the boiler to the at least one absorber; and
    (j) a solution pump (8) to pressurise coolant-rich solution which has been withdrawn from the absorber to a high-pressure level as well as conduit means for passage of the coolant-rich solution under high pressure to the boiler;
    characterised by
    (k) a first regulation means comprising an ambient sensor (14) arranged outdoors to measure the ambient temperature, at least one sensor (15, 16) for the heating medium for measuring the temperature of the heating medium, as well as a first regulator (17) for regulating the power output of the burner (2) in dependency of the measured temperature values;
    (l) a second regulation means (16, 18, 19, 20, 21) for regulating the amount of coolant provided to the vaporiser (11);
    (m) a third regulation means (22, 23, 24, 26, 28) for regulation of the amount of coolant-depleted solution passed to the absorber (6);
    (n) a fourth regulation means (27, 28) for regulation of the delivery of the solution pump (8).
  24. Absorption heat pump as in claim 23, characterised by an after-cooler (10) in which coolant leaving the condenser (13) is passed into indirect heat exchange with coolant leaving the vaporiser (11) before being passed to the vaporiser (11).
  25. Absorption heat pump as in claim 23 or 24, characterised in that the first regulation means comprises a return sensor (15) arranged between the user (34) and the condenser (13) for measuring the temperature (Tretum) of the heating medium after it has passed the user.
  26. Absorption heat pump as in any one of claims 23 to 25, characterised in that the first regulation means comprises a flow sensor (34) arranged between the condenser (13) and the user (16) for measuring the temperature (Tflow) of the heating medium passed from the condenser to the user.
  27. Absorption heat pump as in any one of claims 23 to 26, characterised in that the second regulation means comprises a temperature sensor (16) to measure the temperature (Tflow) of the heating medium leaving the condenser (13), a pressure sensor (18) to measure the pressure (pCCin) of the coolant vapour entering the condenser (13), as well as regulator (19) to adjust the amount of coolant provided to the vaporiser (11) in dependency of the measured pressure and temperature values (pCCin, Tflow).
  28. Absorption heat pump as in any one of claims 23 to 26, characterised in that the second regulation means comprises a first temperature sensor (16) to measure the temperature (Tflow) of the heating medium leaving the condenser (13), a second temperature sensor (20) to measure the temperature (TCCout) of the coolant leaving the condenser as well as a regulator (19) to adjust the amount of coolant provided to the vaporiser (11) in dependency of the measured temperature values (Tflow, TCCout).
  29. Absorption heat pump as in any one of claims 23 to 26, characterised in that the second regulation means comprises a first temperature sensor (20) to measure the temperature (TCCout) of the coolant leaving the condenser (13), a second temperature sensor (21) to measure the temperature (THCin) of the heating medium entering the condenser, as well as a regulator (19) to adjust the amount of coolant provided to the vaporiser (11) in dependency of the measured temperature values (TCCout, THCin).
  30. Absorption heat pump as in any one of claims 23 to 26, characterised in that the third regulation means comprises a first temperature sensor (22) to measure the temperature (TCVin) of the coolant provided to the vaporiser (11), a second temperature sensor (23) to measure the temperature (TCVout) of the coolant leaving the vaporiser, as well as a regulator (26) to adjust the amount of the coolant-depleted solution provided to the at least one absorber (6) in dependency of the measured temperature values (TCVin, TCVout).
  31. Absorption heat pump as in any one of claims 23 to 26, characterised in that the third regulation means comprises a first temperature sensor (22) to measure the temperature (TCVin) of the coolant provided to the vaporiser (11), a second temperature sensor (24) to measure the temperature (TMVin) of the medium provided to the vaporiser, as well as a regulator (26) to adjust the amount of coolant-depleted solution provided to the at least one absorber (6) in dependency of the measured temperature values (TCVin, TMVin).
  32. Absorption heat pump as in any one of claims 24 to 27, characterised in that the third regulation means comprises a pressure sensor (28) to measure the pressure (pCVout) of the coolant leaving the vaporiser (11), a temperature sensor (24) to measure the temperature (TCVout) of the coolant leaving the vaporiser, as well as a regulator (26) to adjust the amount of coolant-depleted solution provided to the at least one absorber (6) in dependency of the measured pressure and temperature values.
  33. Absorption heat pump as in any one of claims 23 to 26, characterised in that the fourth regulation means comprises
    a vessel (7) having a level measuring arrangement (29) for determining the level of a liquid provided into the vessel,
    conduit means for passage of coolant-rich solution withdrawn from the absorber (6) to the vessel (7); and
    a regulator (27) to adjust the delivery of the solution pump (8) in dependency of the measured liquid level.
  34. Absorption heat pump as in claim 23, characterised in that the level measurement arrangement (29) comprises an inductive floater.
EP00104384A 1999-04-14 2000-03-02 Absorption heat pump and method for operating an absorption heat pump Expired - Lifetime EP1045214B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19916907A DE19916907C2 (en) 1999-04-14 1999-04-14 Absorption heat pump and method for operating an absorption heat pump
DE19916907 1999-04-14

Publications (3)

Publication Number Publication Date
EP1045214A2 EP1045214A2 (en) 2000-10-18
EP1045214A3 EP1045214A3 (en) 2002-08-21
EP1045214B1 true EP1045214B1 (en) 2006-05-24

Family

ID=7904576

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00104384A Expired - Lifetime EP1045214B1 (en) 1999-04-14 2000-03-02 Absorption heat pump and method for operating an absorption heat pump

Country Status (4)

Country Link
US (1) US6332328B1 (en)
EP (1) EP1045214B1 (en)
AT (1) ATE327486T1 (en)
DE (2) DE19916907C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471282A (en) * 2013-04-03 2013-12-25 李华玉 Branch-cycle first-class absorption heat pump
CN103940142A (en) * 2013-04-03 2014-07-23 李华玉 Branch circulation first-kind absorption heat pump

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10014123A1 (en) * 2000-03-22 2001-10-04 Buderus Heiztechnik Gmbh Regulating diffusion absorption system involves regulating heat pump power depending on boiler temperature measured preferably at measurement point in upper region of cooker pipe
DE10154032B4 (en) * 2001-11-02 2005-06-23 Bbt Thermotechnik Gmbh Diffusion absorption plant
DE10161181B4 (en) * 2001-12-13 2004-03-18 Buderus Heiztechnik Gmbh Process for controlling a diffusion absorption system
US6735963B2 (en) 2002-04-16 2004-05-18 Rocky Research Aqua-ammonia absorption system with variable speed burner
US6748752B2 (en) 2002-04-16 2004-06-15 Rocky Research Apparatus and method for weak liquor flow control in aqua-ammonia absorption cycles
US20160252285A1 (en) * 2013-10-06 2016-09-01 Tranquility Group Pty Ltd System and apparatus for electronic control of an absorption refrigeration system
CN105019954B (en) * 2014-05-28 2018-11-06 李华玉 Combined cycle energy supplying system
CN104929704B (en) * 2014-05-28 2018-11-06 李华玉 Combined cycle energy supplying system
CN104963733B (en) * 2014-05-28 2018-11-06 李华玉 Combined cycle energy supplying system
CN104989472B (en) * 2014-05-28 2018-11-06 李华玉 Combined cycle energy supplying system
US9982931B2 (en) * 2015-04-28 2018-05-29 Rocky Research Systems and methods for controlling refrigeration cycles of sorption reactors based on recuperation time
GB2547456B (en) * 2016-02-18 2018-09-19 Chilltechnologies Ltd An absorption chiller
CA3022133C (en) * 2016-05-11 2022-06-14 Stone Mountain Technologies, Inc. Sorption heat pump and control method
JP6733031B2 (en) 2016-07-13 2020-07-29 ストーン・マウンテン・テクノロジーズ,インコーポレーテッド Electronic expansion valve with multiple orifice plates
EP3285025B1 (en) * 2016-08-18 2019-07-03 Andreas Bangheri Absorption heat pump and method for operating an absorption pump
DE102020117462B4 (en) 2020-07-02 2023-12-28 E-Sorp Innovation Gmbh Method for operating an absorption heat pump

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3837174A (en) * 1973-03-16 1974-09-24 Sanyo Electric Co Control device for an absorption system hot and cold water supply apparatus
DE2854055A1 (en) * 1978-12-14 1980-07-03 Linde Ag Heat transfer medium in absorption heating system - stops supply of refrigerating medium to absorber below set temp.
FR2509443A1 (en) * 1981-07-11 1983-01-14 Volkswagenwerk Ag HEAT PUMP ASSEMBLY WITH PARALLEL BIVALENT OPERATION COMPRISING A BURNER THAT PRODUCES FUMES
DE3207435A1 (en) * 1982-02-06 1983-09-08 Joh. Vaillant Gmbh U. Co, 5630 Remscheid Control and regulating device for a suction heat pump
US4596122A (en) * 1982-09-30 1986-06-24 Joh. Vaillant Gmbh Sorption heat pump
DE3518276C1 (en) * 1985-05-22 1991-06-27 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Process for operating a heat pump system and suitable heat pump system for carrying out this process
JPS6454179A (en) * 1987-08-26 1989-03-01 Sanyo Electric Co Absorption water chiller and heater
DE4006742A1 (en) * 1990-03-03 1991-09-05 Messerschmitt Boelkow Blohm Stirling engine heating and electric current generating plant - includes hydrocarbon-field boiler, heat exchangers as well as alternator driven by engine
JP2575970B2 (en) * 1991-04-10 1997-01-29 株式会社日立製作所 Absorption chiller / heater and individual decentralized air conditioning system
CN1100974C (en) * 1993-12-27 2003-02-05 达金工业株式会社 Absorption refrigerator
JPH0960999A (en) * 1995-08-22 1997-03-04 Tokyo Gas Co Ltd Double effect absorption chiller / heater
EP0762064A1 (en) * 1995-09-08 1997-03-12 Fritz Ing. Weider Refrigerant flow control for a heat pump and method
US5916251A (en) * 1997-10-29 1999-06-29 Gas Research Institute Steam flow regulation in an absorption chiller

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471282A (en) * 2013-04-03 2013-12-25 李华玉 Branch-cycle first-class absorption heat pump
CN103471281A (en) * 2013-04-03 2013-12-25 李华玉 Branch-cycle first-class absorption heat pump
CN103940142A (en) * 2013-04-03 2014-07-23 李华玉 Branch circulation first-kind absorption heat pump
WO2014161367A1 (en) * 2013-04-03 2014-10-09 Li Huayu Shunt-circulation first-type absorption heat pump
WO2014161368A1 (en) * 2013-04-03 2014-10-09 Li Huayu Shunt-circulation first-type absorption heat pump
CN103471281B (en) * 2013-04-03 2015-11-25 李华玉 Branch-cycle first-class absorption type heat pump
CN103471282B (en) * 2013-04-03 2015-11-25 李华玉 Branch-cycle first-class absorption type heat pump
CN103940142B (en) * 2013-04-03 2016-08-17 李华玉 Branch-cycle first-class absorption type heat pump

Also Published As

Publication number Publication date
DE50012799D1 (en) 2006-06-29
ATE327486T1 (en) 2006-06-15
DE19916907C2 (en) 2002-12-05
US6332328B1 (en) 2001-12-25
EP1045214A2 (en) 2000-10-18
EP1045214A3 (en) 2002-08-21
DE19916907A1 (en) 2000-10-26

Similar Documents

Publication Publication Date Title
EP1045214B1 (en) Absorption heat pump and method for operating an absorption heat pump
DE4434831C2 (en) Combined power generation plant
DE68908181T2 (en) METHOD FOR OPERATING A COLD STEAM PROCESS UNDER TRANS- OR SUPER-CRITICAL CONDITIONS.
DE69118924T2 (en) HIGH PRESSURE CONTROL IN A TRANSCRITICAL VAPOR COMPRESSION CIRCUIT
DE2754626C2 (en) Refrigeration system operating with an energy source at a relatively low temperature, in particular solar energy
DE69627480T2 (en) TURBINE CIRCUIT WITH PREHEATED INJECTION
DE3012308A1 (en) CONTROL SYSTEM FOR AN ABSORPTION REFRIGERATOR, ABSORPTION REFRIGERATOR AND METHOD FOR THE OPERATION THEREOF
DE3229779C2 (en)
DE102004008410A1 (en) Refrigerant cycle system
EP0741270A2 (en) Method of operating an absorption refrigeration apparatus and the absorption refrigeration apparatus
DE60311974T2 (en) METHOD AND DEVICE FOR OPERATIONAL CONTROL OF THE WEAK SOLUTION IN AMMONIA / WATER ABSORPTION CIRCUITS
EP0866291B1 (en) Compression heat pump or compression cooling machine and control method therefor
EP0038990B1 (en) Method of regulating a heating unit comprising an absorption heat pump
DE102020117462B4 (en) Method for operating an absorption heat pump
EP1620684B1 (en) Method for control of a carnot cycle process and plant for carrying out the same
DE10005604B4 (en) Absorption heat pump and method for operating an absorption heat pump
DE3207243A1 (en) Method for regulating a sorption heat pump
DE2702489C2 (en) Method and device for automatically optimizing the operating point of a heat pump
EP2063201B1 (en) Method of operating a refrigeration system
DE2717050A1 (en) COMPRESSOR REFRIGERATION SYSTEMS
DE102011014907B4 (en) Method for controlling a solar circuit
WO2003106900A1 (en) Method for control of a carnot cycle process and plant for carrying out the same
DE3140003A1 (en) Process for operating a heating installation
DE102020123960B4 (en) Method for operating a heat pump and heat pump
WO1982003266A1 (en) Method of controlling a sorption heat pump

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELIOTHERM SOLARTECHNIK GES.M.B.H

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7F 25B 49/04 A, 7F 25B 30/04 B, 7F 25B 15/00 B

17P Request for examination filed

Effective date: 20030218

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELIOTHERM WAERMEPUMPENTECHNIK GES.M.B.H.

17Q First examination report despatched

Effective date: 20040601

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060524

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50012799

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060824

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060904

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061024

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: HELIOPLUS ENERGY SYSTEMS GMBH; LANGKAMPFEN (AT)

Free format text: FORMER OWNER: HELIOTHERM WAERMEPUMPENTECHNIK GES.M.B.H.; MITTERWEG 15; 6336 LANGKAMPFEN (AT)

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLS Nl: assignments of ep-patents

Owner name: HELIOPLUS ENERGY SYSTEMS GMBH

Effective date: 20070207

26N No opposition filed

Effective date: 20070227

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

BERE Be: lapsed

Owner name: HELIOTHERM WARMEPUMPENTECHNIK GES.M.B.H.

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060524

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190322

Year of fee payment: 20

Ref country code: DE

Payment date: 20190331

Year of fee payment: 20

Ref country code: FR

Payment date: 20190322

Year of fee payment: 20

Ref country code: GB

Payment date: 20190322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190328

Year of fee payment: 20

Ref country code: NL

Payment date: 20190322

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190329

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50012799

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 327486

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200301

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20200301