EP1043491A1 - Process and device for generating and transferring mechanical energy from a Stirling engine to an energy consuming element - Google Patents

Process and device for generating and transferring mechanical energy from a Stirling engine to an energy consuming element Download PDF

Info

Publication number
EP1043491A1
EP1043491A1 EP99810286A EP99810286A EP1043491A1 EP 1043491 A1 EP1043491 A1 EP 1043491A1 EP 99810286 A EP99810286 A EP 99810286A EP 99810286 A EP99810286 A EP 99810286A EP 1043491 A1 EP1043491 A1 EP 1043491A1
Authority
EP
European Patent Office
Prior art keywords
piston
energy
resonator
hot
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99810286A
Other languages
German (de)
French (fr)
Inventor
Jean-Pierre Budliger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to EP99810286A priority Critical patent/EP1043491A1/en
Priority to EP00912325A priority patent/EP1165955B1/en
Priority to DE60021863T priority patent/DE60021863T2/en
Priority to PCT/CH2000/000199 priority patent/WO2000061936A1/en
Priority to AT00912325T priority patent/ATE301773T1/en
Publication of EP1043491A1 publication Critical patent/EP1043491A1/en
Priority to US09/972,263 priority patent/US6510689B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/40Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders with free displacers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/52Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/54Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes thermo-acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/45Piston rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2280/00Output delivery
    • F02G2280/10Linear generators

Definitions

  • the present invention relates to a method for generate and transmit mechanical energy from a piston transfer of a Stirling engine to a consumer body energy, the transfer piston being mounted in a cylinder, that gas is periodically moved between a hot room and a cold room at the ends respective of this cylinder by passing it through a hot exchanger connected to a hot source, a regenerator and a cold exchanger connected to a cold source and we exercise an elastic restoring force on this transfer piston.
  • This invention also relates to a device for the implementation of this process.
  • the object of the present invention is to remedy the less in part to the aforementioned drawbacks.
  • this invention firstly relates to a process for producing and transmitting mechanical energy a transfer piston from a Stirling engine to an organ energy consumer as defined in claim 1.
  • the subject of this invention is also a device for the implementation of this method, according to claim 9.
  • the device illustrated in FIG. 1 comprises an elongated casing 1 formed by two cylindrical compartments 2, 3, assembled on an intermediate element 4, playing the role of frame.
  • the cylindrical compartment 2 comprises a cylindrical housing 5, constituting a working volume, in which a transfer piston 6 is mounted free to move in the longitudinal axis of the cylindrical housing 5.
  • the volume located between the piston 6 and the outer end of the housing 5 is that which is in contact with a hot exchanger 7 connected to a hot source (not shown) and constitutes the hot chamber or expansion volume V E of the Stirling engine, while at the at the other end of this cylindrical housing 5, there is a volume in contact with a cold exchanger 8 connected to a cold source (not shown), which constitutes the cold room or compression volume V C of the Stirling engine.
  • a regenerator 9 is placed between the hot 7 and cold 8 exchangers.
  • the end of the piston 6 adjacent to the cold room V C comprises a piston rod 6a, engaged in a closed volume 10 filled with gas and which constitutes an elastic return member of the transfer piston 6.
  • the cylindrical compartment 3 contains a volume in which a moving element of an alternator, in this example, inductor 11 consisting of a cylindrical element carrying permanent magnets, is attached to the periphery of a annular member 12, the internal edge of which is integral with a elastic suspension member 14, constituted by springs annular plates, the peripheral edges of which are fixed to the frame 4 and whose internal edges are integral a rod 17, one end of which is fixed to the rod 6a of the piston 6.
  • the internal edge of a second suspension member elastic 15 similar to member 14, is attached to the other end of rod 17, while its periphery is fixed to a support 13 secured to the frame 4.
  • the armature of the alternator is formed by windings 16.
  • Rods 6a and 17 cross the bottom of the closed volume 10 formed in the intermediate element 4 with a clearance included between 30 and 50 ⁇ m. Such a game is perfectly acceptable both in terms of manufacturing tolerances and the influence of gas leaks on energy efficiency and on the restoring force of the compressed gas in the volume closed 10.
  • This resonator has the role of replacing the second piston, which according to the process which is the subject of the invention, no longer serves to produce energy, all the energy being produced by the transfer piston 6, as will be explained below. -afterwards, but serves to amplify the pressure wave and to ensure an appropriate phase shift between the displacement of the transfer piston 6 and the pressure variations p in the working volume.
  • this tubular resonator 18 advantageously ends in a volume of Helmholtz 19.
  • the part of this resonator which is in the Helmholtz volume ends with a flare 18a.
  • the transfer piston 6 then plays the double role of transferring the gas between the hot room V E and the cold room V C and of producing all the driving energy transmitted to the inductor 11, provided that certain conditions, including let's go talk now, be met.
  • Figure 5 shows the variation of the X position of the piston 6 and the variation of pressure as a function of time (or angle ⁇ ). This representation corresponds schematically to that of figure 4.
  • the pressure decreases, gas is largely in the chamber hot or relaxing; when it increases, the gas is found mainly in the cold or compression room.
  • the displacement X of the piston 6 precedes the pressure variation p.
  • Figure 6 shows the variation in the amount of WG gas in Stirling working volume and pressure p in this volume.
  • FIG. 4 shows that p X must be opposite to X. If p X becomes zero, or oriented in the direction of X, no energy is transmitted to the tubular resonator 18 to compensate for the losses by friction. Therefore, the pressure wave cannot be maintained and the machine stops working.
  • the ratio of the sections a P / a must be between 0.4 and 0.6, preferably between 0.45 and 0.55.
  • FIG. 7 gives an example of the efficiency of the cycle ⁇ C calculated as a function of the work provided by cycle E, with the wall temperature T H of the hot chamber V E and the amplitude X of the piston 6 as a parameter.
  • the temperature of the cold exchanger T is equal to 50 ° C.
  • the net efficiency of the engine can be obtained by multiplying the efficiency of the cycle by the efficiency of the heating means and that of the alternator.
  • the engine should always operate at hot chamber temperatures between 600 ° and 700 ° C.
  • the temperature T H of the hot chamber V E mainly influences the power, to a lesser extent the efficiency. But by lowering the temperature to 400-500 ° C, the efficiency and power decrease sharply, mainly because, under these conditions, the pressure variation p X induced by the movement of the piston becomes small and finally disappears completely.
  • the lateral rigidity of the mechanical suspension of the piston 6 is ensured by flat springs 14, 15 of the type described in “Recent developments in cryocoolers” Ray Radebaugh 19 TH International Congress of Réfrigeration 1995 Proceedings Volume IIIb, allows it to oscillate perfectly along the longitudinal axis of the cylindrical housing 5, so that the pneumatic bearings to center it are not necessary.
  • the piston 6 can be centered with great precision. Due to the pneumatic suspension of this piston 6 and therefore the low forces required for the elastic suspension elements constituted by the annular flat springs 14 and 15, the amplitude of the piston 6 can be increased from 25% to 50% by relation to the device described in “Free-piston Stirling design features” Neill W. Lane et al. 8 TH International Stirling Engine Conference and Exhibition May 27-30, 1997 Ancona. This increase in amplitude leading to an increase in linear speeds, makes it possible to reduce the dimensions of the alternator. Under unchanged operating conditions, similar amounts of energy can be reached.
  • the rigidity of the suspension of the piston 6 and by Therefore, the phase angle can be adjusted by adjusting gas pressure in the working volume of the Stirling.
  • the natural frequency of tubular resonator 18 can be adjusted by varying the composition of the gas, i.e. its molecular weight.
  • the engine is then started by first bringing the temperature of the gas in the hot chamber V E to a value T H at which the pressure of the working gas becomes independent of the position of the piston.
  • the engine load is thus reduced to a minimum (losses by internal friction of the engine and by periodic flow through the exchangers and the regenerator).
  • the temperature T H will be adjusted to the optimum working temperature.
  • Power control is very easy.
  • the amplitude of the piston 6 and therefore the power of the engine is adjusted, by adjusting the braking force exerted by the alternator to a determined value.
  • the output power varies in proportion to the amplitude of the piston 6.
  • the heating power of the burner (not shown) intended to heat the gas in the chamber hot V E is continuously adjusted to maintain the desired temperature T H in this hot or expansion chamber V E.
  • the amplitude of the piston can therefore be precisely controlled. It is therefore not necessary to provide additional dead volume to avoid shocks in the event of accidental overshoot of the piston. It is only necessary to prevent the piston from exceeding a maximum amplitude in the event of a breakdown in the electrical network with which the alternator is associated.
  • the natural frequency of the tubular resonator 18 only depends on the average temperature of the working gas therein. This temperature can be precisely adjusted to the desired value by means of an additional heat exchanger 20 arranged in the Helmholtz volume 19 and by controlling the thermal energy extracted. This allows the phase angle of the resonator to be adjusted relative to the other variables of the system.
  • the heat extraction from the tubular resonator 18 makes it possible to reduce the cooling of the gas located in the cold room V C , which makes it possible to simplify the cold exchanger of the Stirling engine. Its dead volume and / or its losses by pneumatic friction can be reduced, bringing an additional advantage to the device which is the subject of the present invention.
  • the working gas pressure in the Stirling volume varies cyclically depending on the oscillation of the pressure wave in the tubular resonator 18.
  • the parameters of the tubular resonator 18, an example of which follows, must be adjusted to those of the Stirling process to ensure that these components interact properly, that is to say that the wave is driven by the cycle Stirling and that the resulting pressure variations maintain the periodicity of the Stirling cycle.
  • the tubular resonator 18 can have a total length including the Helmholtz volume 19, of approximately 1.6 m, and a temperature T of 40 ° C.
  • the average pressure p 0 of the gas is 4 MPa and the resonant frequency of this resonator is 50 Hz.
  • a gas heavier than helium is advantageously used, such as a mixture of helium and argon or carbon dioxide with a molecular mass M of the gas of 14 kg / kmol.
  • the minimum section S min of the tubular resonator 18 is, in this example, 4.75 cm 2 .
  • the volume of gas V S of the Stirling 2 engine is 1000 cm 3
  • that of the volume of Helmholtz 19 is 6000 cm 3 .
  • the tubular resonator can be extended inside the Helmholtz volume 19. Given that this portion of the tube is only exposed to limited pressure differences, wall may be thin and can thus easily be put in conical form 18a preventing the formation of steep front pressure waves.
  • FIG. 8 An example of sectional distribution along the tube 18 of the resonator is represented on the diagram of the figure 8.
  • the left end of the diagram corresponds to the end of tube 18 in communication with the Stirling compartment 2, while the right end corresponds to that which communicates with the volume Helmholtz 19.
  • the diagram in Figure 9 shows nine values to regular intervals of the gas flow velocity in the tube 18, related to the speed of sound (therefore to the number of Mach) depending on the position in the tube 18 during a cycle, while the diagram in Figure 10 shows the distribution of gas pressure relative to pressure average during the same cycle.
  • the pressure diagram clearly shows that with a appropriate sizing of the tube, no shock occurs at the resonance conditions of the tube 18.
  • the pressure in the Stirling 2 volume varies sinusoidally.
  • the pressure and speed are orthogonal functions, that is to say that if the pressure takes an extreme value, the gas speed is null and vice versa.
  • the range indicated takes account of the fact that, on the one hand, the coefficient of friction of the gas in unsteady state can differ from that of an established regime, on the other hand that the roughness of the tubes is known only approximately.
  • the volumes of gas displaced are of the order of a hundred cm 3 .
  • the cylindrical parts of the tube typically have diameters of 2.5 to 4cm. It can easily be curved or rolled up so that the entire device occupies as small a volume as possible.
  • the device illustrated in FIG. 3 can have a height of 90cm, a width of 60cm and a depth of 40cm.
  • FIG. 11 Such a variant is illustrated by FIG. 11 in which we find the end of the free piston 6a 'and that of the resonance tube 18' communicating with the cold room or compression volume V C.
  • a rod 21 is slidably mounted in a cylindrical guide 22 by linear bearings 31.
  • a connecting rod 23 is articulated by one end to the rod 21 and by its other end, to a crankshaft 24 integral with the axis of a rotary electric generator for example, mounted in an enclosure 25.
  • the tubular resonator 18 can be constituted by two identical tubular elements arranged in opposition diametral with respect to said transfer piston 6, of so as to balance the lateral forces exerted on this piston 6.
  • the tubular resonator 18 can be connected to the expansion volume V E or hot compartment of the Stirling engine, provided that the whole of this tube is kept warm and does not constitute a heat sink.
  • FIG. 12 illustrates a variant in which the Helmhotz volume 19 is placed in a heating enclosure 26, heated by gaseous, liquid or solid fuels, while the tube 18 is surrounded by thermal insulation 27. It is thus possible to increase the temperature of the working gas contained in the tubular resonator 18 above the temperature T H of this gas in the expansion volume V E. The tubular resonator 18, 19 can then partially or entirely replace the hot exchanger 7 of the Stirling engine.
  • the tubular resonator 18, 19 has a considerable exchange surface and thanks to the periodic flow which is established therein, the internal heat transfer is favorable. Due to the standing wave regime which is established in this resonator, its internal volume is not part of the dead volume of the Stirling engine.
  • FIG. 13 shows a configuration in which the tubular resonator 18 is integrated in a high temperature solar collector.
  • the tube 18 of the resonator is put in the form of a helix, placed inside a cylindrical or conical cavity 28.
  • One end of this tubular resonator 18 opens in a volume of Helmholtz 19, while that the other end communicates with the expansion volume V E of the Stirling engine, of which the transfer piston 6 and the regenerator 9 have been shown.
  • FIG. 14 very schematically illustrates the combination of four Stirling engines of which it has been shown that the respective compression volumes V CA , V CB , V CC , V CD , alternatively the respective expansion volumes V EA , V EB , V EC , V ED , connected by four tubular resonators T 1 , T 2 , T 3 and T 4 .
  • the whole forms a closed loop, each volume V being connected to two other neighboring volumes, the whole forming a square of which the resonance tubes T 1 to T 4 constitute the sides, the volumes V CA to V CD , alternately V EA to V ED being arranged at the corners.
  • This configuration makes it possible to increase the thermal power by associating machines with each other according to a modular design.
  • the section variations given to the tubes T 1 to T 4 also make it possible to balance the dynamic forces of the movement of the working gas in these tubes.
  • FIG. 15 simply shows two pairs of motors whose compression volumes V CA , V CB , respectively V CC , V CD , alternatively the expansion volumes V EA , V EB , respectively V EC , V ED , are connected by two tubular resonators T 1 , respectively T 2 , while the compression volumes V CA and V CC on the one hand, and the compression volumes V CB and V CD , on the other hand, alternately the expansion volumes V EA and V EC on the one hand and the expansion volumes V EB and V ED , on the other hand, are connected to each other by connecting tubes T C1 and T C2 whose role is to ensure that the pressures of the compression volumes, alternately of expansion, thus connected are the same since the motors arranged diagonally are in phase.
  • FIG. 16 shows two Stirling engines illustrated by their only compression volumes V CI , V CII , alternatively their expansion volumes V EI , V EII connected by a tubular resonator 18.
  • FIG. 17 shows the heating of a tubular resonator 18 connecting two Stirling engines as illustrated by FIGS. 14 to 16, arranged in a heating enclosure 26.
  • the respective ends of the tube 18 of this resonator communicate with the expansion volumes V EI , V EII of two Stirling engines.
  • V EI , V EII expansion volumes
  • the tube 18 of the resonator common to these two motors also constitutes a heating element common to these two motors. It would also be possible to use several resonance tubes 18 in parallel in order to increase the exchange surface and improve the heat transfer.

Abstract

The method of power transmission from a Stirling engine has a drive piston (6) in a cylinder. The piston rod (6A) has a sect (AP) with a ratio to that of the piston which produces a total transmission to an output (11). A pneumatic resonator (18) is connected to the hot (Ve) and cold (Vc) chambers and adjusted so that the pressure wave is de-phased with respect to the transfe piston.

Description

La présente invention se rapporte à un procédé pour générer et transmettre une énergie mécanique d'un piston de transfert d'un moteur Stirling à un organe consommateur d'énergie, le piston de transfert étant monté dans un cylindre, selon lequel on déplace périodiquement du gaz entre une chambre chaude et une chambre froide ménagées aux extrémités respectives de ce cylindre en le faisant passer à travers un échangeur chaud relié à une source chaude, un régénérateur et un échangeur froid relié à une source froide et on exerce une force élastique de rappel sur ce piston de transfert. Cette invention se rapporte également à un dispositif pour la mise en oeuvre de ce procédé.The present invention relates to a method for generate and transmit mechanical energy from a piston transfer of a Stirling engine to a consumer body energy, the transfer piston being mounted in a cylinder, that gas is periodically moved between a hot room and a cold room at the ends respective of this cylinder by passing it through a hot exchanger connected to a hot source, a regenerator and a cold exchanger connected to a cold source and we exercise an elastic restoring force on this transfer piston. This invention also relates to a device for the implementation of this process.

Les moteurs Stirling à piston libre ont été considérés depuis longtemps comme une solution idéale pour des unités de couplage chaleur-force servant à la production d'énergie thermique et mécanique pour des habitations. La possibilité d'augmenter le degré d'utilisation du combustible fossile, la propreté, le processus de combustion externe silencieux constituent les arguments principaux en faveur de l'application de cette technologie aux habitations. Cependant jusqu'ici, la complexité et le prix élevé de telles unités ont empêché son emploi.Stirling free piston engines were considered for a long time as an ideal solution for units of heat-force coupling used for energy production thermal and mechanical for dwellings. The possibility increase the degree of use of fossil fuel, cleanliness, silent external combustion process are the main arguments in favor of the application from this technology to homes. However so far, the complexity and high price of such units have prevented his employment.

On a récemment proposé d'associer un piston moteur à un piston de transfert d'un moteur Stirling et de fixer les aimants inducteurs d'un alternateur électrique à ce piston moteur pour les déplacer par rapport aux enroulements de l'induit de cet alternateur. Ce concept prometteur présente cependant l'inconvénient de nécessiter deux pistons coaxiaux, mobiles l'un par rapport à l'autre, qui doivent être guidés avec une grande précision. En effet, la tige du piston de transfert est montée coulissante dans un volume fermé rempli de gaz du piston moteur, qui joue le rôle de moyens de rappel élastiques. Ce système nécessite également un asservissement de manière à régler le déphasage entre ces pistons. Un tel système est développé par la firme américaine Sun-power Inc. Athens, Ohio, et a fait notamment l'objet d'un article intitulé « Development of a 3kW free-piston Stirling engine with the displacer gas-spring partially sprung to the power piston » G. Chen et J. McEntee, Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, vol. 5, p. 233-238. Un fort couplage élastique entre les deux pistons indique qu'une fraction substantielle de l'énergie motrice induite est engendrée par les forces du gaz agissant sur le piston de transfert et transférée par l'accouplement élastique au piston moteur. Les auteurs de l'article affirment que 2/3 de l'énergie totale est produite par le piston de transfert du moteur Stirling. Dans ce moteur, ce piston sert donc non seulement à transférer le gaz entre les volumes chaud et froid situés aux deux extrémités du cylindre dans lequel se déplace ce piston, mais aussi à engendrer une partie de l'énergie motrice.It has recently been proposed to associate a driving piston with a transfer piston from a Stirling engine and attach the magnets inductors of an electric alternator to this driving piston to move them relative to the armature windings of this alternator. This promising concept, however, presents the disadvantage of requiring two coaxial pistons, movable relative to each other, which must be guided with great precision. Indeed, the piston rod of transfer is mounted sliding in a closed closed volume gas from the engine piston, which acts as a return means elastic. This system also requires a servo so as to adjust the phase difference between these pistons. Such a system is developed by the American firm Sun-power Inc. Athens, Ohio, and was notably the subject of a article titled "Development of a 3kW free-piston Stirling engine with the displacer gas-spring partially sprung to the power piston ”G. Chen and J. McEntee, Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, flight. 5, p. 233-238. Strong elastic coupling between two pistons indicates that a substantial fraction of the induced motor energy is generated by the forces of the gas acting on the transfer piston and transferred by elastic coupling to the engine piston. The authors of the article claim that 2/3 of the total energy is produced by the transfer piston of the Stirling engine. In this engine, this piston therefore not only serves to transfer the gas between hot and cold volumes located at both ends of the cylinder in which this piston moves, but also to generate part of the driving energy.

On pourrait certes se demander légitimement, dès lors, si il ne serait pas possible de produire la totalité de l'énergie motrice à l'aide du piston de transfert et d'associer la partie mobile du générateur électrique à celui-ci. Une telle hypothèse à elle seule ne résoudrait cependant pas les problèmes susmentionnés. En effet, le déphasage nécessaire entre les deux pistons coaxiaux devant subsister pour permettre la production d'énergie et son transfert, les problèmes de guidage et d'asservissement resteraient inchangés.One could certainly legitimately wonder, therefore, if it would not be possible to produce all of motive energy using the transfer piston and to associate the mobile part of the electric generator with this one. Such an assumption alone would not resolve however, not the above problems. Indeed, the phase difference required between the two coaxial pistons in front subsist to allow energy production and its transfer, guidance and enslavement problems would remain unchanged.

Le but de la présente invention est de remédier au moins en partie aux inconvénients susmentionnés. The object of the present invention is to remedy the less in part to the aforementioned drawbacks.

A cet effet, cette invention a tout d'abord pour objet un procédé pour produire et transmettre une énergie mécanique d'un piston de transfert d'un moteur Stirling à un organe consommateur d'énergie, tel que défini par la revendication 1. Cette invention a également pour objet un dispositif pour la mise en oeuvre de ce procédé, selon la revendication 9.To this end, this invention firstly relates to a process for producing and transmitting mechanical energy a transfer piston from a Stirling engine to an organ energy consumer as defined in claim 1. The subject of this invention is also a device for the implementation of this method, according to claim 9.

Le remplacement du piston moteur par un résonateur pneumatique entièrement statique permet non seulement de simplifier considérablement le dispositif, comme ceci est évident, puisque ce procédé permet de supprimer le piston moteur, mais aussi de faciliter l'asservissement comme on l'expliquera par la suite. Ceci signifie que non seulement l'invention permet de simplifier sensiblement le dispositif et d'en réduire les coûts de production, mais aussi que la fiabilité du dispositif s'en trouve accrue. Or pour qu'un tel dispositif présente un intérêt économique, il faut non seulement qu'il puisse être produit à un prix compétitif, mais qu'il soit capable de fonctionner aussi de nombreuses années sans nécessiter aucun entretien ni réglage.Replacement of the engine piston by a resonator fully static pneumatic not only allows greatly simplify the device, as is obvious, since this process removes the piston engine, but also to facilitate the enslavement as we will explain it later. This means that not only the invention makes it possible to significantly simplify the device and reduce production costs, but also that reliability of the device is thereby increased. So that a such a device is of economic interest; only that it can be produced at a competitive price, but that it is able to function also many years without requiring any maintenance or adjustment.

D'autres particularités et avantages du procédé et du dispositif objets de l'invention apparaítront à la lecture de la description qui suit, ainsi que du dessin annexé, qui illustre, schématiquement et à titre d'exemple, deux formes d'exécution et diverses variantes de ce dispositif.

  • La figure 1 est une vue en coupe diamétrale de cette forme d'exécution;
  • la figure 2 est une vue semblable à la figure 1 d'une variante;
  • la figure 3 est une vue en élévation du dispositif selon les figures 1 ou 2;
  • la figure 4 est un diagramme vectoriel, les figures 5 et 6 sont des diagrammes explicatifs relatifs au procédé;
  • la figure 7 est un diagramme relatif au rendement du cycle par rapport au travail par cycle;
  • les figures 8 à 10 sont des diagrammes relatifs au dimensionnement et au comportement du résonateur;
  • la figure 11 est une vue en élévation, partiellement en coupe de la seconde forme d'exécution;
  • les figures 12 et 13 illustrent partiellement deux variantes pour le chauffage du moteur Stirling;
  • les figures 14 à 16 illustrent trois variantes dans lesquels des moteurs Stirling sont accouplés par des tubes de résonance;
  • la figure 17 illustre un mode de chauffage applicable aux variantes des figures 14 à 16.
  • Other features and advantages of the method and the device which are the subject of the invention will become apparent on reading the description which follows, as well as the appended drawing, which illustrates, schematically and by way of example, two and various embodiments variants of this device.
  • Figure 1 is a diametrical sectional view of this embodiment;
  • Figure 2 is a view similar to Figure 1 of a variant;
  • Figure 3 is an elevational view of the device according to Figures 1 or 2;
  • FIG. 4 is a vector diagram, FIGS. 5 and 6 are explanatory diagrams relating to the method;
  • FIG. 7 is a diagram relating to the performance of the cycle in relation to the work per cycle;
  • Figures 8 to 10 are diagrams relating to the dimensioning and the behavior of the resonator;
  • Figure 11 is an elevational view, partially in section of the second embodiment;
  • Figures 12 and 13 partially illustrate two variants for heating the Stirling engine;
  • Figures 14 to 16 illustrate three variants in which Stirling engines are coupled by resonance tubes;
  • FIG. 17 illustrates a heating mode applicable to the variants of FIGS. 14 to 16.
  • Le dispositif illustré par la figure 1 comporte un carter allongé 1 formé de deux compartiments cylindriques 2, 3, assemblés sur un élément intermédiaire 4, jouant le rôle de bâti. Le compartiment cylindrique 2 comporte un logement cylindrique 5, constituant un volume de travail, dans lequel un piston de transfert 6 est monté libre de se déplacer dans l'axe longitudinal du logement cylindrique 5. A une extrémité, le volume situé entre le piston 6 et l'extrémité externe du logement 5 est celui qui est en contact avec un échangeur chaud 7 relié à une source chaude (non représentée) et constitue la chambre chaude ou volume d'expansion VE du moteur Stirling, tandis qu'à l'autre extrémité de ce logement cylindrique 5, on trouve un volume en contact avec un échangeur froid 8 relié à une source froide (non représentée), qui constitue la chambre froide ou volume de compression VC du moteur Stirling. Un régénérateur 9 est disposé entre les échangeurs chaud 7 et froid 8.The device illustrated in FIG. 1 comprises an elongated casing 1 formed by two cylindrical compartments 2, 3, assembled on an intermediate element 4, playing the role of frame. The cylindrical compartment 2 comprises a cylindrical housing 5, constituting a working volume, in which a transfer piston 6 is mounted free to move in the longitudinal axis of the cylindrical housing 5. At one end, the volume located between the piston 6 and the outer end of the housing 5 is that which is in contact with a hot exchanger 7 connected to a hot source (not shown) and constitutes the hot chamber or expansion volume V E of the Stirling engine, while at the at the other end of this cylindrical housing 5, there is a volume in contact with a cold exchanger 8 connected to a cold source (not shown), which constitutes the cold room or compression volume V C of the Stirling engine. A regenerator 9 is placed between the hot 7 and cold 8 exchangers.

    L'extrémité du piston 6 adjacente à la chambre froide VC comporte une tige de piston 6a, engagée dans un volume fermé 10 rempli de gaz et qui constitue un organe de rappel élastique du piston de transfert 6. The end of the piston 6 adjacent to the cold room V C comprises a piston rod 6a, engaged in a closed volume 10 filled with gas and which constitutes an elastic return member of the transfer piston 6.

    Le compartiment cylindrique 3 renferme un volume dans lequel un élément mobile d'un alternateur, dans cet exemple, l'inducteur 11 constitué par un élément cylindrique portant des aimants permanents, est solidaire de la périphérie d'un organe annulaire 12, dont le bord interne est solidaire d'un organe de suspension élastique 14, constitué par des ressorts plats annulaires, dont les bords périphériques sont fixés au bâti 4 et dont les bords internes sont solidaires d'une tige 17 dont une extrémité est fixée à la tige 6a du piston 6. Le bord interne d'un second organe de suspension élastique 15 semblable à l'organe 14, est fixé à l'autre extrémité de la tige 17, tandis que sa périphérie est fixée à un support 13 solidaire du bâti 4. L'induit de l'alternateur est formé par des enroulements 16.The cylindrical compartment 3 contains a volume in which a moving element of an alternator, in this example, inductor 11 consisting of a cylindrical element carrying permanent magnets, is attached to the periphery of a annular member 12, the internal edge of which is integral with a elastic suspension member 14, constituted by springs annular plates, the peripheral edges of which are fixed to the frame 4 and whose internal edges are integral a rod 17, one end of which is fixed to the rod 6a of the piston 6. The internal edge of a second suspension member elastic 15 similar to member 14, is attached to the other end of rod 17, while its periphery is fixed to a support 13 secured to the frame 4. The armature of the alternator is formed by windings 16.

    Les tiges 6a et 17 traversent le fond du volume fermé 10 ménagé dans l'élément intermédiaire 4 avec un jeu compris entre 30 et 50µm. Un tel jeu est parfaitement acceptable aussi bien du point de vue des tolérances de fabrication que de l'influence des fuites de gaz sur le rendement énergétique et sur la force de rappel du gaz comprimé dans le volume fermé 10.Rods 6a and 17 cross the bottom of the closed volume 10 formed in the intermediate element 4 with a clearance included between 30 and 50µm. Such a game is perfectly acceptable both in terms of manufacturing tolerances and the influence of gas leaks on energy efficiency and on the restoring force of the compressed gas in the volume closed 10.

    Un résonateur tubulaire 18, dont seule l'extrémité solidaire du compartiment cylindrique 2 est représentée sur la figure 1, communique avec le volume de compression ou chambre froide VC du moteur Stirling. Ce résonateur a pour rôle de remplacer le second piston, qui selon le procédé objet de l'invention, ne sert plus à produire de l'énergie, toute l'énergie étant produite par le piston de transfert 6, comme on l'expliquera ci-après, mais sert à amplifier l'onde de pression et à assurer un déphasage approprié entre le déplacement du piston de transfert 6 et les variations de pression p dans le volume de travail.A tubular resonator 18, of which only the integral end of the cylindrical compartment 2 is shown in FIG. 1, communicates with the compression volume or cold room V C of the Stirling engine. This resonator has the role of replacing the second piston, which according to the process which is the subject of the invention, no longer serves to produce energy, all the energy being produced by the transfer piston 6, as will be explained below. -afterwards, but serves to amplify the pressure wave and to ensure an appropriate phase shift between the displacement of the transfer piston 6 and the pressure variations p in the working volume.

    Comme illustré par la figure 3, l'autre extrémité de ce résonateur tubulaire 18 se termine avantageusement dans un volume de Helmholtz 19. Dans ce cas, de préférence, la partie de ce résonateur qui se trouve dans le volume Helmholtz se termine par un évasement 18a.As illustrated in Figure 3, the other end of this tubular resonator 18 advantageously ends in a volume of Helmholtz 19. In this case, preferably, the part of this resonator which is in the Helmholtz volume ends with a flare 18a.

    Le piston de transfert 6 joue alors le double rôle de transfert du gaz entre la chambre chaude VE et la chambre froide VC et de production de toute l'énergie motrice transmise à l'inducteur 11, pour autant que certaines conditions, dont nous allons parler maintenant, soient remplies.The transfer piston 6 then plays the double role of transferring the gas between the hot room V E and the cold room V C and of producing all the driving energy transmitted to the inductor 11, provided that certain conditions, including let's go talk now, be met.

    Pour atteindre cet objectif, il est nécessaire de déterminer le rapport entre la surface ap de la tige 6a du piston 6 et celle a du piston lui-même.To achieve this objective, it is necessary to determine the ratio between the area a p of the rod 6a of the piston 6 and that a of the piston itself.

    L'analyse du cycle isothermique montre que la pression du gaz dans le volume de travail devient indépendante de la position du piston 6 si: aP a = TH - TC TH Analysis of the isothermal cycle shows that the pressure of the gas in the working volume becomes independent of the position of the piston 6 if: at P at = T H - T VS T H

    ExempleExample

  • Température TH du volume chaud VE, TH = 923°K = 650°CTemperature T H of the hot space V E , T H = 923 ° K = 650 ° C
  • Température TC du volume froid VC, TC = 323°K = 50°C aP/a ≤ 0,65 Temperature T C of the cold volume V C , T C = 323 ° K = 50 ° C at P / a ≤ 0.65
  • Le fonctionnement du moteur est possible seulement si le rapport de surface aP/a est inférieur à cette limite, c'est-à-dire que le déplacement du piston 6 doit induire une composante de pression pX (fig. 4) qui doit être opposée au déplacement X du piston 6. Le déplacement du piston de transfert 6 est positif si celui-ci se déplace en direction du volume VE. La variation de la quantité de gaz WG dans le volume de travail du Stirling donne lieu à une variation de pression pW, qui est en phase avec WG. La variation de la pression p dans le volume de travail du Stirling correspond à la somme vectorielle des deux pressions partielles pX et pW.Engine operation is possible only if the surface ratio a P / a is less than this limit, that is to say that the displacement of the piston 6 must induce a pressure component p X (fig. 4) which must be opposed to the displacement X of the piston 6. The displacement of the transfer piston 6 is positive if the latter moves in the direction of the volume V E. The variation in the quantity of gas WG in the working volume of the Stirling gives rise to a variation in pressure p W , which is in phase with WG. The variation of the pressure p in the working volume of the Stirling corresponds to the vector sum of the two partial pressures p X and p W.

    La figure 5 montre la variation de la position X du piston 6 et la variation de la pression en fonction du temps (ou de l'angle Φ). Cette représentation correspond schématiquement à celle de la figure 4. Lorsque la pression diminue, le gaz se trouve en grande partie dans la chambre chaude ou de détente; lorsqu'elle augmente, le gaz se trouve essentiellement dans la chambre froide ou de compression. Pour produire de l'énergie, il faut que le déplacement X du piston 6 précède la variation de pression p.Figure 5 shows the variation of the X position of the piston 6 and the variation of pressure as a function of time (or angle Φ). This representation corresponds schematically to that of figure 4. When the pressure decreases, gas is largely in the chamber hot or relaxing; when it increases, the gas is found mainly in the cold or compression room. To produce energy, the displacement X of the piston 6 precedes the pressure variation p.

    La figure 6 représente la variation de la quantité de gaz WG dans le volume de travail Stirling et la pression p dans ce volume. Lorsque le gaz s'écoule vers le résonateur tubulaire 18 (WG diminue), la pression est plus grande que durant son retour (WG augmente). Il y a donc un transport d'énergie du volume Stirling vers le tube, qui compense les pertes par frottement dans ce résonateur tubulaire 18.Figure 6 shows the variation in the amount of WG gas in Stirling working volume and pressure p in this volume. When the gas flows to the resonator tubular 18 (WG decreases), the pressure is greater than during its return (WG increases). So there is a transport of energy from the Stirling volume to the tube, which compensates for friction losses in this tubular resonator 18.

    Afin que p soit en retard sur WG, la figure 4 montre que pX doit être opposé à X. Si pX devient nul, ou orienté en direction de X, aucune énergie n'est transmise vers le résonateur tubulaire 18 pour compenser les pertes par frottement. Par conséquent, l'onde de pression ne peut pas être maintenue et la machine cesse de fonctionner.In order for p to lag behind WG, FIG. 4 shows that p X must be opposite to X. If p X becomes zero, or oriented in the direction of X, no energy is transmitted to the tubular resonator 18 to compensate for the losses by friction. Therefore, the pressure wave cannot be maintained and the machine stops working.

    Suite à une étude d'optimisation effectuée à l'aide d'un programme informatique spécialement adapté pour le calcul des cycles Stirling selon la présente invention, les résultats ont montré que le rapport des sections aP/a doit se situer entre 0,4 et 0,6, de préférence entre 0,45 et 0,55.Following an optimization study carried out using a computer program specially adapted for the calculation of Stirling cycles according to the present invention, the results have shown that the ratio of the sections a P / a must be between 0.4 and 0.6, preferably between 0.45 and 0.55.

    La figure 7 donne un exemple de rendement du cycle ηC calculé en fonction du travail fourni par cycle E, avec la température de paroi TH de la chambre chaude VE et l'amplitude X du piston 6 comme paramètre. La température de l'échangeur froid T est égale à 50°C. Le rendement net du moteur peut être obtenu en multipliant le rendement du cycle par le rendement des moyens de chauffage et celui de l'alternateur. FIG. 7 gives an example of the efficiency of the cycle η C calculated as a function of the work provided by cycle E, with the wall temperature T H of the hot chamber V E and the amplitude X of the piston 6 as a parameter. The temperature of the cold exchanger T is equal to 50 ° C. The net efficiency of the engine can be obtained by multiplying the efficiency of the cycle by the efficiency of the heating means and that of the alternator.

    Ce diagramme montre que dans une gamme relativement grande d'amplitudes du piston, on peut obtenir de bons rendements, les valeurs les plus élevées étant atteintes à charge partielle. Ces rendements sont légèrement inférieurs à ceux du dispositif de l'état de la technique susmentionné, mais cette très légère baisse est largement compensée par la simplification apportée au dispositif.This diagram shows that in a relatively large amplitudes of the piston, we can get good yields, the highest values being reached at partial load. These yields are slightly lower to those of the above-mentioned prior art device, but this very slight decrease is more than offset by the simplification brought to the device.

    Le moteur devrait toujours fonctionner à des températures de la chambre chaude comprises entre 600° et 700°C. Dans cette gamme, la température TH de la chambre chaude VE influence principalement la puissance, dans une moindre mesure le rendement. Mais en abaissant la température à 400-500°C, le rendement et la puissance diminuent fortement, essentiellement parce que, dans ces conditions, la variation de pression pX induite par le mouvement du piston devient petite et finalement disparaít complètement.The engine should always operate at hot chamber temperatures between 600 ° and 700 ° C. In this range, the temperature T H of the hot chamber V E mainly influences the power, to a lesser extent the efficiency. But by lowering the temperature to 400-500 ° C, the efficiency and power decrease sharply, mainly because, under these conditions, the pressure variation p X induced by the movement of the piston becomes small and finally disappears completely.

    La rigidité latérale de la suspension mécanique du piston 6 est assurée par des ressorts plats 14, 15 du type de ceux décrits dans « Recent developments in cryocoolers » Ray Radebaugh 19TH International Congress of Réfrigeration 1995 Proceedings Volume IIIb, lui permet d'osciller parfaitement selon l'axe longitudinal du logement cylindrique 5, de sorte que les paliers pneumatiques pour le centrer ne sont pas nécessaires. Lors de l'assemblage initial, le piston 6 peut être centré avec une grande précision. En raison de la suspension pneumatique de ce piston 6 et par conséquent, des faibles forces nécessaires pour les éléments de suspension élastiques constitués par les ressorts plats annulaires 14 et 15, on peut augmenter l'amplitude du piston 6 de 25% à 50% par rapport au dispositif décrit dans « Free-piston Stirling design features » Neill W. Lane et al. 8TH International Stirling Engine Conference and Exhibition May 27-30, 1997 Ancona. Cette augmentation d'amplitude conduisant à une augmentation des vitesses linéaires, permet de réduire les dimensions de l'alternateur. Dans des conditions de fonctionnement inchangées, on peut atteindre des quantités d'énergie similaires.The lateral rigidity of the mechanical suspension of the piston 6 is ensured by flat springs 14, 15 of the type described in “Recent developments in cryocoolers” Ray Radebaugh 19 TH International Congress of Réfrigeration 1995 Proceedings Volume IIIb, allows it to oscillate perfectly along the longitudinal axis of the cylindrical housing 5, so that the pneumatic bearings to center it are not necessary. During the initial assembly, the piston 6 can be centered with great precision. Due to the pneumatic suspension of this piston 6 and therefore the low forces required for the elastic suspension elements constituted by the annular flat springs 14 and 15, the amplitude of the piston 6 can be increased from 25% to 50% by relation to the device described in “Free-piston Stirling design features” Neill W. Lane et al. 8 TH International Stirling Engine Conference and Exhibition May 27-30, 1997 Ancona. This increase in amplitude leading to an increase in linear speeds, makes it possible to reduce the dimensions of the alternator. Under unchanged operating conditions, similar amounts of energy can be reached.

    L'utilisation d'un seul piston mobile simplifie le démarrage et le contrôle de puissance de manière significative par rapport aux systèmes Stirling conventionnels à piston libre. La rigidité de la suspension du piston 6 et par conséquent, l'angle de phase peuvent être ajustés en réglant la pression du gaz dans le volume de travail du Stirling. La fréquence naturelle du résonateur tubulaire 18 peut être ajustée en variant la composition du gaz, c'est-à-dire sa masse moléculaire.Using a single movable piston simplifies starting and power control significantly compared to conventional Stirling piston systems free. The rigidity of the suspension of the piston 6 and by Therefore, the phase angle can be adjusted by adjusting gas pressure in the working volume of the Stirling. The natural frequency of tubular resonator 18 can be adjusted by varying the composition of the gas, i.e. its molecular weight.

    Le démarrage du moteur est ensuite exécuté en portant tout d'abord la température du gaz dans la chambre chaude VE à une valeur TH à laquelle la pression du gaz de travail devient indépendante de la position du piston. La charge du moteur est ainsi réduite à un minimum (pertes par frottement interne du moteur et par l'écoulement périodique à travers les échangeurs et le régénérateur). Après le démarrage, la température TH sera ajustée à la température de travail optimum.The engine is then started by first bringing the temperature of the gas in the hot chamber V E to a value T H at which the pressure of the working gas becomes independent of the position of the piston. The engine load is thus reduced to a minimum (losses by internal friction of the engine and by periodic flow through the exchangers and the regenerator). After starting, the temperature T H will be adjusted to the optimum working temperature.

    Le contrôle de la puissance s'effectue très facilement. On règle l'amplitude du piston 6 et par conséquent la puissance du moteur, en ajustant la force de freinage exercée par l'alternateur à une valeur déterminée. Pour des températures données du gaz TH, TC dans les chambres chaude respectivement froide, la puissance de sortie varie proportionnellement à l'amplitude du piston 6. La puissance de chauffage du brûleur (non représenté) destiné à chauffer le gaz de la chambre chaude VE est ajustée en continu pour maintenir la température TH désirée dans cette chambre chaude ou d'expansion VE. Dans des conditions normales, l'amplitude du piston peut donc être contrôlée avec précision. Il n'est donc pas nécessaire de prévoir de volume mort supplémentaire pour éviter des chocs en cas de dépassement d'amplitude accidentel du piston. Il est seulement nécessaire d'empêcher que le piston ne dépasse une amplitude maximum en cas de panne dans le réseau électrique auquel est associé l'alternateur.Power control is very easy. The amplitude of the piston 6 and therefore the power of the engine is adjusted, by adjusting the braking force exerted by the alternator to a determined value. For given gas temperatures T H , T C in the hot and cold chambers respectively, the output power varies in proportion to the amplitude of the piston 6. The heating power of the burner (not shown) intended to heat the gas in the chamber hot V E is continuously adjusted to maintain the desired temperature T H in this hot or expansion chamber V E. Under normal conditions, the amplitude of the piston can therefore be precisely controlled. It is therefore not necessary to provide additional dead volume to avoid shocks in the event of accidental overshoot of the piston. It is only necessary to prevent the piston from exceeding a maximum amplitude in the event of a breakdown in the electrical network with which the alternator is associated.

    Toute non linéarité de la rigidité de la suspension du piston libre 6 a un effet marginal sur sa phase étant donné qu'il est couplé à une charge et se comporte comme un oscillateur fortement amorti.Any non-linearity in the rigidity of the suspension of the free piston 6 has a marginal effect on its phase given that it is coupled to a load and behaves like an oscillator heavily amortized.

    Une fois que l'ensemble du dispositif est scellé, la fréquence naturelle du résonateur tubulaire 18 dépend seulement de la température moyenne du gaz de travail qui s'y trouve. Cette température peut être réglée avec précision à la valeur désirée au moyen d'un échangeur de chaleur supplémentaire 20 disposé dans le volume Helmholtz 19 et en contrôlant l'énergie thermique extraite. Ceci permet d'ajuster l'angle de phase du résonateur par rapport aux autres variables du système. L'extraction de chaleur du résonateur tubulaire 18 permet de diminuer le refroidissement du gaz situé dans la chambre froide VC, ce qui permet de simplifier l'échangeur froid du moteur Stirling. Son volume mort et/ou ses pertes par frottement pneumatique peuvent être réduits, apportant un avantage supplémentaire au dispositif objet de la présente invention.Once the entire device is sealed, the natural frequency of the tubular resonator 18 only depends on the average temperature of the working gas therein. This temperature can be precisely adjusted to the desired value by means of an additional heat exchanger 20 arranged in the Helmholtz volume 19 and by controlling the thermal energy extracted. This allows the phase angle of the resonator to be adjusted relative to the other variables of the system. The heat extraction from the tubular resonator 18 makes it possible to reduce the cooling of the gas located in the cold room V C , which makes it possible to simplify the cold exchanger of the Stirling engine. Its dead volume and / or its losses by pneumatic friction can be reduced, bringing an additional advantage to the device which is the subject of the present invention.

    La pression du gaz de travail dans le volume Stirling varie de manière cyclique en fonction de l'oscillation de l'onde de pression dans le résonateur tubulaire 18. En faisant varier de façon appropriée la section du tube, comme on l'expliquera ci-après, on peut obtenir des variations de pression presque parfaitement sinusoïdales. La dissipation d'énergie est alors exclusivement due aux pertes par frottement du fluide et restent modérées, au moins pour les variations de pression considérées dans cette application. Les paramètres du résonateur tubulaire 18 dont un exemple suit, doivent être ajustés à ceux du processus Stirling pour garantir que ces composants interagissent de manière convenable, c'est-à-dire que l'onde est entraínée par le cycle Stirling et que les variations de pression résultantes maintiennent la périodicité du cycle Stirling.The working gas pressure in the Stirling volume varies cyclically depending on the oscillation of the pressure wave in the tubular resonator 18. In varying the cross-section of the tube as appropriate we will explain it below, we can get variations of almost perfectly sinusoidal pressure. Dissipation energy is then exclusively due to friction losses fluid and remain moderate, at least for variations pressure considered in this application. The parameters of the tubular resonator 18, an example of which follows, must be adjusted to those of the Stirling process to ensure that these components interact properly, that is to say that the wave is driven by the cycle Stirling and that the resulting pressure variations maintain the periodicity of the Stirling cycle.

    A titre d'exemple, le résonateur tubulaire 18 peut avoir une longueur totale y compris le volume Helmholtz 19, d'environ 1,6m, et une température T de 40°C. La pression moyenne p0 du gaz est de 4MPa et la fréquence de résonance de ce résonateur est de 50Hz. Pour limiter la longueur du tube on utilisera avantageusement un gaz plus lourd que l'hélium, tel qu'un mélange d'hélium et d'argon ou de dioxyde de carbone avec une masse moléculaire M du gaz de 14 kg/kmol. La section minimale Smin du résonateur tubulaire 18 est, dans cet exemple, de 4,75cm2. Le volume de gaz VS du moteur Stirling 2 est de 1000cm3, tandis que celle du volume de Helmholtz 19 est de 6000cm3.By way of example, the tubular resonator 18 can have a total length including the Helmholtz volume 19, of approximately 1.6 m, and a temperature T of 40 ° C. The average pressure p 0 of the gas is 4 MPa and the resonant frequency of this resonator is 50 Hz. To limit the length of the tube, a gas heavier than helium is advantageously used, such as a mixture of helium and argon or carbon dioxide with a molecular mass M of the gas of 14 kg / kmol. The minimum section S min of the tubular resonator 18 is, in this example, 4.75 cm 2 . The volume of gas V S of the Stirling 2 engine is 1000 cm 3 , while that of the volume of Helmholtz 19 is 6000 cm 3 .

    Avantageusement, le résonateur tubulaire peut être prolongé à l'intérieur du volume Helmholtz 19. Etant donné que cette portion du tube est seulement exposée à des différences de pression limitées, sa paroi peut être mince et peut ainsi facilement être mise sous forme conique 18a empêchant la formation d'ondes de pression à front raide.Advantageously, the tubular resonator can be extended inside the Helmholtz volume 19. Given that this portion of the tube is only exposed to limited pressure differences, wall may be thin and can thus easily be put in conical form 18a preventing the formation of steep front pressure waves.

    Un exemple de répartition de la section le long du tube 18 du résonateur est représenté sur le diagramme de la figure 8. L'extrémité gauche du diagramme correspond à l'extrémité du tube 18 en communication avec le compartiment Stirling 2, tandis que l'extrémité droite correspond à celle qui communique avec le volume Helmholtz 19.An example of sectional distribution along the tube 18 of the resonator is represented on the diagram of the figure 8. The left end of the diagram corresponds to the end of tube 18 in communication with the Stirling compartment 2, while the right end corresponds to that which communicates with the volume Helmholtz 19.

    Le diagramme de la figure 9 représente neuf valeurs à intervalles réguliers de la vitesse d'écoulement du gaz dans le tube 18, rapportée à la vitesse du son (donc au nombre de Mach) en fonction de la position dans le tube 18 durant un cycle, tandis que le diagramme de la figure 10 montre la répartition de la pression du gaz rapportée à la pression moyenne durant le même cycle.The diagram in Figure 9 shows nine values to regular intervals of the gas flow velocity in the tube 18, related to the speed of sound (therefore to the number of Mach) depending on the position in the tube 18 during a cycle, while the diagram in Figure 10 shows the distribution of gas pressure relative to pressure average during the same cycle.

    Le diagramme des pressions montre clairement qu'avec un dimensionnement approprié du tube, aucun choc ne se produit aux conditions de résonance du tube 18. La pression dans le volume Stirling 2 varie de façon sinusoïdale. La pression et la vitesse sont des fonctions orthogonales, c'est-à-dire que si la pression prend une valeur extrême, la vitesse du gaz est nulle et réciproquement.The pressure diagram clearly shows that with a appropriate sizing of the tube, no shock occurs at the resonance conditions of the tube 18. The pressure in the Stirling 2 volume varies sinusoidally. The pressure and speed are orthogonal functions, that is to say that if the pressure takes an extreme value, the gas speed is null and vice versa.

    Le facteur de qualité calculé du tube 18 se situe entre 25 et 40 pour un rapport de pression dans le volume Stirling πC = pmax/pmin = 1,1, respectivement entre 15 et 25 pour πC = 1,2. La fourchette indiquée tient compte du fait que, d'une part, le coefficient de frottement du gaz en régime instationnaire peut différer de celui d'un régime établi, d'autre part que la rugosité des tubes n'est connue qu'approximativement.The calculated quality factor for tube 18 is between 25 and 40 for a pressure ratio in the Stirling volume π C = p max / p min = 1.1, respectively between 15 and 25 for π C = 1.2. The range indicated takes account of the fact that, on the one hand, the coefficient of friction of the gas in unsteady state can differ from that of an established regime, on the other hand that the roughness of the tubes is known only approximately.

    Dans le cas du moteur Stirling à faible puissance étudié dans cet exemple, typiquement de l'ordre 2kW à 5kW, les volumes de gaz déplacés sont de l'ordre d'une centaine de cm3. Les parties cylindriques du tube ont typiquement des diamètres de 2,5 à 4cm. Il peut facilement être courbé ou enroulé de manière à ce que l'ensemble du dispositif occupe un volume aussi réduit que possible. A titre d'exemple, le dispositif illustré par la figure 3 peut avoir une hauteur de 90cm, une largeur de 60cm et une profondeur de 40cm.In the case of the low power Stirling engine studied in this example, typically of the order of 2 kW to 5 kW, the volumes of gas displaced are of the order of a hundred cm 3 . The cylindrical parts of the tube typically have diameters of 2.5 to 4cm. It can easily be curved or rolled up so that the entire device occupies as small a volume as possible. By way of example, the device illustrated in FIG. 3 can have a height of 90cm, a width of 60cm and a depth of 40cm.

    La variante illustrée par la figure 2 ne diffère de la forme d'exécution de la figure 1 que par le fait que l'organe de rappel élastique du piston de transfert 6, n'est plus constitué par le volume fermé 10, mais directement par le compartiment cylindrique 3 renfermant l'alternateur. En effet, ce compartiment est également un volume fermé et peut donc aussi servir d'organe élastique de rappel et remplacer ainsi le volume 10 de la forme d'exécution de la figure 1. The variant illustrated in Figure 2 does not differ from the embodiment of Figure 1 only by the fact that the body elastic return of the transfer piston 6, is no longer constituted by the closed volume 10, but directly by the cylindrical compartment 3 containing the alternator. In indeed, this compartment is also a closed volume and can so also serve as an elastic reminder and replace thus the volume 10 of the embodiment of Figure 1.

    Jusqu'ici nous n'avons décrit qu'une forme d'exécution dans laquelle l'énergie mécanique produite est transmise à un organe à mouvement alternatif comme celui du piston libre du moteur Stirling. En variante, il serait également possible de transformer ce mouvement alternatif en un mouvement rotatif comme ceci est bien connu dans le cas des moteurs à explosion ou des moteurs à vapeur.So far we have only described one form of execution in which the mechanical energy produced is transmitted to a reciprocating member like that of the free piston of the Stirling engine. Alternatively, it would also be possible to transform this alternative movement into a movement rotary as is well known in the case of motors with explosion or steam engines.

    Une telle variante est illustrée par la figure 11 sur laquelle on retrouve l'extrémité du piston libre 6a' et celle du tube de résonance 18' communiquant avec la chambre froide ou volume de compression VC. Une tige 21 est montée coulissante dans un guidage cylindrique 22 par des roulements linéaires 31. Une bielle 23 est articulée par une extrémité à la tige 21 et par son autre extrémité, à un vilebrequin 24 solidaire de l'axe d'un générateur électrique rotatif par exemple, monté dans une enceinte 25.Such a variant is illustrated by FIG. 11 in which we find the end of the free piston 6a 'and that of the resonance tube 18' communicating with the cold room or compression volume V C. A rod 21 is slidably mounted in a cylindrical guide 22 by linear bearings 31. A connecting rod 23 is articulated by one end to the rod 21 and by its other end, to a crankshaft 24 integral with the axis of a rotary electric generator for example, mounted in an enclosure 25.

    Dans une variante non représentée des figures 1 à 3 notamment, le résonateur tubulaire 18 peut être constitué par deux éléments tubulaires identiques disposés en opposition diamétrale par rapport audit piston de transfert 6, de manière à équilibrer les forces latérales qui s'exercent sur ce piston 6.In a variant not shown in Figures 1 to 3 in particular, the tubular resonator 18 can be constituted by two identical tubular elements arranged in opposition diametral with respect to said transfer piston 6, of so as to balance the lateral forces exerted on this piston 6.

    En variante, le résonateur tubulaire 18 peut être relié au volume d'expansion VE ou compartiment chaud du moteur Stirling, à condition que l'ensemble de ce tube soit maintenu chaud et ne constitue pas un puits de chaleur. La figure 12 illustre une variante dans laquelle le volume Helmhotz 19 est placé dans une enceinte de chauffage 26, chauffée par des combustibles gazeux, liquides ou solides, alors que le tube 18 est entouré par une isolation thermique 27. On peut ainsi augmenter la température du gaz de travail contenu dans le résonateur tubulaire 18 au-dessus de la température TH de ce gaz dans le volume d'expansion VE. Le résonateur tubulaire 18, 19 peut alors se substituer en partie ou entièrement à l'échangeur chaud 7 du moteur Stirling. Il en résulte ainsi l'économie partielle ou totale d'un échangeur compliqué, coûteux et difficile à optimiser (surface d'échange suffisante avec un volume mort réduit et de faibles pertes de charge). Le résonateur tubulaire 18, 19 présente une surface d'échange considérable et grâce à l'écoulement périodique qui s'établit dans celui-ci, le transfert interne de chaleur est favorable. En raison du régime d'ondes stationnaires qui s'établit dans ce résonateur, son volume interne ne fait pas partie du volume mort du moteur Stirling.As a variant, the tubular resonator 18 can be connected to the expansion volume V E or hot compartment of the Stirling engine, provided that the whole of this tube is kept warm and does not constitute a heat sink. FIG. 12 illustrates a variant in which the Helmhotz volume 19 is placed in a heating enclosure 26, heated by gaseous, liquid or solid fuels, while the tube 18 is surrounded by thermal insulation 27. It is thus possible to increase the temperature of the working gas contained in the tubular resonator 18 above the temperature T H of this gas in the expansion volume V E. The tubular resonator 18, 19 can then partially or entirely replace the hot exchanger 7 of the Stirling engine. This therefore results in the partial or total saving of a complicated exchanger, costly and difficult to optimize (sufficient exchange surface with a reduced dead volume and low pressure losses). The tubular resonator 18, 19 has a considerable exchange surface and thanks to the periodic flow which is established therein, the internal heat transfer is favorable. Due to the standing wave regime which is established in this resonator, its internal volume is not part of the dead volume of the Stirling engine.

    Le principe de fonctionnement du cycle Stirling reste le même que celui expliqué à l'aide des figures 4 à 6.The operating principle of the Stirling cycle remains the same as that explained using figures 4 to 6.

    Pour favoriser l'échange de chaleur on peut augmenter la surface d'échange à l'aide d'ailettes 30 à l'intérieur et/ou à l'extérieur du volume Helmholtz 19. Etant donné que le diamètre du tube 18 est déjà de l'ordre de 2 à 4 fois supérieur à celui de l'échangeur de chaleur 7 et que le diamètre du volume Helmholtz est encore lui-même 2 à 4 fois supérieur à celui du tube 18, l'écartement entre les ailettes peut être sensiblement augmenté. Par conséquent, un tel échangeur est beaucoup moins sensible à l'encrassement par des suies ou autres résidus de combustion que les échangeurs Stirling conventionnels de faible taille. Si nécessaire, il peut facilement être nettoyé et est donc particulièrement bien adapté à des systèmes fonctionnant avec des combustibles solides ou de la biomasse.To promote heat exchange we can increase the exchange surface using fins 30 inside and / or outside the Helmholtz volume 19. Since the diameter of the tube 18 is already of the order of 2 to 4 times greater to that of heat exchanger 7 and that the diameter Helmholtz volume is still 2 to 4 times higher to that of tube 18, the spacing between the fins can be significantly increased. Therefore, such exchanger is much less sensitive to fouling by soot or other combustion residues than exchangers Small conventional stirling. If necessary, it can easily be cleaned and is therefore particularly well suited for fuel systems solids or biomass.

    La variante illustrée par la figure 13 montre une configuration dans laquelle le résonateur tubulaire 18 est intégré dans un collecteur solaire à haute température. A cet effet, le tube 18 du résonateur est mis sous une forme d'hélice, placée à l'intérieur d'une cavité cylindrique ou conique 28. Une extrémité de ce résonateur tubulaire 18 s'ouvre dans un volume de Helmholtz 19, tandis que l'autre extrémité communique avec le volume d'expansion VE du moteur Stirling, dont on a représenté le piston de transfert 6 et le régénérateur 9. Un miroir parabolique 29 disposé sous l'ouverture de la cavité 28, concentre le rayonnement solaire à l'intérieur de celle-ci.The variant illustrated in FIG. 13 shows a configuration in which the tubular resonator 18 is integrated in a high temperature solar collector. To this end, the tube 18 of the resonator is put in the form of a helix, placed inside a cylindrical or conical cavity 28. One end of this tubular resonator 18 opens in a volume of Helmholtz 19, while that the other end communicates with the expansion volume V E of the Stirling engine, of which the transfer piston 6 and the regenerator 9 have been shown. A parabolic mirror 29 placed under the opening of the cavity 28, concentrates the solar radiation inside of it.

    Un des avantages de cette solution réside dans le fait qu'un tel collecteur est relativement peu sensible à la répartition exacte du rayonnement solaire incident, étant donné que le mouvement périodique du gaz dans le tube 18 du résonateur assure une répartition uniforme de la température dans celui-ci. Un autre avantage résulte du fait que lors de l'apparition du soleil, au moment où un niveau de température TH du gaz dans la chambre chaude VE est atteint, le moteur Stirling se met facilement en marche; le risque d'une surchauffe instantanée du collecteur est ainsi diminué.One of the advantages of this solution lies in the fact that such a collector is relatively insensitive to the exact distribution of the incident solar radiation, since the periodic movement of the gas in the tube 18 of the resonator ensures a uniform distribution of the temperature in this one. Another advantage results from the fact that when the sun appears, at the moment when a temperature level T H of the gas in the hot chamber V E is reached, the Stirling engine is easily started; the risk of instant collector overheating is thus reduced.

    Une autre variante (figure 14) illustre très schématiquement la combinaison de quatre moteurs Stirling dont on a montré que les volumes de compression respectifs VCA, VCB, VCC, VCD, alternativement les volumes d'expansion respectifs VEA, VEB, VEC, VED, reliés par quatre résonateurs tubulaires T1, T2, T3 et T4. L'ensemble forme une boucle fermée, chaque volume V étant relié à deux autres volumes voisins, le tout formant un carré dont les tubes de résonance T1 à T4 constituent les côtés, les volumes VCA à VCD, alternativement VEA à VED étant disposés aux angles. Cette configuration permet d'augmenter la puissance thermique en associant entre elles des machines selon une conception modulaire.Another variant (FIG. 14) very schematically illustrates the combination of four Stirling engines of which it has been shown that the respective compression volumes V CA , V CB , V CC , V CD , alternatively the respective expansion volumes V EA , V EB , V EC , V ED , connected by four tubular resonators T 1 , T 2 , T 3 and T 4 . The whole forms a closed loop, each volume V being connected to two other neighboring volumes, the whole forming a square of which the resonance tubes T 1 to T 4 constitute the sides, the volumes V CA to V CD , alternately V EA to V ED being arranged at the corners. This configuration makes it possible to increase the thermal power by associating machines with each other according to a modular design.

    Lorsque deux moteurs sont couplés par l'intermédiaire d'un résonateur tubulaire dans une configuration symétrique, ils travaillent en opposition de phase. Lorsque l'on a quatre moteurs disposés aux sommets d'un carré comme dans la figure 14, les moteurs qui sont sur une même diagonale sont en phase et sont déphasés de 180° par rapport aux deux autres moteurs disposés sur l'autre diagonale. Les forces transmises à l'extérieur par cet ensemble sont entièrement compensées, ce qui permet de réduire les vibrations transmises à l'extérieur.When two motors are coupled via a tubular resonator in a symmetrical configuration, they work in phase opposition. When we have four motors arranged at the vertices of a square as in the figure 14, the motors which are on the same diagonal are in phase and are 180 ° out of phase with respect to the two other motors arranged on the other diagonal. Forces transmitted to the outside by this set are fully compensated, which reduces transmitted vibrations outside.

    Les variations de section données aux tubes T1 à T4 permettent également d'équilibrer les forces dynamiques du mouvement du gaz de travail dans ces tubes.The section variations given to the tubes T 1 to T 4 also make it possible to balance the dynamic forces of the movement of the working gas in these tubes.

    La variante de la figure 15 montre simplement deux paires de moteurs dont les volumes de compression VCA, VCB, respectivement VCC, VCD, alternativement les volumes d'expansion VEA, VEB, respectivement VEC, VED, sont reliés par deux résonateurs tubulaires T1, respectivement T2, alors que les volumes de compression VCA et VCC d'une part, et les volumes de compression VCB et VCD, d'autre part, alternativement les volumes d'expansion VEA et VEC d'une part et les volumes d'expansion VEB et VED, d'autre part, sont reliés les uns aux autres par des tubes de liaison TC1 et TC2 dont le rôle est d'assurer que les pressions des volumes de compression, alternativement d'expansion, ainsi reliés sont les mêmes étant donné que les moteurs disposés en diagonales sont en phase.The variant of FIG. 15 simply shows two pairs of motors whose compression volumes V CA , V CB , respectively V CC , V CD , alternatively the expansion volumes V EA , V EB , respectively V EC , V ED , are connected by two tubular resonators T 1 , respectively T 2 , while the compression volumes V CA and V CC on the one hand, and the compression volumes V CB and V CD , on the other hand, alternately the expansion volumes V EA and V EC on the one hand and the expansion volumes V EB and V ED , on the other hand, are connected to each other by connecting tubes T C1 and T C2 whose role is to ensure that the pressures of the compression volumes, alternately of expansion, thus connected are the same since the motors arranged diagonally are in phase.

    La figure 16 montre deux moteurs Stirling illustrés par leurs seuls volumes de compression VCI, VCII, alternativement leurs volumes d'expansion VEI, VEII reliés par un résonateur tubulaire 18.FIG. 16 shows two Stirling engines illustrated by their only compression volumes V CI , V CII , alternatively their expansion volumes V EI , V EII connected by a tubular resonator 18.

    La figure 17 montre le chauffage d'un résonateur tubulaire 18 reliant deux moteurs Stirling comme illustré par les figures 14 à 16, disposé dans une enceinte de chauffage 26. Les extrémités respectives du tube 18 de ce résonateur communiquent avec les volumes d'expansion VEI, VEII de deux moteurs Stirling. Ainsi le tube 18 du résonateur commun à ces deux moteurs constitue également un élément de chauffage commun à ces deux moteurs. Il serait également envisageable d'utiliser plusieurs tube de résonance 18 en parallèle afin d'augmenter la surface d'échange et d'améliorer le transfert de chaleur.FIG. 17 shows the heating of a tubular resonator 18 connecting two Stirling engines as illustrated by FIGS. 14 to 16, arranged in a heating enclosure 26. The respective ends of the tube 18 of this resonator communicate with the expansion volumes V EI , V EII of two Stirling engines. Thus the tube 18 of the resonator common to these two motors also constitutes a heating element common to these two motors. It would also be possible to use several resonance tubes 18 in parallel in order to increase the exchange surface and improve the heat transfer.

    Claims (17)

    Procédé pour générer et transmettre de l'énergie mécanique d'un piston de transfert (6) d'un moteur Stirling à un organe consommateur d'énergie (11), le piston de transfert (6) étant monté dans un cylindre (2), selon lequel on déplace périodiquement du gaz entre une chambre chaude (VE) et une chambre froide (VC) ménagés aux extrémités respectives de ce cylindre (2) en le faisant passer à travers un échangeur chaud (7) relié à une source chaude, un régénérateur (9) et un échangeur froid (8) relié à une source froide et on exerce une force élastique de rappel sur ce piston de transfert (6) par l'intermédiaire d'une tige (6a) solidaire de ce piston (6), caractérisé en ce que l'on crée entre la section (aP) de ladite tige (6a) et celle (a) dudit piston de transfert (6) un rapport apte à produire la totalité de ladite énergie mécanique et à la transmettre audit organe consommateur d'énergie (11) et que l'on forme une onde de pression, en reliant un résonateur pneumatique (18) à l'une desdites chambres froide (VC), chaude (VE) et en l'ajustant de façon que l'onde de pression soit amplifiée et déphasée par rapport au déplacement dudit piston de transfert (6), de manière à produire ladite énergie mécanique et de transmettre à ce résonateur pneumatique (18) une énergie apte à compenser ses pertes par frottement.Method for generating and transmitting mechanical energy from a transfer piston (6) of a Stirling engine to an energy-consuming member (11), the transfer piston (6) being mounted in a cylinder (2) , according to which gas is periodically moved between a hot chamber (V E ) and a cold chamber (V C ) formed at the respective ends of this cylinder (2) by passing it through a hot exchanger (7) connected to a source hot, a regenerator (9) and a cold exchanger (8) connected to a cold source and an elastic restoring force is exerted on this transfer piston (6) by means of a rod (6a) integral with this piston (6), characterized in that a section is created between the section (a P ) of said rod (6a) and that (a) of said transfer piston (6) capable of producing all of said mechanical energy and transmit it to said energy-consuming organ (11) and that a pressure wave is formed, by connecting a pneumatic resonator (18) to one of said cold (V C ), hot (V E ) chambers and by adjusting it so that the pressure wave is amplified and out of phase with respect to the movement of said transfer piston (6) , so as to produce said mechanical energy and to transmit to this pneumatic resonator (18) an energy capable of compensating for its losses by friction. Procédé selon la revendication 1, caractérisé en ce que le rapport (ap/a) que l'on crée entre la section (aP) de ladite tige (6a) et celle (a) dudit piston (6) est compris entre 40 et 60%.Method according to claim 1, characterized in that the ratio (ap / a) that is created between the section (a P ) of said rod (6a) and that (a) of said piston (6) is between 40 and 60%. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on fait sortir de manière étanche ladite tige (6a) dudit cylindre (2) pour la mettre en communication avec un volume fermé (3) dans lequel on dispose ledit organe consommateur d'énergie (11) et on exerce ladite force de rappel élastique à l'aide des variations de pression du gaz contenu dans ledit volume fermé (3), consécutivement aux déplacements de ladite tige (6a).Method according to one of the preceding claims, characterized in that it is leaked out said rod (6a) of said cylinder (2) to bring it into communication with a closed volume (3) in which disposes of said energy-consuming organ (11) and exercises said elastic restoring force using pressure variations of the gas contained in said volume closed (3), following the movements of said rod (6a). Procédé selon l'une des revendications précédentes, caractérisé en ce que pour éviter la formation d'ondes à fronts raides, on fait varier la section d'un conduit tubulaire (18) destiné à former ledit résonateur pneumatique.Method according to one of the preceding claims, characterized in that to avoid the formation of waves at steep fronts, the section of a duct is varied tubular (18) intended to form said pneumatic resonator. Procédé selon la revendication 4, caractérisé en ce que l'on dispose un volume de Helmholtz (19) à l'extrémité dudit conduit tubulaire (18) opposée à celle reliée à l'une desdites chambres froide (VC) chaude (VE) dudit moteur Stirling.Method according to claim 4, characterized in that there is a Helmholtz volume (19) at the end of said tubular conduit (18) opposite to that connected to one of said cold chambers (V C ) hot (V E ) of said Stirling engine. Procédé selon l'une des revendications 4 et 5, caractérisé en ce que l'on dispose une partie (18a) du conduit tubulaire (18) à section variable à l'intérieur du volume Helmholtz (19).Method according to one of claims 4 and 5, characterized in that there is a part (18a) of the duct tubular (18) with variable section inside the Helmholtz volume (19). Procédé selon l'une des revendications 5 et 6, caractérisé en ce que l'on refroidit de manière contrôlée le gaz contenu dans ledit volume Helmholtz (19).Method according to one of claims 5 and 6, characterized in that the gas contained in said Helmholtz volume (19). Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on ajuste la fréquence propre dudit résonateur (18) en mélangeant des gaz dans une proportion déterminée.Method according to one of the preceding claims, characterized in that the natural frequency of said is adjusted resonator (18) by mixing gases in a proportion determined. Dispositif pour la mise en oeuvre du procédé selon la revendication 1, caractérisé en ce que ledit piston (6) est cinématiquement solidaire dudit organe consommateur d'énergie (11).Device for implementing the method according to claim 1, characterized in that said piston (6) is kinematically integral with said consumer organ energy (11). Dispositif selon la revendication 9, caractérisé en ce que ledit organe consommateur d'énergie (11) est constitué par la partie mobile d'un générateur électrique.Device according to claim 9, characterized in what said energy consuming member (11) is made of by the moving part of an electric generator. Dispositif selon la revendication 10, caractérisé en ce que ladite force de rappel élastique exercée sur ledit piston (6) est engendrée par un espace fermé (10, 3) rempli de gaz sous une pression déterminée, fonction de la fréquence propre désirée pour ledit piston (6) et dont une des parois est constituée par une portion de ladite tige de piston (6a).Device according to claim 10, characterized in that said elastic restoring force exerted on said piston (6) is generated by a closed space (10, 3) filled of gas under a given pressure, a function of the frequency own desired for said piston (6) and one of which walls is formed by a portion of said rod piston (6a). Dispositif selon l'une des revendications 9 à 11, caractérisé en ce que quatre moteurs Stirling sont reliés les uns aux autres au moyen de quatre résonateurs tubulaires, les pistons de transfert de deux moteurs Stirling non adjacents travaillant en phase et les deux autres en opposition de phase.Device according to one of claims 9 to 11, characterized in that four Stirling engines are connected to each other by means of four tubular resonators, the transfer pistons of two non Stirling engines adjacent working in phase and the other two in opposition phase. Dispositif selon l'une des revendications précédentes, caractérisé en ce que ledit organe consommateur d'énergie est un organe rotatif, relié audit piston par un embiellage, des moyens de guidage linéaires étant associés audit piston.Device according to one of the preceding claims, characterized in that said energy consuming organ is a rotary member, connected to said piston by a connecting rod, linear guide means being associated with said piston. Dispositif selon l'une des revendications précédentes, caractérisé en ce que ledit résonateur est constitué par deux éléments tubulaires identiques disposés en opposition diamétrale par rapport audit piston de transfert.Device according to one of the preceding claims, characterized in that said resonator consists by two identical tubular elements arranged in opposition diametral with respect to said transfer piston. Dispositif selon l'une des revendications précédentes, caractérisé en ce que ledit résonateur tubulaire (18) est relié à la chambre chaude (VE) du moteur Stirling et qu'il est associé à des moyens de chauffage constituant la source chaude dudit moteur Stirling. 12. Dispositif selon l'une des revendications 9 à 11, caractérisé en ce que chaque extrémité du résonateur tubulaire (18) est relié à l'une des chambres froide (VC) chaude (VE) d'un moteur Stirling.Device according to one of the preceding claims, characterized in that said tubular resonator (18) is connected to the hot chamber (V E ) of the Stirling engine and that it is associated with heating means constituting the hot source of said Stirling engine . 12. Device according to one of claims 9 to 11, characterized in that each end of the tubular resonator (18) is connected to one of the cold rooms (V C ) hot (V E ) of a Stirling engine. Dispositif selon l'une des revendications 9 à 11 et 15, caractérisé en ce que chaque extrémité du résonateur tubulaire (18) est relié à l'une des chambres froide (VC), chaude (VE) d'un moteur Stirling. Device according to one of Claims 9 to 11 and 15, characterized in that each end of the tubular resonator (18) is connected to one of the cold (V C ) and hot (V E ) chambers of a Stirling engine. Dispositif selon l'une des revendications précédentes, caractérisé en ce que lesdits moyens de chauffage présentent la forme d'un collecteur de rayonnement solaire (28, 29).Device according to one of the preceding claims, characterized in that said heating means have the form of a solar radiation collector (28, 29).
    EP99810286A 1999-04-07 1999-04-07 Process and device for generating and transferring mechanical energy from a Stirling engine to an energy consuming element Withdrawn EP1043491A1 (en)

    Priority Applications (6)

    Application Number Priority Date Filing Date Title
    EP99810286A EP1043491A1 (en) 1999-04-07 1999-04-07 Process and device for generating and transferring mechanical energy from a Stirling engine to an energy consuming element
    EP00912325A EP1165955B1 (en) 1999-04-07 2000-04-05 Method and device for transmitting mechanical energy between a stirling engine and a generator or an electric motor
    DE60021863T DE60021863T2 (en) 1999-04-07 2000-04-05 METHOD AND DEVICE FOR TRANSLATING A MECHANICAL ENERGY BETWEEN A STIRLING MACHINE AND A GENERATOR OR ELECTRIC MOTOR
    PCT/CH2000/000199 WO2000061936A1 (en) 1999-04-07 2000-04-05 Method and device for transmitting mechanical energy between a stirling engine and a generator or an electric motor
    AT00912325T ATE301773T1 (en) 1999-04-07 2000-04-05 METHOD AND APPARATUS FOR TRANSLATING MECHANICAL ENERGY BETWEEN A STIRLING ENGINE AND A GENERATOR OR ELECTRIC MOTOR
    US09/972,263 US6510689B2 (en) 1999-04-07 2001-10-05 Method and device for transmitting mechanical energy between a stirling machine and a generator or an electric motor

    Applications Claiming Priority (1)

    Application Number Priority Date Filing Date Title
    EP99810286A EP1043491A1 (en) 1999-04-07 1999-04-07 Process and device for generating and transferring mechanical energy from a Stirling engine to an energy consuming element

    Publications (1)

    Publication Number Publication Date
    EP1043491A1 true EP1043491A1 (en) 2000-10-11

    Family

    ID=8242753

    Family Applications (2)

    Application Number Title Priority Date Filing Date
    EP99810286A Withdrawn EP1043491A1 (en) 1999-04-07 1999-04-07 Process and device for generating and transferring mechanical energy from a Stirling engine to an energy consuming element
    EP00912325A Expired - Lifetime EP1165955B1 (en) 1999-04-07 2000-04-05 Method and device for transmitting mechanical energy between a stirling engine and a generator or an electric motor

    Family Applications After (1)

    Application Number Title Priority Date Filing Date
    EP00912325A Expired - Lifetime EP1165955B1 (en) 1999-04-07 2000-04-05 Method and device for transmitting mechanical energy between a stirling engine and a generator or an electric motor

    Country Status (5)

    Country Link
    US (1) US6510689B2 (en)
    EP (2) EP1043491A1 (en)
    AT (1) ATE301773T1 (en)
    DE (1) DE60021863T2 (en)
    WO (1) WO2000061936A1 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2003100240A1 (en) * 2002-05-24 2003-12-04 Stm Power Inc. Multiple cylinder stiriling engine for electrical power generation
    CN104500262A (en) * 2014-12-19 2015-04-08 中国科学院理化技术研究所 Free-piston Stirling generator

    Families Citing this family (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6701708B2 (en) 2001-05-03 2004-03-09 Pasadena Power Moveable regenerator for stirling engines
    GB0130380D0 (en) * 2001-12-19 2002-02-06 Bg Intellectual Pty Ltd A heat appliance
    JP3769751B2 (en) * 2003-02-19 2006-04-26 ツインバード工業株式会社 Stirling cycle engine
    US7017344B2 (en) * 2003-09-19 2006-03-28 Pellizzari Roberto O Machine spring displacer for Stirling cycle machines
    US7677039B1 (en) 2005-12-20 2010-03-16 Fleck Technologies, Inc. Stirling engine and associated methods
    US7417331B2 (en) * 2006-05-08 2008-08-26 Towertech Research Group, Inc. Combustion engine driven electric generator apparatus
    US8011183B2 (en) * 2007-08-09 2011-09-06 Global Cooling Bv Resonant stator balancing of free piston machine coupled to linear motor or alternator
    US8215112B2 (en) * 2007-11-28 2012-07-10 Tiax Llc Free piston stirling engine
    ITLI20080007A1 (en) * 2008-07-08 2010-01-08 Fabio Prosperi ELECTRIC GENERATOR POWERED BY HEAT SOURCES
    US8590300B2 (en) * 2008-10-20 2013-11-26 Sunpower, Inc. Balanced multiple groupings of beta stirling machines
    US8096118B2 (en) * 2009-01-30 2012-01-17 Williams Jonathan H Engine for utilizing thermal energy to generate electricity
    CN102648381A (en) * 2009-10-14 2012-08-22 杰弗里.李 Solar energy collector system and method
    CH702965A2 (en) * 2010-04-06 2011-10-14 Jean-Pierre Budliger STIRLING MACHINE.
    DE102011107802B4 (en) * 2011-07-11 2013-05-02 Rhp Gmbh Heat engine with external combustion or the use of solar energy

    Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0070780A1 (en) * 1981-07-21 1983-01-26 Bertin & Cie Electrical-mechanical energy converter with an integrated Stirling engine and an electric generator
    EP0086622A1 (en) * 1982-02-12 1983-08-24 National Research Development Corporation Free piston hot gas engine
    EP0218554A1 (en) * 1985-10-07 1987-04-15 Jean-Pierre Budliger Stirling machine
    EP0447134A2 (en) * 1990-03-14 1991-09-18 MacroSonix Corp. Standing wave compressor
    US5174116A (en) * 1991-03-26 1992-12-29 Aisin Seiki Kabushiki Kaisha Displacer-type Stirling engine

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB1412935A (en) * 1971-10-05 1975-11-05 Stobart A F Fluid heating systems
    US4458495A (en) * 1981-12-16 1984-07-10 Sunpower, Inc. Pressure modulation system for load matching and stroke limitation of Stirling cycle apparatus
    EP0860622B1 (en) 1997-02-19 2002-12-11 Yordak Ltd A constant velocity joint

    Patent Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0070780A1 (en) * 1981-07-21 1983-01-26 Bertin & Cie Electrical-mechanical energy converter with an integrated Stirling engine and an electric generator
    EP0086622A1 (en) * 1982-02-12 1983-08-24 National Research Development Corporation Free piston hot gas engine
    EP0218554A1 (en) * 1985-10-07 1987-04-15 Jean-Pierre Budliger Stirling machine
    EP0447134A2 (en) * 1990-03-14 1991-09-18 MacroSonix Corp. Standing wave compressor
    US5174116A (en) * 1991-03-26 1992-12-29 Aisin Seiki Kabushiki Kaisha Displacer-type Stirling engine

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    "8th international stirling engine conference and exhibition may 27-30, 1997, Ancona", article NEILL W. LANE: "Freepiston stirling design features"
    "Proceedings of the 26th intersociety energy conversion engineering conference volume 5", article DEVELOPMENT OF A 3KW FREE-PISTON STIRLING ENGINE WITH THE DISPLACER GAS-SPRING PARTIALLY SPRUNG TO THE POWER PISTON: "G. Chen and J. McEntee"

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2003100240A1 (en) * 2002-05-24 2003-12-04 Stm Power Inc. Multiple cylinder stiriling engine for electrical power generation
    CN104500262A (en) * 2014-12-19 2015-04-08 中国科学院理化技术研究所 Free-piston Stirling generator

    Also Published As

    Publication number Publication date
    ATE301773T1 (en) 2005-08-15
    EP1165955B1 (en) 2005-08-10
    US6510689B2 (en) 2003-01-28
    WO2000061936A1 (en) 2000-10-19
    DE60021863T2 (en) 2006-05-24
    DE60021863D1 (en) 2005-09-15
    US20020096884A1 (en) 2002-07-25
    EP1165955A1 (en) 2002-01-02

    Similar Documents

    Publication Publication Date Title
    EP1165955B1 (en) Method and device for transmitting mechanical energy between a stirling engine and a generator or an electric motor
    EP0218554B1 (en) Stirling machine
    WO2011123961A1 (en) Stirling machine
    EP1366280B1 (en) Power unit with reciprocating linear movement based on stirling motor, and method used in said power plant
    EP0070780A1 (en) Electrical-mechanical energy converter with an integrated Stirling engine and an electric generator
    JPH09509710A (en) Energy generator
    EP2462345A1 (en) System for producing and storing electrical and thermal energy from a cycloturbine
    WO2016131917A1 (en) Thermoacoustic engine
    EP2808528B1 (en) Fluid expansion motor
    WO2015110726A1 (en) Internal combustion engine
    FR2913458A1 (en) Beta or gamma type two stroke stirling engine e.g. piston engine, for propelling nuclear ship, has two propulsion units connected relative to each other by mechanical connection, where each unit includes spring and small pistons
    WO2014080130A1 (en) Unit for converting thermal energy into hydraulic energy
    BE1017812A5 (en) Thermodynamic pendular heat engine, has pendulum comprising cylindrical chamber with piston connected to free flywheel, and heat supply positioned at certain distance away from chamber, with extension to turbine engines using phase changes
    FR2913459A1 (en) Motor unit for e.g. piston engine in military field, has active volume defined in cylinders between cylinder and piston heads, respectively, and passive volume defined in cylinders between piston heads and bases of cylinders, respectively
    FR2736710A1 (en) REFRIGERATOR OR HEAT PUMP WITH PULSATION TUBE SUPPLIED BY A PRESSURE GENERATOR
    BE530323A (en)
    FR2913461A1 (en) Heat regenerator for e.g. Beta type stirling engine of e.g. submarine, has metallic elements having lengthened shape arranged transverse to active fluid path across regenerator, where elements are identical with each other
    FR2913460A1 (en) Cylinder head for double piston and double cylinder drive unit of stirling engine, has diffuser with diffusion channels for diffusion of fluid from diffusion space till active volume, where diffusion space is formed between cap and diffuser
    FR3113422A1 (en) Closed thermodynamic cycles of steady-state motors resembling the Ericsson and Joule cycles.
    WO2004053405A1 (en) Heat exchanger for use with oscillating fluids in particular in a thermoacoustic cell
    WO2010004186A2 (en) Magnetocaloric thermal generator
    FR2536788A2 (en) INTRINSICALLY IRREVERSIBLE HEAT ENGINE
    Watanabe et al. Experimental studies on atmospheric Stirling engine NAS-2
    FR2835570A1 (en) Multi-cell parallelepiped sealed motor block with external heat spource has four chambers and pairs of pistons on parallel crankshafts
    FR2899653A1 (en) Material or fluid expansion utilization device for series expansion motor, has base parts mounted in head to foot manner and with respective shapes to obtain displacement, where each part is displaced with respect to one of other base parts

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid
    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20010412

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: 8566