EP1020026B1 - Appareil et procede d'amplification d'un signal - Google Patents

Appareil et procede d'amplification d'un signal Download PDF

Info

Publication number
EP1020026B1
EP1020026B1 EP98921105A EP98921105A EP1020026B1 EP 1020026 B1 EP1020026 B1 EP 1020026B1 EP 98921105 A EP98921105 A EP 98921105A EP 98921105 A EP98921105 A EP 98921105A EP 1020026 B1 EP1020026 B1 EP 1020026B1
Authority
EP
European Patent Office
Prior art keywords
doherty
output
amplifier
signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98921105A
Other languages
German (de)
English (en)
Other versions
EP1020026A1 (fr
EP1020026A4 (fr
Inventor
James Frank Long
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of EP1020026A1 publication Critical patent/EP1020026A1/fr
Publication of EP1020026A4 publication Critical patent/EP1020026A4/fr
Application granted granted Critical
Publication of EP1020026B1 publication Critical patent/EP1020026B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0233Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply
    • H03F1/0238Continuous control by using a signal derived from the output signal, e.g. bootstrapping the voltage supply using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G2201/00Indexing scheme relating to subclass H03G
    • H03G2201/10Gain control characterised by the type of controlled element
    • H03G2201/106Gain control characterised by the type of controlled element being attenuating element

Definitions

  • the present invention relates generally to amplifiers, and, more particularly to an apparatus and method for amplifying a circuit.
  • Doherty amplifiers High efficiency linear amplifiers such as Doherty amplifiers are well known to those skilled in the art. However, it is also well known that Doherty amplifiers typically have relatively poor linearity. In addition, their linearity is typically inversely proportional to their efficiency. As a result, although Doherty amplifiers can improve the performance of high peak-to-average ratio linear amplifiers, they may only do so over a narrow dynamic range.
  • RF radio frequency
  • Doherty type amplifier circuits would become more attractive if their efficiency were raised at low output power levels.
  • the RF input signal applied to the multicarrier power amplifier may vary by as much as 30 dB.
  • Amplifier circuits for extending the dynamic range of an amplifier and having increased efficiency are e.g. known from US-A-5 101 172 or US-A-5 179 353.
  • an amplifier circuit including an amplifier having an input and an output, a first Doherty amplifier having an input coupled to the output of the amplifier, an output and a control input.
  • the amplifier circuit also includes a detector having a detector input coupled to detect a first Doherty output signal from the output of the first Doherty amplifier, and an output. The output is coupled to an input of a controller, the controller having a first and second controller output.
  • the amplifier circuit further includes a switching regulator having an input coupled to the first controller output, and an output coupled to the control input of the first Doherty amplifier.
  • the amplifier circuit includes a variable attenuator having a signal input, an output coupled to the input of the amplifier, and a control input coupled to the second controller output.
  • a method for amplifying a signal including receiving an input signal at an input of a variable attenuator, attenuating the input signal to form an attenuated signal, and amplifying the attenuated signal to form an amplified signal.
  • the method also includes amplifying the amplified signal in a Doherty amplifier, generating a Doherty output signal in response to receiving a supply voltage provided by a switching regulator at a control input to the Doherty amplifier.
  • the method includes detecting a total signal in a detector, forming a detected output signal, the total signal including at least the first Doherty output signal, comparing the detected output signal to a predetermined controller threshold in a controller, and generating a first and a second control signal in the controller if the detected output signal falls below the predetermined controller threshold.
  • the first control signal generating a switching regulator output voltage in a switching regulator and then modifying a voltage of the first Doherty amplifier based upon the switching regulator output voltage.
  • the second control signal modifying a voltage of the variable attenuator.
  • an amplifier circuit including a first Doherty amplifier having an input, a first Doherty control input, and an output, the output coupled to the input of a second Doherty amplifier having a second Doherty control input and an output.
  • the amplifier circuit also includes a detector having a detector input coupled to detect a second Doherty output signal from the output of the second Doherty amplifier, and an output.
  • the output is coupled to an input of a controller, the controller having a controller output.
  • the amplifier circuit further includes a switching regulator having an input coupled to the controller output, and a first and second switching regulator output, the first switching regulator output coupled to the first Doherty control input and the second switching regulator output coupled to the second Doherty control input.
  • a method for amplifying a signal including receiving the input signal at an input of a first Doherty amplifier, receiving a first supply voltage at a first Doherty control input of the first Doherty amplifier, amplifying the input signal in the first Doherty amplifier, forming a first Doherty output signal, receiving the first Doherty output signal at an input of a second Doherty amplifier, receiving a second supply voltage at a second Doherty control input of the second Doherty amplifier, and amplifying the first Doherty output signal in the second Doherty amplifier, forming a second Doherty output signal.
  • the method further includes detecting a total signal, forming a detected output signal, the total signal including at least the second Doherty output signal, and then comparing the detected output signal to a predetermined controller threshold in a controller.
  • the method includes generating a control signal in the controller if said detected output signal falls below the predetermined controller threshold, generating a first supply voltage in a switching regulatorbased upon the control signal and subsequently modifying a voltage of the first Doherty amplifier based upon the first supply voltage.
  • generating a second supply voltage in the switching regulator based upon the control signal and subsequently modifying a voltage of the second Doherty amplifier based upon said second supply voltage.
  • FIG. 1 depicts a typical Doherty amplifier.
  • a Doherty amplifier 208 receives an input signal 206 and generates a Doherty output signal 220, in response to receiving a control input 234.
  • the control input generally represents a voltage. commonly referred to as the drain voltage and may be annotated as V dd .
  • Doherty amplifiers utilizing field effect transistors typically operate with a fixed drain voltage.
  • Doherty output signal 220 When Doherty output signal 220 is at saturated power, Doherty amplifier 208 operates at maximum drain efficiency. In other words, Doherty amplifier 208 operates at maximum efficiency when the voltage of Doherty output signal 220 is equal to the drain voltage V dd . Saturation occurs at 0dB backoff as shown in FIG. 2.
  • Doherty efficiency which is defined as the ratio of RF power output to the DC input power, drops slightly with increasing backoff from saturation until a transition voltage is reached at 6dB from saturation At a 6dB backoff from saturation, maximum Doherty efficiency is again reached.
  • Doherty efficiency falls off rapidly with increasing backoff from saturation.
  • the efficiency of Doherty amplifier 208 is reduced proportionally to the output signal voltage amplitude. Therefore, when Doherty output signal 220 is low, Doherty efficiency is low. Conversely, when Doherty output signal 220 is high, Doherty efficiency is high. For example, a Doherty output signal power of 20 watts is approximately 40% efficiency for a fixed drain voltage of 20 volts, while , a Doherty output signal power of 60 watts is approximately 57% efficiency for a fixed drain voltage of 20 volts.
  • Doherty efficiency decreases. For example, at 6dB backoff from saturation, in a 900 Mhz application, Doherty efficiency is approximately 46% for a fixed drain voltage of 20 volts and drops to approximately 40% for a fixed drain voltage of 30 volts.
  • Doherty amplifier 208 There are two practical problems with operating a Doherty amplifier 208 at a low fixed drain voltage.
  • One problem is an increase in intermodulation, also known as distortion, of Doherty output signal 220. This distortion may be mitigated by keeping the power of Doherty output signal 220 at a low value, for example, 9 to 10 dB below saturation.
  • the other problem is a reduction in Doherty amplifier 208 power gain.
  • the Doherty amplifier 208 power gain reduction may be accommodated by adding a variable attenuator together with a fixed gain provided by a driver amplifier.
  • the variable attenuator and fixed gain driver amplifier are configured to offset a gain loss across Doherty amplifier 208.
  • the supply voltage presented at control input 234 is adjusted in proportion to a voltage of Doherty output signal 220.
  • the adjustable supply voltage presented at control input 234 replaces the aforementioned fixed supply (or drain) voltage, V dd .
  • FIG. 3 depicts a block diagram of an amplifier circuit 200 for amplifying a signal which results in an increase of Doherty amplifier efficiency according to a preferred embodiment of the present invention.
  • Amplifier circuit 200 is configured with an input 201 and an output 240.
  • Amplifier circuit 200 includes a variable attenuator 202, an amplifier 204, a first Doherty amplifier 208, a detector 224, a controller 228, and a switching regulator 232.
  • An input signal 250 e.g. a multicarrier 900 megahertz (Mhz) RF signal which may be generated by a plurality of RF transceivers
  • Mhz multicarrier 900 megahertz
  • an amplifier 204 preferably a driver amplifier, has an input for receiving an attenuated signal generated by variable attenuator 202, and provides an input signal 206 to first Doherty amplifier 208.
  • First Doherty amplifier 208 receives input signal 206 and generates a first Doherty output signal 220, in response to receiving a supply voltage provided by switching regulator 232 at control input 234.
  • detector 224 preferably a diode detector, is coupled to the output of first Doherty amplifier 208 by means of a directional coupler (not shown). Detector 224 samples and rectifies the first Doherty output signal, and provides a detected output signal 226 to controller 228.
  • Detected output signal 226 is a direct current (DC) voltage proportional to the signal detected at a detector input 222.
  • DC direct current
  • controller 228 If detected output signal 226 falls below a predetermined controller threshold, for example a threshold voltage, controller 228 will generate a first and second control signal. Accordingly, controller 228 converts detected output signal 226 into a first control signal 230 suitable for input to switching regulator 232. The conversion is such that switching regulator 232 will decrease the supply voltage provided as control input 234 to first Doherty amplifier 208, in response to a decrease in the detected output signal. As a result, the voltage gain (first gain) across first Doherty amplifier 208 decreases.
  • a predetermined controller threshold for example a threshold voltage
  • controller 228 converts detected output signal 226 into a second control signal 231 suitable for input to variable attenuator 202.
  • the conversion is such that the variable attenuator will decrease the attenuation of input signal 250, consequently increasing the signal appearing at the input of first Doherty amplifier 208.
  • voltage gain (second gain) across the sum of variable attenuator 202 and driver amplifier 204 increases.
  • the sum of the first and second gain remains substantially constant across amplifier circuit 200.
  • Amplifier 204 and Doherty amplifier 208 are preferably metal oxide semiconductor field effect transistor (MOSFET) amplifiers, such as the MRF 183 Series amplifiers available from Motorola, Inc.
  • Variable attentuator 202 is preferably an AT-108 voltage variable absorptive attenuator made by M/A-COM, Inc.
  • Detector 224 may be a MA4E932A Zero Bias Detector diode, also made by M/A-COM, Inc.
  • Switching regulator 232 may be any number of types of switching regulators similar to the AT&T version FE150R DC-DC Power Module.
  • Controller 228 may be implemented by either software or hardware methods. For example, controller 228 may be realized as a hard coded look-up table or as an analog circuit including level shifting and scaling operational amplifiers.
  • a second Doherty amplifier 310 may be added in a parallel arrangement with Doherty amplifier 208 such that second Doherty amplifier 310 has an input coupled to the input of Doherty amplifier 208 and an output coupled the output of Doherty amplifier 208, as illustrated. Second Doherty amplifier 310 also has a control input coupled to the output of switching regulator 232. The additive effect of first Doherty output signal 220 and a second Doherty output signal 320 output by second Doherty amplifier 310, produces a total signal 322. Additional Doherty amplifiers may also be added in parallel, depending on the magnitude of the desired total signal 322.
  • FIG. 5 a flow chart representing a method, generally designated 400 of amplifying a signal, is illustrated.
  • Method 400 starts at block 62 where amplifier circuit 200 receives an input signal 250 at input 201.
  • input signal 250 is attenuated by variable attenuator 202, forming an attenuated signal.
  • the attenuated signal is amplified by driver amplifier 204, providing an input signal 206 to a first Doherty amplifier 208.
  • first Doherty amplifier 208 generates a first Doherty output signal 220 in response to receiving a supply voltage at control input 234.
  • first Doherty output signal 220 is detected by detector 224, which generates a detected output signal 226, at block 70.
  • Detected output signal 226 is compared to a threshold voltage by controller 228, at block 72. If the voltage of detected output signal 226 is below the threshold voltage, controller 228 generates a first control signal 230 and a second control signal 231 at block 74. If the voltage of detected output signal 226 is above the threshold voltage, controller 228 will not generate a first and second control signal.
  • switching regulator 232 upon receiving first control signal 230, switching regulator 232 generates an output which appears as a supply voltage at control input 234 of first Doherty amplifier 208. The supply voltage is proportional to first control signal 230.
  • first Doherty output signal 220 is modified at block 80.
  • variable attenuator 202 attenuates input signal 250 at block 82.
  • the voltage across the sum of variable attenuator 202 and amplifier 204 is modified.
  • a third embodiment depicted in FIG. 6 allows further amplifier circuit enhancement by replacing amplifier 204 with a Doherty amplifier 404.
  • An amplifier circuit 500 is configured with an input 403 and an output 240.
  • Amplifier circuit includes a variable attenuator 202, a first Doherty amplifier 404, a second Doherty amplifier 408, a detector 224, a controller 228, and a switching regulator 232.
  • An input signal 250 e.g. a multicarrier 900 megahertz (Mhz) RF signal which may be generated by a plurality of RF transceivers
  • Mhz multicarrier 900 megahertz
  • first Doherty amplifier 404 receives input signal 250 at input 403 and generates a first Doherty output signal 406 based upon a first supply voltage from switching regulator 232 provided to a first Doherty control input 233.
  • Second Doherty amplifier 408 receives first Doherty output signal 406 and generates a second Doherty output signal 220, based upon a second supply voltage from switching regulator 232 received at a second Doherty control input 234.
  • detector 224 preferably a diode detector, is coupled to the output of second Doherty amplifier 408 by means of a directional coupler (not shown).
  • Detector 224 samples and rectifies second Doherty output signal 220, and provides a detected output signal 226 to controller 228.
  • Detected output signal 226 is a direct current (DC) voltage proportional to the signal detected at a detector input 222.
  • controller 228 If detected output signal 226 is above a predetermined controller threshold, for example a threshold voltage, controller 228 does not generate a control signal. If detected output signal 226 falls below the threshold voltage, controller 228 will convert detected output signal 226 to a first control signal 230 suitable for input to switching regulator 232. The conversion is such that switching regulator 232 will decrease the supply voltage provided at second Doherty control input 234. As a consequence, the voltage gain of second Doherty amplifier 408 decreases in response to a decrease in detected output signal 226.
  • a predetermined controller threshold for example a threshold voltage
  • switching regulator 232 will increase the supply voltage provided at first Doherty control input 233.
  • the voltage gain of first Doherty amplifier 404 increases, in response to a decrease in detected output signal 226.
  • the voltage gain increase across first Doherty amplifier 404 coupled with the voltage loss across second Doherty amplifier 408 results in a substantially constant voltage across amplifier circuit 500 which maintains second Doherty amplifier 408 operation near it's saturation point.
  • a third Doherty amplifier 510 may be added in a parallel arrangement with second Doherty amplifier 408 such that third Doherty amplifier 510 has an input coupled to the input of second Doherty amplifier 408 and an output coupled the output of second Doherty amplifier 408, as illustrated.
  • Third Doherty amplifier 510 receives first Doherty output signal 406 and generates a third Doherty output signal 520, based upon the second supply voltage from switching regulator 232 received at third Doherty control input 234. The additive effect of second Doherty output signal 220 and third Doherty output signal 520, produces a total signal 322. Additional Doherty amplifiers may be added in parallel, depending on the magnitude of the desired total signal 322.
  • FIG. 8 a flow chart representing a method, generally designated 700 of amplifying a signal, is illustrated.
  • Method 700 starts at block 87 where amplifier circuit 500 receives an input signal 250 at input 403.
  • first Doherty amplifier 404 generates a first Doherty output signal 406 in response to receiving a first Doherty control input 233.
  • First Doherty control input 233 represents a supply voltage from switching regulator 232.
  • second Doherty amplifier 408 generates a second Doherty output signal 220 in response to receiving first Doherty output signal 406 and a second Doherty control input 234.
  • second Doherty output signal 220 is detected by detector 224, which generates a detected output signal 226.
  • Detected output signal 226 is compared to a threshold voltage by controller 228, at block 91. If the voltage of detected output signal 226 is below the threshold voltage, controller 228 generates a control signal 230 at block 92. If the voltage of detected output signal 226 is above the threshold voltage, controller 228 will not generate a control signal 230.
  • switching regulator 232 upon receiving control signal 230, switching regulator 232 generates an output which appears as a first supply voltage at first Doherty control input 233. In response to first Doherty control input 233, first Doherty output signal 406 is modified at block 94.
  • switching regulator 232 upon receiving control signal 230, switching regulator 232 generates an output which appears as a second supply voltage at second Doherty control input 234.
  • second Doherty output signal 420 is modified at block 96.
  • the modification to first and second Doherty output signals substantially maintain amplifier circuit 500 gain at a constant level with minimum distortion to the Doherty output signals.
  • Doherty amplifier operation occurs near maximum efficiency.

Claims (23)

  1. Circuit d'amplificateur comprenant :
    un amplificateur (204) qui comporte une entrée et une sortie ;
    un premier amplificateur de Doherty (208) qui comporte une entrée qui est couplée à ladite sortie dudit amplificateur, une sortie et une entrée de commande (234) ;
    un détecteur (224) qui comporte une entrée de détecteur qui est couplée pour détecter un premier signal de sortie de Doherty de ladite sortie dudit premier amplificateur de Doherty (208) et une sortie ;
    un contrôleur (228) qui comporte une entrée qui est couplée à ladite sortie dudit détecteur et une première sortie et une seconde sortie ;
    un régulateur de commutation (232) qui comporte une entrée qui est couplée à ladite première sortie dudit contrôleur et une sortie qui est couplée à ladite entrée de commande dudit premier amplificateur de Doherty (208) ; et
    un atténuateur variable (202) qui comporte une entrée de signal, une sortie qui est couplée à ladite entrée dudit amplificateur (204) et une entrée de commande qui est couplée à ladite seconde sortie dudit contrôleur (228).
  2. Circuit d'amplificateur selon la revendication 1, dans lequel un premier gain dudit circuit d'amplificateur comprend une tension aux bornes dudit premier amplificateur de Doherty (208).
  3. Circuit d'amplificateur selon la revendication 1, dans lequel un second gain dudit circuit d'amplificateur comprend une tension aux bornes d'une somme dudit atténuateur variable (202) et dudit amplificateur (204).
  4. Circuit d'amplificateur selon les revendications 2 et 3, dans lequel une somme dudit premier gain et dudit second gain est sensiblement constante.
  5. Circuit d'amplificateur selon la revendication 1, comprenant en outre un second amplificateur de Doherty (310 ; 314) qui comporte une entrée qui est couplée à ladite entrée dudit premier amplificateur de Doherty (208), une sortie qui est couplée à ladite sortie dudit premier amplificateur de Doherty et une entrée de commande qui est couplée à ladite sortie dudit régulateur de commutation (232).
  6. Circuit d'amplificateur selon la revendication 1, dans lequel les amplificateurs comprennent un dispositif à semiconducteur à transistor radio fréquence.
  7. Procédé d'amplification d'un signal d'entrée, le procédé d'amplification comprenant les étapes de :
    réception dudit signal d'entrée au niveau d'une entrée de signal d'un atténuateur variable (202) ;
    atténuation dudit signal d'entrée en formant un signal atténué (203) ;
    amplification dudit signal atténué en formant un signal amplifié (206) ;
    amplification dudit signal amplifié dans un premier amplificateur de Doherty (208) en formant un premier signal de sortie de Doherty (220) ;
    détection d'un signal total dans un détecteur (224) en formant un signal de sortie détecté, ledit signal total comprenant au moins ledit premier signal de sortie de Doherty ;
    comparaison dudit signal de sortie détecté à un seuil de contrôleur prédéterminé dans un contrôleur (228) ;
    génération d'un premier signal de commande et d'un second signal de commande dans ledit contrôleur si un signal de sortie détecté chute au-dessous dudit seuil de contrôleur prédéterminé ;
    génération d'une tension de sortie de régulateur de commutation dans un régulateur de commutation (232) sur la base dudit premier signal de commande ;
    modification d'une tension dudit premier amplificateur de Doherty (208) sur la base de ladite tension de sortie de régulateur de commutation ; et
    modification d'une tension dudit atténuateur variable sur la base dudit second signal de commande.
  8. Procédé selon la revendication 7, dans lequel un premier gain dudit circuit d'amplificateur comprend ladite modification de tension aux bornes dudit premier amplificateur de Doherty (208).
  9. Procédé selon la revendication 7, dans lequel un second gain dudit circuit d'amplificateur comprend une somme de ladite modification de tension dudit atténuateur variable (202) et dudit amplificateur.
  10. Circuit d'amplificateur selon les revendications 8 et 9, dans lequel une somme dudit premier gain et dudit second gain est sensiblement constante.
  11. Procédé selon la revendication 7, comprenant en outre les étapes de :
    amplification dudit signal amplifié dans un second amplificateur de Doherty (310 ; 314) en formant un second signal de sortie de Doherty ; et
    combinaison desdits premier et second signaux de sortie de Doherty en formant ledit signal total.
  12. Circuit d'amplificateur comprenant :
    un premier amplificateur de Doherty (404) qui comporte une entrée, une première entrée de commande de Doherty et une sortie ;
    un second amplificateur de Doherty (408) qui comporte une entrée qui est couplée à ladite sortie dudit premier amplificateur de Doherty, une sortie et une seconde entrée de commande de Doherty ;
    un détecteur (224) qui comporte une entrée de détecteur qui est couplée pour détecter un second signal de sortie de Doherty de ladite sortie dudit second amplificateur de Doherty et une sortie ;
    un contrôleur (228) qui comporte une entrée qui est couplée à ladite sortie dudit détecteur et une sortie ; et
    un régulateur de commutation (232) qui comporte une entrée qui est couplée à ladite sortie dudit contrôleur et des première et seconde sorties de régulateur de commutation, la première sortie de régulateur de commutation étant couplée à ladite première entrée de commande de Doherty et la seconde sortie de régulateur de commutation étant couplée à ladite seconde entrée de commande de Doherty.
  13. Circuit d'amplificateur selon la revendication 12, dans lequel un premier gain dudit circuit d'amplificateur comprend une tension aux bornes dudit second amplificateur de Doherty (408).
  14. Circuit d'amplificateur selon la revendication 12, dans lequel un second gain dudit circuit d'amplificateur comprend une tension aux bornes dudit premier amplificateur de Doherty (404).
  15. Circuit d'amplificateur selon les revendications 13 et 14, dans lequel une somme dudit premier gain et dudit second gain est sensiblement constante.
  16. Circuit d'amplificateur selon la revendication 12, comprenant un troisième amplificateur de Doherty (510 ; 514) qui comporte une entrée qui est couplée à ladite entrée dudit second amplificateur de Doherty (408), une sortie qui est couplée à ladite sortie dudit second amplificateur de Doherty et une entrée de commande qui est couplée à ladite seconde sortie de régulateur de commutation.
  17. Circuit d'amplificateur selon la revendication 12, dans lequel ledit amplificateur de Doherty comprend un dispositif à semiconducteur à transistor radio fréquence.
  18. Procédé d'amplification d'un signal d'entrée, le procédé d'amplification comprenant les étapes de :
    réception dudit signal d'entrée au niveau d'une entrée d'un premier amplificateur de Doherty (404) ;
    réception d'une première tension d'alimentation au niveau d'une première entrée de commande de Doherty dudit premier amplificateur de Doherty ;
    amplification dudit signal d'entrée (250) dans ledit premier amplificateur de Doherty en formant un premier signal de sortie de Doherty ;
    réception dudit premier signal de sortie de Doherty au niveau d'une entrée d'un second amplificateur de Doherty (408) ;
    réception d'une seconde tension d'alimentation au niveau d'une seconde entrée de commande de Doherty dudit second amplificateur de Doherty ;
    amplification dudit premier signal de sortie de Doherty dans ledit second amplificateur de Doherty en formant un second signal de sortie de Doherty ;
    détection d'un signal total en formant un signal de sortie détecté (226), ledit signal total comprenant au moins ledit second signal de sortie de Doherty ;
    comparaison dudit signal de sortie détecté à un seuil de contrôleur prédéterminé dans un contrôleur (228) ;
    génération d'un signal de commande dans ledit contrôleur si ledit signal de sortie détecté chute au-dessous dudit seuil de contrôleur prédéterminé ;
    génération d'une première tension d'alimentation dans un régulateur de commutation sur la base dudit signal de commande ;
    modification d'une tension dudit premier amplificateur de Doherty (404) sur la base de ladite première tension d'alimentation ;
    génération d'une seconde tension d'alimentation dans ledit régulateur de commutation sur la base dudit signal de commande ; et
    modification d'une tension dudit second amplificateur de Doherty (408) sur la base de ladite seconde tension d'alimentation.
  19. Procédé selon la revendication 18, dans lequel un premier gain dudit circuit d'amplificateur comprend ladite modification de tension dudit second amplificateur de Doherty (408).
  20. Procédé selon la revendication 18, dans lequel un second gain dudit circuit d'amplificateur comprend ladite modification de tension dudit premier amplificateur de Doherty (404).
  21. Circuit d'amplificateur selon les revendications 19 et 20, dans lequel une somme dudit premier gain et dudit second gain est sensiblement constante.
  22. Procédé selon la revendication 9, comprenant en outre les étapes de :
    amplification dudit premier signal de sortie de Doherty dans un troisième amplificateur de Doherty (510 ; 514) en formant un troisième signal de sortie de Doherty ; et
    combinaison dudit second signal de sortie de Doherty et dudit troisième signal de sortie de Doherty en formant ledit signal total.
  23. Procédé selon la revendication 18, dans lequel ledit seuil de contrôleur prédéterminé est sélectionné sur la base d'une puissance de signal d'entrée mesurée.
EP98921105A 1997-09-30 1998-05-08 Appareil et procede d'amplification d'un signal Expired - Lifetime EP1020026B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US940563 1997-09-30
US08/940,563 US5886575A (en) 1997-09-30 1997-09-30 Apparatus and method for amplifying a signal
PCT/US1998/009543 WO1999017443A1 (fr) 1997-09-30 1998-05-08 Appareil et procede d'amplification d'un signal

Publications (3)

Publication Number Publication Date
EP1020026A1 EP1020026A1 (fr) 2000-07-19
EP1020026A4 EP1020026A4 (fr) 2001-04-04
EP1020026B1 true EP1020026B1 (fr) 2004-06-30

Family

ID=25475057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98921105A Expired - Lifetime EP1020026B1 (fr) 1997-09-30 1998-05-08 Appareil et procede d'amplification d'un signal

Country Status (7)

Country Link
US (1) US5886575A (fr)
EP (1) EP1020026B1 (fr)
JP (1) JP4088415B2 (fr)
KR (1) KR100329133B1 (fr)
BR (1) BR9812398A (fr)
DE (1) DE69824873T2 (fr)
WO (1) WO1999017443A1 (fr)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60041469D1 (de) * 1999-03-31 2009-03-19 Nippon Telegraph & Telephone Vorwärtskopplungsverstärker
EP1054507A3 (fr) * 1999-05-19 2001-07-04 Nokia Mobile Phones Ltd. Station mobile utilisant une seule entrée d'un amplificateur de puissance différentiel pour réduire la puissance de sortie
US6396350B2 (en) * 2000-02-09 2002-05-28 Paradigm Wireless Systems, Inc. Power booster method and apparatus for improving the performance of radio frequency linear power amplifiers
JP2003526980A (ja) * 2000-03-10 2003-09-09 パラゴン コミュニケイションズ リミテッド 大きなピーク対平均比の下で動作する電力増幅器の効率を改善する改善された方法と装置
US6492867B2 (en) 2000-03-10 2002-12-10 Paragon Communications Ltd. Method and apparatus for improving the efficiency of power amplifiers, operating under a large peak-to-average ratio
US6437641B1 (en) 2000-03-10 2002-08-20 Paragon Communications Ltd. Method and apparatus for improving the efficiency of power amplifiers, operating under a large peak-to-average ratio
US6825719B1 (en) 2000-05-26 2004-11-30 Intel Corporation RF power amplifier and methods for improving the efficiency thereof
SE520760C2 (sv) * 2000-06-06 2003-08-19 Ericsson Telefon Ab L M Doherty-förstärkare av flerstegstyp
SE516145C2 (sv) * 2000-06-06 2001-11-26 Ericsson Telefon Ab L M Sammansatt förstärkare
US6587511B2 (en) * 2001-01-26 2003-07-01 Intel Corporation Radio frequency transmitter and methods thereof
US6864742B2 (en) * 2001-06-08 2005-03-08 Northrop Grumman Corporation Application of the doherty amplifier as a predistortion circuit for linearizing microwave amplifiers
US6469581B1 (en) 2001-06-08 2002-10-22 Trw Inc. HEMT-HBT doherty microwave amplifier
DE10135993A1 (de) * 2001-07-24 2003-05-08 Siemens Ag Verfahren zur Reduzierung der Verlustleistung bei linearen Verstärkern und zugehörige Vorrichtung
US20030125065A1 (en) * 2001-12-27 2003-07-03 Ilan Barak Method and apparatus for generating an output signal
US20030123566A1 (en) * 2001-12-27 2003-07-03 Jaime Hasson Transmitter having a sigma-delta modulator with a non-uniform polar quantizer and methods thereof
KR100553252B1 (ko) * 2002-02-01 2006-02-20 아바고테크놀로지스코리아 주식회사 휴대용 단말기의 전력 증폭 장치
WO2004027982A2 (fr) * 2002-09-20 2004-04-01 Triquint Semiconductor, Inc. Amplificateur de puissance lineaire a niveaux multiples de puissance de sortie
US7728662B2 (en) * 2002-09-20 2010-06-01 Triquint Semiconductor, Inc. Saturated power amplifier with selectable and variable output power levels
US6894561B2 (en) * 2002-09-20 2005-05-17 Triquint Semiconductor, Inc. Efficient power control of a power amplifier by periphery switching
JP4209652B2 (ja) * 2002-09-24 2009-01-14 三菱電機株式会社 高周波電力増幅器
KR100480496B1 (ko) * 2002-11-18 2005-04-07 학교법인 포항공과대학교 도허티 증폭기를 이용한 신호 증폭 장치
EP1576726B1 (fr) * 2002-12-19 2009-01-28 Telefonaktiebolaget LM Ericsson (publ) Structure d'amplificateur composite
JP2004221646A (ja) 2003-01-09 2004-08-05 Nec Corp ドハ−ティ増幅器
JP2004222151A (ja) 2003-01-17 2004-08-05 Nec Corp ドハーティ増幅器
US7336753B2 (en) * 2003-06-26 2008-02-26 Marvell International Ltd. Transmitter
US7912145B2 (en) * 2003-12-15 2011-03-22 Marvell World Trade Ltd. Filter for a modulator and methods thereof
US7356315B2 (en) * 2003-12-17 2008-04-08 Intel Corporation Outphasing modulators and methods of outphasing modulation
JP4715994B2 (ja) * 2004-08-26 2011-07-06 日本電気株式会社 ドハティ増幅器並列運転回路
US7327803B2 (en) 2004-10-22 2008-02-05 Parkervision, Inc. Systems and methods for vector power amplification
US7355470B2 (en) 2006-04-24 2008-04-08 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including embodiments for amplifier class transitioning
US7148746B2 (en) 2004-10-26 2006-12-12 Andrew Corporation High efficiency amplifier
US7142053B2 (en) * 2004-12-06 2006-11-28 Skyworks Solutions, Inc. Voltage clamp for improved transient performance of a collector voltage controlled power amplifier
JP4387936B2 (ja) * 2004-12-13 2009-12-24 株式会社東芝 高周波用のドハティ型の高効率増幅器、およびその信号処理方法
US7557652B2 (en) * 2004-12-21 2009-07-07 Telefonaktiebolaget L M Ericsson (Publ) Power amplifier system
EP1708358A3 (fr) * 2005-03-11 2006-12-06 LG Electronics Inc. Terminal de communication mobile à dispositif de tension de commande et méthode
JP2007053540A (ja) * 2005-08-17 2007-03-01 Nec Corp ドハティ型増幅器
US7911272B2 (en) 2007-06-19 2011-03-22 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including blended control embodiments
US9106316B2 (en) 2005-10-24 2015-08-11 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification
US8334722B2 (en) 2007-06-28 2012-12-18 Parkervision, Inc. Systems and methods of RF power transmission, modulation and amplification
US7248110B2 (en) * 2005-12-06 2007-07-24 Harris Corporation Modified doherty amplifier
US7831221B2 (en) * 2005-12-13 2010-11-09 Andrew Llc Predistortion system and amplifier for addressing group delay modulation
US7382194B2 (en) * 2006-01-18 2008-06-03 Triquint Semiconductor, Inc. Switched distributed power amplifier
JP5275973B2 (ja) * 2006-04-10 2013-08-28 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 複合増幅器の信号歪みを補償するための方法
US7937106B2 (en) 2006-04-24 2011-05-03 ParkerVision, Inc, Systems and methods of RF power transmission, modulation, and amplification, including architectural embodiments of same
US8031804B2 (en) 2006-04-24 2011-10-04 Parkervision, Inc. Systems and methods of RF tower transmission, modulation, and amplification, including embodiments for compensating for waveform distortion
JP4831571B2 (ja) * 2006-05-02 2011-12-07 富士通株式会社 増幅器ユニット及びその故障検出方法
JP2008035487A (ja) * 2006-06-19 2008-02-14 Renesas Technology Corp Rf電力増幅器
WO2008012898A1 (fr) * 2006-07-27 2008-01-31 Panasonic Corporation Appareil d'amplification de puissance
US8315336B2 (en) 2007-05-18 2012-11-20 Parkervision, Inc. Systems and methods of RF power transmission, modulation, and amplification, including a switching stage embodiment
WO2008053534A1 (fr) * 2006-10-31 2008-05-08 Panasonic Corporation Amplificateur doherty
EP2101409B1 (fr) * 2006-12-19 2021-01-20 Mitsubishi Electric Corporation Dispositif d'amplification de puissance
US7620129B2 (en) * 2007-01-16 2009-11-17 Parkervision, Inc. RF power transmission, modulation, and amplification, including embodiments for generating vector modulation control signals
US7541868B2 (en) * 2007-05-31 2009-06-02 Andrew, Llc Delay modulator pre-distortion circuit for an amplifier
WO2008156800A1 (fr) 2007-06-19 2008-12-24 Parkervision, Inc. Amplification à entrées multiples et à sortie unique (miso) sans combinateur avec contrôle mélangé
JP5169122B2 (ja) * 2007-10-09 2013-03-27 住友電気工業株式会社 ドハティ増幅装置
US7619468B1 (en) * 2008-09-30 2009-11-17 Nortel Networks Limited Doherty amplifier with drain bias supply modulation
EP2490329B1 (fr) * 2009-10-13 2018-08-29 Nec Corporation Amplificateur de puissance et procédé de fonctionnement de celui-ci
CN102577104B (zh) * 2009-10-23 2015-01-14 日本碍子株式会社 多赫蒂放大器用合成器
EP2339745A1 (fr) * 2009-12-15 2011-06-29 Nxp B.V. Amplificateur de Doherty
EP2362541A1 (fr) * 2010-02-25 2011-08-31 Alcatel Lucent Amplificateur parallèle
EP2695294A1 (fr) 2011-04-08 2014-02-12 Parkervision, Inc. Systèmes et procédés de transmission, modulation et amplification de puissance rf
DE102011075314B4 (de) 2011-05-05 2018-08-30 Rohde & Schwarz Gmbh & Co. Kg Geregelter Hochleistungsverstärker
EP2715867A4 (fr) 2011-06-02 2014-12-17 Parkervision Inc Commande d'antenne
US9059666B2 (en) * 2013-01-08 2015-06-16 Aviat U.S., Inc. Systems and methods for biasing amplifiers during high-power operation with adaptive closed-loop control
US9143098B2 (en) 2013-01-08 2015-09-22 Aviat U.S., Inc. Systems and methods for biasing amplifiers with adaptive closed loop control
US9160284B2 (en) 2013-01-08 2015-10-13 Aviat U.S., Inc. Systems and methods for biasing amplifiers using adaptive closed-loop control and adaptive predistortion
US9083350B1 (en) * 2013-02-12 2015-07-14 Aethercomm, Inc. Method and apparatus for a digital non-linear loop control circuit
DE102013207898A1 (de) 2013-04-30 2014-10-30 Novero Dabendorf Gmbh Kompensation einer Signal-Dämpfung bei der Übertragung von Sendesignalen eines Mobilfunkgeräts
JP2015046795A (ja) * 2013-08-28 2015-03-12 株式会社東芝 電力増幅装置、及び電力増幅装置の制御方法
CN106415435B (zh) 2013-09-17 2020-08-11 帕克维辛股份有限公司 用于呈现信息承载时间函数的方法、装置和系统
JP5833094B2 (ja) * 2013-12-26 2015-12-16 株式会社東芝 電力増幅装置、及び電力増幅装置の制御方法
JP2016225777A (ja) * 2015-05-29 2016-12-28 日本電信電話株式会社 振幅検出回路
CN208710425U (zh) 2017-10-06 2019-04-09 原星股份有限公司 助行车的座面结构
JP2019092131A (ja) 2017-11-17 2019-06-13 株式会社村田製作所 電力増幅モジュール
CN110635698B (zh) * 2019-05-28 2021-04-30 电子科技大学 一种具有高回退范围的射频信号整流器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900823A (en) * 1973-03-28 1975-08-19 Nathan O Sokal Amplifying and processing apparatus for modulated carrier signals
US4378530A (en) * 1979-07-04 1983-03-29 Unisearch Limited High-efficiency low-distortion amplifier
JPH03198407A (ja) * 1989-12-26 1991-08-29 Mitsubishi Electric Corp 線形増幅器
JP2703667B2 (ja) * 1991-01-10 1998-01-26 三菱電機株式会社 電力増幅装置
US5420541A (en) * 1993-06-04 1995-05-30 Raytheon Company Microwave doherty amplifier
US5974041A (en) * 1995-12-27 1999-10-26 Qualcomm Incorporated Efficient parallel-stage power amplifier
US5757229A (en) * 1996-06-28 1998-05-26 Motorola, Inc. Bias circuit for a power amplifier

Also Published As

Publication number Publication date
EP1020026A1 (fr) 2000-07-19
JP2001518731A (ja) 2001-10-16
JP4088415B2 (ja) 2008-05-21
BR9812398A (pt) 2000-09-12
DE69824873D1 (de) 2004-08-05
EP1020026A4 (fr) 2001-04-04
WO1999017443A1 (fr) 1999-04-08
US5886575A (en) 1999-03-23
KR20010024337A (ko) 2001-03-26
DE69824873T2 (de) 2005-06-30
KR100329133B1 (ko) 2002-03-18

Similar Documents

Publication Publication Date Title
EP1020026B1 (fr) Appareil et procede d'amplification d'un signal
US6937094B2 (en) Systems and methods of dynamic bias switching for radio frequency power amplifiers
US7295064B2 (en) Doherty amplifier
US7440733B2 (en) Constant gain nonlinear envelope tracking high efficiency linear amplifier
US8022761B2 (en) Error driven RF power amplifier control with increased efficiency
EP0908006B1 (fr) Circuit de polarisation pour amplificateur de puissance
US9559637B2 (en) Multi-mode bias modulator and envelope tracking power amplifier using the same
US7719354B2 (en) Dynamic biasing system for an amplifier
EP1898521A1 (fr) Appareil d'amplification de puissance et terminal de communication mobile
US7564311B2 (en) Method and apparatus to enhance linearity and efficiency in an RF power amplifier
US6819180B2 (en) Radio frequency power amplifier adaptive bias control circuit
US6696866B2 (en) Method and apparatus for providing a supply voltage based on an envelope of a radio frequency signal
US7504881B2 (en) Power amplifier
US7265627B2 (en) Self adaptable bias circuit for enabling dynamic control of quiescent current in a linear power amplifier
US20040095192A1 (en) Radio frequency power amplifier adaptive bias control circuit
US6427067B1 (en) Detector driven bias circuit for power transistors
US7825730B2 (en) Bias circuit for the wireless transceiver
US20070247232A1 (en) Eer High Frequency Amplifier
KR101018039B1 (ko) 고속 바이어스 제어를 이용한 고효율 선형 전력 증폭 방법 및 전력 증폭 시스템

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FI FR GB SE

A4 Supplementary search report drawn up and despatched

Effective date: 20010215

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FI FR GB SE

RIC1 Information provided on ipc code assigned before grant

Free format text: 7H 03G 3/20 A, 7H 03F 1/02 B

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REF Corresponds to:

Ref document number: 69824873

Country of ref document: DE

Date of ref document: 20040805

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050331

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110127 AND 20110202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69824873

Country of ref document: DE

Owner name: MOTOROLA MOBILITY, INC. ( N.D. GES. D. STAATES, US

Free format text: FORMER OWNER: MOTOROLA, INC., SCHAUMBURG, ILL., US

Effective date: 20110324

Ref country code: DE

Ref legal event code: R081

Ref document number: 69824873

Country of ref document: DE

Owner name: MOTOROLA MOBILITY, INC. ( N.D. GES. D. STAATES, US

Free format text: FORMER OWNER: MOTOROLA, INC., SCHAUMBURG, US

Effective date: 20110324

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: MOTOROLA MOBILITY, INC., US

Effective date: 20110912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140425

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140602

Year of fee payment: 17

Ref country code: SE

Payment date: 20140508

Year of fee payment: 17

Ref country code: FI

Payment date: 20140505

Year of fee payment: 17

Ref country code: FR

Payment date: 20140424

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69824873

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150508

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230511