EP1000235B1 - Method for controlling an internal combustion engine - Google Patents

Method for controlling an internal combustion engine Download PDF

Info

Publication number
EP1000235B1
EP1000235B1 EP98947302A EP98947302A EP1000235B1 EP 1000235 B1 EP1000235 B1 EP 1000235B1 EP 98947302 A EP98947302 A EP 98947302A EP 98947302 A EP98947302 A EP 98947302A EP 1000235 B1 EP1000235 B1 EP 1000235B1
Authority
EP
European Patent Office
Prior art keywords
value
torque
determined
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98947302A
Other languages
German (de)
French (fr)
Other versions
EP1000235A1 (en
Inventor
Johann FRÖHLICH
Hong Zhang
Stefan Treinies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1000235A1 publication Critical patent/EP1000235A1/en
Application granted granted Critical
Publication of EP1000235B1 publication Critical patent/EP1000235B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque

Definitions

  • the invention relates to a method for controlling an internal combustion engine.
  • a known method (DE 42 32 974 A1 becomes an estimate of an ignition normalized actual Torque determined.
  • a setpoint of one over the air mass flow torque to be delivered is in a facility determined for torque specification.
  • the setpoint of the Torque becomes dependent on a deviation from the setpoint corrected from the normalized torque estimate.
  • This corrected setpoint of the torque is dependent assigned a setpoint of the air mass flow by the speed, which then has a corresponding opening degree Throttle valve is set. Adjusting an ignition angle takes place depending on the deviation of the setpoint from the normalized torque estimate.
  • the nominal value of the torque is also determined taking into account various torque requirements, for example from an anti-slip regulator, one Torque reserve for heating a catalytic converter or a Torque request from an engine drag torque controller, this also results in the stationary operation of the internal combustion engine Deviations between the normalized estimate of the Torque and the setpoint of the torque.
  • the one corrected Setpoint value of the torque assigned to the air mass flow can only be in a cylinder of the internal combustion engine a large delay time. Hence the Correction of the torque depending on the setpoint and the Estimated torque for excessive vibrations in the air mass flow and hence the need for the firing angle must be adjusted. This has the consequence that the driving comfort is reduced and emissions are increased.
  • a method for adjusting the torque on an internal combustion engine is known from DE 43 15 885 C1.
  • a regulator is provided whose controlled variable is the air mass flow and which generates a control signal for a throttle valve.
  • the control difference of the controller is made up of an average air mass flow, dependent on the inverse clocked load filter is calculated from a predetermined load setpoint, and a measured air mass flow.
  • FR 26 88 546 describes a method for regulating the torque an internal combustion engine known in which a torque setpoint depending on a corrected torque measurement is determined.
  • the object of the invention is a method for control to specify an internal combustion engine that is accurate and at the same time good jumping behavior on torque jumps has the entire operating time of the internal combustion engine.
  • a Observer provided an air mass flow into a cylinder the internal combustion engine depending on a measured Air mass flow determined.
  • the observer embraces a dynamic Filling model of the intake tract of the internal combustion engine.
  • An internal combustion engine (FIG. 1) comprises an intake tract 1 with a throttle valve 10 and an engine block 2, the one Cylinder 20 and a crankshaft 23.
  • a piston 21 and a connecting rod 22 are assigned to the cylinder 20.
  • the Connecting rod 22 is with piston 21 and crankshaft 23 connected.
  • a cylinder head 3 is provided in which a valve train is arranged is with at least one inlet valve 30, an outlet valve 31 and one each assigned to the inlet valve 30 Valve drive 32a and one associated with the exhaust valve 31 Valve actuator 32b.
  • the valve actuators 32a, 32b include each have a camshaft (not shown) with a transmission device, which the cam stroke on the intake valve 30 or the outlet valve 31 transmits.
  • an electromagnetic one Actuator can be provided, the valve lift course of the inlet and outlet valves 30, 31 controls.
  • An injection valve 11 is introduced in the intake tract 1, which is arranged so that the fuel in the intake tract 1 is measured.
  • the injection valve 11 can alternatively, however also be introduced in the cylinder head 3 and there be arranged that the fuel directly into the interior of the cylinder 20 is metered.
  • a spark plug 34 is in a recess of the cylinder head 3 brought in.
  • the internal combustion engine is shown in FIG represented a cylinder. However, it can also have several cylinders include.
  • An exhaust tract 4 with a catalytic converter 40 is the internal combustion engine assigned.
  • the crankshaft 23 is via a clutch 5 can be coupled with a gear 6.
  • the clutch 8 as a converter lock-up clutch, preferably with a hydrodynamic Converter trained.
  • a control device 7 for the internal combustion engine is provided, the sensors are assigned to the various measured variables record and determine the measured value of the measured variable.
  • the control device 7 determines depending on at least an operating variable one or more control signals that Control one actuator each.
  • the sensors are a pedal position sensor 81, which is a pedal position PV of the accelerator pedal 8 detects a throttle position transmitter 12, which detects an opening degree of the throttle valve, an air mass meter 13, which is an air mass flow detects and / or an intake manifold pressure sensor 14, the intake manifold pressure detected in the intake tract 1, a first temperature sensor 15, which detects an intake air temperature, a speed sensor 24, which detects a rotational speed N of the crankshaft 23, a torque sensor 25, which detects the actual torque, that is output from the crankshaft 23, and a second and third temperature sensors 26, 27, which have an oil temperature Detect TOIL or a cooling water temperature TCO.
  • the Control device 7 can be any subset of the above Have sensors or you can also additional Sensors must be assigned.
  • Operating variables include measured variables and those derived from them Quantities over a map context by an observer are determined, the estimates of the farm sizes calculated.
  • the actuators each include an actuator and a Actuator.
  • the actuator is an electric motor drive, an electromagnetic drive, a mechanical or another drive known to those skilled in the art.
  • the actuators are as a throttle valve 10, as an injection valve 11, as a spark plug 34 or as an adjusting device for adjusting the Valve strokes of the intake or exhaust valves 30, 31 are formed. In the following, the actuators are assigned with the respective assigned Actuator referred.
  • the control device is preferably an electronic engine control educated. However, it can also have several control units include the electrically connected together are so z. B. via a bus system.
  • a block B1 (FIG. 2) a Estimate MAF_CYL of the air mass flow in the cylinder 20 with a filling model of the intake tract 1 depending on the Measured value MAF_MES of the air mass flow and other operating variables calculated.
  • MAF_MES Measured value of the air mass flow
  • a map KF1 is provided, from which a first contribution to a loss torque TQ_LOSS depending on the speed N, the estimated value MAF_CYL of the air mass flow into the cylinder 20 and preferably an estimated value of an exhaust gas mass flow is determined in the cylinder 20.
  • the first post Pump losses are taken into account for the loss torque TQ_LOSS in the internal combustion engine and losses caused by friction predetermined reference values of the cooling water temperature TCO and the oil temperature TOIL occur.
  • a second contribution to that Loss torque is dependent on a map KF2 the oil temperature TOIL and / or the cooling water temperature TCO determined.
  • the contributions are then in a link A1 added to the loss torque and with a correction value COR2 multiplied or added to the correction value COR2.
  • the correction value COR2 is determined in a block B9, which is described below.
  • a minimum and a maximum is available adjustable torque depending on the loss torque TQ_LOSS and the speed N determined. From the pedal position PV and the speed N is determined what proportion of the Available torque requested by the driver becomes. From the requested portion of the torque and the The torque that can be made available is then a desired one Torque TQI_REQ determined. There is preferably also one Filtering of the desired torque TQI_REQ provided to ensure that no load jumps can occur, which lead to an unpleasant jerking of the vehicle.
  • a setpoint TQI_SP_MAF of the Determined air mass flow torque there in addition to the desired torque TQI_REQ also others Torque requirements are taken into account. These torque requirements are, for example, one of an idle controller requested torque TQI_IS, one for heating a catalyst requested torque TQI_CH, a torque request an anti-slip control TQI_ASC, a torque request TQI_N_MAX a speed limit or the Torque request TQI_MSR of an engine drag torque control.
  • the setpoint TQI_SP_MAF of the torque can thus be larger or even less than the desired torque TQI_REQ his.
  • the setpoint TQI_SP_MAF of the torque is in one block B4 corrected with an adapted correction value COR1 'or COR2', which are determined in block B9.
  • the correction takes place in block B4 either by multiplication of the setpoint TQI_SP_MAF of the torque with the adapted Correction value COR1 'or COR2' and / or an addition of the adapted correction value COR1 'or COR2'.
  • the corrected setpoint is shown via a map KF3 TQI_SP_MAF_COR of the torque depending on the speed N a setpoint MAF_SP of the air mass flow is assigned.
  • the values of the map KF3 are on an engine test bench at a Air ratio LAM_REF and a reference ignition angle IGA_REF are determined, at which the torque at the respective operating point is maximum, or determined by a simulation calculation.
  • a control signal is generated in a block B6 determined to control the throttle valve, preferably from a position controller of the throttle valve.
  • block B12 takes into account further torque requirements, which very quickly converted into actual torque such as the torque requirement of the anti-slip regulator. This can be a very quick
  • the actual torque is changed, in particular then when the setpoint TQI_SP_MAF of the via Air mass flow to be set a corresponding torque Fill reserve has been set in the cylinder 20 is because there is a change in the injection time or the ignition angle directly affect the torque.
  • a map KF4 (FIG. 3) is provided in the reference value TQI_REF of the torque of the estimated value MAF_CYL and the speed N stored are.
  • the map KF4 is just like the map KF3 to one Engine test bench at the respective reference ignition angle IGA_REF and the respective reference air ratio LAM_REF determined or determined by a simulation calculation.
  • the reference torque TQI_REF is therefore the maximum torque, that at the corresponding speed and the corresponding Air mass flow in the cylinder is implemented theoretically can be.
  • the reference value is corrected in a block B80 TQI_REF of the torque with the specified correction value COR1 or COR2.
  • the correction is made with the inverse mathematical operation to block B4.
  • the setpoint TQI_SP_MAF of the torque with the adapted correction value COR1 'or COR2' multiplied the reference value is in block B80 TQI_REF of the torque through the correction value COR1 or COR2 divided.
  • the output of block B80 is a corrected one Reference value TQI_REF_COR of the torque.
  • a predetermined correction value goes for the first run of the method COR1 or COR2 in the determination of TQ_AV ( Figure 3) on.
  • the Block B9 adapted correction value COR1 'or COR2' into the determination from TQ_AV ( Figure 3).
  • the reference ignition angle IGA_REF is dependent in block B81 from the speed N and the estimated value MAF_CYL of the air mass flow in the cylinder and preferably also dependent determined from the cooling water temperature TCO.
  • the difference in the setpoint is shown in a node V2 IGA_SP and the reference value IGA_REF of the ignition angle are calculated.
  • An ignition angle efficiency is then in block B82 EFF_IGA depends on that in node V2 formed difference determined.
  • a reference value LAM_REF of the air ratio determined depending on the speed and the estimated value MAF_CYL.
  • the reference value LAM_REF is the current one Operating point optimal value of the air ratio with regard to a Maximize actual torque.
  • a tie point V3 becomes the difference between the setpoint LAM_SP and of the reference value LAM_REF of the air ratio.
  • EFF_LAM air ratio efficiency
  • a cylinder deactivation efficiency EFF_SCC determined.
  • the cylinder deactivation efficiency is calculated preferably from the number of each work cycle the internal combustion engine fired cylinder based on the Total number of cylinders.
  • block B86 is corrected by multiplying the Reference value TQI_REF_COR of the torque with the ignition angle efficiency EFF_IGA, with the air ratio efficiency EFF_LAM and with the cylinder deactivation efficiency EFF_SCC the estimated value TQI_AV of the indexed actual torque determined from the addition of the loss torque TQ_LOSS the estimated value TQ_AV of the actual torque is calculated on the clutch 5.
  • the difference of Estimated value TQ_AV of the actual torque and of the torque sensor 25 determined measured value TQ_MES of the actual Torque calculated.
  • the predetermined correction value is then in a block B9 COR1 or COR2 adapted and in the adapted correction value COR1 'or COR2' transferred.
  • Preferably there are several Correction values COR1, COR2 depend on the air mass MAF_CYL and the speed N are provided.
  • Depends on the Difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque is the one for the current one Speed N and the current estimate MAF_CYL of the air mass flow predefined correction value COR1 or COR2 adapted.
  • the adaptation is preferably carried out via a sliding Averaging calculation.
  • the correction value COR1 is adapted in block B9. Moreover becomes dependent on the current speed N and the current one Estimate MAF_CYL of the air mass flow in the block B9 the adapted value COR1 'or COR2' of the specified correction value COR1, COR2 determined and then the node V1, the block B4 and the block B80 fed.
  • block B10 it is checked whether the difference in the estimated value TQ_AV and the measured value TQ_MES of the actual torque is greater than a predetermined threshold value SW. is if this is the case, an error in the calculation of the Torque is running out and a first emergency operation is controlled, the is advantageously a limitation of the speed N. alternative it is checked in block B10 whether the temporal integral about the difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque is greater than that predefined threshold value SW.
  • a major advantage of the method is that inaccuracies the maps KF3 and KF4, which are caused by Production variations and due to aging of the internal combustion engine, from the difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque can be derived.
  • the invention is not based on the exemplary embodiments described limited.

Abstract

According to the method provided for in the invention, a measurement value (TQ_MES) of an actual torque is determined. An estimated value (TQ_AV) of the actual torque is determined according to the operating variables of the internal combustion engine. A corrected value (COR) is calculated on the basis of the estimated value (TQ_AV) and the measurement value (TQ_MES) of the actual torque. A set point value (TQI_SP_MAF) of the torque to be controlled by means of the air mass flow is determined according to a pedal position (PV) determined by a pedal position sensor (61), calculated using at least one other operating variable and corrected according to the corrected value (COR).

Description

Die Erfindung betrifft ein Verfahren zum Steuern einer Brennkraftmaschine. Bei einem bekannten Verfahren (DE 42 32 974 A1 wird ein Schätzwert eines zündwinkelnormierten tatsächlichen Drehmoments ermittelt. Ein Sollwert eines über den Luftmassenstrom zustellenden Drehmoments wird in einer Einrichtung zur Drehmomentvorgabe ermittelt. Der Sollwert des Drehmoments wird abhängig von einer Abweichung des Sollwertes von dem normierten Schätzwert des Drehmoments korrigiert. Diesen korrigierten Sollwert des Drehmoments wird abhängig von der Drehzahl einem Sollwert des Luftmassenstroms zugeordnet, der dann über einen entsprechenden Öffnungsgrad einer Drosselklappe eingestellt wird. Ein Verstellen eines Zündwinkels erfolgt abhängig von der Abweichung des Sollwertes von dem normierten Schätzwert des Drehmoments.The invention relates to a method for controlling an internal combustion engine. In a known method (DE 42 32 974 A1 becomes an estimate of an ignition normalized actual Torque determined. A setpoint of one over the air mass flow torque to be delivered is in a facility determined for torque specification. The setpoint of the Torque becomes dependent on a deviation from the setpoint corrected from the normalized torque estimate. This corrected setpoint of the torque is dependent assigned a setpoint of the air mass flow by the speed, which then has a corresponding opening degree Throttle valve is set. Adjusting an ignition angle takes place depending on the deviation of the setpoint from the normalized torque estimate.

Erfolgt die Ermittlung des Sollwertes des Drehmoments zusätzlich unter Berücksichtigung verschiedener Drehmomentanforderungen, beispielsweise von einem Antischlupfregler, eines Drehmomentvorhalts zum Aufheizen eines Katalysators oder einer Drehmomentanforderung eines Motorschleppmoment-Reglers, so ergeben sich auch im stationären Betrieb der Brennkraftmaschine Abweichungen zwischen dem normierten Schätzwert des Drehmoments und dem Sollwert des Drehmoments. Der dem korrigierten Sollwert des Drehmoments zugeordnete Luftmassenstrom in einem Zylinder der Brennkraftmaschine läßt sich erst nach einer großen Verzögerungszeit einstellen. Daher führt die Korrektur des Drehmoments abhängig von dem Sollwert und dem Schätzwert des Drehmoments zu starken Schwingungen des Luftmassenstroms und damit zu der Notwendigkeit, daß der Zündwinkel verstellt werden muß. Dies hat zur Folge, daß der Fahrkomfort verringert wird und die Emissionen erhöht werden. If the nominal value of the torque is also determined taking into account various torque requirements, for example from an anti-slip regulator, one Torque reserve for heating a catalytic converter or a Torque request from an engine drag torque controller, this also results in the stationary operation of the internal combustion engine Deviations between the normalized estimate of the Torque and the setpoint of the torque. The one corrected Setpoint value of the torque assigned to the air mass flow can only be in a cylinder of the internal combustion engine a large delay time. Hence the Correction of the torque depending on the setpoint and the Estimated torque for excessive vibrations in the air mass flow and hence the need for the firing angle must be adjusted. This has the consequence that the driving comfort is reduced and emissions are increased.

Ein Verfahren zur Einstellung des Drehmoments an einer Brennkraftmaschine ist aus der DE 43 15 885 C1 bekannt. Ein Regler ist vorgesehen dessen Regelgröße der Luftmassenstrom ist und der ein Stellsignal für eine Drosselklappe erzeugt. Die Regeldifferenz des Reglers wird aus einem mittleren Luftmassenstrom, der mit Hilfe eines invers getakteten Lastfilters abhängig von einem vorgegebenen Last-Sollwert berechnet wird, und einem gemessenen Luftmassenstrom gebildet.A method for adjusting the torque on an internal combustion engine is known from DE 43 15 885 C1. A regulator is provided whose controlled variable is the air mass flow and which generates a control signal for a throttle valve. The control difference of the controller is made up of an average air mass flow, dependent on the inverse clocked load filter is calculated from a predetermined load setpoint, and a measured air mass flow.

Aus der FR 26 88 546 ist ein Verfahren zum Regeln des Drehmoments einer Brennkraftmaschine bekannt bei dem ein Drehmomentsollwert in Abhängigkeit von einem korrigierten Drehmomentmesswert bestimmt wird.FR 26 88 546 describes a method for regulating the torque an internal combustion engine known in which a torque setpoint depending on a corrected torque measurement is determined.

Die Aufgabe der Erfindung ist es, ein Verfahren zum Steuern einer Brennkraftmaschine anzugeben, das genau ist und gleichzeitig ein gutes Sprungverhalten auf Drehmomentsprünge über die gesamte Betriebsdauer der Brennkraftmaschine aufweist.The object of the invention is a method for control to specify an internal combustion engine that is accurate and at the same time good jumping behavior on torque jumps has the entire operating time of the internal combustion engine.

Die Aufgabe wird erfindungsgemäß durch die Merkmale des unabhängigen Patentanspruchs 1 gelöst.The object is achieved by the features of the independent Claim 1 solved.

Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.Advantageous embodiments of the invention are in the subclaims characterized.

In einer vorteilhaften Ausgestaltung der Erfindung ist ein Beobachter vorgesehen, der einen Luftmassenstrom in einen Zylinder der Brennkraftmaschine abhängig von einem gemessenenen Luftmassenstrom ermittelt. Der Beobachter umfaßt ein dynamisches Füllungsmodell des Ansaugtraktes der Brennkraftmaschine.In an advantageous embodiment of the invention is a Observer provided an air mass flow into a cylinder the internal combustion engine depending on a measured Air mass flow determined. The observer embraces a dynamic Filling model of the intake tract of the internal combustion engine.

Ausführungsbeispiele der Erfindung sind anhand der schematischen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine Brennkraftmaschine mit einer Steuereinrichtung,
Figur 2
ein Blockschaltbild der Steuereinrichtung,
Figur 3
ein detailliertes Blockschaltbild eines Blocks B2, in dem ein Schätzwert eines tatsächlichen Drehmoments ermittelt wird.
Embodiments of the invention are explained in more detail with reference to the schematic drawings. Show it:
Figure 1
an internal combustion engine with a control device,
Figure 2
a block diagram of the control device,
Figure 3
a detailed block diagram of a block B2, in which an estimated value of an actual torque is determined.

Elemente gleicher Konstruktion und Funktion sind figurenübergreifend mit den gleichen Bezugszeichen versehen.Elements of the same construction and function are common to all figures provided with the same reference numerals.

Eine Brennkraftmaschine (Figur 1) umfaßt einen Ansaugtrakt 1 mit einer Drosselklappe 10 und einen Motorblock 2, der einen Zylinder 20 und eine Kurbelwelle 23 aufweist. Ein Kolben 21 und eine Pleuelstange 22 sind dem Zylinder 20 zugeordnet. Die Pleuelstange 22 ist mit dem Kolben 21 und der Kurbelwelle 23 verbunden.An internal combustion engine (FIG. 1) comprises an intake tract 1 with a throttle valve 10 and an engine block 2, the one Cylinder 20 and a crankshaft 23. A piston 21 and a connecting rod 22 are assigned to the cylinder 20. The Connecting rod 22 is with piston 21 and crankshaft 23 connected.

Ein Zylinderkopf 3 ist vorgesehen, in dem ein Ventiltrieb angeordnet ist mit mindestens einem Einlaßventil 30, einem Auslaßventil 31 und jeweils einem dem Einlaßventil 30 zugeordneten Ventilantrieb 32a und einem dem Auslaßventil 31 zugeordneten Ventilantrieb 32b. Die Ventilantriebe 32a, 32b umfassen jeweils eine nicht dargestellte Nockenwelle mit einer Übertragungseinrichtung, die den Nockenhub auf das Einlaßventil 30 bzw. das Auslaßventil 31 überträgt. Es können auch Einrichtungen zum Verstellen der Ventilhubzeiten und des Ventilhubverlaufs vorgesehen sein. Alternativ kann auch ein elektromagnetischer Aktor vorgesehen sein, der dem Ventilhubverlauf des Ein- bzw. Auslaßventils 30, 31 steuert.A cylinder head 3 is provided in which a valve train is arranged is with at least one inlet valve 30, an outlet valve 31 and one each assigned to the inlet valve 30 Valve drive 32a and one associated with the exhaust valve 31 Valve actuator 32b. The valve actuators 32a, 32b include each have a camshaft (not shown) with a transmission device, which the cam stroke on the intake valve 30 or the outlet valve 31 transmits. There can also be facilities for adjusting the valve stroke times and the valve stroke curve be provided. Alternatively, an electromagnetic one Actuator can be provided, the valve lift course of the inlet and outlet valves 30, 31 controls.

In dem Ansaugtrakt 1 ist ein Einspritzventil 11 eingebracht, das so angeordnet ist, daß der Kraftstoff in den Ansaugtrakt 1 zugemessen wird. Das Einspritzventil 11 kann alternativ jedoch auch in dem Zylinderkopf 3 eingebracht sein und dort so angeordnet sein, daß der Kraftstoff direkt in den Innenraum des Zylinders 20 zugemessen wird.An injection valve 11 is introduced in the intake tract 1, which is arranged so that the fuel in the intake tract 1 is measured. The injection valve 11 can alternatively, however also be introduced in the cylinder head 3 and there be arranged that the fuel directly into the interior of the cylinder 20 is metered.

Eine Zündkerze 34 ist in eine Ausnehmung des Zylinderkopfes 3 eingebracht. Die Brennkraftmaschine ist in der Figur 1 mit einem Zylinder dargestellt. Sie kann jedoch auch mehrere Zylinder umfassen. A spark plug 34 is in a recess of the cylinder head 3 brought in. The internal combustion engine is shown in FIG represented a cylinder. However, it can also have several cylinders include.

Ein Abgastrakt 4 mit einem Katalysator 40 ist der Brennkraftmaschine zugeordnet. Die Kurbelwelle 23 ist über eine Kupplung 5 mit einem Getriebe 6 koppelbar. Wenn das Getriebe 6 als Automatikgetriebe ausgebildet ist, dann ist die Kupplung 8 als Wandlerüberbrückungskupplung vorzugsweise mit einem hydrodynamischen Wandler ausgebildet.An exhaust tract 4 with a catalytic converter 40 is the internal combustion engine assigned. The crankshaft 23 is via a clutch 5 can be coupled with a gear 6. If the transmission 6 is designed as an automatic transmission, then the clutch 8 as a converter lock-up clutch, preferably with a hydrodynamic Converter trained.

Eine Steuereinrichtung 7 für die Brennkraftmaschine ist vorgesehen, der Sensoren zugeordnet sind, die verschiedene Meßgrößen erfassen und jeweils den Meßwert der Meßgröße ermitteln. Die Steuereinrichtung 7 ermittelt abhängig von mindestens einer Betriebsgröße ein oder mehrere Stellsignale, die je ein Stellgerät steuern.A control device 7 for the internal combustion engine is provided, the sensors are assigned to the various measured variables record and determine the measured value of the measured variable. The control device 7 determines depending on at least an operating variable one or more control signals that Control one actuator each.

Die Sensoren sind ein Pedalstellungsgeber 81, der eine Pedalstellung PV des Fahrpedals 8 erfaßt, ein Drosselklappenstellungsgeber 12, der einen Öffnungsgrad der Drosselklappe erfaßt, einen Luftmassenmesser 13, der einen Luftmassenstrom erfaßt und/ oder ein Saugrohrdrucksensor 14, der einen Saugrohrdruck in dem Ansaugtrakt 1 erfaßt, ein erster Temperatursensor 15, der eine Ansauglufttemperatur erfaßt, ein Drehzahlgeber 24, der eine Drehzahl N der Kurbelwelle 23 erfaßt, ein Drehmomentsensor 25, der das tatsächliche Drehmoment erfaßt, das von der Kurbelwelle 23 abgegeben wird, und ein zweiter und dritter Temperatursensor 26, 27, die eine Öltemperatur TOIL bzw. eine Kühlwassertemperatur TCO erfassen. Die Steuereinrichtung 7 kann eine beliebige Untermenge der genannten Sensoren aufweisen oder es können ihr auch zusätzliche Sensoren zugeordnet sein.The sensors are a pedal position sensor 81, which is a pedal position PV of the accelerator pedal 8 detects a throttle position transmitter 12, which detects an opening degree of the throttle valve, an air mass meter 13, which is an air mass flow detects and / or an intake manifold pressure sensor 14, the intake manifold pressure detected in the intake tract 1, a first temperature sensor 15, which detects an intake air temperature, a speed sensor 24, which detects a rotational speed N of the crankshaft 23, a torque sensor 25, which detects the actual torque, that is output from the crankshaft 23, and a second and third temperature sensors 26, 27, which have an oil temperature Detect TOIL or a cooling water temperature TCO. The Control device 7 can be any subset of the above Have sensors or you can also additional Sensors must be assigned.

Betriebsgrößen umfassen Meßgrößen sowie von diesen abgeleitete Größen, die über einem Kennfeldzusammenhang von einem Beobachter ermittelt werden, der Schätzwerte der Betriebsgrößen berechnet. Operating variables include measured variables and those derived from them Quantities over a map context by an observer are determined, the estimates of the farm sizes calculated.

Die Stellgeräte umfassen jeweils einen Stellantrieb und ein Stellglied. Der Stellantrieb ist ein elektromotorischer Antrieb, ein elektromagnetischer Antrieb, ein mechanischer oder ein weiterer dem Fachmann bekannter Antrieb. Die Stellglieder sind als Drosselklappe 10, als Einspritzventil 11, als Zündkerze 34 oder als eine Verstelleinrichtung zum Verstellen des Ventilhubs der Ein- oder Auslaßventile 30, 31 ausgebildet. Auf die Stellgeräte wird im folgenden mit dem jeweils zugeordneten Stellglied bezug genommen.The actuators each include an actuator and a Actuator. The actuator is an electric motor drive, an electromagnetic drive, a mechanical or another drive known to those skilled in the art. The actuators are as a throttle valve 10, as an injection valve 11, as a spark plug 34 or as an adjusting device for adjusting the Valve strokes of the intake or exhaust valves 30, 31 are formed. In the following, the actuators are assigned with the respective assigned Actuator referred.

Die Steuereinrichtung ist vorzugsweise als elektronische Motorsteuerung ausgebildet. Sie kann jedoch auch mehrere Steuergeräte umfassen, die elektrische leitend miteinander verbunden sind, so z. B. über ein Bussystem.The control device is preferably an electronic engine control educated. However, it can also have several control units include the electrically connected together are so z. B. via a bus system.

Im folgenden wird die Funktion des erfindungsrelevanten Teils der Steuereinrichtung 7 anhand der Blockschaltbilder von Figur 2 und 3 beschrieben. In einem Block B1 (Figur 2) wird ein Schätzwert MAF_CYL des Luftmassenstroms in den Zylinder 20 mit einem Füllungsmodell des Ansaugtraktes 1 abhängig von dem Meßwert MAF_MES des Luftmassenstroms und weiteren Betriebsgrößen berechnet. Ein derartiges Modell ist in der WO 96/32579 offenbart, deren Inhalt hiermit diesbezüglich einbezogen ist.The following is the function of the part relevant to the invention the control device 7 using the block diagrams of FIG 2 and 3 described. In a block B1 (FIG. 2) a Estimate MAF_CYL of the air mass flow in the cylinder 20 with a filling model of the intake tract 1 depending on the Measured value MAF_MES of the air mass flow and other operating variables calculated. Such a model is in WO 96/32579, the content of which is hereby incorporated in this regard is.

Ein Kennfeld KF1 ist vorgesehen, aus dem ein erster Beitrag zu einem Verlustdrehmoment TQ_LOSS abhängig von der Drehzahl N ,dem Schätzwert MAF_CYL des Luftmassenstroms in den Zylinder 20 und vorzugsweise einem Schätzwert eines Abgasmassenstroms in den Zylinder 20 ermittelt wird. Der erste Beitrag zu dem Verlustdrehmoment TQ_LOSS berücksichtigt Pumpverluste in der Brennkraftmaschine und Verluste, die durch Reibung bei vorgegebenen Referenzwerten der Kühlwassertemperatur TCO und der Öltemperatur TOIL auftreten. Ein zweiter Beitrag zu dem Verlustdrehmoment wird aus einem Kennfeld KF2 abhängig von der Öltemperatur TOIL und/oder der Kühlwassertemperatur TCO ermittelt. In einem Verknüpfungspunkt A1 werden dann die Beiträge zum Verlustdrehmoment addiert und mit einem Korrekturwert COR2 multipliziert oder zu dem Korrekturwert COR2 addiert. Der Korrekturwert COR2 wird in einem Block B9 ermittelt, der weiter unten beschrieben ist.A map KF1 is provided, from which a first contribution to a loss torque TQ_LOSS depending on the speed N, the estimated value MAF_CYL of the air mass flow into the cylinder 20 and preferably an estimated value of an exhaust gas mass flow is determined in the cylinder 20. The first post Pump losses are taken into account for the loss torque TQ_LOSS in the internal combustion engine and losses caused by friction predetermined reference values of the cooling water temperature TCO and the oil temperature TOIL occur. A second contribution to that Loss torque is dependent on a map KF2 the oil temperature TOIL and / or the cooling water temperature TCO determined. The contributions are then in a link A1 added to the loss torque and with a correction value COR2 multiplied or added to the correction value COR2. The correction value COR2 is determined in a block B9, which is described below.

In einem Block B2 wird ein minimal und maximal zur Verfügung stellbares Drehmoment abhängig von dem Verlustdrehmoment TQ_LOSS und der Drehzahl N ermittelt. Aus der Pedalstellung PV und der Drehzahl N wird ermittelt, welcher Anteil des zur Verfügung stehenden Drehmoments von dem Fahrer angefordert wird. Aus dem angeforderten Anteil des Drehmoments und dem zur Verfügung stellbaren Drehmoment wird dann ein gewünschtes Drehmoment TQI_REQ ermittelt. Dabei ist vorzugsweise auch eine Filterung des gewünschten Drehmoments TQI_REQ vorgesehen um sicherzustellen, daß keine Lastsprünge auftreten können, die zu einem unangenehmen Ruckeln des Fahrzeugs führen.In block B2, a minimum and a maximum is available adjustable torque depending on the loss torque TQ_LOSS and the speed N determined. From the pedal position PV and the speed N is determined what proportion of the Available torque requested by the driver becomes. From the requested portion of the torque and the The torque that can be made available is then a desired one Torque TQI_REQ determined. There is preferably also one Filtering of the desired torque TQI_REQ provided to ensure that no load jumps can occur, which lead to an unpleasant jerking of the vehicle.

In einem Block B3 wird ein Sollwert TQI_SP_MAF des über den Luftmassenstrom einzustellenden Drehmoments ermittelt. Dabei werden neben dem gewünschten Drehmoment TQI_REQ auch weitere Drehmomentanforderungen berücksichtigt. Diese Drehmomentanforderungen sind beispielsweise ein von einem Leerlaufregler angefordertes Drehmoment TQI_IS, ein zum Aufheizen eines Katalysators angefordertes Drehmoment TQI_CH, eine Drehmomentanforderung einer Anti-Schlupfregelung TQI_ASC, eine Drehmomentanforderung TQI_N_MAX einer Drehzahlbegrenzung oder die Drehmomentanforderung TQI_MSR einer Motorschleppmomentregelung. Der Sollwert TQI_SP_MAF des Drehmoments kann somit größer oder auch kleiner als das gewünschte Drehmoment TQI_REQ sein. In a block B3, a setpoint TQI_SP_MAF of the Determined air mass flow torque. there in addition to the desired torque TQI_REQ also others Torque requirements are taken into account. These torque requirements are, for example, one of an idle controller requested torque TQI_IS, one for heating a catalyst requested torque TQI_CH, a torque request an anti-slip control TQI_ASC, a torque request TQI_N_MAX a speed limit or the Torque request TQI_MSR of an engine drag torque control. The setpoint TQI_SP_MAF of the torque can thus be larger or even less than the desired torque TQI_REQ his.

Der Sollwert TQI_SP_MAF des Drehmoments wird in einem Block B4 mit einem adaptierten Korrekturwert COR1' oder COR2' korrigiert, die in dem Block B9 ermittelt werden. Die Korrektur erfolgt in dem Block B4 entweder durch eine Multiplikation des Sollwertes TQI_SP_MAF des Drehmoments mit dem adaptierten Korrekturwert COR1' oder COR2' und/ oder einer Addition des adaptierten Korrekturwertes COR1' oder COR2'.The setpoint TQI_SP_MAF of the torque is in one block B4 corrected with an adapted correction value COR1 'or COR2', which are determined in block B9. The correction takes place in block B4 either by multiplication of the setpoint TQI_SP_MAF of the torque with the adapted Correction value COR1 'or COR2' and / or an addition of the adapted correction value COR1 'or COR2'.

Über ein Kennfeld KF3 wird dem korrigierten Sollwert TQI_SP_MAF_COR des Drehmoments abhängig von der Drehzahl N ein Sollwert MAF_SP des Luftmassenstroms zugeordnet. Die Werte des Kennfelds KF3 sind an einem Motorprüfstand bei einer Luftzahl LAM_REF und einem Referenzzündwinkel IGA_REF ermittelt, bei denen das Drehmoment im jeweiligen Betriebspunkt maximal ist, oder durch eine Simulationsrechnung ermittelt.The corrected setpoint is shown via a map KF3 TQI_SP_MAF_COR of the torque depending on the speed N a setpoint MAF_SP of the air mass flow is assigned. The values of the map KF3 are on an engine test bench at a Air ratio LAM_REF and a reference ignition angle IGA_REF are determined, at which the torque at the respective operating point is maximum, or determined by a simulation calculation.

In einem Block B5 wird ein Sollwert THR_SP des Öffnungsgrades der Drosselklappe abhängig von dem Sollwert MAF_SP des Luftmassenstroms ermittelt. In einem Block B6 wird ein Stellsignal zum Ansteuern der Drosselklappe ermittelt, vorzugsweise von einem Lageregler der Drosselklappe.In a block B5, a setpoint THR_SP of the degree of opening the throttle valve depending on the setpoint MAF_SP of the air mass flow determined. A control signal is generated in a block B6 determined to control the throttle valve, preferably from a position controller of the throttle valve.

In einem Block B12 wird ein Sollwert TI_SP der Einspritzzeit und ein Sollwert IGA_SP des Zündwinkels abgeleitet von dem gewünschten Drehmoment TQI_REQ, einem tatsächlichen Drehmoment TQI_AV und vorzugsweise dem Schätzwert TQI_MAF_CYL des Luftmassenstroms in den Zylinder 20. Zusätzlich erfolgt in dem Block B12 eine Berücksichtung weiterer Drehmomentanforderungen, die sehr schnell in ein tatsächliches Drehmoment umgesetzt werden müssen, so zum Beispiel die Drehmomentanforderung des Anti-Schlupf Reglers. Hierbei kann eine sehr schnelle Veränderung des tatsächlichen Drehmoments erfolgen, insbesondere dann, wenn über den Sollwert TQI_SP_MAF des über den Luftmassenstrom einzustellenden Drehmoments ein entsprechender Füllungsvorhalt in dem Zylinder 20 eingestellt worden ist, da sich eine Änderung der Einspritzzeit oder des Zündwinkels unmittelbar auf das Drehmoment auswirken.In a block B12, a setpoint TI_SP of the injection time and a setpoint IGA_SP of the ignition angle derived from that desired torque TQI_REQ, an actual torque TQI_AV and preferably the estimated value TQI_MAF_CYL des Air mass flow in the cylinder 20. In addition, in block B12 takes into account further torque requirements, which very quickly converted into actual torque such as the torque requirement of the anti-slip regulator. This can be a very quick The actual torque is changed, in particular then when the setpoint TQI_SP_MAF of the via Air mass flow to be set a corresponding torque Fill reserve has been set in the cylinder 20 is because there is a change in the injection time or the ignition angle directly affect the torque.

In einem Block B8 wird der Schätzwert TQ_AV des tatsächlichen Drehmoments ermittelt. Ein Kennfeld KF4 (Figur 3) ist vorgesehen, in dem Referenzwerte TQI_REF des Drehmoments abhängig von dem Schätzwert MAF_CYL und der Drehzahl N gespeichert sind. Das Kennfeld KF4 ist ebenso wie das Kennfeld KF3 an einen Motorprüfstand bei dem jeweiligen Referenzzündwinkels IGA_REF und der jeweiligen Referenzluftzahl LAM_REF ermittelt oder durch eine Simulationsrechnung ermittelt. Das Referenzdrehmoment TQI_REF ist demnach jeweils das maximale Drehmoment, das bei der entsprechenden Drehzahl und dem entsprechenden Luftmassenstrom in den Zylinder teorethisch realisiert werden kann.In block B8, the estimated value TQ_AV of the actual Torque determined. A map KF4 (FIG. 3) is provided in the reference value TQI_REF of the torque of the estimated value MAF_CYL and the speed N stored are. The map KF4 is just like the map KF3 to one Engine test bench at the respective reference ignition angle IGA_REF and the respective reference air ratio LAM_REF determined or determined by a simulation calculation. The reference torque TQI_REF is therefore the maximum torque, that at the corresponding speed and the corresponding Air mass flow in the cylinder is implemented theoretically can be.

In einem Block B80 erfolgt eine Korrektur des Referenzwertes TQI_REF des Drehmoments mit dem vorgegebenen Korrekturwert COR1 oder COR2. Die Korrektur erfolgt dabei jeweils mit der zu Block B4 jeweils inversen mathematischen Operation. Wird beispielsweise in Block B4 der Sollwert TQI_SP_MAF des Drehmoments mit dem adaptierten Korrekturwert COR1' oder COR2' multipliziert, so wird in dem Block B80 der Referenzwert TQI_REF des Drehmoments durch den Korrekturwert COR1 oder COR2 dividiert. Die Ausgangsgröße des Blocks B80 ist ein korrigierter Referenzwert TQI_REF_COR des Drehmoments. Bei einem ersten Durchlauf des Verfahrens geht ein vorgegebener Korrekturwert COR1 oder COR2 in die Bestimmung von TQ_AV (Figur 3) ein. Beim nächsten Durchlauf des Verfahrens geht dann der in Block B9 adaptierte Korrekturwert COR1' oder COR2' in die Bestimmung von TQ_AV (Figur 3) ein.The reference value is corrected in a block B80 TQI_REF of the torque with the specified correction value COR1 or COR2. The correction is made with the inverse mathematical operation to block B4. Becomes for example, in block B4, the setpoint TQI_SP_MAF of the torque with the adapted correction value COR1 'or COR2' multiplied, the reference value is in block B80 TQI_REF of the torque through the correction value COR1 or COR2 divided. The output of block B80 is a corrected one Reference value TQI_REF_COR of the torque. At a a predetermined correction value goes for the first run of the method COR1 or COR2 in the determination of TQ_AV (Figure 3) on. The next time the procedure is run, the Block B9 adapted correction value COR1 'or COR2' into the determination from TQ_AV (Figure 3).

In einem Block B81 wird der Referenzzündwinkel IGA_REF abhängig von der Drehzahl N und dem Schätzwert MAF_CYL des Luftmassenstroms in den Zylinder und vorzugsweise auch abhängig von der Kühlwassertemperatur TCO ermittelt.The reference ignition angle IGA_REF is dependent in block B81 from the speed N and the estimated value MAF_CYL of the air mass flow in the cylinder and preferably also dependent determined from the cooling water temperature TCO.

In einem Verknüpfungspunkt V2 wird die Differenz des Sollwertes IGA_SP und des Referenzwertes IGA_REF des Zündwinkels berechnet. In einem Block B82 wird dann ein Zündwinkel-Wirkungsgrad EFF_IGA abhängig von der im Verknüpfungspunkt V2 gebildeten Differenz ermittelt.The difference in the setpoint is shown in a node V2 IGA_SP and the reference value IGA_REF of the ignition angle are calculated. An ignition angle efficiency is then in block B82 EFF_IGA depends on that in node V2 formed difference determined.

In einem Block B83 wird ein Referenzwert LAM_REF der Luftzahl abhängig von der Drehzahl und dem Schätzwert MAF_CYL ermittelt. Der Referenzwert LAM_REF ist dabei jeweils der aktuelle Betriebspunkt optimale Wert der Luftzahl hinsichtlich einer Maximierung des tatsächlichen Drehmoments. In einem Verknüpfungspunkt V3 wird die Differenz des Sollwertes LAM_SP und des Referenzwertes LAM_REF der Luftzahl berechnet. In einem Block B84 wird dann ein Luftzahl-Wirkungsgrad EFF_LAM abhängig von der im Verknüpfungspunkt V3 ermittelten Differenz berechnet.In block B83, a reference value LAM_REF of the air ratio determined depending on the speed and the estimated value MAF_CYL. The reference value LAM_REF is the current one Operating point optimal value of the air ratio with regard to a Maximize actual torque. In a tie point V3 becomes the difference between the setpoint LAM_SP and of the reference value LAM_REF of the air ratio. In one Block B84 then depends on an air ratio efficiency EFF_LAM calculated from the difference determined in node V3.

In einem Block B85 wird ein Zylinderabschaltungs-Wirkungsgrad EFF_SCC ermittelt. Der Zylinderabschaltungs-Wirkungsgrad berechnet sich vorzugsweise aus der Anzahl der pro Arbeitsspiel der Brennkraftmaschine gefeuerten Zylinder bezogen auf die Gesamtzahl der Zylinder.At block B85 there is a cylinder deactivation efficiency EFF_SCC determined. The cylinder deactivation efficiency is calculated preferably from the number of each work cycle the internal combustion engine fired cylinder based on the Total number of cylinders.

In einem Block B86 wird durch Multiplikation des korrigierten Referenzwertes TQI_REF_COR des Drehmoments mit dem Zündwinkel-Wirkungsgrad EFF_IGA, mit dem Luftzahl-Wirkungsgrad EFF_LAM und mit dem Zylinderabschaltungs-Wirkungsgrad EFF_SCC der Schätzwert TQI_AV des indizierte tatsächlichen Drehmoments ermittelt, aus dem durch Addition des Verlustdrehmoments TQ_LOSS der Schätzwert TQ_AV des tatsächlichen Drehmoments an der Kupplung 5 berechnet wird. In block B86 is corrected by multiplying the Reference value TQI_REF_COR of the torque with the ignition angle efficiency EFF_IGA, with the air ratio efficiency EFF_LAM and with the cylinder deactivation efficiency EFF_SCC the estimated value TQI_AV of the indexed actual torque determined from the addition of the loss torque TQ_LOSS the estimated value TQ_AV of the actual torque is calculated on the clutch 5.

In dem Verknüpfungspunkt V4 (Figur 2) wird die Differenz des Schätzwertes TQ_AV des tatsächlichen Drehmoments und des von dem Drehmomentsensor 25 ermittelten Meßwerts TQ_MES des tatsächlichen Drehmoments berechnet. Abhängig von dieser Differenz wird dann in einem Block B9 der vorgegebene Korrekturwert COR1 oder COR2 adaptiert und in den adaptierten Korrekturwert COR1' oder COR2' überführt. Vorzugsweise sind mehrere Werte des Korrekturwertes COR1, COR2 abhängig von der Luftmasse MAF_CYL und der Drehzahl N vorgesehen. Abhängig von der Differenz des Schätzwertes TQ_AV und des Meßwertes TQ_MES des tatsächlichen Drehmoments wird der jeweils für die aktuelle Drehzahl N und den aktuellen Schätzwert MAF_CYL des Luftmassenstroms vorgegebene Korrekturwert COR1 oder COR2 adaptiert. Die Adaption erfolgt dabei vorzugsweise über eine gleitende Mittelwertbildung. In dem Betriebszustand des Schubs wird der zweite Korrekturwert COR2 adaptiert, da in diesem Betriebszustand der Referenzwert TQI_REF des Drehmoments gleich Null ist. In den sonstigen Betriebszuständen der Brennkraftmaschine wird der Korrekturwert COR1 in dem Block B9 adaptiert. Außerdem wird abhängig von der aktuellen Drehzahl N und dem aktuellen Schätzwert MAF_CYL des Luftmassenstroms in dem Block B9 der adaptierte Wert COR1' oder COR2' des vorgegebenen Korrekturwertes COR1, COR2 ermittelt und dann dem Verknüpfungspunkt V1, dem Block B4 und dem Block B80 zugeführt. Eine besonders präzise und gleichzeitig einfache Adaption wird erreicht, wenn bei niedriger Luftmasse und niedriger Drehzahl ein additiver Korrekturwert ermittelt wird, bei mittleren bis hohen Drehzahlen und niedriger Luftmasse ein multiplikativer Korrekturwert, bei niedrigen Drehzahlen und einem mittleren bis hohem Luftmassenstrom ein multiplikativer Korrekturwert und bei mittleren bis hohen Drezahlen und einem mittleren bis hohem Luftmassenstrom ein multiplikativer Korrekturwert. Beim nächsten Durchlauf des Verfahrens geht dann der adaptierte Korrekturwert COR1' oder COR2' in die Bestimmung von TQ_AV (Figur 3) ein. At the node V4 (Figure 2) the difference of Estimated value TQ_AV of the actual torque and of the torque sensor 25 determined measured value TQ_MES of the actual Torque calculated. Depending on this difference the predetermined correction value is then in a block B9 COR1 or COR2 adapted and in the adapted correction value COR1 'or COR2' transferred. Preferably there are several Correction values COR1, COR2 depend on the air mass MAF_CYL and the speed N are provided. Depends on the Difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque is the one for the current one Speed N and the current estimate MAF_CYL of the air mass flow predefined correction value COR1 or COR2 adapted. The adaptation is preferably carried out via a sliding Averaging calculation. In the operating state of the thrust second correction value COR2 adapted because in this operating state the reference value TQI_REF of the torque is zero is. In the other operating states of the internal combustion engine the correction value COR1 is adapted in block B9. Moreover becomes dependent on the current speed N and the current one Estimate MAF_CYL of the air mass flow in the block B9 the adapted value COR1 'or COR2' of the specified correction value COR1, COR2 determined and then the node V1, the block B4 and the block B80 fed. A special one precise and at the same time simple adaptation is achieved, if with low air mass and low speed an additive correction value is determined for medium to high speeds and low air mass a multiplicative Correction value, at low speeds and a medium one up to high air mass flow a multiplicative correction value and at medium to high speeds and a medium one up to high air mass flow a multiplicative correction value. The next time the procedure is run, the adapted one then goes Correction value COR1 'or COR2' in the determination of TQ_AV (Figure 3).

In einem Block B10 wird geprüft, ob die Differenz des Schätzwertes TQ_AV und des Meßwertes TQ_MES des tatsächlichen Drehmoments größer ist als ein vorgegebener Schwellenwert SW. Ist dies der Fall, so wird von einem Fehler der Berechnung des Drehmoments ausgegangen und ein erster Notlauf gesteuert, der vorteilhafterweise eine Begrenzung der Drehzahl N ist. Alternativ wird in dem Block B10 geprüft, ob das zeitliche Integral über die Differenz des Schätzwertes TQ_AV und des Meßwertes TQ_MES des tatsächlichen Drehmoments größer ist als der vorgegebener Schwellenwert SW. In block B10 it is checked whether the difference in the estimated value TQ_AV and the measured value TQ_MES of the actual torque is greater than a predetermined threshold value SW. is if this is the case, an error in the calculation of the Torque is running out and a first emergency operation is controlled, the is advantageously a limitation of the speed N. alternative it is checked in block B10 whether the temporal integral about the difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque is greater than that predefined threshold value SW.

Ein wesentlicher Vorteil des Verfahrens ist, daß Ungenauigkeiten der Kennfelder KF3 und KF4, die bedingt sind durch Fertigungsstreuungen und durch Alterung der Brennkraftmaschine, aus der Differenz des Schätzwertes TQ_AV und des Meßwertes TQ_MES des tatsächlichen Drehmoments abgeleitet werden.A major advantage of the method is that inaccuracies the maps KF3 and KF4, which are caused by Production variations and due to aging of the internal combustion engine, from the difference between the estimated value TQ_AV and the measured value TQ_MES of the actual torque can be derived.

Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt.The invention is not based on the exemplary embodiments described limited.

Claims (9)

  1. Method for controlling an internal combustion engine, in which
    a measured value (TQ_MES) of an actual torque is determined, which is delivered at a driven shaft of the internal combustion engine,
    an estimated value (TQ_AV) of the actual torque is determined on the basis of operating variables of the internal combustion engine and
    a predefined correction value (COR1, COR2) is adapted on the basis of the estimated value (TQ_AV) and the measured value (TQ_MES) of the actual torque,
    a target value (TQI_SP_MAF) of the torque to be adjusted by means of the mass air flow is calculated on the basis of a pedal position (PV), which is determined by a pedal position sensor (61) and at least one other operating variable,
    the target torque value (TQI_SP_MAF) is corrected on the basis of the adapted correction value (COR1', COR2'),
    an actuating signal for a final control element in the internal combustion engine is determined on the basis of the corrected target torque value (TQI_SP_MAF_COR)
    and the estimated value (TQ_AV) of the actual torque is corrected on a repeat run through the method on the basis of the adapted correction value (COR1', COR2').
  2. Method according to Claim 1, characterised in that an emergency run (NL) of the internal combustion engine is initiated, when the difference between the estimated value (TQ_AV) and the measured value (TQ_MES) of the actual torque is greater than a predefined threshold value (SW).
  3. Method according to Claim 1, characterised in that the emergency run (NL) of the internal combustion engine is initiated, when the time integral over the difference between the estimated value (TQ_AV) and the measured value (TQ_MES) of the actual torque is greater than the predefined threshold value (SW).
  4. Method according to Claim 2 or 3, characterised in that the emergency run (NL) is a limitation of the speed (N) of a crankshaft (23).
  5. Method according to Claim 1, characterised in that the correction value is calculated on the basis of the speed (N) and an mass air flow (MAF_CYL) in a cylinder (20) of the internal combustion engine by filtering the difference between the estimated value (TQ_AV) and the measured value (TQ_MES) of the actual torque.
  6. Method according to Claim 1, characterised in that the estimated value (TQ_AV) of the actual torque is determined on the basis of the degree of effectiveness of the ignition angle (EFF_IGA), the degree of effectiveness of the air ratio (EFF_LAM) and a reference value (TQI_REF) of the torque, with the reference value (TQI_REF) dependent on the mass air flow (MAF_CYL) into the cylinder (20) and the speed (N).
  7. Method according to Claim 6, characterised in that the estimated value (TQ_AV) is also determined on the basis of the degree of effectiveness of cylinder cut-off (EFF_SCC).
  8. Method according to one of Claims 5 to 7, characterised in that the mass air flow (MAF_CYL) is determined by an observer on the basis of a measured mass air flow (MAF_MES).
  9. Method according to one of Claims 1 to 7, characterised in that the final control element is a throttle valve.
EP98947302A 1997-07-31 1998-07-17 Method for controlling an internal combustion engine Expired - Lifetime EP1000235B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19733106A DE19733106A1 (en) 1997-07-31 1997-07-31 Method for controlling an internal combustion engine
DE19733106 1997-07-31
PCT/DE1998/002019 WO1999006686A1 (en) 1997-07-31 1998-07-17 Method for controlling an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1000235A1 EP1000235A1 (en) 2000-05-17
EP1000235B1 true EP1000235B1 (en) 2003-03-12

Family

ID=7837561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98947302A Expired - Lifetime EP1000235B1 (en) 1997-07-31 1998-07-17 Method for controlling an internal combustion engine

Country Status (5)

Country Link
US (1) US6237563B1 (en)
EP (1) EP1000235B1 (en)
KR (1) KR100629014B1 (en)
DE (2) DE19733106A1 (en)
WO (1) WO1999006686A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029097B4 (en) * 2003-06-17 2007-07-05 General Motors Corp., Detroit Model guided torque control

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2790516B1 (en) * 1999-03-01 2001-05-11 Renault METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE
US6474276B1 (en) 1999-05-19 2002-11-05 Fev Motorentechnik Gmbh Method for controlling an electromagnetic valve drive mechanism for a gas exchange valve in an internal combustion piston engine
US6425373B1 (en) * 1999-08-04 2002-07-30 Ford Global Technologies, Inc. System and method for determining engine control parameters based on engine torque
US6279531B1 (en) * 1999-08-09 2001-08-28 Ford Global Technologies, Inc. System and method for controlling engine torque
DE19946634A1 (en) * 1999-09-29 2001-04-05 Volkswagen Ag Process for controlling an intake volume of internal combustion engines with multiple intake systems
US6619155B2 (en) * 2000-05-15 2003-09-16 Grand Haven Stamped Products, Division Of Jsj Corporation Adjustable pedal apparatus
DE10124545A1 (en) * 2000-06-30 2002-01-10 Bosch Gmbh Robert Actuator drive e.g. for vehicle brake, has position demand changed according to rise in subsequent torque peaks until demanded position is reached if electronically commutated motor torque threshold exceeded
DE10046446A1 (en) * 2000-09-18 2002-03-28 Daimler Chrysler Ag Regulating of IC engine regarding engagements in at least one adjustable variable of IC engine so that desired torque or work to be applied at crankshaft of IC engine is determined
US6367447B1 (en) * 2001-02-21 2002-04-09 Ford Global Technologies, Inc. Adjustment of driver demand for atmospheric conditions
DE60109917T2 (en) * 2001-07-23 2006-05-04 Visteon Global Technologies, Inc., Dearborn TORQUE REGULATOR FOR INTERNAL COMBUSTION ENGINE
DE10149477A1 (en) * 2001-10-08 2003-04-17 Bosch Gmbh Robert controlling internal combustion engine, involves using torque model with base parameter that is at least one of corrected optimal engine torque or corrected optimal ignition angle
US6655353B1 (en) * 2002-05-17 2003-12-02 General Motors Corporation Cylinder deactivation engine control system with torque matching
DE10234719B3 (en) * 2002-07-30 2004-04-15 Siemens Ag Method for regulating the filling of an internal combustion engine
US6705286B1 (en) * 2002-09-20 2004-03-16 Ford Global Technologies, Llc Method and system for minimizing torque intervention of an electronic throttle controlled engine
SE524759C2 (en) * 2002-12-12 2004-09-28 Volvo Lastvagnar Ab Combustion engine for motor vehicles
DE10343504B3 (en) * 2003-09-19 2005-04-28 Siemens Ag Determining torque of internal combustion engine involves determining torque produced on output side of crankshaft of engine depending on measured camshaft angle and measured crankshaft angle
DE102004005134A1 (en) * 2004-02-02 2005-08-18 Siemens Ag Method for adapting a measured value of an air mass sensor
AU2004201718B1 (en) * 2004-04-27 2005-02-24 Larry Lin Feng Weng Engine optimisation method and apparatus
DE102004031527B3 (en) * 2004-06-29 2005-11-17 Siemens Ag Method for inverting a map online during the control and / or control of an internal combustion engine
DE102005032670A1 (en) * 2005-07-13 2007-02-01 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for controlling the drive power distribution in a motor vehicle with hybrid drive
DE102005039393B4 (en) * 2005-08-20 2015-01-08 Bayerische Motoren Werke Aktiengesellschaft Method for checking the functionality of the heating of a catalyst arranged in an exhaust system of an internal combustion engine
DE102006020062A1 (en) * 2006-04-29 2007-10-31 Dr.Ing.H.C. F. Porsche Ag Method for controlling an internal combustion engine
DE102006040945A1 (en) * 2006-08-31 2008-03-06 Volkswagen Ag Method for controlling a drive train of a motor vehicle
DE102007011812B4 (en) * 2007-03-12 2011-04-14 Continental Automotive Gmbh Method and device for operating a drive system
JP4956485B2 (en) * 2008-05-29 2012-06-20 株式会社クボタ Engine speed control structure of work vehicle
JP4875663B2 (en) * 2008-05-29 2012-02-15 株式会社クボタ Accelerator control structure of work vehicle
JP5246451B2 (en) * 2010-06-07 2013-07-24 三菱自動車工業株式会社 Vehicle output control device
JP6248548B2 (en) * 2013-10-31 2017-12-20 株式会社デンソー Vehicle control device
KR101558678B1 (en) 2013-11-25 2015-10-07 현대자동차주식회사 Method for estimating torque of transmission clutch
CN108571388B (en) * 2017-03-09 2022-02-11 罗伯特·博世有限公司 Method and device for adapting the resistive torque
US10920689B2 (en) * 2017-04-10 2021-02-16 Ford Global Technologies, Llc Methods and system for improving transient torque response

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2455189A1 (en) * 1979-04-26 1980-11-21 Renault SYSTEM FOR CALCULATING AND ADJUSTING THE OPTIMIZATION OF THE IGNITION ADVANCE
WO1984000581A1 (en) * 1982-07-27 1984-02-16 Marchal Equip Auto Method for self-adaptive regulation of the ignition advance angle of a thermal engine with controlled ignition
JPS601375A (en) * 1983-06-16 1985-01-07 Nippon Soken Inc Ignition timing control method for internal-combustion engine
EP0413031B1 (en) * 1989-01-31 1994-04-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Output controller of internal combustion engine
FR2688546B1 (en) * 1992-03-10 1996-03-01 Siemens Automotive Sa METHOD AND DEVICE FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE.
DE4222298B4 (en) * 1992-07-08 2005-11-03 Robert Bosch Gmbh Method for damping occurring jerking vibrations for internal combustion engines
DE4232974C2 (en) * 1992-10-01 2002-05-16 Bosch Gmbh Robert Method and device for adjusting the torque of a gasoline engine
DE4315885C1 (en) * 1993-05-12 1994-11-03 Daimler Benz Ag Torque adjustment procedure
US5421302A (en) * 1994-02-28 1995-06-06 General Motors Corporation Engine speed control state prediction
US5577474A (en) * 1995-11-29 1996-11-26 General Motors Corporation Torque estimation for engine speed control
US5666918A (en) * 1995-12-11 1997-09-16 Ford Motor Company Engine airflow controller with feedback loop compensation for changes in engine operating conditions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029097B4 (en) * 2003-06-17 2007-07-05 General Motors Corp., Detroit Model guided torque control

Also Published As

Publication number Publication date
KR100629014B1 (en) 2006-09-26
KR20010022380A (en) 2001-03-15
EP1000235A1 (en) 2000-05-17
DE59807478D1 (en) 2003-04-17
WO1999006686A1 (en) 1999-02-11
US6237563B1 (en) 2001-05-29
DE19733106A1 (en) 1999-02-04

Similar Documents

Publication Publication Date Title
EP1000235B1 (en) Method for controlling an internal combustion engine
EP0889795B1 (en) Process for controlling an internal combustion engine
EP1082231B1 (en) Method and device for controlling a prime mover
DE102007056738B4 (en) Torque-based engine speed control
DE19536038B4 (en) Method and device for controlling the drive unit of a motor vehicle
DE102006034576B4 (en) Improve drivetrain shift quality in drivetrains equipped with a variable valve train engine
DE19712843C2 (en) Method and device for controlling an internal combustion engine
DE102009012377B4 (en) An ECM safety strategy for rationalizing and controlling increasing transmission torque requests above a driver command
DE102005007352B4 (en) Idle speed control system and method
DE19704313C2 (en) Method and device for controlling an internal combustion engine
EP1725761B1 (en) Method for controlling an internal combustion engine
DE102004022554B3 (en) Method and device for determining a driver's desired torque in an internal combustion engine
EP1021649B1 (en) Method and device for supervising an internal combustion engine
DE102005010029B4 (en) Engine control system for a multi-cylinder internal combustion engine
DE69821810T2 (en) Lock-up control system for fuel injection in an internal combustion engine
EP0875673B1 (en) Method for controlling an internal combustion engine
DE10206155A1 (en) Adaptation of a driver's request to atmospheric conditions
DE19708243C1 (en) IC motor vehicle engine management method
DE19812485B4 (en) Method and device for operating an internal combustion engine
WO2007036411A1 (en) Process and device for controlling an internal combustion engine
EP1312773B1 (en) System for compensating the phase deviation of an adjustable camshaft and corresponding method
DE10305092B4 (en) Method for automatic adaptation of a torque model and circuit arrangement
DE102004021339B4 (en) Method and device for monitoring a heating of an exhaust gas catalytic converter of an internal combustion engine
DE69920074T2 (en) Electronic fuel injection device for diesel engine
DE102007011812B4 (en) Method and device for operating a drive system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

17Q First examination report despatched

Effective date: 20010802

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030312

REF Corresponds to:

Ref document number: 59807478

Country of ref document: DE

Date of ref document: 20030417

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080715

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080722

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080714

Year of fee payment: 11

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090717

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160731

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59807478

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201