EP0996516A1 - Verfahren und vorrichtung zur herstellung von werkstücken oder blöcken aus schmelzbaren materialien - Google Patents
Verfahren und vorrichtung zur herstellung von werkstücken oder blöcken aus schmelzbaren materialienInfo
- Publication number
- EP0996516A1 EP0996516A1 EP98943727A EP98943727A EP0996516A1 EP 0996516 A1 EP0996516 A1 EP 0996516A1 EP 98943727 A EP98943727 A EP 98943727A EP 98943727 A EP98943727 A EP 98943727A EP 0996516 A1 EP0996516 A1 EP 0996516A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- cooling
- conducting
- mold
- conducting body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D27/00—Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
- B22D27/04—Influencing the temperature of the metal, e.g. by heating or cooling the mould
- B22D27/045—Directionally solidified castings
Definitions
- the present invention relates to a method for producing workpieces or blocks from meltable materials, in which liquid starting material is solidified in a casting mold using a cooling device.
- the invention relates to a device for producing workpieces or blocks of meltable materials with a casting mold, which can be heated by means of a heating device, and wherein a cooling device is assigned to the bottom of the casting mold.
- tangible materials includes materials from ceramics, including sapphires, rubies, spinels, etc., metals, metal alloys, or from the group of semiconductors with an oriented, multicrystalline or monocrystalline structure .
- the starting material is either fed to a casting mold in the liquid phase or melted in the casting mold and then solidified in a directed manner in the casting mold.
- Such a type of solidification control is known in different embodiments. According to a method or a corresponding device, described in GB-A-2 279 585, the casting mold is melted out
- CONFIRMATION COPY pulled out of a heater This ensures that the solidification front progresses from bottom to top. With long components and materials with low thermal conductivity, the influence of a cooling plate used becomes insignificant after just a few centimeters. Thereafter, the heat is dissipated essentially laterally over the mold surface, as a result of which the setting of a phase boundary that is as flat as possible between the already solidified and molten material is not achieved in practice. This process is unsuitable for the production of large-area, directionally solidified blocks, since with large cross-sections the heat conduction paths from the center of the block to the heat-dissipating lateral surface become too long and therefore no level phase boundaries in connection with sufficiently high temperature gradients can be achieved.
- the present invention is based on the object of developing a method and a device with the features specified at the outset in such a way that the solidification of the melt is performed in a defined manner and, in order to initiate the cooling phase, continuously from the heating phase to the Cooling phase can be passed. Should continue the device and the method in relation to this defined solidification offer the possibility of a wide variation with structurally simple means.
- the object is achieved in the method specified in the introduction in that for the defined guidance of the solidification front during the cooling of the molten material into a body assigned to the bottom of the casting mold, a cooling structure with at least one heat-conducting body is introduced into the body from at least one associated recess from the underside becomes.
- the object is achieved in that the device specified at the outset is characterized in that the cooling device comprises a cooling structure with at least one heat-conducting body, which can be inserted into the body from at least one associated recess in a body assigned to the floor by means of a displacement mechanism from the underside is.
- solidification of the liquid starting material filled into the casting mold can be performed in a defined manner starting from the bottom of the casting mold, by guiding the heat-conducting body in different positions in the recess of the body assigned to the bottom of the casting mold.
- the heat transfer and thus the cooling capacity can be set and also changed in a defined manner.
- crystallization speeds of 0.2 mm / min to 2 mm / min can be achieved with cooling capacities in the range from 10 to 150 k / W per m 2 .
- the cooling structure can comprise a plurality of heat-conducting bodies which can be inserted into slots and / or blind holes in the body which is assigned to the bottom of the casting mold.
- plates, bolts and / or rods are suitable as heat-conducting bodies, which can also be constructed with different cross-sectional geometries.
- a heating device is arranged below the bottom of the casting mold in such a way that the heating element or bodies penetrate this heating device through the heating device into the body which is assigned to the underside of the floor in the inserted state.
- the transition between heating and cooling of the casting mold can be determined not only by introducing the heat-conducting bodies into the recess (s), but also by additional regulation of the heating device, since it is also essential for maintaining the liquid phase of the starting material is to heat the bottom of the mold.
- the heating device can be arranged in a support plate which is assigned to the bottom of the casting mold and from which the casting mold is carried. The support plate is then provided with bores or recesses, which serve to change the total external surface available for heat transfer in a wider area than would be possible solely via the base of the base of the casting mold.
- Preferred dimensions of such heat-conducting bodies are from 5 mm to 20 mm, preferably from 10 mm to 14 mm, in diameter or thickness and / or width.
- the web width remaining between adjacent recesses should also be between 5 and 20 mm in the body into which the heat-conducting bodies are inserted.
- the depth of the heat-conducting body introduced into the body should be at least 20 mm in order to be able to adjust the cooling capacity in sufficient areas.
- the individual heat conducting bodies can, however, have a much greater length than the depth of penetration corresponds to 50 mm, ie the height of the heat-conducting body can be between 100 and 150 mm, preferably about 130 mm.
- the heat conducting bodies are designed as round pins.
- the diameter of such a heat-conducting body in the design as a round bolt should not be less than 10 mm.
- the ratio between the effective exchange area and the flat area is, however, with a remaining web width of 10 mm in the pin diameter range between 10 and 20 mm, almost independent of the selected pin diameter.
- the individual heat-conducting bodies can have a cross-shaped or star-shaped shape when viewed in cross section. Such heat-conducting bodies then enter recesses in the body assigned to the bottom of the casting mold with a cross-sectional shape matched thereto, so that large areas are made available, both in the recesses and on the cooling bodies.
- the ratio of the sum of the cross-sectional areas of the heat-conducting bodies to the sum of the cross-sectional areas of the recesses should be between 1.5: 1 and 5.5: 1. This results in possible cooling capacities of around 10 to 150 kW / m 2 .
- the displacement of the heat-conducting bodies in the recesses of the body can be technically easily achieved by means of a lifting mechanism.
- a stroke of 50 mm and a heat-conducting body made of copper with a diameter of 12 mm and an effective heat-conducting body height of 130 mm and a hole spacing of 26 mm and a hole diameter of 14 mm the heat transfer coefficient at 1000 mbar argon atmosphere between the base plate and the heat-conducting body can be at a base plate temperature from 1400 ° C from 10 W / (m 2 x K) to about 240 / (m 2 x K). These values correspond to approximately 1400 to 1500 thermal conductors per square meter.
- the heat loss through the thermal insulation is negligible due to the small ratio of diameter to bore length, so that the heat losses due to the open penetration are justifiable when the cooling structure is withdrawn. Furthermore, by lowering the gas pressure to a few mbar, it is possible to regulate the dissipated power density even more sensitively.
- the entire cooling structure can be arranged in a chamber that is variable in terms of pressure.
- the body is an integral part of the bottom of the casting mold and, moreover, this bottom is also structured, for example with elevations and depressions, the respective heat-conducting bodies in corresponding bores in the elevations of the bottom of the casting mold can be driven in or pulled out.
- the arrangement according to the invention enables the setting of a heat profile directly above the mold or mold bottom surface.
- This particular configuration of the bottom of the mold or of the casting mold, in the region of the depressions, seen from the bottom surface, can influence the stem crystal size.
- the deepest points of these individual depressions are aligned with the corresponding heat-conducting bodies in such a way that crystallization begins at the deepest (coldest) points on the mold bottom.
- a slightly planar or slightly convexly curved phase boundary between solid and liquid material can be set. Studies have shown that a slightly curved phase interface is particularly advantageous with the aim of cleaning in directional solidification.
- FIG. 1 shows a schematic cross section through a melting device according to the invention, the cooling structure being shown with heat-conducting bodies moved out of the recesses,
- FIG. 2 shows the arrangement of FIG. 1, but with heat-conducting bodies inserted into the recesses
- Figures 3A to 3C three different possible cross-sectional shapes of the heat-conducting body, as they can be used in the arrangement of Figures 1 and 2, and
- FIG. 4 shows a schematic structure of an arrangement in which the heat-conducting bodies can be displaced in recesses which are formed directly in the base of the casting mold, the base of the casting mold also being structured.
- the melting device comprises a furnace with an upper furnace chamber 1a and a lower furnace chamber 1b, into which a casting mold or mold 15, provided on the outside with thermal insulation 2, is held with suitable supports 7.
- the thermal insulation 2 is provided with a lateral thermal insulation 14, a lower thermal insulation 16 and an upper thermal insulation 20, so that the mold is surrounded on all sides by this thermal insulation 2.
- the upper furnace chamber 1a is connected to the lower furnace chamber 1b with flange connections 12, in the area of which a seal 12a is inserted, so that the furnace chamber 1a, 1b can be opened and closed again by removing the upper furnace chamber 1a.
- a lower heating device 3 is arranged below the bottom 19 of the mold 15. Furthermore, an upper heating device 4 is provided above the mold.
- the two heating devices 3 and 4 are supplied with electricity via respective power supply lines 5 and 6 in order to be able to set the respective heating power 3, 4.
- the space between the upper and lower furnace chambers 1a and 1b and the mold 15 or the heat insulation 2 surrounding them can be evacuated via an evacuation nozzle 11 in order to change the pressure within this chamber 1a, 1b.
- a cooling structure 26 which comprises a cooling plate 9, from which individual heat-conducting bodies 10, which are spaced apart, protrude.
- These individual heat-conducting bodies 10 are assigned recesses 17 which lead through both the lower thermal insulation 16 and through the support plate 13 on which the mold 15 stands with its bottom.
- these recesses 17 are placed in relation to the lower heating device 3, which is arranged in the area of the mold support plate 13, in such a way that they pass between individual coils of the heating device 3 and extend into the mold support plate 13 in the form of blind holes 13a.
- the cooling plate 9 is held with a lifting ram 8 so that it can be moved upwards in the direction of arrow 27 in FIG. 1, so that the individual heat-conducting bodies 10 can thereby be inserted into the associated recesses 17.
- the lifting plunger 8 also has a cooling water supply and discharge 18 in order to be able to force-cool the cooling plate 9, which has a corresponding cavity 28 for the cooling medium.
- the melted liquid material is poured into the casting mold or mold 15 preheated to the melting temperature or melted in the mold.
- the pouring opening is then closed, for example in the form of a lid placed on the mold 15, and the melt is left for a predetermined time in order to float or sediment impurities.
- the lower heating device 3 is switched off and the cooling structure 26 or the heat conducting elements 10 assigned to it are inserted into the receptacles 17 in the lower thermal insulation 16 and the mold support plate 13 at a predetermined speed.
- the position of the respective position of the cooling structure 26 in the recesses 17 or the blind holes 13a in the mold support plate 13 can be controlled as a function of the cooling capacity to be dissipated.
- coolant is continuously supplied to the cooling plate 9 via the coolant supply and discharge connections 18.
- the furnace chamber can be evacuated via the evacuation nozzle 11, which is always necessary or advantageous if oxidation-sensitive materials are used.
- FIG. 2 now shows the arrangement of FIG. 1 with heat-conducting bodies 10 of the cooling structure 26 completely retracted into the mold support plate 13.
- the lower heating device 3 is switched off and the upper heating device 4 continues to be operated and set or regulated to a temperature which the Surface of the melt 21 continues to hold above the melting point.
- the heat flow required for crystallization takes place via the already solidified part of the block 23 and the mold base and from there to the mold support plate 13. From the mold support plate 13, the heat flows through the gap between the bores / recesses 17, 13a and the heat conducting bodies 10 into the cooling plate 9 and is transferred from there to the coolant.
- the amount of heat to be dissipated can be adjusted and regulated very finely via the immersion depth of the heat-conducting body 10 in the mold support plate 13. In this way, the solidification of the block and the formation of stem crystals can be set and guided very precisely, starting from the bottom of the mold.
- the cooling structure 26 is moved downward in the direction of the arrow 24 in FIG. 2, so that it comes completely out of the engagement of the mold support plate 13 and the lower thermal insulation 16.
- the heating temperature of the upper heating device 4 is then reduced to a value below the Solidus temperature.
- the lower heating device 3 is switched on again and its temperature is set to the block base temperature. There is a controlled increase in the heating temperature to the value of the upper heating device 4.
- the temperature in the furnace chamber is maintained for a predetermined holding time. This is followed by a programmed lowering of the heating temperature of the upper and lower heating devices 3, 4.
- FIGS. 3A to 3C show three different cross-sectional shapes of heat-conducting bodies 10, as can be used in the arrangement described above with reference to FIGS. 1 and 2.
- FIG. 3A shows an example of a field with a total of 9 heat-conducting bodies 10 which have a cross-shaped cross section.
- the recesses 13a in the mold support plate 13 are, as indicated at the top right in FIG. 3A, shaped in accordance with the cross section of the heat-conducting bodies 10, so that a narrow gap remains between the wall of the recesses 13a in the mold support plate 13 and the heat-conducting body 10 respectively inserted therein.
- FIG. 3B shows an arrangement of nine heat-conducting bodies 10, each of which has a circular cross section. Such heat-conducting bodies 10 then penetrate into recesses 13a (not shown) with a corresponding cross-sectional shape, so that again a small gap, as shown in FIG. 3A, remains.
- a third cross-sectional shape for the heat-conducting body 10 is shown in FIG. 3C, this cross-sectional shape being star-shaped. With this star shape, compared to the arrangement in FIG. 3A, an even larger surface area can be achieved, depending on the number of teeth or webs.
- the specific surface area corresponding to the individual cross-sectional shapes of FIGS. 3A, 3B and 3C should be selected taking into account the temperature, the thermal conductivity, the length of the heat-conducting body 10 and the mechanical stability.
- the heat-conducting bodies 10 should have a thickness and / or width, designated by the reference symbol 29 in FIG. 3B, of 5 to 20 mm, preferably 10 to 14 mm.
- Adjacent heat-conducting bodies 10 should be spaced at least about 50 mm, or the thickness of the web that remains between adjacent heat-conducting bodies 10, designated by the reference symbol 30 in FIG. 3B, should be 50 mm.
- the length or height of the heat conducting body i.e. in the direction perpendicular to the plane of the drawing in FIGS. 3A to 3C, should be in the range from 100 to 150 mm, preferably approximately 130 mm.
- the furnace space can be filled with a gas, preferably argon, and the pressure in the furnace space can be regulated during the cooling or during the movement of the cooling structure 26 in the direction of the mold support plate 13.
- the pressure is set so that the full lifting height of the heat-conducting body is used to achieve the most sensitive control behavior.
- a mold 15 with thermal insulation 2 is shown schematically in FIG.
- the Mold bottom 33 which is assigned to the melt, is structured in that individual depressions 25 and elevations 35, for example with a triangular cross section, are provided to increase the heat exchange surface.
- the respective recesses 13a are arranged in such a way that they are each assigned to a corresponding elevation 35 of the structure of the mold base 33.
- This structuring of the mold bottom with the depressions 25 is also advantageous for specifying starting points for crystal growth, in each case at the bottom of the individual depressions. It is understandable that the side walls 19 of the mold 15 are tightly connected to the mold base 33.
- cooling capacities in the range from 10 to 150 kW / m 2 can be achieved , namely by different positioning of the heat-conducting bodies 10 in the respective recesses 13a can be reached, so that the respective solidification speed can be set in a defined manner.
- the individual heat-conducting bodies can be displaced differently from one another in order to dissipate different amounts of heat through different positions in the respective recesses 13a at different locations on the mold base.
- the external heat-conducting bodies 10 could be inserted into the respective recesses 13a earlier or later than the heat-conducting bodies 10 located further in the middle in order to adapt the solidification profile or the solidification front, for this purpose the lifting mechanism shown in the figures would then have to be inserted or lifting plunger 8 can be divided into several individual lifting plungers assigned to the respective heat-conducting bodies.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19730378 | 1997-07-16 | ||
DE19730378 | 1997-07-16 | ||
PCT/EP1998/004351 WO1999003621A1 (de) | 1997-07-16 | 1998-07-14 | Verfahren und vorrichtung zur herstellung von werkstücken oder blöcken aus schmelzbaren materialien |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0996516A1 true EP0996516A1 (de) | 2000-05-03 |
EP0996516B1 EP0996516B1 (de) | 2001-08-29 |
Family
ID=7835817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98943727A Expired - Lifetime EP0996516B1 (de) | 1997-07-16 | 1998-07-14 | Verfahren und vorrichtung zur herstellung von werkstücken oder blöcken aus schmelzbaren materialien |
Country Status (5)
Country | Link |
---|---|
US (1) | US6464198B1 (de) |
EP (1) | EP0996516B1 (de) |
JP (1) | JP2001510095A (de) |
DE (2) | DE19831388A1 (de) |
WO (1) | WO1999003621A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007038851A1 (de) | 2007-08-16 | 2009-02-19 | Schott Ag | Verfahren zur Herstellung von monokristallinen Metall- oder Halbmetallkörpern |
US7597756B2 (en) | 2006-04-12 | 2009-10-06 | Schott Ag | Device and method for the production of monocrystalline or multicrystalline materials, in particular multicrystalline silicon |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19855061B4 (de) * | 1998-11-28 | 2012-05-16 | Ald Vacuum Technologies Ag | Schmelzofen zum Schmelzen von Silizium |
DE19934940C2 (de) * | 1999-07-26 | 2001-12-13 | Ald Vacuum Techn Ag | Vorrichtung zum Herstellen von gerichtet erstarrten Blöcken und Betriebsverfahren hierfür |
DE10021585C1 (de) * | 2000-05-04 | 2002-02-28 | Ald Vacuum Techn Ag | Verfahren und Vorrichtung zum Einschmelzen und Erstarren von Metallen und Halbmetallen in einer Kokille |
DE10047397B4 (de) * | 2000-09-26 | 2004-02-05 | Ald Vacuum Technologies Ag | Vorrichtung zum Schmelzen und gerichteten Erstarren eines Metalls |
US7000675B2 (en) * | 2003-04-09 | 2006-02-21 | Tooling And Equipment International | Chill assembly |
DE102008029951B4 (de) | 2008-06-26 | 2011-06-09 | Schott Ag | Wärmeisolationsanordnung für Schmelztiegel und deren Verwendung sowie Vorrichtung und Verfahren zur Herstellung von ein- oder multikristallinen Materialien |
DE102008039457A1 (de) | 2008-08-25 | 2009-09-17 | Schott Ag | Vorrichtung und Verfahren zum gerichteten Erstarren einer Schmelze |
DE102009022412A1 (de) | 2009-05-22 | 2010-11-25 | Ald Vacuum Technologies Gmbh | Vorrichtung zum gerichteten Erstarren geschmolzener Metalle |
ITVI20120246A1 (it) * | 2012-10-01 | 2014-04-02 | Graphite Hi Tech S R L Unipersonal E | Contenitore in grafite con coperchio. |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1976386A (en) * | 1931-01-08 | 1934-10-09 | Katherine Parsons | Casting of ingots |
US2420003A (en) * | 1942-09-14 | 1947-05-06 | Miller Engineering Corp | Temperature control mold |
GB1126538A (en) * | 1965-07-16 | 1968-09-05 | United Aircraft Corp | Improvements in and relating to chill plate construction |
US3321932A (en) * | 1965-10-21 | 1967-05-30 | Raymond C Stewart | Ice cube tray for producing substantially clear ice cubes |
US3538981A (en) * | 1968-08-05 | 1970-11-10 | United Aircraft Corp | Apparatus for casting directionally solidified articles |
FR2158138B1 (de) * | 1971-11-05 | 1974-11-15 | Onera (Off Nat Aerospatiale) | |
US3939895A (en) * | 1974-11-18 | 1976-02-24 | General Electric Company | Method for casting directionally solidified articles |
DE2646060A1 (de) * | 1976-10-13 | 1978-04-20 | Friedhelm Prof Dr Ing Kahn | Verfahren und vorrichtungen zur steuerung des waermehaushalts von giessformen |
GB2041236A (en) * | 1979-01-18 | 1980-09-10 | Crystal Syst | Method and apparatus for growing crystals |
DE3323896A1 (de) | 1983-07-02 | 1985-01-17 | Leybold-Heraeus GmbH, 5000 Köln | Verfahren und vorrichtung zum gerichteten erstarren von schmelzen |
GB2279585B (en) | 1993-07-08 | 1996-11-20 | Crystalox Ltd | Crystallising molten materials |
-
1998
- 1998-07-14 WO PCT/EP1998/004351 patent/WO1999003621A1/de active IP Right Grant
- 1998-07-14 DE DE19831388A patent/DE19831388A1/de not_active Withdrawn
- 1998-07-14 EP EP98943727A patent/EP0996516B1/de not_active Expired - Lifetime
- 1998-07-14 US US09/445,318 patent/US6464198B1/en not_active Expired - Fee Related
- 1998-07-14 DE DE59801335T patent/DE59801335D1/de not_active Expired - Lifetime
- 1998-07-14 JP JP2000502901A patent/JP2001510095A/ja not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO9903621A1 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7597756B2 (en) | 2006-04-12 | 2009-10-06 | Schott Ag | Device and method for the production of monocrystalline or multicrystalline materials, in particular multicrystalline silicon |
DE102007038851A1 (de) | 2007-08-16 | 2009-02-19 | Schott Ag | Verfahren zur Herstellung von monokristallinen Metall- oder Halbmetallkörpern |
EP2028292A2 (de) | 2007-08-16 | 2009-02-25 | Schott AG | Verfahren zur Herstellung von monokristallinen Metall- oder Halbmetallkörpern |
Also Published As
Publication number | Publication date |
---|---|
DE19831388A1 (de) | 1999-01-21 |
JP2001510095A (ja) | 2001-07-31 |
US6464198B1 (en) | 2002-10-15 |
DE59801335D1 (de) | 2001-10-04 |
EP0996516B1 (de) | 2001-08-29 |
WO1999003621A1 (de) | 1999-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68919737T2 (de) | Vorrichtung und Verfahren zur Züchtung von grossen Einkristallen in Platten-/Scheibenform. | |
DE102006017621B4 (de) | Vorrichtung und Verfahren zur Herstellung von multikristallinem Silizium | |
DE2461553C2 (de) | Verfahren zum Züchten eines Einkristalls im Tiegel | |
EP2028292B1 (de) | Verfahren zur Herstellung von monokristallinen Metall- oder Halbmetallkörpern | |
DE69932760T2 (de) | Verfahren und Vorrichtung zur Herstellung eines Siliciumstabes mit einer Struktur hergestellt durch gerichtete Erstarrung | |
DE102005013410B4 (de) | Vorrichtung und Verfahren zum Kristallisieren von Nichteisenmetallen | |
DE68913237T2 (de) | Siliciumgiessvorrichtung. | |
DE3323896C2 (de) | ||
EP0996516B1 (de) | Verfahren und vorrichtung zur herstellung von werkstücken oder blöcken aus schmelzbaren materialien | |
DE2242111A1 (de) | Verfahren und vorrichtung zum giessen von gegenstaenden mit gerichtet erstarrtem gefuege | |
DE2730161C2 (de) | ||
EP2242874B1 (de) | Vorrichtung und verfahren zur herstellung von kristallinen körpern durch gerichtete erstarrung | |
DE2657551A1 (de) | Vorrichtung zur herstellung von guss mit gerichtetem gefuege | |
DE102008029951B4 (de) | Wärmeisolationsanordnung für Schmelztiegel und deren Verwendung sowie Vorrichtung und Verfahren zur Herstellung von ein- oder multikristallinen Materialien | |
DE19934940C2 (de) | Vorrichtung zum Herstellen von gerichtet erstarrten Blöcken und Betriebsverfahren hierfür | |
DE10021585C1 (de) | Verfahren und Vorrichtung zum Einschmelzen und Erstarren von Metallen und Halbmetallen in einer Kokille | |
EP0218088B1 (de) | Verfahren zur gerichteten Erstarrung von Metallschmelzen | |
WO2010043350A1 (de) | Vorrichtung zum kristallisieren von nicht-eisen-metallen | |
DE1100887B (de) | Verfahren und Vorrichtung zur Herstellung von Rohren aus durchsichtigem, reinem Quarz | |
EP3785822A1 (de) | Vorrichtung und verfahren zur herstellung eines gussstückes bevorzugt als vormaterial | |
EP0218087A2 (de) | Verfahren zum Aufschmelzen und gerichteten Erstarren von Metallen | |
DE102008039457A1 (de) | Vorrichtung und Verfahren zum gerichteten Erstarren einer Schmelze | |
DE1801659A1 (de) | Verfahren und Vorrichtung zur Herstellung von Gussteilen aus Metallen | |
DE2137330C3 (de) | Gießvorrichtung zur Herstellung von Gußstücken mit definierter Erstarru ngsrichtung | |
DE19621912A1 (de) | Verfahren und Vorrichtung zur berührungsfreien Erzeugung von plattenförmigen Strukturen aus einer leitfähigen Schmelze eines Materials unter Verwendung einer induktiv erzeugten abstoßenden Wechselwirkung zwischen der Schmelze und einem formgebenden Bauteil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19991021 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20010110 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL SE |
|
REF | Corresponds to: |
Ref document number: 59801335 Country of ref document: DE Date of ref document: 20011004 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: ALD VACUUM TECHNOLOGIES AG |
|
RIN2 | Information on inventor provided after grant (corrected) |
Free format text: ALD VACUUM TECHNOLOGIES AG |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20011210 |
|
EN | Fr: translation not filed | ||
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: ALD VACUUM TECHNOLOGIES AG |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
NLS | Nl: assignments of ep-patents |
Owner name: ALD VACUUM TECHNOLOGIES AG |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ERR Free format text: BOPI DE PUBLICATION N: 02/04 PAGES: 246 PARTIE DU BULLETIN CONCERNEE: BREVETS EUROPEENS DONT LA TRADUCTION N'A PAS ETE REMISE A I'INPI IL Y A LIEU DE SUPPRIMER: LA MENTION DE LA NON REMISE. LA REMISE DE LA TRADUCTION EST PUBLIEE DANS LE PRESENT BOPI. |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20090722 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100714 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES Effective date: 20100729 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20100715 Year of fee payment: 13 Ref country code: FR Payment date: 20100805 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100722 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20120201 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110714 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110715 |