EP0995198A1 - Dispositif permettant de moduler l'absorption, l'emission, la moderation ou la reflexion de rayonnements ou de flux de particules - Google Patents

Dispositif permettant de moduler l'absorption, l'emission, la moderation ou la reflexion de rayonnements ou de flux de particules

Info

Publication number
EP0995198A1
EP0995198A1 EP98935107A EP98935107A EP0995198A1 EP 0995198 A1 EP0995198 A1 EP 0995198A1 EP 98935107 A EP98935107 A EP 98935107A EP 98935107 A EP98935107 A EP 98935107A EP 0995198 A1 EP0995198 A1 EP 0995198A1
Authority
EP
European Patent Office
Prior art keywords
channels
fluid
cadmium
neutron
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP98935107A
Other languages
German (de)
English (en)
Inventor
Michel Emin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0995198A1 publication Critical patent/EP0995198A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C7/00Control of nuclear reaction
    • G21C7/06Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
    • G21C7/22Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of a fluid or fluent neutron-absorbing material, e.g. by adding neutron-absorbing material to the coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a device for modulating the absorption, emission, moderation or reflection of radiation or flux of particles, for example neutrons, with the aim, for example, of regulating the reactivity of nuclear system, to make it safe or to contain ionizing radiation, for example, from a reactor, a fuel cell, or a system for storing radioactive material, potentially radioactive material, or which is to undergo irradiation.
  • FIG. 1 of the accompanying schematic drawing shows a longitudinal sectional view of a nuclear reactor.
  • the vessel of which is designated by the reference 2 the radioactive elements 3 are arranged in the form of vertical piles, between which voids are formed.
  • the absorption of neutron fluxes for example, in order to shutdown the installation, is obtained by means of control bars 4, placed above the radioactive elements.
  • These control bars 4 are intended, to achieve the absorption of neutron fluxes, to be introduced into the spaces arranged between the radioactive elements. It follows that the height of the tank must be very large to allow the movement of the control bars between a position in which they are arranged between the radioactive elements and a position in which they are arranged above them.
  • the other disadvantages of this technique are:
  • the object of the invention is to provide a device of simple and compact structure, making it possible to modulate the nuclear power of a reactor or the absorption of particles without deformation of the axial neutron flux, and by having a homogeneity of the neutron absorption.
  • the device which it relates to of the type comprising a bundle of channels, tubes or the like permanently arranged in the reactor and intended to contain a neutron absorbing neutron fluid, is characterized in that it comprises means allowing to vary the number of absorbing channels according to the desired modulation.
  • Each channel containing a neutron absorbing fluid is either in the fully filled position or in the entirely empty position, the different channels being able to be filled or emptied in a differentiated manner, independently, or by series of channels. It is thus possible to modulate the power of a reactor, without deformation of the axial neutron flux.
  • the channels containing neutron absorbing fluid remain permanently filled, and are associated with channels intended to form a screen, which may or may not be filled, on command, with a neutron reflecting liquid. The filling or not of a certain number of channels with a neutron reflecting liquid makes it possible to achieve a modulation of the power of the reactor.
  • This solution is particularly advantageous if it is desired to have safety means to cause the reaction to stop quickly, this stop being obtained by simultaneous emptying of all the channels containing liquid reflecting the neutrons.
  • the neutron absorbing fluid comprises at least one liquid metal charged with particles of materials absorbing or reflecting neutrons of the same density as the liquid. This arrangement provides a homogeneous neutron absorption or reflection.
  • the particles of materials absorbing or reflecting the neutrons are obtained by alloying or sintering.
  • the neutron absorbing fluid is chosen from the following compositions:
  • MoB molybdenum monoboride
  • the neutron reflecting liquid intended to supply the screen forming channels is chosen from mixtures containing heavy water D2O or other hydrogenated liquids, optionally charged with particles such as reflective beryllium neutrons.
  • This reflecting liquid can be used in combination with an absorbent fluid having one of the preceding compositions, or else based on hafnium or on hafnium diboride.
  • the different absorbent channels can be filled with the same neutron absorbing liquid, or with different neutron absorbing liquids, they can have the same section, constant or not, or have different sections.
  • the channels each consist of a U-shaped tube or by two concentric tubes communicating at one of their ends, the fluid filling of which is carried out by a pneumatic device, a vacuum source, or a device circulation by a pump or a piston.
  • the corresponding ends of several parallel tubes can be connected to the same channel, one end of each channel containing fluid being connected to a balloon provided with two swan necks, in order to avoid untimely emptying of liquid and to ensure the stability thereof with respect to temperature variations in the reactor.
  • this device further comprises channels, intended to receive a fluid containing a radioactive element placed under conditions allowing the transmutation of this element to another radioactive element.
  • transmutation channel without generating an imbalance in the neutron flux. It is advisable to control the neutron flux received by the channel containing the body to be transmuted, by integrating a local neutron measurement system which can be placed outside the reactor, and perform the measurement of absorption of the materials contained either in the transmutation channel. , or in a nearby channel. This installation allows, thanks to the possibilities of modulation by absorption or reflection, to adapt the neutron flux to carry out the transmutation operation.
  • FIG. 1 is a sectional view of a traditional nuclear reactor
  • FIG. 2 is a very schematic sectional view of a nuclear reactor according to the invention
  • - Figure 3 is a longitudinal sectional view of a channel containing a neutron absorbing fluid, and of two channels forming a screen
  • FIG. 4 is a cross-sectional view of these channels along the line IV-IV of FIG. 3,
  • FIGS. 5 and 6 are two views illustrating two methods of mounting channels containing a neutron absorbing fluid
  • FIG. 7 is a very schematic view in section of a device for crossing the cover of a reactor vessel.
  • FIG. 2 very schematically represents a nuclear reactor comprising a tank 6, inside which are disposed vertical piles 7 of combustible material between which are provided free spaces.
  • a bundle of channels 8 in the form of U-shaped pins, the first ends of the pins 8 being connected to a channel 9 and the second ends of the pins 8 being connected to a channel 10.
  • the pins 8 and channels 9 and 10 form a circuit inside which circulates a neutron absorbing fluid consisting for example of liquid cadmium added with micro-balls of tungsten boride W2B5, alloyed by sintering with indium-silver alloy.
  • the channel 9 is connected by means of a swan neck forming a siphon 12 to a pressurized balloon 13 located inside the reactor vessel, which maintains the temperature of the fluid.
  • the flask could be located outside the tank, but should in this case be reheated.
  • the channel 10 is, for its part, connected by means of a 3-way solenoid valve 14, on the one hand to a source of pressurized air 15 and on the other hand to the open air 16
  • the balloon 13 communicates for its part, via a channel 17, the end of which is equipped with a swan neck, and on which is mounted an electro-valve 18, with an analysis device 19 fluids, from which fluids can be sent via conduits 20, 22 to treatment or replacement devices.
  • the solenoid valve 14 When the solenoid valve 14 allows the admission of pressurized air, the pressure causes the neutron absorbing fluid to rise inside the balloon 13, and the channels 8 tend to empty. To maintain these channels in the filled position, which is the aim sought by the invention, it is necessary to tilt the solenoid valve 18 in the position to which it puts the channels in communication with the exhaust 16. The pressure falling, the neutron absorbing fluid is driven out by the pressure prevailing in the balloon and fills the channels.
  • FIG. 2 represents only one group of channels 8. It is possible to have several groups of channels, the channels being controlled independently of one another, to be either filled or emptied, which makes it possible to carry out a different modulation in different places of the reactor.
  • the modulation of the reactor power is obtained by varying the number of groups of full and empty channels.
  • the reactor stops when all the channels are filled with neutron absorbing fluid.
  • the power variation is obtained by keeping certain channels filled while others are empty.
  • Figures 3 and 4 show an alternative embodiment of this device.
  • a channel 23 is permanently filled with neutron absorbing fluid.
  • This channel 23 is surrounded by channels 24 which may or may not be filled with a neutron reflecting fluid.
  • Figures 5 and 6 show two embodiments of channels 8 containing a neutron absorbing fluid.
  • the channels are grouped by series and have different sections from one channel to another.
  • the channels are arranged in a cross, and can optionally be grouped by two or more, to form U-shaped pins.
  • FIG. 7 very schematically shows a cover 25 of the reactor vessel having an opening 26, traversed by a bell-shaped part 27, the lower part 28 of which is flared, and situated inside the vessel.
  • This bell is used for the passage of tubes 29, 30, 31 ensuring the circulation of neutron-absorbing and / or reflecting fluids, penetration through the cover of the tank being made by a multichannel tube 32, guided by a sphere 33 situated inside the flared part of the bell 27.
  • the invention brings a great improvement to the existing technique by providing a device of simple structure, avoiding any mechanical action to regulate the nuclear power of a reactor, having a small footprint, as well as a high reliability.
  • the invention is not limited to the sole embodiments of this device described above by way of examples, on the contrary, it embraces all of its variants.
  • the arrangement of the different channels inside a reactor could be different from the indicated arrangements, or else that the means of circulation of the neutron absorbing fluid or of the neuton reflecting fluid could be different and obtained either by a vacuum source, either by a circulation device by a pump, by a piston, or by an intermediate control fluid, without departing from the scope of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Particle Accelerators (AREA)

Abstract

Dispositif comportant un faisceau de canaux (8, 23), tubes ou similaires disposés en permanence dans le réacteur et destinés à contenir un fluide neutrophage absorbant les neutrons. En outre, ce dispositif comprend des moyens permettant de faire varier le nombre de canaux absorbants (8, 23) en fonction de la modulation souhaitée.

Description

DISPOSITIF PERMETTANT DE MODULER L'ABSORPTION, L'EMISSION, LA MODERAΗON OU LA REFLEXION DE RAYONNEMENTS OU DE FLUX DE PARTICULES
La présente invention a pour objet un dispositif permettant de moduler l'absorption, l'émission, la modération ou la réflexion de rayonnements ou de flux de particules, par exemple de neutrons, dans le but, par exemple, de régler la réactivité d'un système nucléaire, de le rendre sûr ou de contenir le rayonnement ionisant, par exemple, d'un réacteur, d'une pile à combustible, ou d'un système de stockage de matière radioactive, potentiellement radioactive, ou devant subir une irradiation.
La figure 1 du dessin schématique annexé montre une vue en coupe longitudinale d'un réacteur nucléaire. Dans un tel réacteur, dont la cuve est désignée par la référence 2, les éléments radioactifs 3 sont disposés sous forme de piles verticales, entre lesquelles sont ménagés des vides. L'absorption des flux neutroniques, par exemple, pour réaliser l'arrêt de l'installation, est obtenue grâce à des barres de contrôle 4, disposées au-dessus des éléments radioactifs. Ces barres de contrôle 4 sont destinées, pour réaliser l'absorption des flux neutroniques, à être introduites dans les espaces disposés entre les éléments radioactifs. Il en résulte que la hauteur de la cuve doit être très importante pour permettre le débattement des barres de contrôle entre une position dans laquelle elles sont disposées entre les éléments radioactifs et une position dans laquelle elles sont disposées au-dessus de ceux-ci. Les autres inconvénients de cette technique résident :
- d'une part, dans les dangers liés aux risques de coincement d'une barre de contrôle, au saut d'un pas du mécanisme de commande de ces barres, et à la non descente d'une barre de contrôle lors d'un arrêt d'urgence d'un réacteur, et
- d'autre part, dans les difficultés d'exploitation des installations nucléaires consécutives à l'usure inégale du combustible et à la dissymétrie du flux neutronique résultant notamment de l'empoisonnement des combustibles et de l'effet xénon samarium.
Ces derniers points imposent l'utilisation de bore pour régler la réactivité et entraînent une consommation imparfaite du combustible.
En outre, cette technologie étant sensible aux mouvements et aux accélérations, pose des problèmes dans le cas d'installations mobiles ou embarquées sur des navires ou dans des sous-marins. Les documents GB 803 701 , FR 1 269 659 et DE 1 125562 décrivent des dispositifs de modulation de la puissance nucléaire d'un réacteur, mettant en oeuvre un réseau de tubes contenant un liquide absorbant les neutrons. Dans les différents cas, la modulation est obtenue en faisant varier le niveau de liquide absorbant les neutrons. Il en résulte une déformation du flux neutronique axial.
Le but de l'invention est de fournir un dispositif de structure simple et compacte, permettant de moduler la puissance nucléaire d'un réacteur ou l'absorption de particules sans déformation du flux neutronique axial, et en disposant d'une homogénéité de l'absorption des neutrons.
A cet effet, le dispositif qu'elle concerne, du type comportant un faisceau de canaux, tubes ou similaires disposés en permanence dans le réacteur et destinés à contenir un fluide neutrophage absorbant les neutrons, est caractérisé en ce qu'il comprend des moyens permettant de faire varier le nombre de canaux absorbants en fonction de la modulation souhaitée.
Chaque canal contenant un fluide neutrophage se trouve soit en position entièrement remplie, soit en position entièrement vide, les différents canaux pouvant être remplis ou vidés de façon différenciée, indépendamment, ou par série de canaux. Il est ainsi possible de moduler la puissance d'un réacteur, sans déformation du flux neutronique axial. Suivant une autre forme d'exécution, les canaux contenant du fluide neutrophage demeurent remplis en permanence, et sont associés à des canaux destinés à former écran, pouvant être remplis ou non, sur commande, par un liquide réfléchissant les neutrons. Le remplissage ou non d'un certain nombre de canaux par un liquide réfléchissant les neutrons permet de réaliser une modulation de la puissance du réacteur.
Cette solution est particulièrement intéressante si l'on souhaite disposer de moyens de sécurité pour provoquer l'arrêt rapide de la réaction, cet arrêt étant obtenu par une vidange simultanée de tous les canaux contenant du liquide réfléchissant les neutrons.
Suivant une caractéristique de l'invention, le fluide neutrophage comprend au moins un métal liquide chargé de particules de matériaux absorbant ou réfléchissant les neutrons de même densité que le liquide. Cet aménagement permet de disposer d'une absorption ou d'une réflexion neutronique homogène.
Suivant une caractéristique de l'invention, les particules de matériaux absorbant ou réfléchissant les neutrons sont obtenues par alliage ou frittage.
Avantageusement le fluide neutrophage est choisi parmi les compositions suivantes :
- Cadmium et microbilles de monoborure de molybdène (MoB) de même densité que le cadmium (8,65) ; - Mélange indium/cadmium, étain/cadmium ou étain/indium/cadmium ajusté à la densité du samarium (7,54) ;
- Mélange indium/cadmium, étain/cadmium ou étain/indium/cadmium ajusté à la densité du gadolinium (7,895) ;
- Cadmium liquide additionné de microbilles de borure de tungstène W2B5, allié par frittage avec un alliage indium-argent.
Suivant une autre caractéristique de l'invention, le liquide réfléchissant les neutrons et destiné à alimenter les canaux formant écrans est choisi parmi les mélanges contenant de l'eau lourde D2O ou d'autres liquides hydrogénés, éventuellement chargés de particules telles que le béryllium réfléchissant les neutrons. Ce liquide réfléchissant peut être utilisé en association avec un fluide absorbant possédant l'une des compositions précédentes, ou encore à base d'hafnium ou de diborure d'hafnium.
Les différents canaux absorbants peuvent être remplis par le même liquide neutrophage, ou par différents liquides neutrophages, ils peuvent posséder la même section, constante ou non, ou posséder différentes sections.
Ces différentes possibilités permettent de parfaitement adapter le dispositif de modulation au réacteur à équiper, qui peut être un réacteur déjà existant.
Suivant une possibilité, les canaux sont constitués chacun par un tube en forme de U ou par deux tubes concentriques communiquant à l'une de leurs extrémités, dont le remplissage en fluide est réalisé par un dispositif pneumatique, une source de vide, ou un dispositif de circulation par une pompe ou un piston. Les extrémités correspondantes de plusieurs tubes parallèles peuvent être reliées à un même canal, l'une des extrémités de chaque canal contenant du fluide étant reliée à un ballon muni de deux cols de cygne, dans le but d'éviter les vidanges intempestives de liquide et d'assurer la stabilité de celui-ci vis à vis des variations de température dans le réacteur. Dans le cas d'un réservoir interne à la cuve du réacteur qui, par conséquent, subit un bombardement neutronique, il est important de prévoir un écran réfléchissant les neutrons pour conserver l'efficacité du liquide. Suivant une forme d'exécution, ce dispositif comprend en outre des canaux, destinés à recevoir un fluide contenant un élément radioactif placé dans des conditions permettant la transmutation de cet élément vers un autre élément radioactif.
Il est possible d'intégrer un canal de transmutation sans engendrer de déséquilibre du flux neutronique. Il convient de contrôler le flux neutronique reçu par le canal contenant le corps à transmuter, en intégrant un système de mesure neutronique local qui peut être disposé en dehors du réacteur, et effectuer la mesure d'absorption des matières contenues soit dans le canal de transmutation, soit dans un canal proche. Cette installation permet, grâce aux possibilités de modulation par absorption ou réflexion, d'adapter le flux neutronique pour réaliser l'opération de transmutation.
Il est possible d'effectuer des opérations de contrôle pour vérifier périodiquement l'efficacité du ou des fluides absorbants. Une certaine quantité de fluide est prélevée, les particules étant récupérées par filtration ou centrifugation, ou piégeage chimique ou magnétique.
De toute façon l'invention sera bien comprise à l'aide de la description qui suit, en référence au dessin schématique annexé représentant, à titre d'exemples non limitatifs, plusieurs formes d'exécution de ce dispositif.
- Figure 1 est une vue en coupe d'un réacteur nucléaire traditionnel,
- Figure 2 est une vue très schématique, en coupe, d'un réacteur nucléaire selon l'invention, - Figure 3 est une vue en coupe longitudinale d'un canal contenant un fluide neutrophage, et de deux canaux formant écran, - Figure 4 est une vue en coupe transversale de ces canaux selon la ligne IV-IV de figure 3,
- Figures 5 et 6 sont deux vues illustrant deux modes de montage de canaux contenant un fluide neutrophage, - Figure 7 est une vue très schématique et en coupe d'un dispositif de traversée du couvercle d'une cuve d'un réacteur.
La figure 2 représente très schématiquement un réacteur nucléaire comportant une cuve 6, à l'intérieur de laquelle sont disposées des piles 7 verticales de matériau combustible entre lesquelles sont ménagés des espaces libres.
Entre les piles de matériau combustible est installé un faisceau de canaux 8 en forme d'épingles en U, les premières extrémités des épingles 8 étant reliées à un canal 9 et les secondes extrémités des épingles 8 étant reliées à un canal 10. Les épingles 8 et les canaux 9 et 10 forment un circuit à l'intérieur duquel circule un fluide neutrophage constitué par exemple de cadmium liquide additionné de micro-billes de borure de tungstène W2B5, allié par frittage avec de l'alliage indium- argent.
Le canal 9 est relié par l'intermédiaire d'un col de cygne formant syphon 12 à un ballon sous-pression 13 situé à l'intérieur de la cuve du réacteur, ce qui assure le maintien en température du fluide. Le ballon pourrait être situé à l'extérieur de la cuve, mais devrait, dans un tel cas, être réchauffé. Le canal 10 est, pour sa part, relié par l'intermédiaire d'une électro-vanne 14 à 3 voies, d'une part à une source d'air sous- pression 15 et d'autre part à l'air libre 16. Le ballon 13 communique pour sa part, par l'intermédiaire d'un canal 17, dont l'extrémité est équipée d'un col de cygne, et sur lequel est montée une électro-vanne 18, avec un dispositif 19 d'analyse des fluides, à partir duquel les fluides peuvent être envoyés par des conduits 20, 22 vers des dispositifs de traitement ou de remplacement.
Lorsque l'électro-vanne 14 permet l'admission d'air sous- pression, la pression fait monter le fluide neutrophage à l'intérieur du ballon 13, et les canaux 8 ont tendance à se vider. Pour maintenir ces canaux en position remplie, ce qui est le but recherché par l'invention, il convient de basculer l'électro-vanne 18 dans la position vers laquelle elle met les canaux en communication avec l'échappement 16. La pression chutant, le fluide neutrophage est chassé par la pression régnant dans le ballon et remplit les canaux.
La figure 2 ne représente qu'un groupe de canaux 8. Il est possible de disposer de plusieurs groupes de canaux, les canaux étant commandés indépendamment les uns des autres, pour être soit remplis, soit vidés, ce qui permet de réaliser une modulation différente en différents endroits du réacteur.
La modulation de la puissance du réacteur est obtenue en faisant varier le nombre de groupes de canaux pleins et vides. Le réacteur s'arrête lorsque tous les canaux sont remplis de fluide neutrophage. La variation de puissance est obtenue en maintenant certains canaux remplis alors que d'autres sont vides.
Les figures 3 et 4 représentent une variante d'exécution de ce dispositif. Dans cette forme d'exécution, un canal 23 est rempli en permanence de fluide neutrophage. Ce canal 23 est entouré par des canaux 24 pouvant être ou non remplis d'un fluide réfléchissant les neutrons.
Lorsque tous les canaux 24 sont remplis, il n'y a pas d'absorption par le fluide contenu dans le canal 23. Lorsque l'on recherche une modulation, il est possible de vider certains des canaux 24 pour permettre une absorption par le fluide contenu dans le canal 23. Pour commander l'arrêt du réacteur, il convient de vider simultanément et totalement tous les canaux 24.
Les figures 5 et 6 montrent deux formes d'exécution de canaux 8 contenant un fluide absorbant les neutrons. Dans la forme d'exécution de la figure 5, les canaux sont regroupés par série et possèdent différentes sections d'un canal à un autre. Dans la forme d'exécution représentée à la figure 6, les canaux sont disposés en croix, et peuvent être éventuellement regroupés par deux ou plus, pour former des épingles en U.
La figure 7 représente, de façon très schématique, un couvercle 25 de cuve de réacteur comportant une ouverture 26, traversée par une pièce 27 en forme de cloche dont la partie inférieure 28 est évasée, et située à l'intérieur de la cuve. Cette cloche sert au passage de tubes 29, 30, 31 assurant la circulation des fluides neutrophages et/ou réfléchissants, la pénétration à travers le couvercle de la cuve se faisant par un tube 32 multicanaux, guidé par une sphère 33 située à l'intérieur de la partie évasée de la cloche 27.
Comme il ressort de ce qui précède, l'invention apporte une grande amélioration à la technique existante en fournissant un dispositif de structure simple, évitant toute action mécanique pour régler la puissance nucléaire d'un réacteur, possédant un faible encombrement, ainsi qu'une grande fiabilité.
Comme il va de soi, l'invention ne se limite pas aux seules formes d'exécution de ce dispositif décrites ci-dessus à titre d'exemples, elle en embrasse au contraire toutes ies variantes. C'est ainsi notamment que la disposition des différents canaux à l'intérieur d'un réacteur pourrait être différente des dispositions indiquées, ou encore que les moyens de circulation du fluide absorbant les neutrons ou du fluide réfléchissant les neutons pourraient être différents et obtenus soit par une source de vide, soit par un dispositif de circulation par une pompe, par un piston, ou par un fluide de commande intermédiaire, sans que l'on sorte pour autant du cadre de l'invention.

Claims

REVENDICATIONS
1 - Dispositif permettant de moduler la puissance nucléaire d'un réacteur ou l'absorption de particules sans déformation du flux neutronique axial, comportant un faisceau de canaux (8, 23), tubes ou similaires disposés en permanence dans le réacteur et destinés à contenir un fluide neutrophage absorbant les neutrons, caractérisé en ce qu'il comprend des moyens permettant de faire varier le nombre de canaux absorbants (8, 23) en fonction de la modulation souhaitée.
2 - Dispositif selon la revendication 1 , caractérisé en ce qu'il comprend des moyens permettant, sur commande, de vider ou de remplir en totalité chaque canal (8) en fluide neutrophage.
3 - Dispositif selon la revendication 1 , caractérisé en ce qu'il comprend des canaux (23) formant écrans qui, associés aux canaux (23) contenant du fluide neutrophage qui demeurent remplis en permanence, peuvent être remplis, sur commande, par un liquide réfléchissant les neutrons.
4 - Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le fluide neutrophage comprend au moins un métal liquide chargé de particules de matériaux absorbant ou réfléchissant les neutrons de même densité que le liquide.
5 - Dispositif selon la revendication 4, caractérisé en ce que les particules de matériaux absorbant ou réfléchissant les neutrons sont obtenues par alliage ou frittage.
6 - Dispositif selon l'une quelconque des revendications 4 et 5, caractérisé en ce que le fluide neutrophage est choisi parmi les compositions suivantes :
- Cadmium et microbilles de monoborure de molybdène (MoB) de même densité que le cadmium (8,65) ;
- Mélange indium/cadmium, étain/cadmium ou étain/indium/cadmium ajusté à la densité du samarium (7,54) ;
- Mélange indium/cadmium, étain/cadmium ou étain/indium/cadmium ajusté à la densité du gadolinium (7,895) ;
- Cadmium liquide additionné de microbilles de borure de tungstène W2B5, allié par frittage avec un alliage indium-argent. 7 - Dispositif selon la revendication 3, caractérisé en ce que le liquide réfléchissant les neutrons et destiné à alimenter les canaux (24) formant écrans est choisi parmi les mélanges contenant de l'eau lourde D2O ou d'autres liquides hydrogénés, éventuellement chargés de particules telles que le béryllium réfléchissant les neutrons.
8 - Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que tous les canaux (8, 23) sont remplis par le même liquide neutrophage.
9 - Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les canaux (8, 23) sont remplis par différents liquides neutrophages. 10 - Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que tous les canaux (8, 23) remplis de fluide neutrophage possèdent la même section.
1 1 - Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les canaux (8, 23) remplis de fluide neutrophage possèdent différentes sections.
12 - Dispositif selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que les canaux (8, 23) sont constitués chacun par un tube en forme de U ou par deux tubes concentriques communiquant à l'une de leurs extrémités, dont le remplissage en fluide est réalisé par un dispositif pneumatique (15), une source de vide, ou un dispositif de circulation par une pompe ou un piston.
13 - Dispositif selon l'une quelconque des revendications 1 à 12, caractérisé en ce que les extrémités correspondantes de plusieurs canaux parallèles (8) sont reliées à un même canal (9, 10). 14 - Dispositif selon l'une quelconque des revendications
1 à 12, caractérisé en ce que l'une des extrémités de chaque canal (9) contenant du fluide est reliée à un ballon (13), muni de deux cols de cygne dans le but d'éviter les vidanges intempestives de liquide et d'assurer la stabilité de celui-ci vis à vis des variations de température dans le réacteur. 15 - Dispositif selon l'une quelconque des revendications
1 à 14, caractérisé en ce qu'il comprend en outre des canaux, destinés à recevoir un fluide contenant un élément radioactif placé dans des conditions permettant la transmutation de cet élément vers un autre élément radioactif.
EP98935107A 1997-07-07 1998-07-06 Dispositif permettant de moduler l'absorption, l'emission, la moderation ou la reflexion de rayonnements ou de flux de particules Ceased EP0995198A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9708818A FR2765722B1 (fr) 1997-07-07 1997-07-07 Dispositif permettant de moduler l'absorption, l'emission, la moderation ou la reflexion de rayonnements ou de flux de particules
FR9708818 1997-07-07
PCT/FR1998/001443 WO1999003109A1 (fr) 1997-07-07 1998-07-06 Dispositif permettant de moduler l'absorption, l'emission, la moderation ou la reflexion de rayonnements ou de flux de particules

Publications (1)

Publication Number Publication Date
EP0995198A1 true EP0995198A1 (fr) 2000-04-26

Family

ID=9509119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98935107A Ceased EP0995198A1 (fr) 1997-07-07 1998-07-06 Dispositif permettant de moduler l'absorption, l'emission, la moderation ou la reflexion de rayonnements ou de flux de particules

Country Status (4)

Country Link
EP (1) EP0995198A1 (fr)
AU (1) AU8447198A (fr)
FR (1) FR2765722B1 (fr)
WO (1) WO1999003109A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2817649B1 (fr) * 2000-12-06 2004-05-14 Michel Gerard Emin Dispositif a effet de vide permettant de moduler ou de renforcer l'absorption, l'emission ou la moderation de rayonnements ou de flux de particules et de regenerer du combustible
FR2832846B1 (fr) 2001-11-26 2005-12-09 Commissariat Energie Atomique Reacteur nucleaire compact a eau sous pression
FR2855310B1 (fr) 2003-02-04 2008-06-13 Michel Emin Reacteur nucleaire et ses moyens d'insertion de liquide neutrophage dans le coeur
FR2850786B1 (fr) * 2003-02-04 2008-06-13 Michel Gerard Emin Reacteur nucleaire et ses moyens d'insertion de neutrophage dans le coeur

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB803701A (en) * 1955-08-11 1958-10-29 Parsons C A & Co Ltd Improvements in and relating to nuclear reactors
DE1125562B (de) * 1958-04-03 1962-03-15 Rhein Westfael Elect Werk Ag Vorrichtung zur Regelung von Kernreaktoren
NL127224C (fr) * 1958-08-08
FR1269659A (fr) * 1960-06-16 1961-08-18 Elettronucleare Naz Senn Soc Système de commande des réacteurs à fission nucléaire basé sur l'emploi de fluides absorbant les neutrons
US3228847A (en) * 1963-01-29 1966-01-11 Parkinson Thomas Franklin Reactor control system
US3300848A (en) * 1963-12-24 1967-01-31 Jr Carl F Leitten Method of preparing oxides for neutronic reactor control
JPS5012080B1 (fr) * 1970-12-04 1975-05-08

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9903109A1 *

Also Published As

Publication number Publication date
AU8447198A (en) 1999-02-08
FR2765722A1 (fr) 1999-01-08
FR2765722B1 (fr) 1999-09-24
WO1999003109A1 (fr) 1999-01-21

Similar Documents

Publication Publication Date Title
EP1464058B1 (fr) Reacteur nucleaire compact a eau sous pression
EP0187578A1 (fr) Assemblage de combustible pour réacteur nucléaire
EP0108020B1 (fr) Réacteur nucléaire à rendement amélioré
EP0246969B1 (fr) Petit réacteur nucléaire à eau pressurisée et à circulation naturelle
EP0388253B1 (fr) Piscine de manutention et de réserve d'eau de sécurité pour réacteur nucléaire refroidi à l'eau sous pression
EP0995198A1 (fr) Dispositif permettant de moduler l'absorption, l'emission, la moderation ou la reflexion de rayonnements ou de flux de particules
EP0036820B1 (fr) Dispositif de limitation des effets de la poussée hydraulique axiale s'exerçant sur des assemblages combustibles de réacteurs nucléaires
FR2763168A1 (fr) Reacteur nucleaire a eau, dont la cuve contient un dispositif de recuperation du coeur apres sa fusion accidentelle
FR2595501A1 (fr) Equipements internes de reacteurs nucleaires a cuve allongee
EP0026705B1 (fr) Dispositif de refroidissement de secours du coeur d'un réacteur à eau pressurisée
FR2711758A1 (fr) Ensemble d'étanchéité résistant à l'extrusion.
FR2523358A1 (fr) Reacteur nucleaire avec moderation de l'energie des neutrons
US20050105672A1 (en) Device permitting the modulation of absorption, emission, moderation or reflection of radiation or a particle flow
FR2517869A1 (fr) Dispositif d'arret complementaire pour un reacteur nucleaire sous-modere
EP0091374A1 (fr) Dispositif d'obturation de secours, en cas de fuite, d'un tube d'un générateur de vapeur
FR2817649A1 (fr) Dispositif a effet de vide permettant de moduler ou de renforcer l'absorption, l'emission ou la moderation de rayonnements ou de flux de particules et de regenerer du combustible
FR2559611A1 (fr) Systeme de recharge en combustible avec bouchons tournants de petit diametre
WO2014037363A1 (fr) Reacteur nucleaire rapide integre, refroidi par un metal liquide, a echangeur intermediaire annulaire et moyens de surete passifs
FR2617323A1 (fr) Element absorbant les neutrons realise sous forme modulaire et capsule modulaire pour un tel element
EP0048672A1 (fr) Réacteur nucléaire à échangeurs de chaleur intégrés
FR2544053A1 (fr) Generateur de vapeur pour reacteur refroidi par un metal liquide
CA1208374A (fr) Reacteur nucleaire a rendement ameliore
WO2019154988A1 (fr) Architecture de réacteur nucléaire intégré limitant les contraintes appliquées aux mécanismes intégrés
EP0094326A1 (fr) Dispositif de fixation d'un appareil dans un réacteur nucléaire
FR2467466A1 (fr) Colonne a extraction pour matiere de fission et/ou matiere fertile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20080804