EP0963596B1 - Electro-mechanical switching device - Google Patents

Electro-mechanical switching device Download PDF

Info

Publication number
EP0963596B1
EP0963596B1 EP98910592A EP98910592A EP0963596B1 EP 0963596 B1 EP0963596 B1 EP 0963596B1 EP 98910592 A EP98910592 A EP 98910592A EP 98910592 A EP98910592 A EP 98910592A EP 0963596 B1 EP0963596 B1 EP 0963596B1
Authority
EP
European Patent Office
Prior art keywords
switching
sensor
switching device
inductance
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98910592A
Other languages
German (de)
French (fr)
Other versions
EP0963596A1 (en
Inventor
Fritz Pohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0963596A1 publication Critical patent/EP0963596A1/en
Application granted granted Critical
Publication of EP0963596B1 publication Critical patent/EP0963596B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • H01H2071/048Means for indicating condition of the switching device containing non-mechanical switch position sensor, e.g. HALL sensor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits

Definitions

  • the invention relates to an electromagnetic Switching device with at least one movable contact and associated drive in a device housing, with at least a magnetic field sensor means for contactless Detection of the switching status at a suitable point arranged inside and / or outside of the device housing are and each with one of several switching states linked magnetic field values, the device housing has a control handle intended for manual release, whose position is monitored.
  • Switching states of electromechanical protective switching devices are characterized by triggering the switch mechanism and can therefore be determined by detecting the change in position Components such as the control handle the magnet armature usually present or an associated one Bimetallic, and the associated appearance more powerful Magnetic fields can be detected in the event of overcurrent or short circuit.
  • magnetically sensitive sensors such as D ifferential- H general E FFECT (DHE) sensor, G iant- M agneto- R esistive (GMR) sensor and A nisotropic- M agneto (AMR intended to detect R esistive sensor, in particular movement of the shift handle of a circuit breaker from its accompanying rotary movement of the drive strap -).
  • DHE D ifferential- H general E FFECT
  • GMR G iant- M agneto- R esistive
  • AMR A nisotropic- M agneto
  • the latter DHE, GMR and AMR sensors each contain one integrated electronics and supply standardized output signals, with a GMR sensor in particular an additional differential amplifier needed.
  • the GMR sensors in particular still have the peculiarity of poor stability of the sensor properties against magnetic overload. Overall are the previously known sensors are comparatively complex and expensive.
  • the object of the invention is a switching device with robust and inexpensive sensor elements for position monitoring to create magnetic field-carrying parts.
  • the Magnetic field sensor is a miniature inductor that comes with Ferrite core forms an inductance sensor with which the Position of the control handle or one coupled to it Part is monitored and especially the flowing in the switching device Current is detected, the permeability of the ferrite core the miniature inductance through the action of external Magnetic fields is changed. Especially with pronounced The axial geometry of the miniature inductor is clear Field direction sensitivity before.
  • Miniature inductors used according to the invention are from State of the art known per se, for example from DE 40 20 305 A1. Surprisingly, such are known Miniature inductors for the application of state detection suitable for switchgear.
  • the variable inductance the miniature inductance can preferably be with a Oscillator circuit can be evaluated.
  • FIG. 1 shows the selected on a test facility, spatial arrangement of a sensor system for a circuit breaker, where the sensors are outside the switch housing is located at a short distance from the housing side wall and is shown in projection on the switching device:
  • a switch housing 1 At a switch housing 1 are terminals in a known manner 2 and 3, a contact arrangement of fixed contact 4 and Moving contact 5, associated connections with a bimetal as Line connection 7 and a solenoid 8 available and reproduced in a simplified representation.
  • the fixed contact 4 is located on a rigid contact carrier 40, the moving contact 5 on a movable contact carrier 50 which over a drive bracket 51 made of ferromagnetic material and a turning handle 52 can be activated.
  • under is the movable one Contact carrier 50 attached a permanent magnet 11, the one Inductance sensor 60 with electrical connections 61, 62 assigned.
  • the permanent magnet 11 has a field-strengthening Iron sheet 12 provided.
  • the magnetic field of the permanent magnet 11 coupled onto the drive bracket 51 and for strengthening the iron sheet 12 on the from Drive bracket 51 facing away from the permanent magnet applied, which the inductance sensor 60 approximately up to whose center towers over.
  • the inductance sensor 60 is located between the approximately parallel legs of a U-shaped Magnetic circuit from drive bracket 51 and sheet iron 12, the Cross leg is formed by the permanent magnet 11.
  • the direction of magnetization is chosen so that the Magnetic field perpendicular to the plane of Figure 1 from the Permanent magnet 11 exits.
  • a Rectangle generator 101 with an amplitude of, for example ⁇ 15 V, a frequency ⁇ 1 MHz and a current consumption - 1 mA a signal circuit and the output signal via a Differential amplifier 111 processed further.
  • the measuring circuit contains, in addition to the actual measuring branch, a compensation branch for determining the zero differential voltage. Both measuring branches are largely constructed identically in order to avoid a temperature drift of the output voltage, which is dependent on the diode properties.
  • L is the variable inductance of inductance sensor 60.
  • the RC elements are used for signal integration.
  • Figure 4 shows the associated measurement oscillogram with the temporal Course of the sensor signal Is and its influence by the magnetic field of the electrical flowing in the switch Current.
  • an iron shield for example with 0.8 mm iron sheet on the outside to provide the sensor device. From the oscillogram it can be seen that the magnetic field is the field of the permanent magnet superimposed and the position signal of the inductance sensor 60 modulated.
  • the evaluation circuit according to Figure 3 is such modified that a differential circuit of two inductance sensors 60a and 60b with inductors L1 and L2, one of the sensors 60a and 60b each having a capacitance 104 connected to one of the evaluation branches with C1 ⁇ 6.8 nF is. Otherwise the arrangement corresponds to that in FIG 1 described arrangement.
  • Such a differential inductance sensor delivers a significantly smaller interference signal from the im Switch of flowing electrical current.
  • Miniature circuit breakers with about 100 A reach the interference signal of the differential inductance sensor 60 'about half Signal swing between on and off position.
  • the magnetic field influence mainly stems from the trip coil forth what in detail from the oscillograms according to the figures 7 to 9 can be derived.
  • the magnetic field sensitivity of in particular magnetic preloaded inductance sensors can also be used for a rough Current measurement can be used.
  • FIG. 10 and FIG. 11 shows the geometric arrangement of the switching device Figure 1 reproduced, in the area of the solenoid 8th an inductance sensor 60 'at a distance of 2 mm from the outside of the housing is arranged. Is assigned to the inductance sensor 60 'in turn a permanent magnet 11' with a field-strengthening Iron plate 12 '. It is particularly clear from FIG. 11 that with the inductance sensor 60 'by the magnetic field determination A rough current measurement is possible at the trigger coil is because of the magnetic bias of the sensor Sensitivity is increased.
  • FIG. 15 shows the geometric assignment in detail of an inductance sensor 60 ′′ to a rotatably mounted one Permanent magnet 11 ''.
  • the sensor's inductance signal 60 ′′ can be processed further by the evaluation circuit in FIG. 3 and is shown as an oscillogram in Figure 16.
  • Figure 16 shows the oscillographically measured voltage signal Ws depending on the angle of rotation.
  • the sensor signal is from Distance between sensor 60 '' and permanent magnet 11 'depending and its period is 180 ° of the angle of rotation. For the half period The angle of rotation and the sensor signal are therefore 90 ° clearly assigned to each other.
  • the measurement signal curve in FIG. 16 is influenced by the tuning of the evaluation circuit and has approximately a sine square curve.
  • the sensitive measuring range extends over a rotation angle range of approximately 25 °. While the measurement signal in the interval from 60 to 120 ° according to Figure 16 deviates strongly from the sinusoidal curve, the sensor inductance shows a monotonically increasing curve between L 0 ⁇ 185 ⁇ H to L 90 ⁇ 90 ⁇ H in the interval from 0 to 90 ° rotation angle. Due to the strong permanent magnetic field and the resulting large voltage swing of the measurement signal of 2 V, the sensitivity to interference from external magnetic fields is relatively low.
  • the one built with the described miniature inductor Angle sensor can therefore be used to detect a switching state Motor protection switch are used, the switching position and the short-circuit release by the angle of rotation position of the associated waves are marked.
  • the evaluation circuits in FIGS. 3 and 5 show that the electronic effort in the applications described the miniature inductors is low and in the essentially on a square wave generator with high frequency and Constant amplitude at low current load and one Differential amplifier for generating a 0 V related Output signal relates. This is a switchgear with Position monitoring realized that only a minor additional effort required.

Abstract

Electro-mechanical switching devices have at least one movable contact and one pertaining drive mechanism in the casing of an appliance. Means for contactless identification of switching status have already been disclosed, wherein magnetic field sensors are provided and arranged in a suitable position inside and/or outside said casing. Each sensor detects magnetic field values linked to one of several switching states. The casing of the appliance usually has a switching handle for manual triggering. According to the invention, a miniature inductive resistor (60, 60a, 60b, 60', 60'') with a ferrite core is included as a highly-sensitive magnetic field sensor. Said resistor regulates the position of the switch handle (52) or a part coupled thereto and/or enables a current flowing in the switching device to be detected. Such miniature inductive resistors (60, 60a, 60b, 60', 60'') are extremely economical.

Description

Die Erfindung bezieht sich auf ein elektromagnetisches Schaltgerät mit wenigstens einem beweglichen Kontakt und zugehörigem Antrieb in einem Gerätegehäuse, mit wenigstens einen Magnetfeldsensor umfassenden Mitteln zur berührungslosen Erkennung des Schaltzustandes, die an geeigneter Stelle innerhalb und/oder außerhalb des Gerätegehäuses angeordnet sind und die mit jeweils einem von mehreren Schaltzuständen verknüpfte Magnetfeldwerte erfassen, wobei das Gerätegehäuse einen zur Handauslösung bestimmten Schaltgriff aufweist, dessen Position überwacht wird.The invention relates to an electromagnetic Switching device with at least one movable contact and associated drive in a device housing, with at least a magnetic field sensor means for contactless Detection of the switching status at a suitable point arranged inside and / or outside of the device housing are and each with one of several switching states linked magnetic field values, the device housing has a control handle intended for manual release, whose position is monitored.

Schaltzustände elektromechanischer Schutzschaltgeräte sind durch Auslösevorgänge der Schaltermechanik gekennzeichnet und können demzufolge durch Detektion der Positionsänderung bestimmter Komponenten, wie beispielsweise des Schaltgriffes des üblicherweise vorhandenen Magnetankers oder eines zugeordneten Bimetalls, und dem zugehörigen Auftreten kräftiger Magnetfelder bei Überstrom oder Kurzschluß erfaßt werden.Switching states of electromechanical protective switching devices are characterized by triggering the switch mechanism and can therefore be determined by detecting the change in position Components such as the control handle the magnet armature usually present or an associated one Bimetallic, and the associated appearance more powerful Magnetic fields can be detected in the event of overcurrent or short circuit.

In der nachveröffentlichten DE 197 07 729 A1 mit älterem Zeitraum werden magnetosensitive Sensoren wie Differential-Hall-Effekt(DHE)-Sensor, Giant-Magneto-Resistive(GMR)-Sensor und Anisotropic-Magneto(AMR)-Resistive Sensor dazu vorgesehen, insbesondere die Bewegung des Schaltgriffes eines Leitungsschutzschalters aus der damit gekoppelten Drehbewegung des Antriebsbügels zu detektieren.In the subsequently published DE 197 07 729 A1 with older period are magnetically sensitive sensors, such as D ifferential- H general E FFECT (DHE) sensor, G iant- M agneto- R esistive (GMR) sensor and A nisotropic- M agneto (AMR intended to detect R esistive sensor, in particular movement of the shift handle of a circuit breaker from its accompanying rotary movement of the drive strap -).

Letztere DHE-, GMR- und AMR-Sensoren enthalten jeweils eine integrierte Elektronik und liefern normierte Ausgangssignale, wobei speziell ein GMR-Sensor einen zusätzlichen Differenzverstärker benötigt. Insbesondere die GMR-Sensoren haben noch die Besonderheit einer mangelhaften Stabilität der Sensoreigenschaften gegen magnetische Übersteuerung. Insgesamt sind die vorbekannten Sensoren vergleichsweise aufwendig und teuer.The latter DHE, GMR and AMR sensors each contain one integrated electronics and supply standardized output signals, with a GMR sensor in particular an additional differential amplifier needed. The GMR sensors in particular still have the peculiarity of poor stability of the sensor properties against magnetic overload. Overall are the previously known sensors are comparatively complex and expensive.

Aus der US 4 706 073 A ist ein Alarm-Sensorsystem für ein elektromechanisches Schaltgerät bekannt, bei dem ein eisenhaltiges bzw. nicht eisenhaltiges metallisches Geberelement vorhanden ist und einen variablen Magnetwiderstandssensor darstellt. Dabei soll mit einem solchen Sensor der Griff des Schaltgerätes überwacht werden. Bei Auslösung bewegt sich der Griff in die Auslösestellung und überbringt den Anteil des magnetischen Flusses zum Magnetfeldsensor, wobei sich der Fluß im Sensor ändert und einen Stromfluß in der Drahtspule des Sensors verursacht. Als Gebersignal wird daraus ein Spannungspuls erzeugt.From US 4 706 073 A an alarm sensor system for a Electromechanical switching device known in which an iron-containing or non-ferrous metallic sensor element is present and a variable magnetic resistance sensor represents. With such a sensor, the grip of the Switchgear are monitored. When triggered, the moves Grip in the release position and bring the portion of the magnetic flux to the magnetic field sensor, the Flow in the sensor changes and a current flow in the wire coil of the sensor. This becomes an encoder signal Voltage pulse generated.

Aufgabe der Erfindung ist es demgegenüber, ein Schaltgerät mit robusten und preiswerten Sensorelementen für die Positionsüberwachung magnetfeldführender Teile zu schaffen.In contrast, the object of the invention is a switching device with robust and inexpensive sensor elements for position monitoring to create magnetic field-carrying parts.

Die Aufgabe ist erfindungsgemäß dadurch gelöst, daß der Magnetfeldsensor eine Miniatur-Induktivität ist, die mit Ferritkern einen Induktivitätssensor bildet, mit dem die Position des Schaltgriffes oder eines damit gekoppelten Teiles überwacht wird und insbesondere der im Schaltgerät fließende Strom erfaßt wird, wobei die Permeabilität des Ferritkerns der Miniaturinduktivität durch die Wirkung von äußeren Magnetfeldern verändert wird. Insbesondere bei ausgeprägter axialer Geometrie der Miniatur-Induktivität liegt eine deutliche Feldrichtungsempfindlichkeit vor.The object is achieved in that the Magnetic field sensor is a miniature inductor that comes with Ferrite core forms an inductance sensor with which the Position of the control handle or one coupled to it Part is monitored and especially the flowing in the switching device Current is detected, the permeability of the ferrite core the miniature inductance through the action of external Magnetic fields is changed. Especially with pronounced The axial geometry of the miniature inductor is clear Field direction sensitivity before.

Erfindungsgemäß verwendete Miniaturinduktivitäten sind vom Stand der Technik an sich bekannt, beispielsweise aus der DE 40 20 305 A1. Überraschenderweise sind solche bekannte Miniatur-Induktivitäten zur Anwendung der Zustandserkennung bei Schaltgeräten geeignet. Die veränderliche Induktivität der Miniaturinduktivität kann vorzugsweise mit einer Oszillatorschaltung ausgewertet werden.Miniature inductors used according to the invention are from State of the art known per se, for example from DE 40 20 305 A1. Surprisingly, such are known Miniature inductors for the application of state detection suitable for switchgear. The variable inductance the miniature inductance can preferably be with a Oscillator circuit can be evaluated.

Da bekannte Miniatur-Induktivitäten in unterschiedlichster Ausführung in Massenfertigung hergestellt werden, sind sie als Produkt ausgereift und vorteilhafterweise äußerst preiswert sind. Zum bestimmungsgemäßen Einsatz bei der Erfindung dient als eigentliches Sensormittel der Ferritkern der Miniatur-Induktivität, welcher durch die Wirkung äußerer Magnetfelder die Permeabilität ändert.Known miniature inductors in a wide variety They are made to be mass-produced mature as a product and advantageously extremely inexpensive are. For the intended use in the invention serves as the actual sensor means of the ferrite core Miniature inductance, which by the action of external Magnetic fields change the permeability.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus nachfolgender Figurenbeschreibung von Ausführungsbeispielen anhand der Zeichnung in Verbindung mit weiteren Unteransprüchen. Es zeigen jeweils in schematischer Darstellung

Figur 1
ein Schaltgerät mit einem Induktivitätssensor und zugehörigen Permanentmagneten, die beide außerhalb des Schaltergehäuses angebracht sind.
Figur 2
eine Explosionszeichnung der Sensoranordnung und des Antriebsbügels aus Figur 1 zur Verdeutlichung der Positionserfassung,
Figur 3
eine Auswerteschaltung zur Messung der Induktivitätsänderung des in Figur 1 verwendeten Induktivitätssensors,
Figur 4
ein Oszillogramm zur Handausschaltung eines Leitungsschutzschalters,
Figur 5
eine symmetrische Auswerteschaltung zur Messung der Induktivitätsänderung eines Differenz-Induktivitätssensors,
Figur 6
ein Oszillogramm der Handausschaltung eines Leitungsschutzschalters mit einem Differenz-Induktivitätssensor,
Figuren 7 bis 9
verschiedene Oszillogramme zur Verdeutlichung des Schaltverhaltens,
Figur 10
ein Schaltgerät entsprechend Figur 1, bei dem ein Induktivitätssensor und zugehöriger Permanentmagneten mit feldverstärkendem Eisenblech außerhalb des Schaltgerätes zur Strommessung in der Schaltspule angebracht sind,
Figur 11
eine Explosionszeichnung zur Verdeutlichung von Figur 10,
Figuren 12 bis 14
Oszillogramme des Schaltverhaltens beim Schaltgerät gemäß Figur 10,
Figur 15
die Anordnung einer Miniaturinduktivität mit Permanentmagnet als Winkel- oder Näherungssensor und
Figur 16
ein Oszillogramm zur Erläuterung der Wirkung von Figur 15.
Further details and advantages of the invention result from the following description of the figures of exemplary embodiments with reference to the drawing in conjunction with further subclaims. They each show a schematic representation
Figure 1
a switching device with an inductance sensor and associated permanent magnets, both of which are attached outside the switch housing.
Figure 2
2 shows an exploded drawing of the sensor arrangement and the drive bracket from FIG. 1 to illustrate the position detection,
Figure 3
an evaluation circuit for measuring the change in inductance of the inductance sensor used in FIG. 1,
Figure 4
an oscillogram for manually switching off a circuit breaker,
Figure 5
a symmetrical evaluation circuit for measuring the change in inductance of a differential inductance sensor,
Figure 6
an oscillogram of the manual switching off of a circuit breaker with a differential inductance sensor,
Figures 7 to 9
various oscillograms to illustrate the switching behavior,
Figure 10
2 a switching device according to FIG. 1, in which an inductance sensor and associated permanent magnets with a field-strengthening iron sheet are mounted outside the switching device for current measurement in the switching coil,
Figure 11
10 shows an exploded drawing to illustrate FIG. 10,
Figures 12 to 14
Oscillograms of the switching behavior in the switching device according to FIG. 10,
Figure 15
the arrangement of a miniature inductor with a permanent magnet as an angle or proximity sensor and
Figure 16
an oscillogram to explain the effect of Figure 15.

Figur 1 zeigt die an einer Versuchseinrichtung gewählte, räumliche Anordnung einer Sensorik für einen Leitungsschutzschalter, wobei sich die Sensorik außerhalb des Schaltergehäuses in geringem Abstand zur Gehäuseseitenwand befindet und in Projektion auf das Schaltgerät dargestellt ist: Bei einem Schaltergehäuse 1 sind in bekannter Weise Anschlußklemmen 2 und 3, eine Kontaktanordnung aus Festkontakt 4 und Bewegkontakt 5, zugehörige Anschlüssen mit einem Bimetall als Leitungsverbindung 7 sowie eine Magnetspule 8 vorhanden und in vereinfachter Darstellung wiedergegeben. Der Festkontakt 4 befindet sich auf einem starren Kontaktträger 40, der Bewegkontakt 5 auf einem beweglichen Kontaktträger 50, der über einen Antriebsbügel 51 aus ferromagnetischem Material und einen Drehgriff 52 aktivierbar ist. FIG. 1 shows the selected on a test facility, spatial arrangement of a sensor system for a circuit breaker, where the sensors are outside the switch housing is located at a short distance from the housing side wall and is shown in projection on the switching device: At a switch housing 1 are terminals in a known manner 2 and 3, a contact arrangement of fixed contact 4 and Moving contact 5, associated connections with a bimetal as Line connection 7 and a solenoid 8 available and reproduced in a simplified representation. The fixed contact 4 is located on a rigid contact carrier 40, the moving contact 5 on a movable contact carrier 50 which over a drive bracket 51 made of ferromagnetic material and a turning handle 52 can be activated.

In projizierter Darstellung ist "unter" dem beweglichen Kontaktträger 50 ein Permanentmagnet 11 angebracht, dem ein Induktivitätssensor 60 mit elektrischen Anschlüssen 61, 62 zugeordnet ist. Der Permanentmagnet 11 ist mit einem feldverstärkendem Eisenblech 12 versehen.In the projected representation, "under" is the movable one Contact carrier 50 attached a permanent magnet 11, the one Inductance sensor 60 with electrical connections 61, 62 assigned. The permanent magnet 11 has a field-strengthening Iron sheet 12 provided.

Um die Position des ferromagnetischen Antriebsbügels 51 mit dem Induktivitätssensor 60 zu erfassen, wird das Magnetfeld des Permanentmagneten 11 auf den Antriebsbügel 51 eingekoppelt und zur Feldverstärkung das Eisenblech 12 auf der vom Antriebsbügel 51 abgewandten Seite des Permanentmagneten aufgebracht, welches den Induktivitätssensor 60 etwa bis zu dessen Mitte überragt.To the position of the ferromagnetic drive bracket 51 with to detect the inductance sensor 60, the magnetic field of the permanent magnet 11 coupled onto the drive bracket 51 and for strengthening the iron sheet 12 on the from Drive bracket 51 facing away from the permanent magnet applied, which the inductance sensor 60 approximately up to whose center towers over.

Gemäß Figur 2 befindet sich der Induktivitätssensor 60 zwischen den annähernd parallelen Schenkeln eines U-förmigen Magnetkreises aus Antriebsbügel 51 und Eisenblech 12, dessen Querschenkel durch den Permanentmagneten 11 gebildet wird. Die Magnetisierungsrichtung ist dabei so gewählt, daß das Magnetfeld senkrecht zur Zeichenebene der Figur 1 aus dem Permanentmagneten 11 austritt.According to FIG. 2, the inductance sensor 60 is located between the approximately parallel legs of a U-shaped Magnetic circuit from drive bracket 51 and sheet iron 12, the Cross leg is formed by the permanent magnet 11. The direction of magnetization is chosen so that the Magnetic field perpendicular to the plane of Figure 1 from the Permanent magnet 11 exits.

In der Auswerteschaltung gemäß Figur 3 wird durch einen Rechteckgenerator 101 mit beispielsweise einer Amplitude von ± 15 V, einer Frequenz ~ 1 MHz und einer Stromaufnahme - 1 mA ein Signalkreis gespeist und das Ausgangssignal über einen Differenzverstärker 111 weiter verarbeitet.In the evaluation circuit according to FIG. 3, a Rectangle generator 101 with an amplitude of, for example ± 15 V, a frequency ~ 1 MHz and a current consumption - 1 mA a signal circuit and the output signal via a Differential amplifier 111 processed further.

Durch die Änderung des magnetischen Flusses im Induktivitätssensor 60 bei der Drehung des ferromagnetischen Antriebsbügels 51 aus der Ausschalt- in die Einschaltposition ändert sich beispielsweise der Induktivitätswert von 450 µH (= Laus) auf 470 µH (= Lein). Um diese vergleichsweise geringe relative Induktionsänderung von 4 % messen zu können, enthält die Meßschaltung neben dem eigentlichen Meßzweig einen Kompensationszweig zur Festlegung der Nulldifferenzspannung. Beide Meßzweige sind weitestgehend gleich aufgebaut, um eine Temperaturdrift der Ausgangsspannung, die abhängig von den Diodeneigenschaften ist, zu vermeiden. Im einzelnen sind in den Meßzweigen jeweils Widerstände 102, 102' mit mit R1 10 kΩ und RC-Glieder 103, 103' mit C3 = 100 nF und R3 = 10 kΩ vorhanden. Mit L ist die veränderliche Induktivität des Induktivitätssensors 60 bezeichnet. Der Induktivität 60 ist eine Kapazität 104 mit C1 ~ 6,8 nF zu einem Auswertezweig nachgeschaltet, zum anderen Auswertezweig ein Widerstand 105 mit R2 = 4,7 kΩ nachgeschaltet, wobei in den Signalzweigen über die Dioden eine Gleichrichtung erfolgt. Die RC-Glieder dienen zur Signalintegration.By changing the magnetic flux in the inductance sensor 60 during rotation of the ferromagnetic drive bracket 51 from the switch-off in the on position, for example, the inductance value of 450 .mu.H (= L off) to 470 .mu.H varies (L = a). In order to be able to measure this comparatively small relative change in induction of 4%, the measuring circuit contains, in addition to the actual measuring branch, a compensation branch for determining the zero differential voltage. Both measuring branches are largely constructed identically in order to avoid a temperature drift of the output voltage, which is dependent on the diode properties. In particular, resistors 102, 102 'with R 1 10 kΩ and RC elements 103, 103' with C 3 = 100 nF and R 3 = 10 kΩ are present in the measuring branches. L is the variable inductance of inductance sensor 60. A capacitance 104 with C 1 ~ 6.8 nF is connected downstream of the inductance 60 to form an evaluation branch, and a resistor 105 with R2 = 4.7 kΩ is connected downstream of the other evaluation branch, with rectification in the signal branches via the diodes. The RC elements are used for signal integration.

Figur 4 zeigt das zugehörige Meßoszillogramm mit dem zeitlichen Verlauf des Sensorsignals Is und dessen Beeinflussung durch das Magnetfeld des im Schalter fließenden elektrischen Stromes. Um eine Feldverzerrung durch Eisenteile, beispielsweise von benachbarten Leitungsschutzschaltern, am Ort des Induktivitätssensors 60 zu vermeiden, ist eine Eisenabschirmung, beispielsweise mit 0,8 mm Eisenblech, auf der Außenseite der Sensoreinrichtung vorzusehen. Aus dem Oszillogramm ist ersichtlich, daß das Magnetfeld sich dem Feld des Permanentmagneten überlagert und das Positionssignal des Induktivitätssensors 60 moduliert. Figure 4 shows the associated measurement oscillogram with the temporal Course of the sensor signal Is and its influence by the magnetic field of the electrical flowing in the switch Current. To field distortion caused by iron parts, for example from neighboring circuit breakers, at the location of the Avoiding inductance sensor 60 is an iron shield, for example with 0.8 mm iron sheet on the outside to provide the sensor device. From the oscillogram it can be seen that the magnetic field is the field of the permanent magnet superimposed and the position signal of the inductance sensor 60 modulated.

In Figur 5 ist die Auswerteschaltung gemäß Figur 3 derart abgeändert, daß eine Differenzschaltung zweier Induktivitätssensoren 60a und 60b mit Induktivitäten L1 und L2 erfolgt, wobei jeweils einer der Sensoren 60a und 60b über eine Kapazität 104 mit C1 ~ 6,8 nF an einen der Auswertezweige geschaltet ist. Ansonsten entspricht die Anordnung der in Figur 1 beschriebenen Anordnung. Ein solcher Differenz-Induktivitätssensor liefert ein erheblich kleineres Störsignal des im Schalter fließenden elektrischen Stromes.In Figure 5, the evaluation circuit according to Figure 3 is such modified that a differential circuit of two inductance sensors 60a and 60b with inductors L1 and L2, one of the sensors 60a and 60b each having a capacitance 104 connected to one of the evaluation branches with C1 ~ 6.8 nF is. Otherwise the arrangement corresponds to that in FIG 1 described arrangement. Such a differential inductance sensor delivers a significantly smaller interference signal from the im Switch of flowing electrical current.

Aus dem Oszillogramm in Figur 6 ist im einzelnen erkennbar, daß im Vergleich zu Figur 4 die Signalmodulation durch das Magnetfeld beim Differenz-Induktivitätssensor erheblich geringer ist. Im Idealfall ergibt sich, daß bei der Differenzauswertung das Positionssignal ungeschwächt bleibt, während das an beiden Sensoren etwa gleichgroße Störsignal unterdrückt wird.It can be seen in detail from the oscillogram in FIG. 6 that that compared to Figure 4, the signal modulation by the Magnetic field in the differential inductance sensor considerably lower is. Ideally, this results in the difference evaluation the position signal remains undiminished while suppresses the interference signal of approximately the same size at both sensors becomes.

Bei der Kurzschlußauslösung des anhand Figur 1 beschriebenen Leitungsschutzschalters mit etwa 100 A erreicht das Störsignal des Differenzinduktivitätssensors 60' etwa den halben Signalhub zwischen Ein- und Ausschaltstellung. Der Magnetfeldeinfluß rührt dabei hauptsächlich von der Auslösespule her, was im einzelnen aus den Oszillogrammen gemäß den Figuren 7 bis 9 abgeleitet werden kann.In the event of short-circuit tripping of that described with reference to FIG. 1 Miniature circuit breakers with about 100 A reach the interference signal of the differential inductance sensor 60 'about half Signal swing between on and off position. The magnetic field influence mainly stems from the trip coil forth what in detail from the oscillograms according to the figures 7 to 9 can be derived.

Die Magnetfeldempfindlichkeit von insbesondere magnetisch vorgespannten Induktivitätssensoren kann auch für eine grobe Strommessung ausgenutzt werden. Hierzu ist anhand Figur 10 und 11 die geometrische Anordnung des Schaltgerätes nach Figur 1 wiedergegeben, bei der im Bereich der Magnetspule 8 ein Induktivitätssensor 60' in 2 mm Abstand zur Gehäuseaußenseite angeordnet ist. Zugeordnet ist dem Induktivitätssensor 60' wiederum ein Permanentmagnet 11' mit feldverstärkendem Eisenplättchen 12'. Speziell aus Figur 11 wird deutlich, daß mit dem Induktivitätssenstor 60' durch die Magnetfeldbestimmung an der Auslöserspule eine grobe Strommessung möglich ist, da durch die magnetische Vorspannung des Sensors dessen Empfindlichkeit erhöht ist.The magnetic field sensitivity of in particular magnetic preloaded inductance sensors can also be used for a rough Current measurement can be used. This is shown in FIG. 10 and FIG. 11 shows the geometric arrangement of the switching device Figure 1 reproduced, in the area of the solenoid 8th an inductance sensor 60 'at a distance of 2 mm from the outside of the housing is arranged. Is assigned to the inductance sensor 60 'in turn a permanent magnet 11' with a field-strengthening Iron plate 12 '. It is particularly clear from FIG. 11 that with the inductance sensor 60 'by the magnetic field determination A rough current measurement is possible at the trigger coil is because of the magnetic bias of the sensor Sensitivity is increased.

Unterschiedliche Stromverläufe wurden mit einer elektrischen Last an 220 V Wechselspannung mit verschiedenen Leistungsstufen simuliert und ergeben sich aus den Figuren 12 bis 14 als Meßoszillogramme. Man erhält eine relativ gute Proportionalität des Sensorsignals IIS zum genauen Strommeßsignal ISt einer Stromzange. Die relative Abweichung der Meßsignalverläufe beträgt im Beispiel weniger als 20 %. Voraussetzung hierfür ist, daß durch eine stabile Generatorfrequenz und Generatoramplitude die Null-Differenzspannung tatsächlich auf 0 V abgeglichen wird.Different current profiles were simulated with an electrical load at 220 V AC voltage with different power levels and are shown in FIGS. 12 to 14 as measurement oscillograms. A relatively good proportionality of the sensor signal I IS to the exact current measurement signal I St of a current probe is obtained. The relative deviation of the measurement signal curves is less than 20% in the example. The prerequisite for this is that the zero differential voltage is actually adjusted to 0 V by a stable generator frequency and generator amplitude.

Eine weitere Anwendungsmöglichkeit der angegebenen Miniatur-Induktivität besteht bei Schaltgeräten als Näherungs- oder Winkelsensor, wenn als Geberelement ein Permanentmagnet benutzt wird. Dies wird anhand Figur 15 verdeutlicht.Another possible application of the specified miniature inductance exists in switching devices as an approximation or Angle sensor if a permanent magnet is used as the encoder element becomes. This is illustrated in FIG. 15.

Die Figur 15 zeigt im einzelnen die geometrische Zuordnung eines Induktivitätssensors 60'' zu einem drehbar gelagerten Permanentmagneten 11''. Das Induktivitätssignals des Sensors 60'' kann durch die Auswerteschaltung in Figur 3 weiter verarbeitet werden und ist als Oszillogramm in Figur 16 dargestellt. FIG. 15 shows the geometric assignment in detail of an inductance sensor 60 ″ to a rotatably mounted one Permanent magnet 11 ''. The sensor's inductance signal 60 ″ can be processed further by the evaluation circuit in FIG. 3 and is shown as an oscillogram in Figure 16.

Figur 16 zeigt das oszillographisch gemessene Spannungssignal Ws in Abhängiggkeit vom Drehwinkel. Das Sensorsignal ist vom Abstand zwischen Sensor 60'' und Permanentmagnet 11' abhängig und seine Periode beträgt 180° des Drehwinkels. Für die Halbperiode von 90° sind daher der Drehwinkel und das Sensorsignal eindeutig einander zugeordnet.Figure 16 shows the oscillographically measured voltage signal Ws depending on the angle of rotation. The sensor signal is from Distance between sensor 60 '' and permanent magnet 11 'depending and its period is 180 ° of the angle of rotation. For the half period The angle of rotation and the sensor signal are therefore 90 ° clearly assigned to each other.

Der Meßsignalverlauf in Figur 16 wird durch die Abstimmung der Auswerteschaltung beeinflußt und hat in etwa einen Sinusquadratverlauf. Dabei erstreckt sich der empfindliche Meßbereich über einen Drehwinkelbereich von etwa 25°. Während das Meßsignal im Intervall von 60 bis 120° entsprechend Figur 16 vom Sinusquadratverlauf stark abweicht, zeigt die Sensorinduktivität im Intervall von 0 bis 90° Drehwinkel einen monoton ansteigenden Verlauf zwischen L0 ∼ 185 µH auf L90 ∼ 90 µH. Aufgrund des starken Permanentmagnetfeldes und des daraus resultierenden großen Spannungshubes des Meßsignals von 2 V ist die Störempfindlichkeit durch magnetische Fremdfelder relativ gering.The measurement signal curve in FIG. 16 is influenced by the tuning of the evaluation circuit and has approximately a sine square curve. The sensitive measuring range extends over a rotation angle range of approximately 25 °. While the measurement signal in the interval from 60 to 120 ° according to Figure 16 deviates strongly from the sinusoidal curve, the sensor inductance shows a monotonically increasing curve between L 0 ∼ 185 µH to L 90 ∼ 90 µH in the interval from 0 to 90 ° rotation angle. Due to the strong permanent magnetic field and the resulting large voltage swing of the measurement signal of 2 V, the sensitivity to interference from external magnetic fields is relatively low.

Der mit der beschriebenen Miniatur-Induktivität aufgebaute Winkelsensor kann also zur Schaltzustandserkennung eines Motorschutzschalters eingesetzt werden, wobei die Schaltstellung und die Kurzschlußauslösung durch die Drehwinkelstellung der zugehörigen Wellen gekennzeichnet sind.The one built with the described miniature inductor Angle sensor can therefore be used to detect a switching state Motor protection switch are used, the switching position and the short-circuit release by the angle of rotation position of the associated waves are marked.

Insbesondere die Auswerteschaltungen in Figur 3 und 5 zeigen, daß der elektronische Aufwand bei den beschriebenen Anwendungen der Miniatur-Induktivitäten gering ist und sich im wesentlichen auf einen Rechteckgenerator mit hoher Frequenzund Amplitudenkonstanz bei geringer Strombelastung und einen Differenzverstärker zur Erzeugung eines auf 0 V bezogenen Ausgangssignals bezieht. Damit ist ein Schaltgerät mit Positionsüberwachung realisiert, das nur einen geringen zusätzlichen Aufwand benötigt.In particular, the evaluation circuits in FIGS. 3 and 5 show that the electronic effort in the applications described the miniature inductors is low and in the essentially on a square wave generator with high frequency and Constant amplitude at low current load and one Differential amplifier for generating a 0 V related Output signal relates. This is a switchgear with Position monitoring realized that only a minor additional effort required.

Claims (8)

  1. Electromechanical switching device with at least one moveable contact (5) and an associated drive in a device housing (1) with means (11, 60) including at least one magnetic field sensor (60) for contactlessly identifying the switching state, which are disposed at suitable positions inside and/or outside the device housing (1), and which detect magnetic field values each linked to one of a plurality of switching states, whereby the device housing (1) has a switching handle (52) intended for manual release, the position of said switching handle being monitored, characterised in that the magnetic field sensor is a highly sensitive miniature inductance element (60, 60a, 60b, 60', 60") having a ferrite core and forming an inductance sensor, with which the position of the switching handle (52) or of a part (51) linked thereto is monitored and in particular the current flowing in the switching device is detected, whereby the permeability of the ferrite core of the miniature inductance element (60, 60a, 60b, 60', 60") is altered by the action of external magnetic fields.
  2. Switching device according to Claim 1, characterised in that when the miniature inductance element (60, 60a, 60b, 60', 60") has pronounced axial geometries the sensor has a distinct sensitivity with respect to a field direction.
  3. Switching device according to Claim 1 or Claim 2, characterised in that it includes an evaluation circuit (100) with which the inductance (L, L1, L2) of the miniature inductance element (60, 60a, 60b) is evaluated with an oscillator circuit (100).
  4. Switching device according to Claim 1, characterised in that the inductance sensor (60) together with an associated permanent magnet (11) and an additional iron plate (12) for field strengthening are disposed next to a ferromagnetic drive clip (51) for the switching handle (52) for detecting the on/off state (52) of the switching handle (52).
  5. Switching device according to Claim 4, characterised in that the evaluation circuit (100) is fed by a square-wave generator (101), and that the output signal is further processed using a differential amplifier (111).
  6. Switching device according to Claim 5, characterised in that it includes two inductance sensors (60a, 60b) forming a differential circuit.
  7. Electromagnetic switching device according to one of the preceding claims, whereby a solenoid acts as a release element, characterised in that the miniature inductance element (60") has a magnetic field sensitivity utilised for measuring current in the release coil (8).
  8. Switching device according to Claim 7, characterised in that the miniature inductance elements (60") can be used as a proximity and/or angle sensor if a permanent magnet (11'') is present as a pick-up element, said permanent magnet being connected to the component to be monitored of the switching device (1).
EP98910592A 1997-02-26 1998-02-09 Electro-mechanical switching device Expired - Lifetime EP0963596B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19707724 1997-02-26
DE19707724 1997-02-26
PCT/DE1998/000357 WO1998038666A1 (en) 1997-02-26 1998-02-09 Electro-mechanical switching device

Publications (2)

Publication Number Publication Date
EP0963596A1 EP0963596A1 (en) 1999-12-15
EP0963596B1 true EP0963596B1 (en) 2002-09-11

Family

ID=7821565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98910592A Expired - Lifetime EP0963596B1 (en) 1997-02-26 1998-02-09 Electro-mechanical switching device

Country Status (5)

Country Link
US (1) US6104592A (en)
EP (1) EP0963596B1 (en)
JP (1) JP4358308B2 (en)
DE (1) DE59805512D1 (en)
WO (1) WO1998038666A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010043744A1 (en) * 2010-11-11 2012-05-16 Continental Automotive Gmbh Circuit arrangement for monitoring switching of energy source for power supply of electric drive in hybrid or electric cars, has monitoring unit including measuring unit, and control device monitoring control of protecting unit

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6741158B2 (en) * 2002-07-18 2004-05-25 Honeywell International Inc. Magnetically sensed thermostat control
US20050246114A1 (en) * 2004-04-29 2005-11-03 Rannow Randy K In-line field sensor
DE102004044378A1 (en) * 2004-09-10 2006-03-30 Valeo Schalter Und Sensoren Gmbh switch unit
JP4918993B2 (en) * 2005-07-22 2012-04-18 横河電機株式会社 Angle sensor
US8344724B2 (en) 2009-11-06 2013-01-01 Massachusetts Institute Of Technology Non-intrusive monitoring of power and other parameters
US8299798B2 (en) * 2010-06-29 2012-10-30 National Instruments Corporation Relay test system and method
JP6321592B2 (en) * 2015-08-20 2018-05-09 ファナック株式会社 Dual touch switch using inductive proximity sensor
CN109045428B (en) * 2016-10-03 2021-06-29 捷普科技(上海)有限公司 Medicament dispenser
GB2591796A (en) * 2020-02-07 2021-08-11 Eaton Intelligent Power Ltd Circuit breaker and method for operating a circuit breaker

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3121234C1 (en) * 1981-05-27 1983-02-24 Siemens AG, 1000 Berlin und 8000 München Method and circuit arrangement for measuring a magnetic field, in particular the earth's magnetic field
DE3226266C1 (en) * 1982-07-14 1983-12-29 Daimler-Benz Ag, 7000 Stuttgart Failure warning device for electrical loads
US4698621A (en) * 1984-09-25 1987-10-06 Masot Oscar V Circuit breaker panels with alarm system
IN161314B (en) * 1984-09-25 1987-11-07 Oscar Vila Masot
JPS61102712A (en) * 1984-10-26 1986-05-21 Kyocera Corp Chip type coil element
DE3738455A1 (en) * 1986-11-25 1988-06-01 Landis & Gyr Ag ARRANGEMENT FOR MEASURING A LOW-FLOW MAGNETIC FIELD
US5115197A (en) * 1990-03-26 1992-05-19 Giusseppe Brandolino Fluxgate sensor having adjustable core extending beyond a coil winding and a gradiometer incorporating a pair of sensors
WO1991018299A1 (en) * 1990-05-19 1991-11-28 Nkk Corporation Device for sensing magnetism
DE4020305A1 (en) * 1990-06-26 1992-01-09 Siemens Ag Coil for surface mounting - has former that responds to heating to adjust shape and vary inductance
JP3027242B2 (en) * 1990-10-04 2000-03-27 ヴェルナー トゥルク ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Inductive proximity switch
ATE158894T1 (en) * 1994-06-01 1997-10-15 Siemens Ag MONITORING DEVICE FOR CONDITION DETECTION OF ELECTROMECHANICAL CIRCUIT SWITCHES
DE19511795A1 (en) * 1994-08-26 1996-10-02 Siemens Ag Electromechanical switching device
DE4430382A1 (en) * 1994-08-26 1996-02-29 Siemens Ag Electromechanical switching unit with non contact status sensing
US5617023A (en) * 1995-02-02 1997-04-01 Otis Elevator Company Industrial contactless position sensor
DE19529385C2 (en) * 1995-08-10 1999-12-30 Abb Patent Gmbh Electrical switch
DE19707729C2 (en) * 1996-02-26 2000-05-11 Siemens Ag Electromechanical switching device
US5754387A (en) * 1996-06-13 1998-05-19 Eaton Corporation Method of monitoring contactor operation
DE19741367C1 (en) * 1997-09-19 1999-02-25 Siemens Ag Electric switch with movable switch lever e.g. automobile light- and windscreen wiper switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010043744A1 (en) * 2010-11-11 2012-05-16 Continental Automotive Gmbh Circuit arrangement for monitoring switching of energy source for power supply of electric drive in hybrid or electric cars, has monitoring unit including measuring unit, and control device monitoring control of protecting unit

Also Published As

Publication number Publication date
DE59805512D1 (en) 2002-10-17
JP4358308B2 (en) 2009-11-04
US6104592A (en) 2000-08-15
JP2001513251A (en) 2001-08-28
EP0963596A1 (en) 1999-12-15
WO1998038666A1 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
EP0963596B1 (en) Electro-mechanical switching device
EP0777907B1 (en) Electromechanical switching device and arrangement with several such devices
DE10242385B4 (en) Inductive sensor unit
DE19736454A1 (en) Contactless proximity switch
DE102006053023A1 (en) Inductive proximity switch has transmission coil arrangement for producing alternating magnetic field, main transmission coil and coaxially surrounding compensating coil
EP1424250A2 (en) Device for checking the locking state of a seat belt buckle for vehicles
DE19824510B4 (en) Mangetic proximity sensor for an iron object
DE4430382A1 (en) Electromechanical switching unit with non contact status sensing
EP2100102B1 (en) Measuring arrangement
DE10003913A1 (en) Interrupt recognition device has metallic object that form open magnetic circuit with coil pairs, and which conducts to dampen induced voltage to secondary windings of second coil pair
AT404653B (en) PROXIMITY SWITCH
EP1355131B1 (en) Inductive proximity sensor
DE19506168A1 (en) Appts. for detection of switching state of protective relays
EP1554590B1 (en) Device for a coil assembly as magnetic field sensor for position determination
EP0806674A2 (en) Current compensated current sensor
CH696859A5 (en) Current sensor having a plurality of magnetic field sensors.
DE4429857C2 (en) Magnetic position detector
DE19707729C2 (en) Electromechanical switching device
EP0627133B1 (en) Fault-current protective switch
DE19812307C2 (en) Diagnostic device for a giant magnetoresistive sensor
EP0464186A1 (en) Process and device for analysing the data on a code carrier
DE19908361A1 (en) Magnetoresistive sensor device for detecting rotation rate and rotation direction of rotating object uses magnetic field source attached to object and 2 cooperating sensors providing phase-shifted magnetic field components
DE60034471T2 (en) ELECTRONIC STEERING MODULE
EP0248320A1 (en) Fault current detector
EP1693678B1 (en) Method for measuring a residual current and corresponding current sensitive residual current measuring device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020228

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 59805512

Country of ref document: DE

Date of ref document: 20021017

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110224

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110418

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59805512

Country of ref document: DE

Effective date: 20120901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120901