EP0950513A1 - A heat mode sensitive imaging element for making positive working printing plates - Google Patents
A heat mode sensitive imaging element for making positive working printing plates Download PDFInfo
- Publication number
- EP0950513A1 EP0950513A1 EP98201216A EP98201216A EP0950513A1 EP 0950513 A1 EP0950513 A1 EP 0950513A1 EP 98201216 A EP98201216 A EP 98201216A EP 98201216 A EP98201216 A EP 98201216A EP 0950513 A1 EP0950513 A1 EP 0950513A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- imaging element
- layer
- aqueous alkaline
- printing plate
- heat mode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C1/00—Forme preparation
- B41C1/10—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
- B41C1/1008—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
- B41C1/1016—Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials characterised by structural details, e.g. protective layers, backcoat layers or several imaging layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/02—Positive working, i.e. the exposed (imaged) areas are removed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/06—Developable by an alkaline solution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/14—Multiple imaging layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/22—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by organic non-macromolecular additives, e.g. dyes, UV-absorbers, plasticisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/24—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41C—PROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
- B41C2210/00—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
- B41C2210/26—Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions not involving carbon-to-carbon unsaturated bonds
- B41C2210/262—Phenolic condensation polymers, e.g. novolacs, resols
Definitions
- the present invention relates to a heat mode imaging element for preparing a lithographic printing plate. More specifically the invention is related to a heat mode imaging element for preparing a lithographic printing plate whereof the difference in the top layer of being penetrated and/or solubilised in the exposed areas and in the non-exposed areas by an aqueous developer is increased.
- Lithography is the process of printing from specially prepared surfaces, some areas of which are capable of accepting lithographic ink, whereas other areas, when moistened with water, will not accept the ink.
- the areas which accept ink form the printing image areas and the ink-rejecting areas form the background areas.
- a photographic material is made imagewise receptive to oily or greasy inks in the photo-exposed (negative-working) or in the non-exposed areas (positive-working) on a hydrophilic background.
- lithographic printing plates also called surface litho plates or planographic printing plates
- a support that has affinity to water or obtains such affinity by chemical treatment is coated with a thin layer of a photosensitive composition.
- Coatings for that purpose include light-sensitive polymer layers containing diazo compounds, dichromate-sensitized hydrophilic colloids and a large variety of synthetic photopolymers. Particularly diazo-sensitized systems are widely used.
- the exposed image areas become insoluble and the unexposed areas remain soluble.
- the plate is then developed with a suitable liquid to remove the diazonium salt or diazo resin in the unexposed areas.
- printing plates are known that include a photosensitive coating that upon image-wise exposure is rendered soluble at the exposed areas. Subsequent development then removes the exposed areas.
- a typical example of such photosensitive coating is a quinone-diazide based coating.
- the above described photographic materials from which the printing plates are made are camera-exposed through a photographic film that contains the image that is to be reproduced in a lithographic printing process.
- Such method of working is cumbersome and labor intensive.
- the printing plates thus obtained are of superior lithographic quality.
- GB-1 492 070 discloses a method wherein a metal layer or a layer containing carbon black is provided on a photosensitive coating. This metal layer is then ablated by means of a laser so that an image mask on the photosensitive layer is obtained. The photosensitive layer is then overall exposed by UV-light through the image mask. After removal of the image mask, the photosensitive layer is developed to obtain a printing plate.
- This method however still has the disadvantage that the image mask has to be removed prior to development of the photosensitive layer by a cumbersome processing.
- thermoplastic polymer particles By image-wise exposure to an infrared laser, the thermoplastic polymer particles are image-wise coagulated thereby rendering the surface of the imaging element at these areas ink-acceptant without any further development.
- a disadvantage of this method is that the printing plate obtained is easily damaged since the non-printing areas may become ink accepting when some pressure is applied thereto. Moreover, under critical conditions, the lithographic performance of such a printing plate may be poor and accordingly such printing plate has little lithographic printing latitude.
- US-P- 4 708 925 discloses imaging elements including a photosensitive composition comprising an alkali-soluble novolac resin and an onium-salt. This composition may optionally contain an IR-sensitizer. After image-wise exposing said imaging element to UV - visible - or IR-radiation followed by a development step with an aqueous alkali liquid there is obtained a positive or negative working printing plate. The printing results of a lithographic plate obtained by irradiating and developing said imaging element are poor.
- EP-A- 625 728 discloses an imaging element comprising a layer which is sensitive to UV- and IR-irradiation and which may be positive or negative working. This layer comprises a resole resin, a novolac resin, a latent Bronsted acid and an IR-absorbing substance. The printing results of a lithographic plate obtained by irradiating and developing said imaging element are poor.
- US-P- 5 340 699 is almost identical with EP-A- 625 728 but discloses the method for obtaining a negative working IR-laser recording imaging element.
- the IR-sensitive layer comprises a resole resin, a novolac resin, a latent Bronsted acid and an IR-absorbing substance.
- the printing results of a lithographic plate obtained by irradiating and developing said imaging element are poor.
- EP-A- 678 380 discloses a method wherein a protective layer is provided on a grained metal support underlying a laser-ablatable surface layer. Upon image-wise exposure the surface layer is fully ablated as well as some parts of the protective layer. The printing plate is then treated with a cleaning solution to remove the residu of the protective layer and thereby exposing the hydrophilic surface layer.
- EP-A- 97 200 588.8 discloses a heat mode imaging element for making lithographic printing plates comprising on a lithographic base having a hydrophilic surface an intermediate layer comprising a polymer, soluble in an aqueous alkaline solution and a top layer that is sensitive to IR-radiation wherein said top layer upon exposure to IR-radiation has a decreased or increased capacity for being penetrated and/or solubilised by an aqueous alkaline solution.
- EP-A- 97 203 129.8 and EP-A- 97 203 132.2 disclose a heat mode imaging element consisting of a lithographic base with a hydrophilic surface and a top layer which top layer is sensitive to IR-radiation, comprises a polymer, soluble in an aqueous alkaline solution and is unpenetrable for an alkaline developer containing SiO 2 as silicates
- Said last three heat-mode imaging element have the disadvantage that the difference between the solubility in the exposed areas and in the non-exposed aqreas is not very great so that also non-exposed areas are dissolved during the processing of said element so that said plates could not be used as lithographic plates.
- a heat mode imaging element for making a lithographic printing plate having on a lithographic base with a hydrophilic surface a first layer including a polymer soluble in an aqueous alkaline solution, and a top layer on the same side of the lithographic base as the first layer that is IR-sensitive and unpenetrable for an aqueous alkaline developer wherein said first layer and said top layer may be one and the same layer; characterized in that the surface of said element upon exposure and treatment with an aqueous alkaline developer is such that
- the top layer is also called the second layer.
- the contact angle is measured with a contact angle goniometer.
- the contact angle between the unexposed areas of the imaging element and the agueous alkaline solution at the onset of the measurement is preferably at least 100°.
- the change in contact angle between the exposed areas of the imaging element and the aqueous alkaline developer after the first minute of contact is preferably higher than 20°, more preferably higher than 25°.
- the first layer and the top layer are different.
- a heat mode imaging element for making lithographic printing plates having on a lithographic base with a hydrophilic surface a first layer including a polymer, soluble in an agueous alkaline solution and a top layer on the same side of the lithographic base as the first layer which top layer is sensitive to IR-radiation and which is unpenetrable for an alkaline developer.
- the top layer in accordance with the present invention comprises an IR-dye or pigment and a binder resin.
- a mixture of IR-dyes or pigments may be used, but it is preferred to use only one IR-dye or pigment.
- Preferably said IR-dyes are IR-cyanines dyes.
- Particularly useful IR-cyanine dyes are cyanines dyes with two indolenine groups. Most preferably is compound I with the structure as indicated
- Particularly useful IR-absorbing pigments are carbon black, metal carbides, borides, nitrides, carbonitrides, bronze-structured oxides and oxides structurally related to the bronze family but lacking the A component e.g. WO2.9.
- conductive polymer dispersion such as polypyrrole or polyaniline-based conductive polymer dispersions.
- the lithographic performance and in particular the print endurance obtained depends on the heat-sensitivity of the imaging element. In this respect it has been found that carbon black yields very good and favorable results.
- the IR-absorbing dyes or pigments are present preferably in an amount between 1 and 99 parts, more preferably between 50 and 95 parts by weight of the total amount of said IR-sensitive top layer.
- the top layer may preferably comprise as binder a water insoluble polymer such as a cellulose ester, a copolymer of vinylidene chloride and acrylonitrile, poly(meth)acrylates, polyvinyl chloride, silicone resins, etc.
- binder is nitrocellulose resin.
- the total amount of the top layer preferably ranges from 0.05 to 10 g/m 2 , more preferably from 0.1 to 2 g/m 2 .
- top layer a difference in the capacity of being penetrated and/or solubilised by the aqueous alkaline solution is generated upon image-wise exposure for an alkaline developer according to the invention.
- the said capacity is increased upon image-wise IR exposure to such degree that the imaged parts will be cleaned out during development without solubilising and/or damaging the non-imaged parts.
- the development with the aqueous alkaline solution is preferably done within an interval of 5 to 120 seconds.
- the present invention comprises a first layer soluble in an aqueous alkaline developing solution with preferentially a pH between 7.5 and 14.
- Said layer is preferably contiguous to the top layer but other layers may be present between the top layer and the first layer.
- the alkali soluble binders used in this layer are preferably hydrophobic binders as used in conventional positive or negative working PS-plates e.g. novolac polymers, polymers containing hydroxystyrene units, carboxy substituted polymers etc. Typical examples of these polymers are descibed in DE-A- 4 007 428 , DE-A- 4 027 301 and DE-A- 4 445 820 .
- the hydrophobic binder used in connection with the present invention is further characterised by insolubility in water and partial solubility/swellability in an alkaline solution and/or partial solubility in water when combined with a cosolvent.
- this aqueous alkali soluble layer is preferably a visible light- and UV-light desensitised layer. Said layer is preferably thermally hardenable.
- This preferably visible light- and UV-desensitised layer does not comprise photosensitive ingredients such as diazo compounds, photoacids, photoinitiators, quinone diazides, sensitisers etc. which absorb in the wavelength range of 250nm to 650nm. In this way a daylight stable printing plate may be obtained.
- Said first layer preferably also includes a low molecular acid, preferably a carboxylic acid, still more preferably a benzoic acid, most preferably 3,4,5-trimethoxybenzoic acid or a benzophenone.
- a low molecular acid preferably a carboxylic acid, still more preferably a benzoic acid, most preferably 3,4,5-trimethoxybenzoic acid or a benzophenone.
- the ratio between the total amount of low molecular acid or benzophenone and polymer in the first layer preferably ranges from 2:98 to 40:60, more preferably from 5:95 to 20:80.
- the total amount of said first layer preferably ranges from 0.1 to 10 g/m 2 , more preferably from 0.3 to 2 g/m 2 .
- the lithographic base may be an anodised aluminum for all embodiments.
- a particularly preferred lithographic base is an electrochemically grained and anodised aluminum support.
- the anodised aluminum support may be treated to improve the hydrophilic properties of its surface.
- the aluminum support may be silicated by treating its surface with sodium silicate solution at elevated temperature, e.g. 95°C.
- a phosphate treatment may be applied which involves treating the aluminum oxide surface with a phosphate solution that may further contain an inorganic fluoride.
- the aluminum oxide surface may be rinsed with a citric acid or citrate solution. This treatment may be carried out at room temperature or may be carried out at a slightly elevated temperature of about 30 to 50°C.
- a further interesting treatment involves rinsing the aluminum oxide surface with a bicarbonate solution.
- the aluminum oxide surface may be treated with polyvinylphosphonic acid, polyvinylmethylphosphonic acid, phosphoric acid esters of polyvinyl alcohol, polyvinylsulphonic acid, polyvinylbenzenesulphonic acid, sulphuric acid esters of polyvinyl alcohol, and acetals of polyvinyl alcohols formed by reaction with a sulphonated aliphatic aldehyde It is further evident that one or more of these post treatments may be carried out alone or in combination.
- the lithographic base having a hydrophilic surface comprises a flexible support, such as e.g. paper or plastic film, provided with a cross-linked hydrophilic layer for all embodiments.
- a particularly suitable cross-linked hydrophilic layer may be obtained from a hydrophilic binder cross-linked with a cross-linking agent such as formaldehyde, glyoxal, polyisocyanate or a hydrolysed tetra-alkylorthosilicate. The latter is particularly preferred.
- hydrophilic binder there may be used hydrophilic (co)polymers such as for example, homopolymers and copolymers of vinyl alcohol, acrylamide, methylol acrylamide, methylol methacrylamide, acrylate acid, methacrylate acid, hydroxyethyl acrylate, hydroxyethyl methacrylate or maleic anhydride/vinylmethylether copolymers.
- the hydrophilicity of the (co)polymer or (co)polymer mixture used is preferably the same as or higher than the hydrophilicity of polyvinyl acetate hydrolyzed to at least an extent of 60 percent by weight, preferably 80 percent by weight.
- the amount of crosslinking agent, in particular of tetraalkyl orthosilicate, is preferably at least 0.2 parts by weight per part by weight of hydrophilic binder, more preferably between 0.5 and 5 parts by weight, most preferably between 1.0 parts by weight and 3 parts by weight.
- a cross-linked hydrophilic layer in a lithographic base used in accordance with the present embodiment preferably also contains substances that increase the mechanical strength and the porosity of the layer.
- colloidal silica may be used.
- the colloidal silica employed may be in the form of any commercially available water-dispersion of colloidal silica for example having an average particle size up to 40 nm, e.g. 20 nm.
- inert particles of larger size than the colloidal silica may be added e.g. silica prepared according to Stöber as described in J. Colloid and Interface Sci., Vol.
- alumina particles or particles having an average diameter of at least 100 nm which are particles of titanium dioxide or other heavy metal oxides.
- the thickness of a cross-linked hydrophilic layer in a lithographic base in accordance with this embodiment may vary in the range of 0.2 to 25 ⁇ m and is preferably 1 to 10 ⁇ m.
- EP-A- 601 240 GB-P- 1 419 512 , FR-P- 2 300 354 , US-P- 3 971 660 , US-P- 4 284 705 and EP-A- 514 490 .
- plastic film e.g. substrated polyethylene terephthalate film, substrated polyethylene naphthalate film, cellulose acetate film, polystyrene film, polycarbonate film etc.
- the plastic film support may be opaque or transparent.
- the amount of silica in the adhesion improving layer is between 200 mg per m 2 and 750 mg per m 2 .
- the ratio of silica to hydrophilic binder is preferably more than 1 and the surface area of the colloidal silica is preferably at least 300 m 2 per gram, more preferably at least 500 m 2 per gram.
- a heat mode imaging element for making lithographic printing plates having on a lithographic base with a hydrophilic surface a top layer which top layer is sensitive to IR-radiation comprises a polymer, soluble in an aqueous alkaline solution and is unpenetrable for an alkaline developer.
- the IR-sensitive layer in accordance with the present invention comprises an IR-dye or pigment and a polymer, soluble in an aqueous alkaline solution.
- a mixture of IR-dyes or pigments may be used, but it is preferred to use only one IR-dye or pigment. Suitable IR-dyes and pigments are those mentioned above in the first embodiment of the present invention.
- the IR-dyes are present preferably in an amount between 1 and 60 parts, more preferably between 3 and 50 parts by weight of the total amount of said IR-sensitive top layer.
- the alkali soluble polymers used in this layer are preferably hydrophobic and ink accepting polymers as used in conventional positive or negative working PS-plates e.g. carboxy substituted polymers etc. More preferably is a phenolic resin such as a hydroxystyrene units containing polymer or a novolac polymer. Most preferred is a novolac polymer. Typical examples of these polymers are descibed in DE-A- 4 007 428 , DE-A- 4 027 301 and DE-A-4 445 820 .
- the hydrophobic polymer used in connection with the present invention is further characterised by insolubility in water and at least partial solubility/swellability in an alkaline solution and/or at least partial solubility in water when combined with a cosolvent.
- this IR-sensitive layer is preferably a visible light- and UV-light desensitised layer. Still further said layer is preferably thermally hardenable.
- This preferably visible light- and UV-light desensitised layer does not comprise photosensitive ingredients such as diazo compounds, photoacids, photoinitiators, quinone diazides, sensitisers etc. which absorb in the wavelength range of 250nm to 650nm. In this way a daylight stable printing plate may be obtained.
- Said IR-sensitive layer preferably also includes a low molecular acid, more preferably a carboxylic acid, still more preferably a benzoic acid, most preferably 3,4,5-trimethoxybenzoic acid or a benzofenone, more preferably trihydroxybenzofenone.
- a low molecular acid more preferably a carboxylic acid, still more preferably a benzoic acid, most preferably 3,4,5-trimethoxybenzoic acid or a benzofenone, more preferably trihydroxybenzofenone.
- the ratio between the total amount of low molecular acid or benzofenone and polymer in the IR-sensitive layer preferably ranges from 2:98 to 40:60, more preferably from 5:95 to 30:70.
- the total amount of said IR-sensitive layer preferably ranges from 0.1 to 10 g/m 2 , more preferably from 0.3 to 2 g/m 2 .
- a difference in the capacity of being penetrated and/or solubilised by the alkaline developer is generated upon image-wise exposure for an alkaline developer according to the invention.
- the heat-mode imaging element is image-wise exposed and developed.
- Image-wise exposure in connection with the present invention is an image-wise scanning exposure involving the use of a laser that operates in the infrared or near-infrared, i.e. wavelength range of 700-1500 nm. Most preferred are laser diodes emitting in the near-infrared. Exposure of the imaging element may be performed with lasers with a short as well as with lasers with a long pixel dwell time. Preferred are lasers with a pixel dwell time between 0.005 ⁇ s and 20 ⁇ s.
- the heat mode imaging element is developed by rinsing it with an aqueous alkaline solution.
- aqueous alkaline solutions used in the present invention are those that are used for developing conventional positive working presensitised printing plates, preferably containing SiO 2 in the form of silicates and having preferably a pH between 11.5 and 14.
- the imaged parts of the top layer that were rendered more penetrable for the aqueous alkaline solution upon exposure are cleaned-out whereby a positive working printing plate is obtained.
- the composition of the developer used is also very important.
- the developers and replenishers for developer used in the invention are preferably aqueous solutions mainly composed of alkali metal silicates and alkali metal hydroxides represented by MOH or their oxyde, represented by M 2 O, wherein said developer comprises Si0 2 and M 2 O in a molar ratio of 0.5 to 1.5 and a concentration of SiO 2 of 0.5 to 5% by weight.
- alkali metal silicates preferably used are, for instance, sodium silicate, potassium silicate, lithium silicate and sodium metasilicate.
- alkali metal hydroxides preferred are sodium hydroxide, potassium hydroxide and lithium hydroxide.
- the developers used in the invention may simultaneously contain other alkaline agents.
- other alkaline agents include such inorganic alkaline agents as ammonium hydroxide, sodium tertiary phosphate, sodium secondary phosphate, potassium tertiary phosphate, potassium secondary phosphate, ammonium tertiary phosphate, ammonium secondary phosphate, sodium bicarbonate, sodium carbonate, potassium carbonate and ammonium carbonate; and such organic alkaline agents as mono-, di- or triethanolamine, mono-, di- or trimethylamine, mono-, di- or triethylamine, mono- or diisopropylamine, n-butylamine, mono-, di- or triisopropanolamine, ethyleneimine, ethylenediimine and tetramethylammonium hydroxide.
- the concentration of SiO 2 in the developer and replenisher preferably ranges from 1 to 4 % by weight. Such limitation of the concentration of SiO 2 makes it possible to stably provide lithographic printing plates having good finishing qualities even when a large amount of plates according to the invention are processed for a long time period.
- an aqueous solution of an alkali metal silicate having a molar ratio [SiO 2 ] / [M 2 O], which ranges from 1.0 to 1.5 and a concentration of SiO 2 of 1 to 4 % by weight is used as a developer.
- a replenisher having alkali strength equal to or more than that of the developer is employed.
- a molar ratio, [SiO 2 ] / [M 2 O] of the replenisher is equal to or smaller than that of the developer, or that a concentration of SiO 2 is high if the molar ratio of the developer is equal to that of the replenisher.
- organic solvents having solubility in water at 20 °C of not more than 10 % by weight according to need.
- organic solvents are such carboxilic acid esters as ethyl acetate, propyl acetate, butyl acetate, amyl acetate, benzyl acetate, ethylene glycol monobutyl acetate, butyl lactate and butyl levulinate; such ketones as ethyl butyl ketone, methyl isobutyl ketone and cyclohexanone; such alcohols as ethylene glycol monobutyl ether, ethylene glycol benzyl ether, ethylene glycol monophenyl ether, benzyl alcohol, methylphenylcarbinol, n-amyl alcohol and methylamyl alcohol; such alkyl-substituted aromatic hydrocarbons as xylene; and such halogenated hydrocarbons
- organic solvents may be used alone or in combination. Particularly preferred is benzyl alcohol in the invention. These organic solvents are added to the developer or replenisher therefor generally in an amount of not more than 5 % by weight and preferably not more than 4 % by weight.
- the developers and replenishers used in the present invention may simultaneously contain a surfactant for the purpose of improving developing properties thereof.
- surfactants include salts of higher alcohol (C 8 ⁇ C 22 ) sulfuric acid esters such as sodium salt of lauryl alcohol sulfate, sodium salt of octyl alcohol sulfate, ammonium salt of lauryl alcohol sulfate, Teepol B-81 (trade mark, available from Shell Chemicals Co., Ltd.) and disodium alkyl sulfates; salts of aliphatic alcohol phosphoric acid esters such as sodium salt of cetyl alcohol phosphate; alkyl aryl sulfonic acid salts such as sodium salt of dodecylbenzene sulfonate, sodium salt of isopropylnaphthalene sulfonate,sodium salt of dinaphthalene disulfonate and sodium salt of metanitrobenzene sulfonate; sulfonic acid salts of alky
- Examples of such compounds are neutral salts such as NaCl, KCl and KBr as disclosed in JN-A- 58- 75 152 ; chelating agents such as EDTA and NTA as disclosed in JN-A- 58- 190 952 (U.S-A- 4 469 776 ), complexes such as [Co(NH 3 ) 6 ]Cl 3 as disclosed in JN-A- 59- 121 336 (US-A- 4 606 995); ionizable compounds of elements of the group IIa, IIIa or IIIb of the Periodic Table such as those disclosed in JN-A- 55- 25 100 ; anionic or amphoteric surfactants such as sodium alkyl naphthalene sulfonate and N-tetradecyl-N,N-dihydroxythyl betaine as disclosed in JN-A- 50- 51 324 ; tetramethyldecyne diol as disclosed in US-A- 4 374 920 ;
- any known means of supplementing a replenisher for developer may be employed.
- Examples of such methods preferably used are a method for intermittently or continuously supplementing a replenisher as a function of the amount of PS plates processed and time as disclosed in JN-A- 55- 115 039 ( GB-A- 2 046 931 ), a method comprising disposing a sensor for detecting the degree of light-sensitive layer dissolved out in the middle portion of a developing zone and supplementing the replenisher in proportion to the detected degree of the light-sensitive layer dissolved out as disclosed in JN-A- 58- 95 349 ( US-A- 4 537 496 ); a method comprising determining the impedance value of a developer and processing the detected impedance value by a computer to perform supplementation of a replenisher as disclosed in GB-A- 2 208 249 .
- the printing plate of the present invention can also be used in the printing process as a seamless sleeve printing plate.
- the printing plate is soldered in a cylindrical form by means of a laser.
- This cylindrical printing plate which has as diameter the diameter of the print cylinder is slided on the print cylinder instead of applying in a classical way a classically formed printing plate. More details on sleeves are given in "Grafisch Nieuws" ed. Keesing, 15, 1995, page 4 to 6.
- the obtained plate After the development of an image-wise exposed imaging element with an aqueous alkaline solution and drying, the obtained plate can be used as a printing plate as such. However, to improve durability it is still possible to bake said plate at a temperature between 200°C and 300°C for a period of 30 seconds to 5 minutes. Also the imaging element can be subjected to an overall post-exposure to UV-radiation to harden the image in order to increase the run lenght of the printing plate.
- a 0.30 mm thick aluminum foil was degreased by immersing the foil in an aqueous solution containing 5 g/l of sodium hydroxide at 50°C and rinsed with demineralized water.
- the foil was then electrochemically grained using an alternating current in an aqueous solution containing 4 g/l of hydrochloric acid, 4 g/l of hydroboric acid and 5 g/l of aluminum ions at a temperature of 35°C and a current density of 1200 A/m2 to form a surface topography with an average center-line roughness Ra of 0.5 ⁇ m.
- the aluminum foil was then etched with an aqueous solution containing 300 g/l of sulfuric acid at 60°C for 180 seconds and rinsed with demineralized water at 25°C for 30 seconds.
- the foil was subsequently subjected to anodic oxidation in an aqueous solution containing 200 g/l of sulfuric acid at a temperature of 45°C, a voltage of about 10 V and a current density of 150 A/m 2 for about 300 seconds to form an anodic oxidation film of 3.00 g/m 2 of Al 2 O 3 then washed with demineralized water, posttreated with a solution containing polyvinylphosphonic acid and subsequently with a solution containing aluminum trichloride, rinsed with demineralized water at 20°C during 120 seconds and dried.
- lithographic base On the above described lithographic base was first coated a layer from a 8.6 % wt solution in tetrahydrofuran/methoxypropanol 55/45 ratio, with a wet coating thickness of 14 ⁇ m.
- the resulting layer contained 88% of ALNOVOL SPN452TM (novolac available from Clariant, Germany) and 12% of 3,4,5-trimethoxybenzoic acid.
- the IR-sensitive layer Upon this layer was then coated with a wet coating thickness of 20 ⁇ m, the IR-sensitive layer from a 0.81 % wt solution in methylethylketone/methoxypropanol 50/50 ratio.
- the resulting IR-sensitive layer contained 81.5 % of carbon black, 8.2 % of nitrocellulose and 10.3 % of FLUORAD FC431TM (a perfluoroalkyl surfactant of 3M, USA).
- This material was imaged with a CREO 3244 TRENDSETTERTM (available from Creo) external drum platesetter at 240 mJ/cm 2 and 2400 dpi, under non-ablative conditions.
- the exposed material was developed in an aqueous alkaline developing solution. These developing was carried out in a TECHNIGRAPH NPX-32TM (available from Technigraph)processor filled with OZASOL EP26TM developer/water 4/1 ratio (OZASOL EP26 is commercially available from Agfa) in the developer section, and with water in the rinsing section and OZASOL RC795TM gum in the gumming section.
- the diptime in the developing solution was 22 seconds. Printing this material results in a good ink-uptake, runlength, dotrendering and processing latitude. ⁇ contact angle with 80%EP26 during 1' Unexposed 3° (105° -> 102°) Exposed (240 mJ/cm2) 35° ( 95° -> 60°) Exposing the material decreases the contact angle with 10°.
- a 0.30 mm thick aluminum foil was degreased by immersing the foil in an aqueous solution containing 5 g/l of sodium hydroxide at 50°C and rinsed with demineralized water.
- the foil was then electrochemically grained using an alternating current in an aqueous solution containing 4 g/l of hydrochloric acid, 4 g/l of hydroboric acid and 5 g/l of aluminum ions at a temperature of 35°C and a current density of 1200 A/m2 to form a surface topography with an average center-line roughness Ra of 0.5 ⁇ m.
- the aluminium foil was then etched with an aqueous solution containing 300 g/l of sulfuric acid at 60°C for 180 seconds and rinsed with demineralized water at 25°C for 30 seconds.
- the foil was subsequently subjected to anodic oxidation in an aqueous solution containing 200 g/l of sulfuric acid at a temperature of 45°C, a voltage of about 10 V and a current density of 150 A/m 2 for about 300 seconds to form an anodic oxidation film of 3.00 g/m 2 of Al 2 O 3 then washed with demineralized water, posttreated with a solution containing polyvinylphosphonic acid and subsequently with a solution containing aluminum trichloride, rinsed with demineralized water at 20°C during 120 seconds and dried.
- the IR-sensitive layer was coated from a 6.65 % wt. solution in tetrahydrofuran/2-methoxypropanol 60/40 at 21 ⁇ m wet coating thickness resulting in a dry coating thickness of 1.24 g/m 2 .
- the resulting IR-sensitive layer contained: 9.1 % of carbon black, 10.3 % of 3,4,5-trimethoxybenzoic acid, 78.5 % of ALNOVOL PN430TM, 0.2 % SOLSPERSE 5000TM, 0.9 % SOLSPERSE 28000TM (both dispersing agents from Zeneca Specialities, GB), 1.0 % nitrocellulose E950.
- OZASOL EP26TM developer/water 4/1 ratio (OZASOL EP26TM is commercially available from Agfa) at the unexposed areas over a period of 1 minute is 8°.
- the thus obtained material is insufficiently resistant to the developer, which results in a worse dotrendering and inferior processing latitude as compared to example 1.
- a 0.30 mm thick aluminum foil was degreased by immersing the foil in an aqueous solution containing 5 g/l of sodium hydroxide at 50°C and rinsed with demineralized water.
- the foil was then electrochemically grained using an alternating current in an aqueous solution containing 4 g/l of hydrochloric acid, 4 g/l of hydroboric acid and 5 g/l of aluminum ions at a temperature of 35°C and a current density of 1200 A/m2 to form a surface topography with an average center-line roughness Ra of 0.5 ⁇ m.
- the aluminum foil was then etched with an aqueous solution containing 300 g/l of sulfuric acid at 60°C for 180 seconds and rinsed with demineralized water at 25°C for 30 seconds.
- the foil was subsequently subjected to anodic oxidation in an aqueous solution containing 200 g/l of sulfuric acid at a temperature of 45°C, a voltage of about 10 V and a current density of 150 A/m 2 for about 300 seconds to form an anodic oxidation film of 3.00 g/m 2 of Al 2 O 3 then washed with demineralized water, posttreated with a solution containing polyvinylphosphonic acid and subsequently with a solution containing aluminum trichloride, rinsed with demineralized water at 20°C during 120 seconds and dried.
- the IR-sensitive layer was coated from a 6.65 % wt. solution in tetrahydrofuran/2-methoxypropanol 60/40 at 21 ⁇ m wet coating thickness resulting in a dry coating thickness of 1.24 g/m 2 .
- the resulting IR-sensitive layer contained 8.9 % of carbon black, 10.1 % of 3,4,5-trimethoxybenzoic acid, 76.9 % of ALNOVOL PN430TM, 0.2 % SOLSPERSE 5000TM, 0.9 % SOLSPERSE 28000TM, 0.9 % nitrocellulose and 2.1 % FLUORAD FC431TM.
- This material was imaged with a CREO 3244 TRENDSETTERTM external drum platesetter at 190 mJ/cm2 and 2400 dpi.
- the thus obtained printing element shows an unacceptable clean-out resulting in toning on press and inferior processing latitude as compared to example 1.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Materials For Photolithography (AREA)
- Printing Plates And Materials Therefor (AREA)
Abstract
Description
The diptime in the developing solution was 22 seconds.
Printing this material results in a good ink-uptake, runlength, dotrendering and processing latitude.
Δ contact angle with 80%EP26 during 1' | |
Unexposed | 3° (105° -> 102°) |
Exposed (240 mJ/cm2) | 35° ( 95° -> 60°) |
Exposing the material decreases the contact angle with 10°. |
Δ contact angle with 80%EP26 during 1' | |
Unexposed | 1° (111° -> 110°) |
Exposed 190 mJ/cm2 | 12° (106° -> 94°) |
Exposing the material decreases the contact angle with 5°. |
Claims (10)
- A heat mode imaging element for making a lithographic printing plate having on a lithographic base with a hydrophilic surface a first layer including a polymer soluble in an aqueous alkaline solution, and a top layer on the same side of the lithographic base as the first layer that is IR-sensitive and unpenetrable for an aqueous alkaline developer wherein said first layer and said top layer may be one and the same layer; characterized in that the surface of said element upon exposure and treatment with an aqueous alkaline developer is such thata) the contact angle between the unexposed areas of the imaging element and the aqueous alkaline developer changes for at most 6°during the first minute of contact with said developer;b) the contact angle between the exposed areas of the imaging element and the aqueous alkaline developer changes more than 15° during the first minute of contact with said developer;c) the difference in contact angle between on the one side the unexposed areas and on the other side the exposed areas of the imaging element with the aqueous alkaline solution at the onset of the measurement is not higher than 10°.
- A heat mode imaging element for making a lithographic printing plate according to claim 1 wherein the contact angle between the unexposed areas of the imaging element and the aqueous alkaline solution at the onset of the measurement is at least 100°.
- A heat mode imaging element for making a lithographic printing plate according to claim 1 or 2 wherein the change in contact angle between the exposed areas of the imaging element and the aqueous alkaline developer during the first minute of contact is more than 20°.
- A heat mode imaging element for making a lithographic printing plate according to any of claims 1 to 3 wherein the polymer soluble in an aqueous alkaline solution is a novolac polymer or a polymer containing polyhydroxystyrene units.
- A heat mode imaging element for making a lithographic printing plate according to any of claims 1 to 4 wherein the top layer contains a compound selected from the group consisting of low molecular acids and benzophenones.
- A heat mode imaging element for making a lithographic printing plate according to any of claims 1 to 5 wherein the lithographic base is an electrochemically grained and anodized aluminum.
- A heat mode imaging element for making a lithographic printing plate according to any of claims 1 to 6 wherein said imaging element contains an IR absorbing compound.
- A method for making a lithographic printing plate comprising the steps ofa) exposing imagewise to IR-radiation a heat mode imaging element according to any of claims 1 to 7; andb) developing said imagewise exposed heat mode imaging element with an aqueous alkaline developer whereby the exposed areas of the first and the top layer, which may be the same, are dissolved and the unexposed areas of the first layer remain undissolved.
- A method for making a lithographic printing plate according to claim 8 wherein said aqueous alkaline developer contains alkalimetalsilicates and has a pH of at least 12.
- A method for making a lithographic printing plate according to claim 8 or 9 wherein the laser exposure has a pixel dwell time between 0.005 and 20 µs.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1998602374 DE69802374T2 (en) | 1998-04-15 | 1998-04-15 | Heat sensitive recording material for the production of positive working printing plates |
EP19980201216 EP0950513B1 (en) | 1998-04-15 | 1998-04-15 | A heat mode sensitive imaging element for making positive working printing plates |
US09/260,062 US6447977B2 (en) | 1998-04-15 | 1999-03-02 | Heat mode sensitive imaging element for making positive working printing plates |
JP10532899A JP2000056448A (en) | 1998-04-15 | 1999-04-13 | Heat home sensitive image forming element for production of positive printing plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19980201216 EP0950513B1 (en) | 1998-04-15 | 1998-04-15 | A heat mode sensitive imaging element for making positive working printing plates |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0950513A1 true EP0950513A1 (en) | 1999-10-20 |
EP0950513B1 EP0950513B1 (en) | 2001-11-07 |
Family
ID=8233605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19980201216 Expired - Lifetime EP0950513B1 (en) | 1998-04-15 | 1998-04-15 | A heat mode sensitive imaging element for making positive working printing plates |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0950513B1 (en) |
JP (1) | JP2000056448A (en) |
DE (1) | DE69802374T2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002014071A1 (en) * | 2000-08-14 | 2002-02-21 | Kodak Polychrome Graphics Company Ltd | Thermal digital lithographic printing plate |
WO2002033491A2 (en) * | 2000-10-17 | 2002-04-25 | Kodak Polychrome Graphics Company Ltd. | Aqueous developer for lithographic printing plates |
US6613494B2 (en) | 2001-03-13 | 2003-09-02 | Kodak Polychrome Graphics Llc | Imageable element having a protective overlayer |
EP1162063A3 (en) * | 2000-06-05 | 2003-11-05 | Fuji Photo Film Co., Ltd. | Planographic printing plate precursor |
US6699636B2 (en) | 2001-12-12 | 2004-03-02 | Kodak Polychrome Graphics Llc | Imaging element comprising a thermally activated crosslinking agent |
DE19910363B4 (en) * | 1998-03-10 | 2007-08-30 | Mitsubishi Paper Mills Ltd. | Positive photosensitive imageable element |
CN110719847A (en) * | 2017-05-31 | 2020-01-21 | 富士胶片株式会社 | Lithographic printing plate precursor and method for producing lithographic printing plate |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6447977B2 (en) * | 1998-04-15 | 2002-09-10 | Agfa-Gevaert | Heat mode sensitive imaging element for making positive working printing plates |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1208415A (en) * | 1966-10-24 | 1970-10-14 | Agfa Gevaert Nv | Improvements relating to thermo-copying |
GB1245924A (en) * | 1967-09-27 | 1971-09-15 | Agfa Gevaert | Improvements relating to thermo-recording |
JPH0240659A (en) * | 1988-08-01 | 1990-02-09 | Fuji Photo Film Co Ltd | Developer for photosensitive planographic printing plate and method for developing the printing plate |
JPH0414481A (en) * | 1990-05-07 | 1992-01-20 | Oji Paper Co Ltd | Heat-sensitive recording material |
EP0823327A2 (en) * | 1996-08-06 | 1998-02-11 | Mitsubishi Chemical Corporation | Positive photosensitive composition, positive photosensitive lithographic printing plate and method for making positive photosensitive lithographic printing plate |
EP0864420A1 (en) * | 1997-03-11 | 1998-09-16 | Agfa-Gevaert N.V. | Heat-sensitive imaging element for making positive working printing plates |
-
1998
- 1998-04-15 EP EP19980201216 patent/EP0950513B1/en not_active Expired - Lifetime
- 1998-04-15 DE DE1998602374 patent/DE69802374T2/en not_active Expired - Lifetime
-
1999
- 1999-04-13 JP JP10532899A patent/JP2000056448A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1208415A (en) * | 1966-10-24 | 1970-10-14 | Agfa Gevaert Nv | Improvements relating to thermo-copying |
GB1245924A (en) * | 1967-09-27 | 1971-09-15 | Agfa Gevaert | Improvements relating to thermo-recording |
JPH0240659A (en) * | 1988-08-01 | 1990-02-09 | Fuji Photo Film Co Ltd | Developer for photosensitive planographic printing plate and method for developing the printing plate |
JPH0414481A (en) * | 1990-05-07 | 1992-01-20 | Oji Paper Co Ltd | Heat-sensitive recording material |
EP0823327A2 (en) * | 1996-08-06 | 1998-02-11 | Mitsubishi Chemical Corporation | Positive photosensitive composition, positive photosensitive lithographic printing plate and method for making positive photosensitive lithographic printing plate |
EP0864420A1 (en) * | 1997-03-11 | 1998-09-16 | Agfa-Gevaert N.V. | Heat-sensitive imaging element for making positive working printing plates |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 014, no. 199 (P - 1040) 23 April 1990 (1990-04-23) * |
PATENT ABSTRACTS OF JAPAN vol. 016, no. 169 (M - 1239) 23 April 1992 (1992-04-23) * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19910363B4 (en) * | 1998-03-10 | 2007-08-30 | Mitsubishi Paper Mills Ltd. | Positive photosensitive imageable element |
EP1162063A3 (en) * | 2000-06-05 | 2003-11-05 | Fuji Photo Film Co., Ltd. | Planographic printing plate precursor |
WO2002014071A1 (en) * | 2000-08-14 | 2002-02-21 | Kodak Polychrome Graphics Company Ltd | Thermal digital lithographic printing plate |
US6555291B1 (en) | 2000-08-14 | 2003-04-29 | Kodak Polychrome Graphics, Llc | Thermal digital lithographic printing plate |
US6649324B1 (en) | 2000-08-14 | 2003-11-18 | Kodak Polychrome Graphics Llc | Aqueous developer for lithographic printing plates |
WO2002033491A2 (en) * | 2000-10-17 | 2002-04-25 | Kodak Polychrome Graphics Company Ltd. | Aqueous developer for lithographic printing plates |
WO2002033491A3 (en) * | 2000-10-17 | 2002-08-01 | Kodak Polychrome Graphics Co | Aqueous developer for lithographic printing plates |
US6613494B2 (en) | 2001-03-13 | 2003-09-02 | Kodak Polychrome Graphics Llc | Imageable element having a protective overlayer |
US6699636B2 (en) | 2001-12-12 | 2004-03-02 | Kodak Polychrome Graphics Llc | Imaging element comprising a thermally activated crosslinking agent |
CN110719847A (en) * | 2017-05-31 | 2020-01-21 | 富士胶片株式会社 | Lithographic printing plate precursor and method for producing lithographic printing plate |
CN110719847B (en) * | 2017-05-31 | 2021-08-31 | 富士胶片株式会社 | Lithographic printing plate precursor and method for producing lithographic printing plate |
US11331900B2 (en) | 2017-05-31 | 2022-05-17 | Fujifilm Corporation | Lithographic printing plate precursor and method for producing lithographic printing plate |
Also Published As
Publication number | Publication date |
---|---|
EP0950513B1 (en) | 2001-11-07 |
DE69802374D1 (en) | 2001-12-13 |
JP2000056448A (en) | 2000-02-25 |
DE69802374T2 (en) | 2002-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0950517B1 (en) | A heat mode sensitive imaging element for making positive working printing plates | |
EP0950518B1 (en) | A heat mode sensitive imaging element for making positive working printing plates | |
EP1025992B1 (en) | A method for making positive printing plates | |
US6083663A (en) | Method for making positive working printing plates from a heat mode sensitive image element | |
US6153353A (en) | Method for making positive working printing plates from a heat mode sensitive imaging element | |
US6004728A (en) | Method for making positive working printing plates from a heat mode sensitive image element | |
EP0908305B1 (en) | A method for making positive working printing plates from a heat mode sensitive imaging element | |
EP1023994B1 (en) | A heat mode sensitive imaging element for making positive working printing plates. | |
EP0908307B1 (en) | A method for making positive printing plates from a heat mode sensitive imaging element | |
EP0908779B1 (en) | A method for making positive working printing plates from a heat mode sensitive imaging element | |
US6248503B1 (en) | Method for making positive working printing plates from a heat mode sensitive imaging element | |
US6235451B1 (en) | Method for making positive working printing plates from a heat mode sensitive image element | |
EP0943451B1 (en) | A heat mode imaging element and a method for making positive working printing plates from said heat mode imaging element | |
US6340815B1 (en) | Heat mode sensitive imaging element for making positive working printing plates | |
EP0950514B1 (en) | A heat mode sensitive imaging element for making positive working printing plates | |
US6472119B1 (en) | Heat mode sensitive imaging element for making positive working printing plates | |
US6192799B1 (en) | Heat mode sensitive imaging element for making positive working printing plates | |
US6251563B1 (en) | Method for making positive working printing plates from a heat mode sensitive image element | |
EP0950513B1 (en) | A heat mode sensitive imaging element for making positive working printing plates | |
EP0997272B1 (en) | A heat mode sensitive imaging element for making positive working printing plates | |
US6569594B2 (en) | Heat mode sensitive imaging element for making positive working printing plates | |
US6458510B1 (en) | Method for making positive working printing plates | |
EP1025991B1 (en) | A method for making positive working printing plates | |
EP0950516B1 (en) | A heat mode sensitive imaging element for making positive working printing plates | |
EP0908306B1 (en) | A method for making positive working printing plates from a heat mode sensitive imaging element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20000420 |
|
AKX | Designation fees paid |
Free format text: BE DE FR GB |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20010205 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB |
|
REF | Corresponds to: |
Ref document number: 69802374 Country of ref document: DE Date of ref document: 20011213 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: AGFA-GEVAERT |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20050324 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060430 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
BERE | Be: lapsed |
Owner name: *AGFA-GEVAERT N.V. Effective date: 20060430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160222 Year of fee payment: 19 Ref country code: GB Payment date: 20160222 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160222 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69802374 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20171229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170502 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170415 |