EP0948583A1 - Method of gasifying solid fuels in a circulating fluidized bed - Google Patents

Method of gasifying solid fuels in a circulating fluidized bed

Info

Publication number
EP0948583A1
EP0948583A1 EP97952838A EP97952838A EP0948583A1 EP 0948583 A1 EP0948583 A1 EP 0948583A1 EP 97952838 A EP97952838 A EP 97952838A EP 97952838 A EP97952838 A EP 97952838A EP 0948583 A1 EP0948583 A1 EP 0948583A1
Authority
EP
European Patent Office
Prior art keywords
gas
hydrocarbons
dust
reactor
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97952838A
Other languages
German (de)
French (fr)
Other versions
EP0948583B1 (en
Inventor
Johannes Albrecht
Johannes Loeffler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MG Technologies AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0948583A1 publication Critical patent/EP0948583A1/en
Application granted granted Critical
Publication of EP0948583B1 publication Critical patent/EP0948583B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/62Processes with separate withdrawal of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/008Reducing the tar content by cracking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1861Heat exchange between at least two process streams
    • C10J2300/1884Heat exchange between at least two process streams with one stream being synthesis gas

Definitions

  • the invention relates to a process for gasifying solid fuels in the circulating fluidized bed, the fuels being gasified in a gasification reactor with the supply of oxygen-containing gas at temperatures in the range from 700 to 1000.degree. C., a gas-solid mixture from the upper area of the gasification reactor Separator feeds, from the separator dust and hydrocarbons including higher hydrocarbons with more than 6 carbon atoms in the molecule (C ⁇ hydrocarbons) containing gas with a calorific value of 2000 to 8000 kJ / m 3 and separately separated solids and the solids at least partially leads back into the lower region of the gasification reactor.
  • the invention has for its object to modify the known methods so that the dust is removed dry and wet washing with the formation of waste water in the gas cleaning is eliminated. According to the invention, this is achieved in the process mentioned at the outset by passing the dust-containing gas from the separator through a cracking chamber, with the gas contained in the cracking chamber with the addition of gaseous oxygen in the temperature range from 800 to 1200 ° C.
  • Hydrocarbons largely splits and thereby reduces the content of the higher hydrocarbons (C ⁇ + hydrocarbons) in the gas to at most 10 wt .-% of the content of these higher hydrocarbons in the gas coming from the separator, that the gas coming from the cracking chamber is cooled , the cooled gas is passed through a dedusting device and fly dust is separated, that the cooled and dedusted gas is passed through at least one bed or a reactor with granular solids which bind pollutants and that the gas is then ⁇ dedusted. Due to the conditions in the cracking chamber and the conditions in the gas cleaning, the condensation and sublimation of the higher hydrocarbons (C 6 ) does not take place in the downstream gas cleaning devices.
  • the solid fuels to be gasified can e.g. B. are municipal or industrial waste, biomass or coal of various types.
  • Municipal waste is gasified, it is usually first sorted before gasification, with metal and glass parts in particular being separated out. The remaining waste is then crushed, e.g. B. to piece sizes of at most 70 mm before it is gasified.
  • the solid fuels can be dried before gasification.
  • the ash drawn off from the lower region of the gasification reactor is usually so inert that it is e.g. B. is still usable for road construction, but at least the ash is easy to deposit.
  • the airborne dust accumulating in the dedusting device can contain heavy metals and is then disposed of in the usual way. Appropriately, one burns or gasses at least a part of the flying dust in a combustion chamber at temperatures in the range of 1000 to 1500 ° C. It is advisable to add the gaseous products formed in the combustion chamber to the gasification reactor.
  • FIG. 2 shows the flow diagram of a second method variant.
  • the solid fuels to be gasified are fed in line (1) to a gasification reactor (2), where they come into contact with hot gases and particles in the state of the circulating fluidized bed.
  • Oxygen-containing fluidizing gas is introduced in line (3) and passed through a distribution chamber (4) with a grate (5) into the fluidized bed of the reactor (2).
  • the oxygen-old gas of line (3) can be, for example, air or air enriched with 0 2 .
  • the gasification in the reactor (2) takes place at temperatures of 700 to 1000 ° C and mostly at temperatures of at least 800 ° C.
  • Ash is drawn off through line (6) and, if necessary, is deposited after removal of metal components or for further use, e.g. B. in road construction.
  • the dust-containing gas of line (10) contains condensable hydrocarbons and mostly carbon-containing fly dusts. It is important to at least largely eliminate the higher hydrocarbons (C 6+ ) and convert them into substances that do not condense at the given temperatures and partial pressures.
  • the gas is led through a Gap chamber (12), which one through line (13) 0 2 -containing gas, for. B. air, oxygen-enriched air or technically pure oxygen. Temperatures in the range from 800 to 1200 ° C and mostly 900 to 1100 ° C are ensured in the gap chamber (12). It is important here that the temperature and the residence time in the cracking chamber (12) are selected so that the formation of liquid slag is avoided and at the same time an adequate cracking of the C ⁇ + hydrocarbons is ensured.
  • the gas coming in the line (15) from the gap chamber (12) contains various types of solids and ash particles, which are referred to here as flying dust.
  • flying dust In a waste heat boiler (16), the gas is cooled to temperatures of about 150 to 300 ° C and then there is one through line (17)
  • Dedusting device (18) This can be, for. B. can be a fabric or electrostatic filter.
  • the resulting dust, which usually contains heavy metals, is drawn off in line (19), a part of which can be led to a combustion chamber (21) on the transport route (20).
  • the remaining airborne dust is removed from the process through line (22).
  • a gas is drawn off in the line (25) which still has a disruptive content of pollutants.
  • pollutants are e.g. B. mercury, chlorine and sulfur compounds.
  • the gas is first passed through an indirect cooler (26) and the temperature which is favorable for the subsequent treatment is, for. B. in the range of 100 to 150 ° C.
  • the cooled gas is passed through line (27) for cleaning, avoiding the formation of waste water.
  • the gas to be cleaned is brought into contact with granular adsorbents.
  • These adsorbents can e.g. B. in a fixed bed, moving bed or fluidized bed or you can use an entrained flow reactor.
  • the pollutant-containing gas is fed to line (27) to a spray absorber (40), to which lime milk and possibly other adsorbents are fed through line (41).
  • Gas and solids flow through line (42) to a filter (43), which is e.g. B. can be a fabric or electrostatic filter.
  • Purified gas passes in line (44) to an adsorber (46) for the separation of mercury, e.g. B. in a zeolite fixed bed, as described in EP patent 638 351.
  • Chloride-containing solids are drawn off in line (45).
  • liquid slag is drawn off through line (23) and the combustion gas is passed through line (32) into the reactor (2).
  • Residual municipal waste is fed to a process according to FIG. 2.
  • the following data are partially calculated.
  • the residual waste which is delivered in an amount of 7500 kg / h, contains 24.5% by weight moisture and 30% by weight ash.
  • This waste is first dried to 5% by weight res moisture and then gasified in the reactor (2) at 900 ° C. and with the supply of 6230 Nm 3 / h of air.
  • 13,000 Nm 3 of gas flow through the line (10) per hour, the gas contains 48 g / Nm 3 of dust and 1% by volume C 6 * hydrocarbons.
  • the residence time of the gas in the gap chamber (12) is 1.5 seconds, air is supplied through line (13) and an outlet temperature of 1000 ° C. is reached.
  • the content of C 6+ hydrocarbons in line (15) is only 0.1% by volume.
  • 400 kg / h of dust are fed through the line (20) into the combustion chamber (21), which is fed with 1860 Nm 3 / h of air and in which 1300 ° C. is reached.
  • Lime milk is added to the spray absorber (40) and the outlet temperature is kept at 160 ° C.
  • the adsorber (46) contains a fixed zeolite bed for mercury removal.

Abstract

Combustible fuels, for example waste substances, biomass or coal, are gasified in a circulating fluidized bed with the addition of oxygenous gas at temperatures ranging from 700 to 1000 °C. A fuel gas is obtained which contains dust and hydrocarbons, including higher hydrocarbons (C6+ hydrocarbons), and has a calorific value of between 2000 and 8000 kJ/m3. The dust-laden gas is passed through a separation chamber in which the higher hydrocarbons present in the gas are largely separated by the addition of gaseous oxygen at temperatures ranging from 800 to 1200 °C and below the temperature of the ash melting point. The content of C¿6+ ?hydrocarbons present in the gas emerging from the separation chamber is at most 10 wt % of the initial content. The gas from the separation chamber is cooled and dedusted and passed through at least one bed or at least one reactor with granular solids which bind with pollutants. The gas-purification process is carried out without forming waste water.

Description

Verfahren zum Vergasen fester Brennstoffe in der zirkulierenden Process for gasifying solid fuel in the circulating
Wirbelschichtfluidized bed
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zum Vergasen von Festbrennstoffen in der zirkulierenden Wirbelschicht, wobei man die Brennstoffe in einem Vergasungsreaktor unter Zufuhr von sauerstoffhaltigem Gas bei Temperaturen im Bereich von 700 bis 1000°C vergast, vom oberen Bereich des Vergasungsreaktors ein Gas-Feststoff-Gemisch einem Abscheider zuführt, aus dem Abscheider Staub und Kohlenwasserstoffe einschließlich höherer Kohlenwasserstoffe mit mehr als 6 C-Atomen im Molekül (C^-Kohlenwasserstoffe) enthaltendes Gas mit einem Heizwert von 2000 bis 8000 kJ/m3 und getrennt davon abgeschiedene Feststoffe ableitet und die Feststoffe mindestens teilweise in den unteren Bereich des Vergasungsreaktors zurückführt. Verfahren dieser A-rt sind aus DE-A-42 35 412 (hierzu korrespondiert US-A-5 425 317) und DE-A-44 12 004 bekannt. Bei den bekannten Verfahren wird das aus dem Abscheider kommende, brennbare Bestandteile enthaltende Gas unter Bildung flüssiger Schlacke vergast oder verbrannt, und die flüssige Schlacke wird aus dem Verfahren entfernt . Das bei der Verbrennung oder Vergasung entstehende Gas wird im Kontakt mit Waschflüssigkeit gereinigt. Dabei wird es notwendig, die gebrauchte Waschflüssigkeit aufzubereiten oder zu entsorgen.The invention relates to a process for gasifying solid fuels in the circulating fluidized bed, the fuels being gasified in a gasification reactor with the supply of oxygen-containing gas at temperatures in the range from 700 to 1000.degree. C., a gas-solid mixture from the upper area of the gasification reactor Separator feeds, from the separator dust and hydrocarbons including higher hydrocarbons with more than 6 carbon atoms in the molecule (C ^ hydrocarbons) containing gas with a calorific value of 2000 to 8000 kJ / m 3 and separately separated solids and the solids at least partially leads back into the lower region of the gasification reactor. Methods of this type are known from DE-A-42 35 412 (corresponding to US-A-5 425 317) and DE-A-44 12 004. In the known processes, the gas coming from the separator and containing combustible components is gasified or burned to form liquid slag, and the liquid slag is removed from the process. The gas generated during combustion or gasification is cleaned in contact with the washing liquid. It becomes necessary to prepare or dispose of the used washing liquid.
Der Erfindung liegt die Aufgabe zugrunde, die bekannten Verfahren so abzuwandeln, daß der Flugstaub trocken entfernt wird und die Naßwäsche mit Bildung von Abwasser in der Gasreinigung entfällt. Erfindungsgemäß gelingt dies beim eingangs genannten Verfahren dadurch, daß man das staubhaltige Gas aus dem Abscheider durch eine Spaltkammer leitet, wobei man in der Spaltkammer unter Zufuhr von gasförmigem Sauerstoff im Temperaturbereich von 800 bis 1200°C und unter der Temperatur des Ascheschmelzpunktes die im Gas enthaltenen Kohlenwasserstoffe weitgehend spaltet und dabei den Gehalt an den höheren Kohlenwasserstoffen (Cβ+-Kohlenwasserstoffen) im Gas auf höchstens 10 Gew.-% des Gehalts an diesen höheren Kohlenwasserstoffen im aus dem Abscheider kommenden Gas verringert, daß man das aus der Spaltkammer kommende Gas kühlt, das gekühlte Gas durch eine Entstaubungseinrichtung leitet und Flugstaub abtrennt, daß man das gekühlte und entstaubte Gas durch mindestens ein Bett oder einen Reaktor mit Schadstoffe bindenden körnigen Feststoffen leitet und daß man das Gas ■ anschließend entstaub . Durch die Bedingungen in der Spaltkammer und den Bedingungen in der Gasreinigung unterbleibt die Kondensation und Sublimation der höheren Kohlenwasserstoffe (C6 ) in den nachgeschalteten Gasreinigungseinrichtungen .The invention has for its object to modify the known methods so that the dust is removed dry and wet washing with the formation of waste water in the gas cleaning is eliminated. According to the invention, this is achieved in the process mentioned at the outset by passing the dust-containing gas from the separator through a cracking chamber, with the gas contained in the cracking chamber with the addition of gaseous oxygen in the temperature range from 800 to 1200 ° C. and below the temperature of the ash melting point Hydrocarbons largely splits and thereby reduces the content of the higher hydrocarbons (C β + hydrocarbons) in the gas to at most 10 wt .-% of the content of these higher hydrocarbons in the gas coming from the separator, that the gas coming from the cracking chamber is cooled , the cooled gas is passed through a dedusting device and fly dust is separated, that the cooled and dedusted gas is passed through at least one bed or a reactor with granular solids which bind pollutants and that the gas is then ■ dedusted. Due to the conditions in the cracking chamber and the conditions in the gas cleaning, the condensation and sublimation of the higher hydrocarbons (C 6 ) does not take place in the downstream gas cleaning devices.
Bei den zu vergasenden Festbrennstoffen kann es sich z. B. um kommunalen oder industriellen Müll, Biomassen oder Kohlen verschiedener Art handeln. Bei der Vergasung von kommunalem Müll wird dieser üblicherweise vor der Vergasung zunächst vorsortiert, wobei insbesondere Metall- und Glasteile ausgesondert werden. Der verbleibende Restmüll wird dann noch zerkleinert, z. B. auf Stückgrößen von höchstens 70 mm, bevor er vergast wird. Zur Erhöhung des Heizwertes des aus dem Vergasungsreaktor kommenden Gases kann man die Festbrennstoffe vor der Vergasung trocknen.In the solid fuels to be gasified, it can e.g. B. are municipal or industrial waste, biomass or coal of various types. When municipal waste is gasified, it is usually first sorted before gasification, with metal and glass parts in particular being separated out. The remaining waste is then crushed, e.g. B. to piece sizes of at most 70 mm before it is gasified. To increase the calorific value of the gas coming from the gasification reactor, the solid fuels can be dried before gasification.
Beim erfindungsgemäßen Verfahren fallen keine flüssigen Reststoffe an. Die vom unteren Bereich des Vergasungsreaktors abgezogene Asche ist üblicherweise so inert, daß sie z. B. noch für den Straßenbau verwertbar ist, zumindest aber ist die Asche leicht deponierbar. Der in der Entstaubungseinrichtung anfallende Flugstaub kann schwermetallhaltig sein und wird dann in üblicher Weise entsorgt. Zweckmäßigerweise verbrennt oder vergast man mindestens einen Teil des anfallenden Flugstaubes in einer Brennkammer bei Temperaturen im Bereich von 1000 bis 1500°C. Dabei empfiehlt es sich, die in der Brennkammer gebildeten gasförmigen Produkte in den Vergasungsreaktor zu geben.No liquid residues are produced in the process according to the invention. The ash drawn off from the lower region of the gasification reactor is usually so inert that it is e.g. B. is still usable for road construction, but at least the ash is easy to deposit. The airborne dust accumulating in the dedusting device can contain heavy metals and is then disposed of in the usual way. Appropriately, one burns or gasses at least a part of the flying dust in a combustion chamber at temperatures in the range of 1000 to 1500 ° C. It is advisable to add the gaseous products formed in the combustion chamber to the gasification reactor.
Ausgestaltungsmöglichkeiten des Verfahrens werden mit Hilfe der Zeichnung erläutert . Es zeigt Fig. 1 das Fließschema einer ersten Verfahrensvariante und Fig. 2 das Fließschema einer zweiten Verfahrensvariante.Design options of the method are explained with the aid of the drawing. It shows 1 shows the flow diagram of a first method variant and FIG. 2 shows the flow diagram of a second method variant.
Gemäß Fig. 1 werden die zu vergasenden Festbrennstoffe in der Leitung (1) einem Vergasungsreaktor (2) zugeführt, wo sie mit heißen Gasen und Partikeln im Zustand der zirkulierenden Wirbelschicht in Kontakt kommen. Sauerstoffhaltiges Fluidisierungsgas wird in der Leitung (3) herangeführt und durch eine Verteilkammer (4) mit einem Rost (5) in die Wirbelschicht des Reaktors (2) geleitet. Beim Sauerstoff altigen Gas der Leitung (3) kann es sich zum Beispiel um Luft oder mit 02 angereicherte Luft handeln. Die Vergasung im Reaktor (2) erfolgt bei Temperaturen von 700 bis 1000°C und zumeist bei Temperaturen von mindestens 800°C. Asche wird durch die Leitung (6) abgezogen und wird, falls nötig, nach Entfernung von Metallbestandteilen deponiert oder einer weiteren Verwendung, z. B. im Straßenbau, zugeführt .According to FIG. 1, the solid fuels to be gasified are fed in line (1) to a gasification reactor (2), where they come into contact with hot gases and particles in the state of the circulating fluidized bed. Oxygen-containing fluidizing gas is introduced in line (3) and passed through a distribution chamber (4) with a grate (5) into the fluidized bed of the reactor (2). The oxygen-old gas of line (3) can be, for example, air or air enriched with 0 2 . The gasification in the reactor (2) takes place at temperatures of 700 to 1000 ° C and mostly at temperatures of at least 800 ° C. Ash is drawn off through line (6) and, if necessary, is deposited after removal of metal components or for further use, e.g. B. in road construction.
Am oberen Ende des Reaktors (2) verläßt einLeaves at the top of the reactor (2)
Gas-Feststoff-Gemisch den Reaktor durch den Kanal (8) und strömt in einen Zyklon-Abscheider (9) , aus welchem durch die Leitung (10) staubhaltiges Brenngas abgezogen wird. Im Abscheider (9) anfallende Feststoffe werden durch die Leitung (11) zurück in den unteren Bereich des Reaktors (2) geführt.Gas-solid mixture the reactor through the channel (8) and flows into a cyclone separator (9), from which dust-containing fuel gas is withdrawn through the line (10). Solids accumulating in the separator (9) are led through the line (11) back into the lower region of the reactor (2).
Das staubhaltige Gas der Leitung (10) enthält kondensierbare Kohlenwasserstoffe und zumeist kohlenstoffhaltige Flugstäube. Wichtig ist, die höheren Kohlenwasserstoffe (C6+) zumindest weitgehend zu beseitigen und sie in Substanzen zu überführen, die bei den gegebenen Temperaturen und Partialdrücken nicht kondensieren. Zu diesem Zweck führt man das Gas durch eine Spaltkammer (12) , der man durch die Leitung (13) 02-haltiges Gas, z. B. Luft, mit Sauerstoff angereicherte Luft oder technisch reinen Sauerstoff zuführt. In der Spaltkammer (12) sorgt man für Temperaturen im Bereich von 800 bis 1200°C und zumeist 900 bis 1100°C. Wichtig ist hierbei, daß man die Temperatur und die Verweilzeit in der Spaltkammer (12) so wählt, daß die Bildung flüssiger Schlacke vermieden wird und gleichzeitig eine ausreichende Spaltung der Cβ+-Kohlenwasserstoffe gewährleistet ist .The dust-containing gas of line (10) contains condensable hydrocarbons and mostly carbon-containing fly dusts. It is important to at least largely eliminate the higher hydrocarbons (C 6+ ) and convert them into substances that do not condense at the given temperatures and partial pressures. For this purpose, the gas is led through a Gap chamber (12), which one through line (13) 0 2 -containing gas, for. B. air, oxygen-enriched air or technically pure oxygen. Temperatures in the range from 800 to 1200 ° C and mostly 900 to 1100 ° C are ensured in the gap chamber (12). It is important here that the temperature and the residence time in the cracking chamber (12) are selected so that the formation of liquid slag is avoided and at the same time an adequate cracking of the C β + hydrocarbons is ensured.
Das in der Leitung (15) aus der Spaltkammer (12) kommende Gas enthält verschiedenartige Feststoffe und Aschepartikel, die hier als Flugstaub bezeichnet werden. In einem Abhitzekessel (16) kühlt man das Gas auf Temperaturen von etwa 150 bis 300°C und gibt es dann durch die Leitung (17) einerThe gas coming in the line (15) from the gap chamber (12) contains various types of solids and ash particles, which are referred to here as flying dust. In a waste heat boiler (16), the gas is cooled to temperatures of about 150 to 300 ° C and then there is one through line (17)
Entstaubungseinrichtung (18) auf. Hierbei kann es sich z. B. um ein Gewebe- oder Elektrofilter handeln. Der anfallende Flugstaub, der üblicherweise schwermetallhaltig ist, wird in der Leitung (19) abgezogen, ein Teil davon kann auf dem Transportweg (20) zu einer Brennkammer (21) geführt werden. Der restliche Flugstaub wird durch die Leitung (22) aus dem Verfahren entfernt .Dedusting device (18). This can be, for. B. can be a fabric or electrostatic filter. The resulting dust, which usually contains heavy metals, is drawn off in line (19), a part of which can be led to a combustion chamber (21) on the transport route (20). The remaining airborne dust is removed from the process through line (22).
Man führt der Brennkammer (21) durch die Leitung (24) Sauerstoffhaltiges Gas, z. B. Luft, mit 02 angereicherte Luft oder technisch reinen Sauerstoff zu und verbrennt den zugeführten Flugstaub bei Temperaturen im Bereich von 1000 bis 1500°C. Die dabei entstehenden festen oder flüssigen und gasförmigen Verbrennungsprodukte gibt man gemeinsam in den oberen Bereich des Reaktors (2) , wo sie vom Wirbelbett aufgenommen werden. Abweichend von Fig. 1 kann flüssige Schlacke aus der Brennkammer (21) auch so abgezogen werden, daß sie nicht in den Reaktor (2) gelangt, vergleiche Fig. 2.One leads the combustion chamber (21) through line (24) oxygen-containing gas, for. B. air, with 0 2 enriched air or technically pure oxygen and burns the supplied dust at temperatures in the range of 1000 to 1500 ° C. The resulting solid or liquid and gaseous combustion products are put together in the upper area of the reactor (2), where they are taken up by the fluidized bed. Deviating from Fig. 1, liquid slag can withdrawn from the combustion chamber (21) so that it does not get into the reactor (2), see FIG. 2.
Aus der Entstaubungseinrichtung (18) zieht man in der Leitung (25) ein Gas ab, welches noch einen störenden Gehalt an Schadstoffen aufweist. Bei diesen Schadstoffen handelt es sich z. B. um Quecksilber-, Chlor- und Schwefel-Verbindungen. Um diese Schadstoffe weitgehend zu entfernen, führt man das Gas zunächst durch einen indirekten Kühler (26) und stellt die für die nachfolgende Behandlung günstige Temperatur z. B. im Bereich von 100 bis 150°C ein. Das gekühlte Gas führt man durch die Leitung (27) einer Reinigung zu, wobei man die Bildung von Abwasser vermeidet . In einem oder mehreren Betten oder Reaktoren wird das zu reinigende Gas mit körnigen Adsorbentien in Kontakt gebracht. Diese Adsorbentien können z. B. im Festbett, Wanderbett oder Wirbelbett angeordnet werden oder man kann einen Flugstromreaktor einsetzen.From the dedusting device (18), a gas is drawn off in the line (25) which still has a disruptive content of pollutants. These pollutants are e.g. B. mercury, chlorine and sulfur compounds. In order to remove these pollutants to a large extent, the gas is first passed through an indirect cooler (26) and the temperature which is favorable for the subsequent treatment is, for. B. in the range of 100 to 150 ° C. The cooled gas is passed through line (27) for cleaning, avoiding the formation of waste water. In one or more beds or reactors, the gas to be cleaned is brought into contact with granular adsorbents. These adsorbents can e.g. B. in a fixed bed, moving bed or fluidized bed or you can use an entrained flow reactor.
In der Zeichnung ist in schematischer Darstellung ein Wanderbettreaktor (30) dargestellt, dem man durch die LeitungIn the drawing, a moving bed reactor (30) is shown in a schematic representation, which one through the line
(31) körniges Adsorptionsmaterial zuführt, das im Reaktor (30) eine Schüttung (33) bildet, die sich langsam nach unten bewegt. Dabei wird die Schüttung etwa in horizontaler Richtung vom zu reinigenden Gas durchströmt. Das Gas verläßt den Reaktor (30) durch die Leitung (35) und wird zum Entstauben durch das Filter(31) feeds granular adsorbent material which forms a bed (33) in the reactor (30) which slowly moves downwards. The bed to be cleaned flows through the bed approximately in a horizontal direction. The gas leaves the reactor (30) through line (35) and is used for dedusting through the filter
(36) geführt, bei dem es sich z. B. um ein Gewebe- oder Elektrofilter handeln kann. Gereinigtes Gas verläßt das Filter(36) performed, for. B. can be a fabric or electrostatic filter. Cleaned gas leaves the filter
(36) in der Leitung (37) . Das aus dem Reaktor (30) kommende beladene Adsorptionsmittel wird in der Leitung (38) abgeführt, mit den im Filter (36) abgeschiedenen Feststoffen in der Leitung(36) in line (37). The loaded adsorbent coming from the reactor (30) is discharged in line (38) with the solids separated in the filter (36) in the line
(39) gemischt und abgezogen. Bei der Auswahl und der Anwendung geeigneter, an sich bekannter Adsorptionsmaterialien gibt es insbesondere folgende Möglichkeiten: Kalkhydrat, Aktivkohle, Herdofenkoks oder Zeolithe. Die Quecksilber-Entfernung mit Hilfe eines aluminiumarmen Zeolithen ist im EP-Patent 638 351 beschrieben.(39) mixed and subtracted. When selecting and using suitable, known adsorption materials, there are in particular the following options: hydrated lime, activated carbon, hearth furnace coke or zeolites. The mercury removal using a low-aluminum zeolite is described in EP patent 638 351.
Im Fließschema der Fig. 2 haben die bereits zusammen mit Fig. 1 erwähnten Bezugsziffern die dort erläuterte Bedeutung. Gemäß Fig. 2 gibt man das Schadstoffhaltige Gas der Leitung (27) einem Sprühabsorber (40) auf, dem man durch die Leitung (41) Kalkmilch und möglicherweise noch andere Adsorbentien zuführt. Gas und Feststoffe strömen durch die Leitung (42) zu einem Filter (43) , bei dem es sich z. B. um ein Gewebe- oder Elektrofilter handeln kann. Gereinigtes Gas gelangt in der Leitung (44) zu einem Adsorber (46) zur Abscheidung von Quecksilber, z. B. in einem Zeolith-Festbett, wie im EP-Patent 638 351 beschrieben. Chloridhaltige Feststoffe zieht man in der Leitung (45) ab. In der Brennkammer (21) zieht man flüssige Schlacke durch die Leitung (23) ab und leitet das Verbrennungsgas durch die Leitung (32) in den Reaktor (2) .In the flow diagram of FIG. 2, the reference numbers already mentioned together with FIG. 1 have the meaning explained there. According to FIG. 2, the pollutant-containing gas is fed to line (27) to a spray absorber (40), to which lime milk and possibly other adsorbents are fed through line (41). Gas and solids flow through line (42) to a filter (43), which is e.g. B. can be a fabric or electrostatic filter. Purified gas passes in line (44) to an adsorber (46) for the separation of mercury, e.g. B. in a zeolite fixed bed, as described in EP patent 638 351. Chloride-containing solids are drawn off in line (45). In the combustion chamber (21), liquid slag is drawn off through line (23) and the combustion gas is passed through line (32) into the reactor (2).
Beispiel :For example:
Einer Verfahrensführung gemäß Fig. 2 wird kommunaler Restmüll zugeführt . Die nachfolgenden Daten sind teilweise berechnet . Der Restmüll, der in einer Menge von 7500 kg/h angeliefert wird, enthält 24,5 Gew.-% Feuchte und 30 Gew.-% Asche. Dieser Müll wird zunächst auf 5 Gew.-% Res feuchte getrocknet und dann im Reaktor (2) bei 900°C und unter Zufuhr von 6230 Nm3/h Luft vergast. Pro Stunde strömen 13000 Nm3 Gas durch die Leitung (10), das Gas enthält 48 g/Nm3 Staub und 1 Vol.-% C6*-Kohlenwasserstoffe. In der Spaltkammer (12) beträgt die Verweilzeit des Gases 1,5 Sekunden, Luft wird durch die Leitung (13) zugeführt, und es wird eine Austrittstemperatur von 1000°C erreicht. Der Gehalt an C6+-Kohlenwasserstoffen in der Leitung (15) beträgt nur noch 0,1 Vol.-%. Durch die Leitung (20) gibt man 400 kg/h Staub in die Brennkammer (21) , die mit 1860 Nm3/h Luft gespeist wird und in der 1300°C erreicht werden. Dem Sprühabsorber (40) führt man Kalkmilch zu und hält die Auslaßtemperatur auf 160°C. Der Adsorber (46) enthält ein Zeolith-Festbett zur Hg-Entfernung. Residual municipal waste is fed to a process according to FIG. 2. The following data are partially calculated. The residual waste, which is delivered in an amount of 7500 kg / h, contains 24.5% by weight moisture and 30% by weight ash. This waste is first dried to 5% by weight res moisture and then gasified in the reactor (2) at 900 ° C. and with the supply of 6230 Nm 3 / h of air. 13,000 Nm 3 of gas flow through the line (10) per hour, the gas contains 48 g / Nm 3 of dust and 1% by volume C 6 * hydrocarbons. The residence time of the gas in the gap chamber (12) is 1.5 seconds, air is supplied through line (13) and an outlet temperature of 1000 ° C. is reached. The content of C 6+ hydrocarbons in line (15) is only 0.1% by volume. 400 kg / h of dust are fed through the line (20) into the combustion chamber (21), which is fed with 1860 Nm 3 / h of air and in which 1300 ° C. is reached. Lime milk is added to the spray absorber (40) and the outlet temperature is kept at 160 ° C. The adsorber (46) contains a fixed zeolite bed for mercury removal.

Claims

Patentansprüche claims
1. Verfahren zum Vergasen von Festbrennstoffen in der zirkulierenden Wirbelschicht, wobei man die Brennstoffe in einem Vergasungsreaktor unter Zufuhr von sauerstoffhaltigem Gas bei Temperaturen im Bereich von 700 bis 1000°C vergast, vom oberen Bereich des Vergasungsreaktors ein Gas-Feststoff-Gemisch einem Abscheider zuführt, aus dem Abscheider Staub und Kohlenwasserstoffe einschließlich höherer Kohlenwasserstoffe mit mehr als 6 C-Atomen im Molekül enthaltendes Gas mit einem Heizwert von 2000 bis 8000 kJ/m3 und getrennt davon abgeschiedene Feststoffe ableitet und die Feststoffe mindestens teilweise in den unteren Bereich des Vergasungsreaktors zurückführt, dadurch gekennzeichnet, daß man das staubhaltige Gas aus dem Abscheider durch eine Spaltkammer leitet, wobei man in der Spaltkammer unter Zufuhr von gasförmigem Sauerstoff im Temperaturbereich von 800 bis 1200°C und unter der Temperatur des Ascheschmelzpunktes die im Gas enthaltenen Kohlenwasserstoffe weitgehend spaltet und dabei den Gehalt an den höheren Kohlenwasserstoffen (Cβτ-Kohlenwasserstoffen) im Gas auf höchstens 10 Gew.-% des Gehalts an diesen höheren Kohlenwasserstoffen im aus dem Abscheider kommenden Gas verringert, daß man das aus der Spaltkammer kommende Gas kühlt, das gekühlte Gas durch eine Entstaubungseinrichtung leitet und Flugstaub abtrennt, daß man das gekühlte und entstaubte Gas durch mindestens ein Bett oder einen Reaktor mit Schadstoffe bindenden körnigen Feststoffen leitet und daß man das Gas anschließend entstaubt . 1. A process for the gasification of solid fuels in the circulating fluidized bed, the fuels being gasified in a gasification reactor with the supply of oxygen-containing gas at temperatures in the range from 700 to 1000 ° C., a gas-solid mixture being fed to a separator from the upper area of the gasification reactor , from which the separator derives dust and hydrocarbons including higher hydrocarbons with more than 6 carbon atoms in the molecule with a calorific value of 2000 to 8000 kJ / m 3 and separated solids and at least partially returns the solids to the lower area of the gasification reactor , characterized in that the dust-containing gas is passed from the separator through a cracking chamber, the hydrocarbons contained in the gas being largely split and in the cracking chamber with the addition of gaseous oxygen in the temperature range from 800 to 1200 ° C and below the temperature of the ash melting point the content of the higher hydrocarbons (C β- hydrocarbons) in the gas is reduced to a maximum of 10% by weight of the content of these higher hydrocarbons in the gas coming from the separator by cooling the gas coming from the cracking chamber, the cooled gas by a dedusting device conducts and separates flight dust, that one conducts the cooled and dedusted gas through at least one bed or a reactor with granular solids binding pollutants and that the gas is then dedusted.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man mindestens einen Teil des aus der Entstaubungseinrichtung abgezogenen Flugstaubs in einer Brennkammer bei Temperaturen im Bereich von 1000 bis 1500°C unter Zugabe von 02-haltigem Gas umsetzt.2. The method according to claim 1, characterized in that at least part of the deducted from the dedusting fly dust in a combustion chamber at temperatures in the range of 1000 to 1500 ° C with the addition of 0 2 -containing gas.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man die in der Brennkammer gebildeten gasförmigen Produkte dem im Vergasungsreaktor gebildeten, feststoffhaltigen Gas zumischt. 3. The method according to claim 2, characterized in that the gaseous products formed in the combustion chamber are mixed with the solid-containing gas formed in the gasification reactor.
EP97952838A 1996-12-18 1997-12-01 Method of gasifying solid fuels in a circulating fluidized bed Expired - Lifetime EP0948583B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19652770A DE19652770A1 (en) 1996-12-18 1996-12-18 Process for gasifying solid fuels in the circulating fluidized bed
DE19652770 1996-12-18
PCT/EP1997/006716 WO1998027182A1 (en) 1996-12-18 1997-12-01 Method of gasifying solid fuels in a circulating fluidized bed

Publications (2)

Publication Number Publication Date
EP0948583A1 true EP0948583A1 (en) 1999-10-13
EP0948583B1 EP0948583B1 (en) 2001-01-24

Family

ID=7815198

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97952838A Expired - Lifetime EP0948583B1 (en) 1996-12-18 1997-12-01 Method of gasifying solid fuels in a circulating fluidized bed

Country Status (8)

Country Link
EP (1) EP0948583B1 (en)
JP (1) JP2001506288A (en)
AU (1) AU722068B2 (en)
BR (1) BR9714421A (en)
CA (1) CA2275646A1 (en)
DE (2) DE19652770A1 (en)
ES (1) ES2155270T3 (en)
WO (1) WO1998027182A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326241A (en) * 2002-05-14 2003-11-18 Mitsubishi Heavy Ind Ltd Gasification apparatus for biomass
FI20055237L (en) 2005-05-18 2006-11-19 Foster Wheeler Energia Oy Method and apparatus for gasification of carbonaceous material
CN101595439B (en) 2006-05-05 2014-05-14 普拉斯科能源Ip控股集团毕尔巴鄂沙夫豪森分公司 Control system for conversion of carbonaceous feedstock into gas
JP2009536258A (en) 2006-05-05 2009-10-08 プラスコエナジー アイピー ホールデイングス,エス.エル.,ビルバオ,シャフハウゼン ブランチ Gas reforming system using plasma torch heat
NZ573217A (en) 2006-05-05 2011-11-25 Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch A facility for conversion of carbonaceous feedstock into a reformulated syngas containing CO and H2
MX2008014200A (en) 2006-05-05 2009-06-04 Plasco Energy Ip Holdings S L A horizontally-oriented gasifier with lateral transfer system.
US20080210089A1 (en) 2006-05-05 2008-09-04 Andreas Tsangaris Gas Conditioning System
JP2009536097A (en) 2006-05-05 2009-10-08 プラスコエナジー アイピー ホールディングス、エス.エル.、ビルバオ、シャフハウゼン ブランチ Gas homogenization system
EA201001377A1 (en) 2007-02-27 2011-04-29 Плэскоуэнерджи Ип Холдингс, С.Л., Бильбао, Шаффхаузен Бранч MULTI-CHAMBER SYSTEM AND METHOD FOR CONVERTING CARBON-CONTAINING RAW MATERIALS INTO SYNTHESIS-GAS AND SLAG
EP2034003A1 (en) * 2007-09-07 2009-03-11 ReSeTec Patents Geneva S.A. i.o. Process and apparatus for producing synthesis gas from waste
DE102008035604A1 (en) * 2008-07-31 2010-02-04 Uhde Gmbh Apparatus and method for degassing dusts
DE102010006192A1 (en) * 2010-01-29 2011-08-04 Uhde GmbH, 44141 Method for biomass gasification in a fluidized bed
US9321640B2 (en) 2010-10-29 2016-04-26 Plasco Energy Group Inc. Gasification system with processed feedstock/char conversion and gas reformulation
EP2870223B1 (en) * 2012-07-09 2019-03-06 Southern Company Gasification of high ash, high ash fusion temperature bituminous coals
CN103224813B (en) * 2013-04-15 2014-11-05 中国五环工程有限公司 Pressurized fluidized bed technology for coal gasification and pressurized fluidized bed system
AT516987B1 (en) * 2015-03-24 2017-07-15 Gussing Renewable Energy Int Holding Gmbh Process for cooling a hot synthesis gas
DE102015015594A1 (en) * 2015-12-04 2017-06-08 Wincip Gmbh Method and plant for synthesis gas production by gasification of liquid, solid or pasty carbon carriers in a fluidized bed,
DE102018002086A1 (en) * 2018-03-09 2019-09-12 Borsig Gmbh quench
CN110564453A (en) * 2019-09-17 2019-12-13 昆明理工大学 distributed biomass gasification and combustion coupled poly-generation system and method
CN112961695A (en) * 2020-12-31 2021-06-15 童铨 Solid waste anaerobic pyrolysis and high-temperature melting treatment process and system
CN113263040B (en) * 2021-03-26 2023-01-10 童铨 Low-carbon co-treatment process for solid waste

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1491465A (en) * 1974-02-21 1977-11-09 Shell Int Research Process for the production of hydrogen and carbon monoxide-containing gas
DE2729764A1 (en) * 1977-07-01 1979-01-04 Davy Bamag Gmbh Gasification of solid fuels - with combustion of the ash in oxygen and recycling of the hot gas produced
DE2945508C2 (en) * 1979-11-10 1983-11-24 Didier Engineering Gmbh, 4300 Essen Process for gasifying coals or carbonaceous materials and installation for carrying out this process
JPS57147590A (en) * 1981-03-06 1982-09-11 Agency Of Ind Science & Technol Gasification of coal and its device
DE69008757T2 (en) * 1989-03-02 1994-09-08 Kawasaki Heavy Ind Ltd Process and device for dry, simultaneous desulphurization and dedusting.
DE4235412A1 (en) * 1992-10-21 1994-04-28 Metallgesellschaft Ag Process for gasifying waste materials containing combustible components
US5484465A (en) * 1993-08-02 1996-01-16 Emery Recycling Corporation Apparatus for municipal waste gasification
DE4412004A1 (en) * 1994-04-07 1995-10-12 Metallgesellschaft Ag Process for gasifying waste materials in the circulating fluidized bed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9827182A1 *

Also Published As

Publication number Publication date
AU5657598A (en) 1998-07-15
JP2001506288A (en) 2001-05-15
AU722068B2 (en) 2000-07-20
BR9714421A (en) 2000-05-02
DE59702967D1 (en) 2001-03-01
ES2155270T3 (en) 2001-05-01
DE19652770A1 (en) 1998-06-25
EP0948583B1 (en) 2001-01-24
WO1998027182A1 (en) 1998-06-25
CA2275646A1 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
EP0948583B1 (en) Method of gasifying solid fuels in a circulating fluidized bed
EP0594231B1 (en) Process for gasifying waste products containing combustible substances
DE60101222T2 (en) METHOD FOR PURIFYING EXHAUST GASES
EP0412587B1 (en) Process for purifying raw combustible gas from solid-fuel gasification
DE4404673C2 (en) Process for the production of fuel gas
EP0828549B1 (en) Process for the dry desulphurisation of a combustion gas
EP2007854A1 (en) Process and device for process-integrated hot gas purification from dust and gaseous constituents of a synthesis gas
DD296217A5 (en) METHOD FOR CLEANING FLUE GASES FROM INCINERATION PLANTS
EP1201731A1 (en) Process for fluidized bed gasifying carbon containing solids and gasifier therefor
EP0676465B1 (en) Process for gasification of wastes in a circulating fluidized bed
EP1031623B1 (en) Process for calaytic cracking of heavy volatile hydrocarbons
DE2652968B2 (en) Process for gasifying solid carbonaceous fuels
DE4128106C2 (en) Process for the separation of highly condensed, polycyclic hydrocarbons from exhaust gases
CH701016A2 (en) to form A process for removing nitrogen from the blast furnace gas to provide an additional feed to a gas turbine engine.
DE3130031A1 (en) METHOD FOR GASIFYING COAL
DE19513832B4 (en) Process for recycling residual and waste materials by combining a fluidized-bed thermolysis with an entrainment gasification
DE2650491A1 (en) Energy generating system using fossilised fuel - where fuel is heated and gases desulphurised before use in gas turbine
EP3323495B1 (en) Product gas filter for exhaust gases of wood-gasification reactors comprising filter candles and a zeolite injection
DD283644A5 (en) METHOD FOR THE PRESSURE GASIFICATION OF COAL FOR THE OPERATION OF A POWER PLANT
EP0677319B1 (en) Process and apparatus for eliminating dioxines and furanes from exhaust gases of a sintering process
DE1023844B (en) Process for bringing gases into contact with coal-like solids
EP2875102A1 (en) Counterflow/direct flow gasification of carbon-rich substances
DE19940683B4 (en) Process for the dry cleaning of exhaust gases from sintering plants, smelting works or secondary metallurgical smelting plants as well as dusty sorbent for dry cleaning of such waste gases
DE19729114A1 (en) Heat treatment method for fine dust in exhaust fumes
AT393232B (en) METHOD FOR REMOVING POLLUTANTS FROM HOT PRODUCT GAS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990719

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT NL

17Q First examination report despatched

Effective date: 19991209

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT NL

REF Corresponds to:

Ref document number: 59702967

Country of ref document: DE

Date of ref document: 20010301

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2155270

Country of ref document: ES

Kind code of ref document: T3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MG TECHNOLOGIES AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010418

ET Fr: translation filed
NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: MG TECHNOLOGIES AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011116

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011120

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20011211

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20011212

Year of fee payment: 5

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20021202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041213

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060701