EP0910776B1 - Burner with atomiser nozzle - Google Patents

Burner with atomiser nozzle Download PDF

Info

Publication number
EP0910776B1
EP0910776B1 EP97936627A EP97936627A EP0910776B1 EP 0910776 B1 EP0910776 B1 EP 0910776B1 EP 97936627 A EP97936627 A EP 97936627A EP 97936627 A EP97936627 A EP 97936627A EP 0910776 B1 EP0910776 B1 EP 0910776B1
Authority
EP
European Patent Office
Prior art keywords
flow
atomiser
burner
component
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97936627A
Other languages
German (de)
French (fr)
Other versions
EP0910776A1 (en
Inventor
Nikolaos Zarzalis
Thomas Ripplinger
Bernhard Glaeser
Burkhard Simon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP0910776A1 publication Critical patent/EP0910776A1/en
Application granted granted Critical
Publication of EP0910776B1 publication Critical patent/EP0910776B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/11101Pulverising gas flow impinging on fuel from pre-filming surface, e.g. lip atomizers

Definitions

  • the invention relates to a burner for combustion chambers of gas turbines according to the Preamble of claim 1.
  • a burner is in the German patent application P 44 44 961.
  • the reduction of pollutants in the combustion of kerosene in combustion chambers of aircraft engines is a constant development goal.
  • the pollutant-reduced combustion chamber is a starting point.
  • components of the combustion chamber be optimized. For example, it applies to fuel in all operating areas atomize as finely as possible and mix with the combustion air.
  • This fuel preparation is used in the combustion chambers of modern aircraft gas turbines Air atomizing nozzles accomplished. The fuel flows according to their operating principle on a cylindrical surface to the end where due to air shear forces atomization begins.
  • the mass flow of the secondary air flow must be greater than that of the primary airflow, so in the short distance from the end of the atomizer lip until it enters the combustion chamber, the peripheral pulse of the secondary air flow is not completely broken down and the formation of the recirculation vortex is endangered becomes. This in turn results in the distribution of the air-fuel ratio does not have the desired homogeneity at the nozzle outlet because the primary Airflow that is primarily involved in the mixing process is less than that secondary airflow is.
  • An injection device for a combustion chamber is known from GB 2 272 756 A, which comprises an atomizer, several channels and a premixing section, the First of all, fuel to the guiding elements surrounding the channels with atomizer lips atomized and then in the premixing section with the air streams the channels that open into the premixing section are mixed.
  • the premixing section is convergent-divergent to ensure good mixing of the atomized To ensure fuel with the air flows.
  • GB 1 099 959 and GB 2 094 464 A describe a burner for solid or liquid Fuels disclosed in which the fuel mixes with multiple air streams is, whose channels through concentrically arranged pipes with divergent outlet nozzles be formed. When using liquid fuels, this is in one Pressure atomization at the point of entry into the nozzle area.
  • the object of the invention is a generic burner specify a largely homogeneous distribution of the air-fuel mixture in the combustion chamber.
  • the invention has the advantage that by twisting the two in the same direction Airflows considering mixing them before entering the combustion chamber to a high peripheral speed must not be avoided, so that too Dimensional current ratio can be selected regardless of the swirl of the currents can to make the distribution of the air-fuel mixture homogeneous. Regardless of a mixture of the two streams, the swirl number of the Air flow can be varied to a detached or a wall-to-wall Set the flow state in the combustion chamber. By positioning the atomizer lip narrowest flow cross-section in the atomizer nozzle or shortly before can atomize the fuel in a range of maximum air shear forces take place so that the atomization can take place optimally.
  • the burner 1 shown in FIG. 1 is one of several arranged in a ring Burners of the combustion chamber 2 shown in sections of a not shown Aircraft gas turbine.
  • the burner 1 has an atomizing nozzle 3 with a primary and a secondary Flow channel 4 or 5 and an injection nozzle 15.
  • the two flow channels 4, 5 are in their channel course by ring or sleeve-shaped components 6, 7 determined and limited.
  • the two concentric to the burner axis Z Flow channels 4, 5 each have a radial inlet section E. in order to then be deflected into a substantially axially extending outlet section A. to become.
  • the sleeve-shaped component 6 separates the two channels 4, 5 from one another and has an annular atomizer lip in its downstream portion 8 with a conical taper.
  • the component 6 On its upstream section the component 6 has a radially extending flange 9, the two axially spaced, annular inlet sections E of the channels 4.5 separates.
  • the secondary flow channel running between the two components 6 and 7 5 is in its radially extending inlet section E of two parallel, annular wall sections of the two components 6 and 7 limited.
  • the secondary flow channel 5 In the outlet section A, the secondary flow channel 5 is downstream radially outward from one, seen in the direction of flow, convergent-divergent running inner wall I of component 7 limited.
  • the atomizer lip 8 ends immediately in front of the location with the narrowest flow cross section Q, which through the convergent-divergent course of the component 7 is defined so that downstream the atomizer lip 8, within the divergent section of the component 7 and downstream this results in a homogeneous mixing of the two air flows.
  • the conically tapered inner wall of the atomizer lip 8 is by means of the injector 15 arranged in the primary flow channel 4 fine fuel sprayed in the form of a cone widening downstream like a fan, see above that it is deposited on the inner wall like a film.
  • the same directional twist is responsible for the formation of the rotation vortex W the air flow in the flow channels 4 and 5, which in each case in the Entry sections E of the flow channels 4 and 5 arranged swirl devices 12 is generated.
  • the cross sections of the two flow channels 4, 5 are dimensioned such that a mass flow ratio between primary and secondary air flow of is greater than 0.4. This ensures homogeneous mixing of the combustion chamber guaranteed with air-fuel mixture.
  • the swirl formation in the same direction in the Flow channels 4 and 5 by varying the number of swirl in the two channels 4.5 a detached or wall-mounted combustion chamber flow can be represented, so that on location and formation of the rotary vortex W can be influenced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Spray-Type Burners (AREA)

Abstract

The invention relates to a burner for combustors (2) of gas turbines, said burner having an atomiser nozzle (3) for atomisation of fuel in the combustion air and having a primary and secondary flow channel (4, 5). In said burners, mostly used in aircraft engines, an extensively homogenous distribution of the air-fuel mixture is to be achieved in the combustor to reduce emissions. The flow channels (4, 5) opening into the combustor (11) are separated from a first component (6) arranged concentrically in relation to the burner axis (A) and having a sleeve-shaped atomiser lip (8) extending cylindrically or conically, and the external secondary flow channel (4) is bounded externally and radially by a second annular component (7) arranged concentrically and having an internal wall (14) extending to converge and diverge. The second component (7) forms an area (Q) with the most narrow flow cross-section, the first component (6) being arranged radially inwards and ending with the atomiser lip (8) at the axial height of said cross-section or upstream thereof, the air flow (L) flowing through the flow channels (4, 5) to twist in the same direction. By positioning the atomiser lip (8) at the narrowest flow cross-section in the or just in front of the atomiser nozzle, the fuel can be atomised in a range of the maximum air shear forces with the result that there can be optimal atomisation.

Description

Die Erfindung betrifft einen Brenner für Brennkammern von Gasturbinen nach dem Oberbegriff des Patentanspruches 1. Ein solcher Brenner ist in der deutschen Patentanmeldung P 44 44 961 beschrieben.The invention relates to a burner for combustion chambers of gas turbines according to the Preamble of claim 1. Such a burner is in the German patent application P 44 44 961.

Die Reduktion von Schadstoffen, die bei der Verbrennung von Kerosin in Brennkammern von Flugtriebwerken entstehen, ist ein ständiges Entwicklungsziel. Hierbei ist die schadstoffreduzierte Brennkammer ein Ansatzpunkt. Für Verwirklichung der schadstoffreduzierten Verbrennungskonzepte müssen Komponenten der Brennkammer optimiert werden. So gilt es beispielsweise den Brennstoff in allen Betriebsbereichen möglichst fein zu zerstäuben und mit der Verbrennungsluft zu vermischen. Diese Brennstoffaufbereitung wird bei Brennkammern moderner Fluggasturbinen mit Luftzerstäuberdüsen bewerkstelligt. Nach deren Funktionsprinzip fließt der Brennstoff auf einer zylindrischen Oberfläche bis an dessen Ende, wo aufgrund der Luftscherkräfte die Zerstäubung einsetzt. Um örtlich unerwünschte Brennstoffanreicherungen im Brennraum der Brennkammer, die zur Rußbildung Anlaß geben könnten, zu vermeiden, wird die Luftströmung durch die Zerstäuberdüse in einen primären und sekundären Strömungskanal geteilt und gegensinnig verdrallt, so daß im Brennraum entgegengerichtete Rotationswirbel erzeugt werden. Hierzu ist jedem Strömungskanal eine radial angeströmte Drallvorrichtung zugeordnet. Eine hohe Drallzahl des Luftstromes führt zudem zu einem Rezirkulationswirbel an der rückseitigen Wand des Brennraumes wodurch eine homogene Verbrennung erzielt werden soll. Um eine vorzeitige Vermischung der beiden Luftströme zu vermeiden, die wiederum zu einer Reduktion der Umfangsgeschwindigkeit im sekundären Luftstrom führen würde, wird die Zerstäuberlippe, die den primären vom sekundären Luftstrom trennt, möglichst lang, bis an die brennraumseitige Mündung der Zerstäuberdüse ausgeführt. Bei konvergent-divergent ausgeführten Strömungskanälen hat dies allerdings zur Folge, daß die Zerstäubung sich nicht im Bereich der maximalen Luftscherkräfte abspielt und aus diesem Grund die Zerstäubung nicht das mögliche Optimum erreicht.The reduction of pollutants in the combustion of kerosene in combustion chambers of aircraft engines is a constant development goal. Here is the pollutant-reduced combustion chamber is a starting point. For realizing the Pollutant-reduced combustion concepts need components of the combustion chamber be optimized. For example, it applies to fuel in all operating areas atomize as finely as possible and mix with the combustion air. This fuel preparation is used in the combustion chambers of modern aircraft gas turbines Air atomizing nozzles accomplished. The fuel flows according to their operating principle on a cylindrical surface to the end where due to air shear forces atomization begins. To locally undesirable fuel enrichments in the combustion chamber of the combustion chamber, which could give rise to soot formation To avoid the airflow through the atomizer nozzle into a primary and secondary flow channel divided and twisted in opposite directions, so that in the combustion chamber opposite rotating vortices are generated. This is every flow channel assigned a swirl device with a radial flow. A high swirl number of the air flow also leads to a recirculation vortex on the back wall of the Combustion chamber whereby homogeneous combustion is to be achieved. To one to avoid premature mixing of the two air flows, which in turn becomes one Reduction of the peripheral speed in the secondary air flow would result the atomizer lip, which separates the primary from the secondary airflow, if possible long, to the mouth of the atomizer nozzle on the combustion chamber side. With convergent-divergent executed flow channels, however, this has the consequence that the atomization does not take place in the area of the maximum air shear forces for this reason the atomization does not reach the optimum possible.

Darüber hinaus muß der Massenstrom des sekundären Luftstroms größer als der des primären Luftstroms sein, damit in der kurzen Strecke vom Ende der Zerstäuberlippe bis zum Eintritt in den Brennraum der Umfangsimpuls des sekundären Luftstroms nicht vollständig abgebaut wird und die Entstehung des Rezirkulationswirbels gefährdet wird. Hieraus resultiert wiederum, daß die Verteilung des Luft- Brennstoffverhältnisses am Düsenaustritt nicht die gewünschte Homogenität aufweist, weil der primäre Luftstrom, der sich hauptsächlich am Mischungsprozeß beteiligt, geringer als der sekundäre Luftstrom ist.In addition, the mass flow of the secondary air flow must be greater than that of the primary airflow, so in the short distance from the end of the atomizer lip until it enters the combustion chamber, the peripheral pulse of the secondary air flow is not completely broken down and the formation of the recirculation vortex is endangered becomes. This in turn results in the distribution of the air-fuel ratio does not have the desired homogeneity at the nozzle outlet because the primary Airflow that is primarily involved in the mixing process is less than that secondary airflow is.

Aus der GB 2 272 756 A ist eine Einspritzvorrichtung für eine Brennkammer bekannt, die einen Zerstäuber, mehrere Kanäle und eine Vormischstrecke umfaßt, wobei der Brennstoff zunächst an die Kanäle umschließenden Leitelementen mit Zerstäuberlippen zerstäubt und anschließend in der Vormischstrecke mit den Luftströmen aus den Kanälen, die in die Vormischstrecke münden, vermischt wird. Die Vormischstrecke ist konvergent-divergent ausgebildet, um eine gute Vermischung des zerstäubten Brennstoffs mit den Luftströmen zu gewährleisten.An injection device for a combustion chamber is known from GB 2 272 756 A, which comprises an atomizer, several channels and a premixing section, the First of all, fuel to the guiding elements surrounding the channels with atomizer lips atomized and then in the premixing section with the air streams the channels that open into the premixing section are mixed. The premixing section is convergent-divergent to ensure good mixing of the atomized To ensure fuel with the air flows.

In der GB 1 099 959 und der GB 2 094 464 A wird ein Brenner für feste oder flüssige Brennstoffe offenbart, bei dem der Brennstoff mit mehreren Luftströmen vermischt wird, deren Kanäle durch konzentrisch angeordnete Rohre mit divergenten Austrittsdüsen gebildet werden. Beim Einsatz von flüssigen Brennstoffen wird dieser in einer Druckzerstäubung an der Eintrittsstelle in den Düsenraum zerstäubt.GB 1 099 959 and GB 2 094 464 A describe a burner for solid or liquid Fuels disclosed in which the fuel mixes with multiple air streams is, whose channels through concentrically arranged pipes with divergent outlet nozzles be formed. When using liquid fuels, this is in one Pressure atomization at the point of entry into the nozzle area.

Hiervon ausgehend, ist es Aufgabe der Erfindung, einen gattungsgemäßen Brenner anzugeben, der eine weitgehend homogene Verteilung des Luftbrennstoffgemisches im Brennraum ermöglicht.Proceeding from this, the object of the invention is a generic burner specify a largely homogeneous distribution of the air-fuel mixture in the combustion chamber.

Die Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst.The object is achieved by the characterizing features of the claim 1 solved.

Die Erfindung hat den Vorteil, daß durch die gleichsinnige Verdrallung der beiden Luftströme ein Vermischen derselben vor dem Eintritt in den Brennraum im Hinblick auf eine hohe Umfangsgeschwindigkeit nicht vermieden werden muß, so daß auch das Maßenstromverhältnis unabhängig von der Verdrallung der Ströme gewählt werden kann um die Verteilung des Luft- Brennstoffgemisches homogen gestalten zu können. Auch kann ohne Rücksicht auf eine Vermischung der beiden Ströme die Drallzahl der Luftströmung variiert werden, um einen abgelösten oder einen wandanliegenden Strömungszustand im Brennraum einzustellen. Durch die Positionierung der Zerstäuberlippe am engsten Strömungsquerschnitt in der Zerstäuberdüse oder kurz davor kann die Zerstäubung des Brennstoffes in einem Bereich der maximalen Luftscherkräfte erfolgen, so daß die Zerstäubung optimal erfolgen kann.The invention has the advantage that by twisting the two in the same direction Airflows considering mixing them before entering the combustion chamber to a high peripheral speed must not be avoided, so that too Dimensional current ratio can be selected regardless of the swirl of the currents can to make the distribution of the air-fuel mixture homogeneous. Regardless of a mixture of the two streams, the swirl number of the Air flow can be varied to a detached or a wall-to-wall Set the flow state in the combustion chamber. By positioning the atomizer lip narrowest flow cross-section in the atomizer nozzle or shortly before can atomize the fuel in a range of maximum air shear forces take place so that the atomization can take place optimally.

Weitere vorteilhafte Ausführungsformen der Erfindung ergeben sich aus den Patentansprüchen 2 bis 5.Further advantageous embodiments of the invention result from the patent claims 2 to 5.

Eine bevorzugte Ausführungsform der Erfindung wird nachfolgend unter Bezugnahme auf die beigefügte Zeichnung erläutert. Es zeigt:

Fig. 1
einen Halbschnitt eines vorderen Brennkammerabschnittes mit Brenner,
Fig. 2a
im Halbschnitt den Strömungszustand in der Brennkammer und in der Zerstäuberdüse mit abgelöster Strömung
Fig. 2b
im Halbschnitt den Strömungszustand in der Brennkammer und in der Zerstäuberdüse mit wandanlieger Strömung.
A preferred embodiment of the invention is explained below with reference to the accompanying drawings. It shows:
Fig. 1
a half section of a front combustion chamber section with burner,
Fig. 2a
in half section the flow state in the combustion chamber and in the atomizer nozzle with detached flow
Fig. 2b
in half section the flow state in the combustion chamber and in the atomizer nozzle with flow against the wall.

Der in Fig. 1 gezeigte Brenner 1 ist einer von mehreren ringförmig angeordneten Brennern der abschnittsweise dargestellten Brennkammer 2 einer nicht weiter dargestellten Fluggasturbine. The burner 1 shown in FIG. 1 is one of several arranged in a ring Burners of the combustion chamber 2 shown in sections of a not shown Aircraft gas turbine.

Der Brenner 1 weist eine Zerstäuberdüse 3 mit einem primären und einem sekundären Strömungskanal 4 bzw. 5 sowie eine Einspritzdüse 15 auf. Die beiden Strömungskanäle 4, 5 werden durch ring- oder hülsenförmige Bauteile 6, 7 in ihrem Kanalverlauf bestimmt und begrenzt. Die beiden konzentrisch zur Brennerachse Z geführten Strömungskanäle 4, 5 weisen jeweils einen radialen verlaufenden Eintrittsabschnitt E auf, um dann in einen im wesentlichen axial verlaufenden Austrittsabschnitt A umgelenkt zu werden. Das hülsenförmige Bauteil 6 trennt die beiden Kanäle 4,5 voneinander und weist in seinem stromabwärtigen Abschnitt eine ringförmige Zerstäuberlippe 8 mit konisch verjüngendem Verlauf auf. An seinem stromaufwärtigen Abschnitt weist das Bauteil 6 einen radial sich erstreckenden Flansch 9 auf, der die beiden axial voneinander beabstandeten, ringförmigen Eintrittsabschnitte E der Kanäle 4,5 trennt. Der zwischen den beiden Bauteilen 6 und 7 verlaufende sekundäre Strömungskanal 5 wird in seinem radial sich erstreckenden Eintrittsabschnitt E von zwei parallel zueinander verlaufenden, ringförmigen Wandabschnitten der beiden Bauteile 6 und 7 begrenzt. Im Austrittsabschnitt A wird der sekundäre Strömungskanal 5 nach radial außen hin von einer, in Strömungsrichtung gesehen, konvergent-divergent verlaufende Innenwandung I des Bauteils 7 begrenzt. Die Zerstäuberlippe 8 endet unmittelbar vor dem Ort mit dem engsten Strömungsquerschnitt Q, welcher durch den konvergent-divergenten Verlauf des Bauteils 7 definiert wird, so daß stromabwärts der Zerstäuberlippe 8, inerhalb des divergenten Abschnitts des Bauteils 7 und stromabwärts hiervon eine homogene Vermischung der beiden Luftströme erfolgt.The burner 1 has an atomizing nozzle 3 with a primary and a secondary Flow channel 4 or 5 and an injection nozzle 15. The two flow channels 4, 5 are in their channel course by ring or sleeve-shaped components 6, 7 determined and limited. The two concentric to the burner axis Z Flow channels 4, 5 each have a radial inlet section E. in order to then be deflected into a substantially axially extending outlet section A. to become. The sleeve-shaped component 6 separates the two channels 4, 5 from one another and has an annular atomizer lip in its downstream portion 8 with a conical taper. On its upstream section the component 6 has a radially extending flange 9, the two axially spaced, annular inlet sections E of the channels 4.5 separates. The secondary flow channel running between the two components 6 and 7 5 is in its radially extending inlet section E of two parallel, annular wall sections of the two components 6 and 7 limited. In the outlet section A, the secondary flow channel 5 is downstream radially outward from one, seen in the direction of flow, convergent-divergent running inner wall I of component 7 limited. The atomizer lip 8 ends immediately in front of the location with the narrowest flow cross section Q, which through the convergent-divergent course of the component 7 is defined so that downstream the atomizer lip 8, within the divergent section of the component 7 and downstream this results in a homogeneous mixing of the two air flows.

Auf die konisch verjüngt verlaufende Innenwandung der Zerstäuberlippe 8 wird mittels der im primären Strömungskanal 4 angeordneten Einspritzdüse 15 Brennstoff fein zerstäubt in Form eines sich stromab fächerartig aufweitenden Kegels aufgespritzt, so daß sich dieser filmartig an der Innenwandung ablagert. An der stromabwärtigen scharfkantigen Endkante 10 der Zerstäuberlippe 8 reißt der Brennstoffilm im Wege einer ausgebildeten Scherströmung ab, so daß in den im Brennraum 11 der Brennkammer 2 sich ausbildenden Rotationswirbel W der Brennstoff nebelartig und teilweise dampfförmig sowie gleichmäßig verteilt eingebracht wird. The conically tapered inner wall of the atomizer lip 8 is by means of the injector 15 arranged in the primary flow channel 4 fine fuel sprayed in the form of a cone widening downstream like a fan, see above that it is deposited on the inner wall like a film. On the downstream sharp-edged end edge 10 of the atomizer lip 8 tears the fuel film in the way a trained shear flow, so that in the combustion chamber 11 of the combustion chamber 2 developing vortexes W of the fuel like a fog and partially is introduced in vapor form and evenly distributed.

Verantwortlich für die Ausbildung des Rotationswirbels W ist der gleichsinnige Drall der Luftströmung in den Strömungskanälen 4 und 5, welcher durch jeweils in den Eintrittsabschnitten E der Strömungskanäle 4 und 5 angeordnete Drallvorrichtungen 12 erzeugt wird.The same directional twist is responsible for the formation of the rotation vortex W the air flow in the flow channels 4 and 5, which in each case in the Entry sections E of the flow channels 4 and 5 arranged swirl devices 12 is generated.

Die beiden Strömungskanäle 4,5 sind in ihren Querschnitten derart dimensioniert, daß sich ein Massenstromverhältnis zwischen primärer und sekundärer Luftströmung von größer als 0,4 ergibt. Hierdurch wird eine homogene Vermischung des Brennraumes mit Luft-Brennstoffgemisch gewährleistet.The cross sections of the two flow channels 4, 5 are dimensioned such that a mass flow ratio between primary and secondary air flow of is greater than 0.4. This ensures homogeneous mixing of the combustion chamber guaranteed with air-fuel mixture.

Wie in den Fig. 2a und 2b zu sehen ist, ist durch die gleichsinnige Drallbildung in den Strömungskanälen 4 und 5 durch Variation der Drallzahl in den beiden Kanälen 4,5 eine abgelöste bzw. wandanliegende Brennraumströmung darstellbar, so daß auf Lage und Ausbildung des Rotationswirbels W Einfluß genommen werden kann. Bei der wandanliegenden Strömung gemäß Fig. 2b mündet die Luftströmung stromabwärts des divergenten Abschnitts des Bauteils 7 in den Brennraum und strömt parallel zur radial verlaufenden Rückwand 13 des Brennraumes 11 ab, um dann in einem Rezirkulationswirbel W etwa parallel zur Brennerachse Z zentral in Richtung des Brenners 1 zu strömen.As can be seen in FIGS. 2a and 2b, the swirl formation in the same direction in the Flow channels 4 and 5 by varying the number of swirl in the two channels 4.5 a detached or wall-mounted combustion chamber flow can be represented, so that on location and formation of the rotary vortex W can be influenced. In the 2b flows against the wall flows the air flow downstream of the divergent section of the component 7 in the combustion chamber and flows parallel to radially extending rear wall 13 of the combustion chamber 11, in order then in a recirculation vortex W approximately parallel to the burner axis Z centrally in the direction of the burner 1 to pour.

Bei der in Fig. 2a gezeigten Strömung hingegen sind zwei Rezirkulationswirbel W zu erkennen, wobei sich der eine im Bereich der Rückwand 13 ausbildet und der andere sich mit entgegengesetzter Drallrichtung im zentralen Bereich des Brennraumes 11 ausbildet.In contrast, in the flow shown in FIG. 2a, two recirculation vortices W are closed recognize, one being formed in the area of the rear wall 13 and the other with an opposite direction of swirl in the central region of the combustion chamber 11 trains.

Claims (5)

  1. A burner for combustors (2) in gas turbines with an atomiser nozzle (3) for atomising fuel in the combustion air which flows through a primary and a secondary flow channel (4, 5) upstream of the combustion chamber (11) of the combustor (2), the fuel being sprayed onto a wall in the atomising nozzle (3) and the flow chambers (4, 5) which discharge into the combustion chamber (11) being separated from a first component (6) which is positioned concentrically in relation to the burner axis A and has an atomiser lip which tapers in a sleeve shape, cylindrically or conically, and the outer, secondary flow channel (5) being radially externally delimited by a concentrically positioned annular second component (7) with an internal wall which runs convergently-divergently, characterised in that the second component (7) forms a place (Q) in the atomiser nozzle (3) with the narrowest flow cross section at the same axial level as or upstream of which the radially internally positioned first component (6) ends in the atomiser lip (8) and the flow of air (L) flows through the flow channels (4, 5) with a twist in the same direction.
  2. A burner according to Claim 1 characterised in that both components (6, 7) are positioned concentrically in relation to the burner axis (A) and between them form the annular, secondary flow channel (5).
  3. A burner according to Claim 1 or 2 characterised in that twist devices (12) are positioned before the outlet sections of the flow channels (4, 5).
  4. A burner according to one or more of the preceding claims characterised in that the flow channels (4, 5) are designed in such a way that the mass flow ratio of the primary to the secondary air flow is greater than 0.4.
  5. A burner according to one of the preceding claims characterised in that the burner (1) has an injection nozzle (15) via which fuel is injected into the primary flow channel (4) onto the internal wall (14) of the first component (6) upstream of the atomiser lip (8).
EP97936627A 1996-07-10 1997-07-08 Burner with atomiser nozzle Expired - Lifetime EP0910776B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19627760 1996-07-10
DE19627760A DE19627760C2 (en) 1996-07-10 1996-07-10 Burner with atomizer nozzle
PCT/EP1997/003595 WO1998001706A1 (en) 1996-07-10 1997-07-08 Burner with atomiser nozzle

Publications (2)

Publication Number Publication Date
EP0910776A1 EP0910776A1 (en) 1999-04-28
EP0910776B1 true EP0910776B1 (en) 2001-08-22

Family

ID=7799420

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97936627A Expired - Lifetime EP0910776B1 (en) 1996-07-10 1997-07-08 Burner with atomiser nozzle

Country Status (5)

Country Link
US (1) US6244051B1 (en)
EP (1) EP0910776B1 (en)
DE (2) DE19627760C2 (en)
ES (1) ES2162683T3 (en)
WO (1) WO1998001706A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1340940A1 (en) 2002-02-21 2003-09-03 J. Eberspächer GmbH & Co. KG Atomizing nozzle for a burner, especially for a heating apparatus used in an automobile
EP1342950A2 (en) 2002-02-11 2003-09-10 J. Eberspächer GmbH & Co. KG Atomizing nozzle for a burner
DE10211590B4 (en) * 2002-03-15 2007-11-08 J. Eberspächer GmbH & Co. KG Atomiser nozzle, in particular for a vehicle heater

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19803879C1 (en) 1998-01-31 1999-08-26 Mtu Muenchen Gmbh Dual fuel burner
KR100375051B1 (en) * 2000-01-25 2003-03-08 (주) 젠터닷컴 System and the method for real-time home shopping, and storage media having program source thereof
DE102004002246A1 (en) * 2004-01-15 2005-08-11 J. Eberspächer GmbH & Co. KG Device for producing an air / hydrocarbon mixture
DE102005022772A1 (en) * 2005-05-12 2007-01-11 Universität Karlsruhe Burner with partial premixing and pre-evaporation of the liquid fuel
FR2903170B1 (en) * 2006-06-29 2011-12-23 Snecma DEVICE FOR INJECTING A MIXTURE OF AIR AND FUEL, COMBUSTION CHAMBER AND TURBOMACHINE HAVING SUCH A DEVICE
GB2444737B (en) * 2006-12-13 2009-03-04 Siemens Ag Improvements in or relating to burners for a gas turbine engine
US20130067923A1 (en) * 2011-09-20 2013-03-21 General Electric Company Combustor and method for conditioning flow through a combustor
US9423137B2 (en) * 2011-12-29 2016-08-23 Rolls-Royce Corporation Fuel injector with first and second converging fuel-air passages
EP3098514A1 (en) * 2015-05-29 2016-11-30 Siemens Aktiengesellschaft Combustor arrangement
FR3057648B1 (en) * 2016-10-18 2021-06-11 Safran Helicopter Engines TURBOMACHINE COMBUSTION CHAMBER POOR INJECTION SYSTEM
US12072099B2 (en) * 2021-12-21 2024-08-27 General Electric Company Gas turbine fuel nozzle having a lip extending from the vanes of a swirler
EP4202305A1 (en) * 2021-12-21 2023-06-28 General Electric Company Fuel nozzle and swirler
DE102022002113A1 (en) 2022-06-13 2023-12-14 Mercedes-Benz Group AG Burner for a motor vehicle, method for operating such a burner and motor vehicle
US12007115B1 (en) 2023-02-28 2024-06-11 Rtx Corporation High shear swirler for gas turbine engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1099959A (en) * 1965-10-28 1968-01-17 Janos Miklos Beer Improvements in or relating to burners for pulverised coal or like solid fuel or for liquid or gaseous fuel
US4180974A (en) * 1977-10-31 1980-01-01 General Electric Company Combustor dome sleeve
NL8200333A (en) 1981-02-27 1982-09-16 Westinghouse Electric Corp COMBUSTION DEVICE FOR GAS TURBINE.
GB2150277B (en) * 1983-11-26 1987-01-28 Rolls Royce Combustion apparatus for a gas turbine engine
US5285631A (en) 1990-02-05 1994-02-15 General Electric Company Low NOx emission in gas turbine system
DE4220060C2 (en) * 1992-06-19 1996-10-17 Mtu Muenchen Gmbh Device for actuating a swirl device of a burner for gas turbine engines that controls the throughput of combustion air
DE4228816C2 (en) * 1992-08-29 1998-08-06 Mtu Muenchen Gmbh Burners for gas turbine engines
GB2272756B (en) * 1992-11-24 1995-05-31 Rolls Royce Plc Fuel injection apparatus
GB9326367D0 (en) * 1993-12-23 1994-02-23 Rolls Royce Plc Fuel injection apparatus
DE4444961A1 (en) * 1994-12-16 1996-06-20 Mtu Muenchen Gmbh Device for cooling in particular the rear wall of the flame tube of a combustion chamber for gas turbine engines
US5623827A (en) * 1995-01-26 1997-04-29 General Electric Company Regenerative cooled dome assembly for a gas turbine engine combustor
US5836163A (en) * 1996-11-13 1998-11-17 Solar Turbines Incorporated Liquid pilot fuel injection method and apparatus for a gas turbine engine dual fuel injector

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1342950A2 (en) 2002-02-11 2003-09-10 J. Eberspächer GmbH & Co. KG Atomizing nozzle for a burner
US6883730B2 (en) 2002-02-11 2005-04-26 J. Eberspächer GmbH & Co. KG Atomizing nozzle for a burner
DE10205573B4 (en) * 2002-02-11 2005-10-06 J. Eberspächer GmbH & Co. KG Atomizing nozzle for a burner
EP1340940A1 (en) 2002-02-21 2003-09-03 J. Eberspächer GmbH & Co. KG Atomizing nozzle for a burner, especially for a heating apparatus used in an automobile
US6764302B2 (en) 2002-02-21 2004-07-20 J. Eberspacher Gmbh & Co. Kg Atomizing nozzle for a burner, especially for a heater that can be used on a vehicle
DE10207311B4 (en) * 2002-02-21 2005-06-09 J. Eberspächer GmbH & Co. KG Atomiser nozzle for a burner, in particular for a heater which can be used on a vehicle
DE10211590B4 (en) * 2002-03-15 2007-11-08 J. Eberspächer GmbH & Co. KG Atomiser nozzle, in particular for a vehicle heater

Also Published As

Publication number Publication date
DE19627760C2 (en) 2001-05-03
ES2162683T3 (en) 2002-01-01
WO1998001706A1 (en) 1998-01-15
EP0910776A1 (en) 1999-04-28
DE59704382D1 (en) 2001-09-27
DE19627760A1 (en) 1998-01-15
US6244051B1 (en) 2001-06-12

Similar Documents

Publication Publication Date Title
EP0910776B1 (en) Burner with atomiser nozzle
EP0769655B1 (en) Air-blast spray nozzle
EP0794383B1 (en) Method of operating a pressurised atomising nozzle
EP0933593B1 (en) Dual fuel burner
DE69718253T2 (en) Device for injecting air jets of liquid fuel
DE69519849T2 (en) FUEL NOZZLE WITH TANGENTIAL INJECTION
EP1802915B1 (en) Gas turbine burner
EP0902233B1 (en) Combined pressurised atomising nozzle
DE69407565T2 (en) FUEL INJECTION NOZZLE
DE2355127C2 (en) Burner for a gas turbine
DE69721626T2 (en) Gas turbine combustion Kamer
DE69525920T2 (en) Fuel injection device for turbine operated with gaseous or liquid fuel
DE102007046623A1 (en) Liquid fuel improvement for spin-stabilized natural gas nozzle and process
DE2833027A1 (en) COMBUSTION CHAMBER DOME AND FUEL SPRAYERS OR CARBURETTORS, IN PARTICULAR FOR GAS TURBINE ENGINES
DE2641685A1 (en) LOW PRESSURE FUEL INJECTION SPRAY SYSTEM
EP1030109B1 (en) Fuel injector for injecting liquid and/or gas fuels in a combustion chamber
DE776444T1 (en) GAS TURBINE CHAMBER WITH LOW POLLUTANT EMISSION
DE69733244T2 (en) Combustion process with low acoustic tones
DE19545310A1 (en) Pre-mixing burner for mixing fuel and combustion air before ignition
DE2544361A1 (en) FUEL INJECTOR
DE69720155T2 (en) Combustion process with a tangential two-flow nozzle
EP0762057B1 (en) Mixing device for fuel and air for gas turbine combustors
EP1084368B2 (en) Fuel injector
DE3741021C2 (en) Combustion chamber for a gas turbine engine
DE2641605A1 (en) FUEL EQUIPMENT WITH CENTRAL INJECTION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20001006

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59704382

Country of ref document: DE

Date of ref document: 20010927

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011005

ET Fr: translation filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2162683

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130723

Year of fee payment: 17

Ref country code: ES

Payment date: 20130722

Year of fee payment: 17

Ref country code: DE

Payment date: 20130724

Year of fee payment: 17

Ref country code: SE

Payment date: 20130723

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130719

Year of fee payment: 17

Ref country code: GB

Payment date: 20130723

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130730

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59704382

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140708

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59704382

Country of ref document: DE

Effective date: 20150203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140709

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140708

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140709