EP0904574A1 - Method for controlling an aerodyne for the vertical avoidance of a zone - Google Patents

Method for controlling an aerodyne for the vertical avoidance of a zone

Info

Publication number
EP0904574A1
EP0904574A1 EP97926088A EP97926088A EP0904574A1 EP 0904574 A1 EP0904574 A1 EP 0904574A1 EP 97926088 A EP97926088 A EP 97926088A EP 97926088 A EP97926088 A EP 97926088A EP 0904574 A1 EP0904574 A1 EP 0904574A1
Authority
EP
European Patent Office
Prior art keywords
alt
altitude
aerodyne
zone
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97926088A
Other languages
German (de)
French (fr)
Other versions
EP0904574B1 (en
Inventor
Guy Thomson-CSF S.C.P.I. DEKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Avionics SAS
Original Assignee
Thales Avionics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Avionics SAS filed Critical Thales Avionics SAS
Publication of EP0904574A1 publication Critical patent/EP0904574A1/en
Application granted granted Critical
Publication of EP0904574B1 publication Critical patent/EP0904574B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0615Rate of change of altitude or depth specially adapted for aircraft to counteract a perturbation, e.g. gust of wind

Definitions

  • the present invention relates to an automatic piloting method of an aerodyne allowing the vertical avoidance of an area, for example a dangerous weather area or in which the comfort and safety of the flight are likely to be affected.
  • a non-visible zone for example of strong turbulence, such as clear sky turbulence, or in which the risk of icing is significant.
  • This zone is roughly delimited by a large horizontal contour and upper and lower vertical limits
  • Such information is, for example, received by the aerodyne via a digital data transmission device, for example Data-Lmk, and has been sent by a ground station, possibly based on information sent by neighboring aerodynes equipped with an ADS (Automatic Dependent Surveillance) system
  • the object of the present invention is to eliminate this drawback and to lighten the task of the pilot. To this end, it proposes a method for the automatic piloting of an aerodyne for the vertical avoidance of a fixed zone with predefined geometric contours, the aerodyne being equipped with an automatic piloting device, in which a planned route, cruising flight altitude and the position of the intended point of descent to the runway.
  • this precedent is characterized in that it successively comprises the following stages:
  • the pilot is completely relieved of the modification of the flight plan and the piloting of the aerodyne in order to avoid the danger zone.
  • the area is avoided from below when the upper altitude of the area is above the maximum altitude likely to be reached by the aerodyne at the point of entry, or when the planned point of descent is in the cylindrical volume.
  • the avoidance altitude is preferably equal to the optimal altitude of the aerodyne at the point of entry.
  • FIG. 1 schematically represents the electronic equipment of an aerodyne comprising a computer intended to implement the method according to the invention
  • FIG. 2 schematically represents in perspective the trajectory of an aerodyne which crosses a cylindrical volume enveloping an area to be avoided;
  • FIG. 3 shows in section in a vertical plane the initially planned trajectory of the aerodyne, and the possible avoidance trajectories, relative to the cylindrical volume enveloping the zone to be avoided;
  • Figures 4, 5a and 5b schematically illustrate the algorithm executed to process information relating to the limits of an area to be avoided;
  • the avoidance method according to the invention is particularly designed to be executed by a computer 4 installed on board an aerodyne, which is coupled via a data transmission bus 5 called “airplane bus", to navigation equipment including an automatic pilot device 14 and navigation instruments 16, to a digital data transmission device 15, for example Data-Link, as well as to an interface device man / machine (HMI) 6 comprising a control element and signaling elements, such as a display screen 7 and a loudspeaker 8 installed in the cockpit.
  • the automatic piloting device 14 comprises a memory in which the planned trajectory of the aerodyne is recorded, comprising a lateral trajectory and a vertical profile.
  • the lateral trajectory consists of a road formed by a succession of straight lines between the starting point and the destination point, and transition trajectories making it possible to connect one segment to the other.
  • the vertical profile indicates in particular the cruising altitude and the position of the point of descent to the planned runway.
  • the data transmission device 15 constituted for example by a Data-Link communication system, is capable of receiving meteorological information from a ground station or aerodynes located within radio range. This information makes it possible to locate an area of meteorological activity, for example, where there is strong turbulence or significant icing conditions.
  • the computer 4 executes the algorithm shown in FIG. 4.
  • This algorithm consists first of all, in step 21, in acquiring the data supplied by the data transmission device 15 and in delimiting the meteorological zone by a cylindrical volume 10 defined by a horizontal contour and lower and upper altitudes ( Figure 2).
  • step 22 the computer 4 proceeds to locate the route 2 defined by the planned flight plan, with respect to the meteorological zone. For this, the computer 4 accesses the definition of the planned flight plan, which is for example stored by the automatic pilot device 14.
  • the computer 4 sends to the step 23 a message intended for the display 7 to warn the pilot that the route 2 to be traveled by the aerodyne 1 crosses a zone of meteorological activity 10.
  • This information can be supplemented by the display on the screen 7 of the map of the region overflown with overprinted indication of the area's boundaries.
  • an avoidance trajectory such as A1-A2-A3-A4 passing above the cylindrical volume 10 or B1-B2-B3-B4 passing below the cylindrical volume 10, shown in FIG. 3
  • These trajectories are defined by an exit point A1, B1 from the initially planned trajectory, an altitude change phase A1-A2, B1-B2 to reach the avoidance altitude, a phase at constant altitude A2-A3 , B2-B3 at the avoidance altitude, and a descent phase returning to the planned trajectory A3-A4, B3-B4 and a return point A4, B4 to the planned trajectory.
  • this return point may be located after the descent point T initially planned, the avoidance trajectory directly joining the descent trajectory 2 ′ at the avoidance altitude.
  • step 24 the computer 4 triggers the determination of an avoidance trajectory. During this step, it therefore determines in particular the avoidance altitude, an example of a calculation algorithm of which is shown in FIGS. 5a and 5b and the exit point A1, B1 of the trajectory planned to reach the altitude of determined avoidance (figure 3)
  • This point is calculated taking into account the characteristics of the aerodyne, the air regulations which define a maximum rate of climb or descent, as well as the difference between the current altitude of aerodyne 1 and that of avoidance to reach.
  • step 25 the computer 4 waits for validation by the pilot of the new flight plan including the avoidance trajectory determined in step 24, and this until the exit point is exceeded A1, B1 of route 2 initially planned 2 (step 26). While waiting, the computer 4 calculates and displays the value of the distance from this exit point A1, B1, taking into account the current position of the aerodyne 1, this value being refreshed periodically (step 27).
  • the pilot If during this wait, the pilot has validated the new flight plan, it is sent to the automatic pilot device 14 to replace that 2 initially planned, and then becomes active (step 28). The computer 4 then again waits for new information in step 21.
  • step 29 a message to the pilot to indicate that this exit point has been exceeded and that the bypassing the area is now impossible.
  • step 30 it calculates the distance between the current position of the aerodyne 1 and the entry point Z of the zone delimited by the cylindrical volume 10. As long as the aerodyne 1 has not reached the point Z, this distance is displayed with periodic refresh (step 31).
  • step 32 the computer 4 sends an alert message which signals to the pilot that the aerodyne 1 is in the meteorological zone 10 (step 32).
  • the computer 4 then waits for the exit from the zone delimited by the cylindrical volume 10, taking into account the position of the exit point Z 'of this zone, as well as the current position and the speed of the aerodyne. 1 (step 33), before returning to step 21 of data acquisition, with erasure of the alert message.
  • the determination of the avoidance altitude begins with the calculation of the position of the entry point Z in the zone to be avoided, as well as of the distance separating this point from the current position of the aerodyne 1 and the mass of the latter at this point, taking into account the current mass and the fuel consumption of the aerodyne (step 41).
  • step 42 the computer 4 determines the optimal (alt.opti) and maximum (alt.max) altitudes of aerodyne 1 at point Z taking into account the mass and performance of the aerodyne, as well as the distance separating the aerodyne from this point. If the altitude of the upper limit of the area to be avoided (upper area) is not higher than the maximum altitude (alt.max) that aerodyne 1 can reach at point Z (step 43), the computer 4 goes to step 58 shown in FIG. 5b. Otherwise, the higher avoidance (over the zone) is impossible and therefore lower avoidance (from below the zone) is compulsory, and the computer 4 goes to step 44 where it verifies that the altitude (ie inf.
  • This minimum altitude can either be of regulatory origin, such as MEA (Minimum Enroute Altitude), and MORA (Minimum Offroute Altitude) altitudes, or of operational origin (Minimum Operational Altitude which corresponds to the regulatory flight level above the level FL195 for example).
  • MEA Minimum Enroute Altitude
  • MORA Minimum Offroute Altitude
  • operational origin Minimum Operational Altitude which corresponds to the regulatory flight level above the level FL195 for example.
  • the altitude of the lower limit of the zone must be greater than the minimum authorized altitude, and must be greater than a value (alt.D) obtained by subtracting a certain predetermined value from the initial altitude.
  • step 45 the computer 4 checks to step 45, if the altitude of the lower limit of the zone (alt.inf.zone) is higher than the optimal altitude (alt.opti) calculated in step 42. If this is the case the altitude avoidance to join (alt.evit) corresponds to the optimal altitude (step 46), otherwise the avoidance altitude is just below zone 10, calculated with a certain safety margin (step 47).
  • the rest of the algorithm consists in determining the starting point of descent for landing.
  • the computer 4 determines in step 48 the position of the exit point Z ′ from the planned route 2 of the cylindrical volume 10, and the distance between this point and the planned point T of descent to the landing runway. If this distance is greater than a threshold value, for example 100 nautical miles, this means that the aerodyne can reach the descent point T at the planned altitude (step 50). Otherwise, the aerodyne 1 must not join this descent point T, but will remain at the avoidance altitude calculated previously, until it joins the descent phase 2 'of the planned trajectory. .
  • a threshold value for example 100 nautical miles
  • the computer 4 determines the new descent point T 'or T "which corresponds to the junction point of the avoidance trajectory (lower or higher) at the avoidance altitude with the descent trajectory 2' initially planned (step At the end of steps 50 and 51, the execution continues with step 25. If in step 43, the upper altitude (alt.sup.zone) of zone 10 is lower than the maximum altitude (alt.max) that aerodyne 1 can reach calculated in step 42, the computer 4 determines in step 58, whether the planned descent point T is located in zone 10 or not, by comparing the distances between the current position of the aerodyne 1 and the points Z ′ and T (FIG. 5b).
  • step 60 If the point T is in the area, the upper avoidance is not possible and the computer 4 performs a lower avoidance calculation by going to step 59 where it checks that the lower avoidance is possible. Otherwise, the computer determines in step 60 whether lower avoidance is possible by comparing the lower altitude (alt.inf.zone) of zone 10 with the minimum authorized altitude (alt.min), thus than the value (alt.D) (obtained by subtracting a certain predetermined value from the altitude given by the original flight plan). If lower avoidance is not possible, avoidance is performed by passing over the area.
  • step 64 If avoidance is possible above and below the area, and if the current altitude (alt.airplane) of aerodyne 1 is lower than the optimal altitude (alt.opti) (step 64), then we proceed to a higher avoidance, otherwise we proceed to a lower avoidance.
  • step 59 the upper avoidance is not possible and the computer examines whether the lower avoidance is possible by comparing, as has already been described, the lower altitude (alt.inf.zone) of the area 10 to the minimum altitude values (alt.min and alt.D). If lower avoidance is impossible, processing continues from step 29.
  • the computer 4 compares the optimal altitude (alt.opti) with the higher altitude (alt.sup.zone) of zone 10 (step 65). If the optimal altitude is higher than the upper altitude of zone 10, the avoidance altitude (alt.evit) corresponds to the optimal altitude (alt.opti) (step 66), otherwise, the altitude d avoidance corresponds to the upper altitude (alt.sup.zone) of zone 10 with a safety margin (step 67).
  • the execution of the algorithm continues with step 48, to determine the position of the point of descent T or T "towards the runway.
  • the computer 4 examines whether the optimal altitude (alt.opti) is not less than the lower altitude (alt.inf. zone) of zone 10 (step 68), the avoidance altitude (alt.evit) corresponds to the lower altitude of zone 10 with a safety margin (step 69), otherwise it corresponds to the optimal altitude (step 70).
  • the computer then goes to step 48 described above to determine the point of descent T or T towards the runway.
  • the altitude to be respected by the aerodyne is calculated in the form of a flight level, the flight levels being spaced apart by 100 feet (30.48 m).
  • the computer 4 also determines the optimal, respectively maximum flight levels, by rounding the altitudes calculated to the nearest, respectively lower flight level.
  • the upper altitude of the area is in fact compared to the maximum flight level.
  • the lower altitude of the zone is compared to the value alt.D obtained by subtracting from the flight level initially planned, for example, the height of three flight levels, as well as from the minimum flight level FL195.
  • the avoidance altitude is calculated in flight level, and the margin used in steps 47, 67 and 69 corresponds to a flight level.

Abstract

For the automatically controlling an aerodyne for the vertical avoidance of a fixed zone, the method comprises successively: acquiring (21) the limits of the zone to be avoided, modelling the zone by a cylindrical volume (10) delimited by the horizontal contour and the upper and lower altitudes of the zone, locating the volume (10) with respect to the scheduled route (2, 2') of the aerodyne (1), determining (41) the scheduled route (2, 2') entry (Z) and exit (Z') points in the cylindrical volume (10), computing a new flight altitude for the vertical avoidance of the zone (10), and a point for changing altitude (A1, B1) to reach the avoidance altitude, and updating (28) the new flight altitude, and introducing the position of the point for changing altitude (A1, B1) in the automatic pilot.

Description

PROCEDE DE PILOTAGE D'UN AERODYNE POUR L'EVITEMENT VERTICAL D'UNE ZONEMETHOD FOR CONTROLLING AN AERODYNE FOR THE VERTICAL AVOIDANCE OF A ZONE
La présente invention concerne procédé de pilotage automatique d'un aérodyne permettant l'évitement vertical d'une zone, par exemple une zone météo dangereuse ou dans laquelle le confort et la sécurité du vol risquent d'être affectésThe present invention relates to an automatic piloting method of an aerodyne allowing the vertical avoidance of an area, for example a dangerous weather area or in which the comfort and safety of the flight are likely to be affected.
Elle s'applique notamment, mais non exclusivement, à l'évitement d'une zone non visible, par exemple de forte turbulence, comme les turbulences de ciel clair, ou dans laquelle le risque de givrage est important Cette zone est délimitée grossièrement par un contour horizontal de grandes dimensions et des limites verticales supérieures et inférieures De telles informations sont, par exemple, reçues par l'aérodyne par l'intermédiaire d'un dispositif de transmission de données numériques, par exemple Data-Lmk, et ont été envoyées par une station au sol, éventuellement à partir d'informations émises par les aérodynes avoisinants équipés d'un système ADS (Automatic Dépendent Surveillance)It applies in particular, but not exclusively, to the avoidance of a non-visible zone, for example of strong turbulence, such as clear sky turbulence, or in which the risk of icing is significant. This zone is roughly delimited by a large horizontal contour and upper and lower vertical limits Such information is, for example, received by the aerodyne via a digital data transmission device, for example Data-Lmk, and has been sent by a ground station, possibly based on information sent by neighboring aerodynes equipped with an ADS (Automatic Dependent Surveillance) system
A l'heure actuelle, c'est au pilote de gérer manuellement le problème météorologique soit en effectuant un évitement à vue de la zone, soit en prenant le risque de traverser la zone, ces opérations devant tenir compte d'unAt present, it is up to the pilot to manually manage the weather problem either by performing a visual avoidance of the area, or by taking the risk of crossing the area, these operations must take into account a
" nombre important de paramètres, et notamment, de la réglementation en vigueur dans l'espace aérien traversé, des performances de l'aérodyne, et de la masse de carburant dans les réservoirs de celui-ci. Par ailleurs, étant donné que les phénomènes météorologiques dits de temps clairs, sont par définition invisibles, il arrive fréquemment que le pilote soit averti d'un tel phénomène que peu de temps avant de pénétrer dans la zone où celui-ci se trouve localisé, et dans bien des cas, ce temps est insuffisant pour lui permettre de prendre en compte tous les paramètres nécessaires afin de déterminer la meilleure trajectoire d'évitement. " significant number of parameters, and in particular, the regulations in force in the airspace crossed, the performance of the aerodyne, and the mass of fuel in its tanks. Furthermore, given that the phenomena so-called clear weather, are by definition invisible, it often happens that the pilot is warned of such a phenomenon that shortly before entering the area where it is located, and in many cases, this time is insufficient to allow it to take into account all the parameters necessary to determine the best avoidance trajectory.
La présente invention a pour but de supprimer cet inconvénient et d'alléger la tâche du pilote. A cet effet, elle propose un procédé pour le pilotage automatique d'un aérodyne pour l'évitement vertical d'une zone fixe à contours géométriques prédéfinis, l'aérodyne étant équipé d'un dispositif de pilotage automatique, dans lequel ont été introduits une route prévue, une altitude de vol de croisière et la position du point de descente prévu vers la piste d'atterrissage.The object of the present invention is to eliminate this drawback and to lighten the task of the pilot. To this end, it proposes a method for the automatic piloting of an aerodyne for the vertical avoidance of a fixed zone with predefined geometric contours, the aerodyne being equipped with an automatic piloting device, in which a planned route, cruising flight altitude and the position of the intended point of descent to the runway.
Selon l'invention, ce précédé est caractérisé en ce qu'il comprend successivement les étapes suivantes :According to the invention, this precedent is characterized in that it successively comprises the following stages:
- l'acquisition des limites de la zone à éviter sous la forme d'un contour horizontal et d'altitudes supérieure et inférieure, et la modélisation de la zone à éviter par un volume cylindrique délimité par le contour horizontal et les altitudes supérieures et inférieures,- the acquisition of the limits of the zone to be avoided in the form of a horizontal contour and of upper and lower altitudes, and the modeling of the zone to be avoided by a cylindrical volume delimited by the horizontal contour and the upper and lower altitudes ,
- la localisation du volume cylindrique par rapport à la route prévue de l'aérodyne pour déterminer si celle-ci traverse le volume cylindrique,- the location of the cylindrical volume in relation to the planned route of the aerodyne to determine whether it crosses the cylindrical volume,
- si la route prévue traverse le volume cylindrique, la détermination des points d'entrée et de sortie de la route prévue dans le volume cylindrique,- if the planned route crosses the cylindrical volume, the determination of the entry and exit points of the planned route in the cylindrical volume,
- le calcul des altitudes optimale et maximale susceptibles d'être atteintes par l'aérodyne, et de la masse de celui-ci lors du passage par le point d'entrée, compte tenu de la masse courante de l'aérodyne, et de sa consommation en carburant pour atteindre ce point, - le calcul d'une nouvelle altitude de vol pour l'évitement vertical de la zone, et d'un point de changement d'altitude pour atteindre l'altitude d'évitement, en fonction des altitudes des limites inférieure et supérieure de la zone, des altitudes courante, maximale et optimale de l'aérodyne, et de la position des points prévus de sortie du volume cylindrique et de descente de l'aérodyne, et- the calculation of the optimal and maximum altitudes likely to be reached by the aerodyne, and of the mass thereof when passing through the entry point, taking into account the current mass of the aerodyne, and its fuel consumption to reach this point, - the calculation of a new flight altitude for the vertical avoidance of the area, and of an altitude change point to reach the avoidance altitude, according to the altitudes of the lower and upper limits of the area , current, maximum and optimal altitudes of the aerodyne, and of the position of the planned points of exit from the cylindrical volume and descent of the aerodyne, and
- la mise à jour de la nouvelle altitude de vol, et l'introduction de la position du point de changement d'altitude, dans le dispositif de pilotage automatique.- updating the new flight altitude, and introducing the position of the altitude change point, into the automatic piloting device.
Grâce à ces dispositions, le pilote se trouve complètement déchargé de la modification du plan de vol et du pilotage de l'aérodyne en vue d'éviter la zone dangereuse.Thanks to these provisions, the pilot is completely relieved of the modification of the flight plan and the piloting of the aerodyne in order to avoid the danger zone.
Selon une particularité de l'invention, l'évitement de la zone est effectué par en dessous lorsque l'altitude supérieure de la zone se trouve au-dessus de l'altitude maximale susceptible d'être atteinte par l'aérodyne au point d'entrée, ou bien lorsque le point de descente prévu se trouve dans le volume cylindrique.According to a feature of the invention, the area is avoided from below when the upper altitude of the area is above the maximum altitude likely to be reached by the aerodyne at the point of entry, or when the planned point of descent is in the cylindrical volume.
Selon une autre particularité de l'invention, l'altitude d'évitement est de préférence égale à l'altitude optimale de l'aérodyne au point d'entrée.According to another feature of the invention, the avoidance altitude is preferably equal to the optimal altitude of the aerodyne at the point of entry.
Un mode de réalisation du procédé selon l'invention sera décrit ci-après, à titre d'exemple non limitatif, avec référence aux dessins annexés dans lesquels :An embodiment of the method according to the invention will be described below, by way of nonlimiting example, with reference to the appended drawings in which:
La figure 1 représente schématiquement les équipements électroniques d'un aérodyne comprenant un calculateur destiné à mettre en oeuvre le procédé selon l'invention ;FIG. 1 schematically represents the electronic equipment of an aerodyne comprising a computer intended to implement the method according to the invention;
La figure 2 représente schématiquement en perspective la trajectoire d'un aérodyne qui traverse un volume cylindrique enveloppant une zone à éviter ;FIG. 2 schematically represents in perspective the trajectory of an aerodyne which crosses a cylindrical volume enveloping an area to be avoided;
La figure 3 montre en coupe dans un plan vertical la trajectoire initialement prévue de l'aérodyne, et les trajectoires possibles d'évitement, par rapport au volume ylindrique enveloppant la zone à éviter ; Les figures 4, 5a et 5b illustrent schématiquement l'algorithme exécuté pour traiter les informations relatives aux limites d'une zone à éviter ;FIG. 3 shows in section in a vertical plane the initially planned trajectory of the aerodyne, and the possible avoidance trajectories, relative to the cylindrical volume enveloping the zone to be avoided; Figures 4, 5a and 5b schematically illustrate the algorithm executed to process information relating to the limits of an area to be avoided;
Tel que représenté sur la figure 1 , le procédé d'évitement selon l'invention est particulièrement conçu pour être exécuté par un calculateur 4 installé à bord d'un aérodyne, qui est couplé par l'intermédiaire d'un bus de transmission de données 5 appelé "bus avion", aux équipements de navigation incluant un dispositif de pilotage automatique 14 et des instruments de navigation 16, à un dispositif de transmission de données numériques 15, par exemple Data-Link, ainsi qu'à un dispositif d'interface homme/machine (IHM) 6 comprenant un élément de commande et des éléments de signalisation, tel qu'un écran de visualisation 7 et un haut-parleur 8 installés dans le cockpit. D'une manière connue, le dispositif de pilotage automatique 14 comprend une mémoire dans laquelle est enregistrée la trajectoire prévue de l'aérodyne comprenant une trajectoire latérale et un profil vertical. La trajectoire latérale est constituée d'une route formée d'une succession de segments de droite entre le point de départ et le point de destination, et de trajectoires de transition permettant de relier un segment à l'autre. Le profil vertical indique notamment l'altitude de croisière et la position du point de descente vers la piste d'atterrissage prévue.As shown in FIG. 1, the avoidance method according to the invention is particularly designed to be executed by a computer 4 installed on board an aerodyne, which is coupled via a data transmission bus 5 called "airplane bus", to navigation equipment including an automatic pilot device 14 and navigation instruments 16, to a digital data transmission device 15, for example Data-Link, as well as to an interface device man / machine (HMI) 6 comprising a control element and signaling elements, such as a display screen 7 and a loudspeaker 8 installed in the cockpit. In a known manner, the automatic piloting device 14 comprises a memory in which the planned trajectory of the aerodyne is recorded, comprising a lateral trajectory and a vertical profile. The lateral trajectory consists of a road formed by a succession of straight lines between the starting point and the destination point, and transition trajectories making it possible to connect one segment to the other. The vertical profile indicates in particular the cruising altitude and the position of the point of descent to the planned runway.
Le dispositif de transmission de données 15, constitué par exemple par un système de communication Data-Link, est susceptible de recevoir des informations météorologiques d'une station au sol ou des aérodynes situés à portée radioélectrique. Ces informations permettent de localiser une zone d'activité météorologique, par exemple, où régnent de fortes turbulences ou des conditions de givrage importantes.The data transmission device 15, constituted for example by a Data-Link communication system, is capable of receiving meteorological information from a ground station or aerodynes located within radio range. This information makes it possible to locate an area of meteorological activity, for example, where there is strong turbulence or significant icing conditions.
Lorsque de telles informations sont reçues, le calculateur 4 exécute l'algorithme montré sur la figure 4. Cet algorithme consiste tout d'abord, à l'étape 21 , à acquérir les données fournies par le dispositif de transmission de données 15 et à délimiter la zone météorologique par un volume cylindrique 10 défini par un contour horizontal et des altitudes inférieure et supérieure (figure 2).When such information is received, the computer 4 executes the algorithm shown in FIG. 4. This algorithm consists first of all, in step 21, in acquiring the data supplied by the data transmission device 15 and in delimiting the meteorological zone by a cylindrical volume 10 defined by a horizontal contour and lower and upper altitudes (Figure 2).
A l'étape 22, le calculateur 4 procède à la localisation de la route 2 définie par le plan de vol prévu, par rapport à la zone météorologique. Pour cela, le calculateur 4 accède à la définition du plan de vol prévu, lequel est par exemple mémorisé par le dispositif de pilotage automatique 14.In step 22, the computer 4 proceeds to locate the route 2 defined by the planned flight plan, with respect to the meteorological zone. For this, the computer 4 accesses the definition of the planned flight plan, which is for example stored by the automatic pilot device 14.
Si l'aérodyne ne va pas pénétrer dans la zone météorologique, on revient au début 20 de l'algorithme pour poursuivre l'analyse des informations fournies par le dispositif de transmission de données 15. Dans le cas contraire, le calculateur 4 envoie à l'étape 23 un message destiné à l'afficheur 7 pour avertir le pilote que la route 2 à parcourir par l'aérodyne 1 traverse une zone d'activité météorologique 10. Cette information peut être complétée par l'affichage sur l'écran 7 de la carte de la région survolée avec indication en surimpression des limites de la zone.If the aerodyne will not enter the meteorological zone, we return to the beginning of the algorithm 20 to continue the analysis of the information provided by the data transmission device 15. Otherwise, the computer 4 sends to the step 23 a message intended for the display 7 to warn the pilot that the route 2 to be traveled by the aerodyne 1 crosses a zone of meteorological activity 10. This information can be supplemented by the display on the screen 7 of the map of the region overflown with overprinted indication of the area's boundaries.
Il s'agit alors de déterminer une trajectoire d'évitement telle que A1-A2-A3-A4 passant au-dessus du volume cylindrique 10 ou B1-B2-B3-B4 passant en dessous du volume cylindrique 10, montrées sur la figure 3. Ces trajectoires sont définies par un point de sortie A1 , B1 de la trajectoire initialement prévue, une phase de changement d'altitude A1-A2, B1-B2 pour rejoindre l'altitude d'évitement, une phase à altitude constante A2-A3, B2-B3 à l'altitude d'évitement, et une phase de descente de retour à la trajectoire prévue A3-A4, B3-B4 et un point de retour A4, B4 à la trajectoire prévue.It is then a question of determining an avoidance trajectory such as A1-A2-A3-A4 passing above the cylindrical volume 10 or B1-B2-B3-B4 passing below the cylindrical volume 10, shown in FIG. 3 These trajectories are defined by an exit point A1, B1 from the initially planned trajectory, an altitude change phase A1-A2, B1-B2 to reach the avoidance altitude, a phase at constant altitude A2-A3 , B2-B3 at the avoidance altitude, and a descent phase returning to the planned trajectory A3-A4, B3-B4 and a return point A4, B4 to the planned trajectory.
Il est à noter que dans certains cas, ce point de retour pourra se situer après le point de descente T initialement prévu, la trajectoire d'évitement rejoignant directement la trajectoire de descente 2' à l'altitude d'évitement.It should be noted that in certain cases, this return point may be located after the descent point T initially planned, the avoidance trajectory directly joining the descent trajectory 2 ′ at the avoidance altitude.
A l'étape 24, le calculateur 4 déclenche la détermination d'une trajectoire d'évitement. Lors de cette étape, il détermine donc notamment l'altitude d'évitement dont un exemple d'algorithme de calcul est représenté sur les figures 5a et 5b et le point de sortie A1 , B1 de la trajectoire prévue pour atteindre l'altitude d'évitement déterminée (figure 3)In step 24, the computer 4 triggers the determination of an avoidance trajectory. During this step, it therefore determines in particular the avoidance altitude, an example of a calculation algorithm of which is shown in FIGS. 5a and 5b and the exit point A1, B1 of the trajectory planned to reach the altitude of determined avoidance (figure 3)
Ce point est calculé en tenant compte des caractéristiques de l'aérodyne, de la réglementation aérienne qui définit un taux de montée ou de descente maximum, ainsi que de l'écart entre l'altitude courante de l'aérodyne 1 et celle d'évitement à atteindre.This point is calculated taking into account the characteristics of the aerodyne, the air regulations which define a maximum rate of climb or descent, as well as the difference between the current altitude of aerodyne 1 and that of avoidance to reach.
A l'étape 25, le calculateur 4 se met en attente de la validation par le pilote du nouveau plan de vol incluant la trajectoire d'évitement déterminée à l'étape 24, et ce jusqu'à ce que soit dépassé le point de sortie A1 , B1 de la route 2 initialement prévue 2 (étape 26). Pendant cette attente, le calculateur 4 calcule et affiche la valeur de la distance de ce point de sortie A1 , B1 , compte tenu de la position courante de l'aérodyne 1 , cette valeur étant rafraîchie périodiquement (étape 27).In step 25, the computer 4 waits for validation by the pilot of the new flight plan including the avoidance trajectory determined in step 24, and this until the exit point is exceeded A1, B1 of route 2 initially planned 2 (step 26). While waiting, the computer 4 calculates and displays the value of the distance from this exit point A1, B1, taking into account the current position of the aerodyne 1, this value being refreshed periodically (step 27).
Si pendant cette attente, le pilote a validé le nouveau plan de vol, celui-ci est envoyé au dispositif de pilotage automatique 14 en remplacement de celui 2 initialement prévu, et devient alors actif (étape 28). Le calculateur 4 se met ensuite de nouveau en attente de nouvelles informations à l'étape 21.If during this wait, the pilot has validated the new flight plan, it is sent to the automatic pilot device 14 to replace that 2 initially planned, and then becomes active (step 28). The computer 4 then again waits for new information in step 21.
Si le pilote n'a pas validé le nouveau plan de vol avant le franchissement du point de sortie A1 , B1 , le calculateur 4 envoie à l'étape 29 un message au pilote pour indiquer que ce point de sortie est dépassé et que l'évitement de la zone est maintenant impossible. Ensuite, à l'étape 30, il calcule la distance entre la position courante de l'aérodyne 1 et le point Z d'entrée de la zone délimitée par le volume cylindrique 10. Tant que l'aérodyne 1 n'a pas atteint le point Z, cette distance est affichée avec rafraîchissement périodique (étape 31 ). Lorsque ce point Z est franchi, le calculateur 4 envoie un message d'alerte qui signale au pilote que l'aérodyne 1 se trouve dans la zone météorologique 10 (étape 32). Le calculateur 4 se met ensuite en attente de la sortie de la zone délimitée par le volume cylindrique 10, compte tenu de la position du point de sortie Z' de cette zone, ainsi que de la position courante et de la vitesse de l'aérodyne 1 (étape 33), avant de revenir à l'étape 21 d'acquisition des données, avec effacement du message d'alerte.If the pilot has not validated the new flight plan before crossing the exit point A1, B1, the computer 4 sends in step 29 a message to the pilot to indicate that this exit point has been exceeded and that the bypassing the area is now impossible. Then, in step 30, it calculates the distance between the current position of the aerodyne 1 and the entry point Z of the zone delimited by the cylindrical volume 10. As long as the aerodyne 1 has not reached the point Z, this distance is displayed with periodic refresh (step 31). When this point Z is crossed, the computer 4 sends an alert message which signals to the pilot that the aerodyne 1 is in the meteorological zone 10 (step 32). The computer 4 then waits for the exit from the zone delimited by the cylindrical volume 10, taking into account the position of the exit point Z 'of this zone, as well as the current position and the speed of the aerodyne. 1 (step 33), before returning to step 21 of data acquisition, with erasure of the alert message.
Sur la figure 5a, la détermination de l'altitude d'évitement débute par le calcul de la position du point d'entrée Z dans la zone à éviter, ainsi que de la distance séparant ce point de la position courante de l'aérodyne 1 et de la masse de ce dernier en ce point, compte tenu de la masse courante et de la consommation de carburant de l'aérodyne (étape 41 ).In FIG. 5a, the determination of the avoidance altitude begins with the calculation of the position of the entry point Z in the zone to be avoided, as well as of the distance separating this point from the current position of the aerodyne 1 and the mass of the latter at this point, taking into account the current mass and the fuel consumption of the aerodyne (step 41).
A l'étape 42, le calculateur 4 détermine les altitudes optimale (alt.opti) et maximale (alt.max) de l'aérodyne 1 au point Z compte tenu de la masse et des performances de l'aérodyne, ainsi que de la distance séparant l'aérodyne de ce point. Si l'altitude de la limite supérieure de la zone à éviter (ait. sup. zone) n'est pas supérieure à l'altitude maximale (alt.max) que peut atteindre l'aérodyne 1 au point Z (étape 43), le calculateur 4 passe à l'étape 58 représentée sur la figure 5b. Dans le cas contraire, l'évitement supérieur (par au dessus de la zone) est impossible et donc l'évitement inférieur (par en dessous de la zone) est obligatoire, et le calculateur 4 passe à l'étape 44 où il vérifie que l'altitude (ait. inf. zone) de la limite inférieure de la zone à éviter 10 satisfait à des conditions dépendant de l'altitude d'origine donnée par le plan de vol d'origine et de l'altitude minimum autorisée (alt.min). Cette altitude minimum peut être soit d'origine réglementaire, comme les altitudes MEA (Minimum Enroute Altitude), et MORA (Minimum Offroute Altitude), soit d'origine opérationnelle (Altitude Minimum Opérationnelle qui correspond au niveau de vol réglementaire au-dessus du niveau FL195 par exemple). Par exemple l'altitude de la limite inférieure de la zone doit être supérieure à l'altitude minimum autorisée, et doit être supérieure à une valeur (alt.D) obtenue en retranchant une certaine valeur prédéterminée à l'altitude initiale.In step 42, the computer 4 determines the optimal (alt.opti) and maximum (alt.max) altitudes of aerodyne 1 at point Z taking into account the mass and performance of the aerodyne, as well as the distance separating the aerodyne from this point. If the altitude of the upper limit of the area to be avoided (upper area) is not higher than the maximum altitude (alt.max) that aerodyne 1 can reach at point Z (step 43), the computer 4 goes to step 58 shown in FIG. 5b. Otherwise, the higher avoidance (over the zone) is impossible and therefore lower avoidance (from below the zone) is compulsory, and the computer 4 goes to step 44 where it verifies that the altitude (ie inf. zone) of the lower limit of the area to be avoided 10 satisfies conditions depending on the original altitude given by the original flight plan and the minimum authorized altitude (alt.min). This minimum altitude can either be of regulatory origin, such as MEA (Minimum Enroute Altitude), and MORA (Minimum Offroute Altitude) altitudes, or of operational origin (Minimum Operational Altitude which corresponds to the regulatory flight level above the level FL195 for example). For example, the altitude of the lower limit of the zone must be greater than the minimum authorized altitude, and must be greater than a value (alt.D) obtained by subtracting a certain predetermined value from the initial altitude.
Si l'altitude de la limite inférieure de la zone ne satisfait pas à ces conditions, l'évitement automatique de la zone est impossible et le traitement se poursuit à partir de l'étape 29. Dans le cas contraire, le calculateur 4 vérifie à l'étape 45, si l'altitude de la limite inférieure de la zone (alt.inf.zone) est supérieure à l'altitude optimale (alt.opti) calculée à l'étape 42. Si tel est le cas l'altitude d'évitement à rejoindre (alt.evit) correspond à l'altitude optimale (étape 46), sinon l'altitude d'évitement se trouve juste au dessous de la zone 10, calculée avec une certaine marge de sécurité (étape 47).If the altitude of the lower limit of the area does not meet these conditions, automatic avoidance of the area is impossible and the processing continues from step 29. Otherwise, the computer 4 checks to step 45, if the altitude of the lower limit of the zone (alt.inf.zone) is higher than the optimal altitude (alt.opti) calculated in step 42. If this is the case the altitude avoidance to join (alt.evit) corresponds to the optimal altitude (step 46), otherwise the avoidance altitude is just below zone 10, calculated with a certain safety margin (step 47).
La suite de l'algorithme consiste à déterminer le point de début de descente pour l'atterrissage. Pour cela, le calculateur 4 détermine à l'étape 48 la position du point de sortie Z' de la route prévue 2 du volume cylindrique 10, et la distance entre ce point et le point T prévu de descente vers la piste d'atterrissage. Si cette distance est supérieure à une valeur de seuil, par exemple 100 milles nautiques, cela signifie que l'aérodyne peut rejoindre le point de descente T à l'altitude prévue (étape 50). Dans le cas contraire, l'aérodyne 1 ne doit pas rejoindre ce point de descente T, mais va rester à l'altitude d'évitement calculée précédemment, jusqu'à ce qu'il rejoigne la phase de descente 2' de la trajectoire prévue. Le calculateur 4 détermine alors le nouveau point de descente T' ou T" qui correspond au point de jonction de la trajectoire d'évitement (inférieur ou supérieur) à l'altitude d'évitement avec la trajectoire de descente 2' initialement prévue (étape 51 ). A l'issue des étapes 50 et 51 , l'exécution se poursuit par l'étape 25. Si à l'étape 43, l'altitude supérieure (alt.sup.zone) de la zone 10 est inférieure à l'altitude maximale (alt.max) que peut atteindre l'aérodyne 1 calculée à l'étape 42, le calculateur 4 détermine à l'étape 58, si le point de descente prévu T se trouve ou non dans la zone 10, en comparant les distances entre la position courante de l'aérodyne 1 et les points Z' et T (figure 5b). Si le point T se trouve dans la zone, l'évitement supérieur n'est pas possible et le calculateur 4 procède à un calcul d'évitement inférieur en passant à l'étape 59 où il vérifie que l'évitement inférieur est possible. Dans le cas contraire, le calculateur détermine à l'étape 60 si l'évitement inférieur est possible en comparant l'altitude inférieure (alt.inf.zone) de la zone 10 à l'altitude minimum autorisée (alt.min), ainsi qu'à la valeur (alt.D) (obtenue en retranchant une certaine valeur prédéterminée de l'altitude donnée par le plan de vol d'origine). Si l'évitement inférieur est impossible, l'évitement est effectué en passant par dessus la zone.The rest of the algorithm consists in determining the starting point of descent for landing. For this, the computer 4 determines in step 48 the position of the exit point Z ′ from the planned route 2 of the cylindrical volume 10, and the distance between this point and the planned point T of descent to the landing runway. If this distance is greater than a threshold value, for example 100 nautical miles, this means that the aerodyne can reach the descent point T at the planned altitude (step 50). Otherwise, the aerodyne 1 must not join this descent point T, but will remain at the avoidance altitude calculated previously, until it joins the descent phase 2 'of the planned trajectory. . The computer 4 then determines the new descent point T 'or T "which corresponds to the junction point of the avoidance trajectory (lower or higher) at the avoidance altitude with the descent trajectory 2' initially planned (step At the end of steps 50 and 51, the execution continues with step 25. If in step 43, the upper altitude (alt.sup.zone) of zone 10 is lower than the maximum altitude (alt.max) that aerodyne 1 can reach calculated in step 42, the computer 4 determines in step 58, whether the planned descent point T is located in zone 10 or not, by comparing the distances between the current position of the aerodyne 1 and the points Z ′ and T (FIG. 5b). If the point T is in the area, the upper avoidance is not possible and the computer 4 performs a lower avoidance calculation by going to step 59 where it checks that the lower avoidance is possible. Otherwise, the computer determines in step 60 whether lower avoidance is possible by comparing the lower altitude (alt.inf.zone) of zone 10 with the minimum authorized altitude (alt.min), thus than the value (alt.D) (obtained by subtracting a certain predetermined value from the altitude given by the original flight plan). If lower avoidance is not possible, avoidance is performed by passing over the area.
Si l'évitement est possible par dessus et par dessous la zone, et si l'altitude courante (alt.avion) de l'aérodyne 1 est inférieure à l'altitude optimale (alt.opti) (étape 64), alors on procède à un évitement supérieur, sinon on procède à un évitement inférieur.If avoidance is possible above and below the area, and if the current altitude (alt.airplane) of aerodyne 1 is lower than the optimal altitude (alt.opti) (step 64), then we proceed to a higher avoidance, otherwise we proceed to a lower avoidance.
A l'étape 59, l'évitement supérieur n'est pas possible et le calculateur examine si l'évitement inférieur est possible en comparant, comme cela a déjà été décrit, l'altitude inférieure (alt.inf.zone) de la zone 10 aux valeurs minimales d'altitude (alt.min et alt.D). Si l'évitement inférieur est impossible, le traitement se poursuit à partir de l'étape 29.In step 59, the upper avoidance is not possible and the computer examines whether the lower avoidance is possible by comparing, as has already been described, the lower altitude (alt.inf.zone) of the area 10 to the minimum altitude values (alt.min and alt.D). If lower avoidance is impossible, processing continues from step 29.
Pour procéder à un évitement supérieur à la suite des étapes 60 ou 64, le calculateur 4 compare l'altitude optimale (alt.opti) avec l'altitude supérieure (alt.sup.zone) de la zone 10 (étape 65). Si l'altitude optimale est supérieure à l'altitude supérieure de la zone 10, l'altitude d'évitement (alt.evit) correspond à l'altitude optimale (alt.opti) (étape 66), sinon, l'altitude d'évitement correspond à l'altitude supérieure (alt.sup.zone) de la zone 10 avec une marge de sécurité (étape 67). L'exécution de l'algorithme se poursuit par l'étape 48, pour déterminer la position du point de descente T ou T" vers la piste d'atterrissage.To carry out a higher avoidance following steps 60 or 64, the computer 4 compares the optimal altitude (alt.opti) with the higher altitude (alt.sup.zone) of zone 10 (step 65). If the optimal altitude is higher than the upper altitude of zone 10, the avoidance altitude (alt.evit) corresponds to the optimal altitude (alt.opti) (step 66), otherwise, the altitude d avoidance corresponds to the upper altitude (alt.sup.zone) of zone 10 with a safety margin (step 67). The execution of the algorithm continues with step 48, to determine the position of the point of descent T or T "towards the runway.
D'une manière analogue, pour procéder à un évitement inférieur à la suite des étapes 59 ou 64, le calculateur 4 examine si l'altitude optimale (alt.opti) n'est pas inférieure à l'altitude inférieure (alt.inf.zone) de la zone 10 (étape 68), l'altitude d'évitement (alt.evit) correspond à l'altitude inférieure de la zone 10 avec une marge de sécurité (étape 69), sinon elle correspond à l'altitude optimale (étape 70).Similarly, to carry out lower avoidance following steps 59 or 64, the computer 4 examines whether the optimal altitude (alt.opti) is not less than the lower altitude (alt.inf. zone) of zone 10 (step 68), the avoidance altitude (alt.evit) corresponds to the lower altitude of zone 10 with a safety margin (step 69), otherwise it corresponds to the optimal altitude (step 70).
Le calculateur passe ensuite à l'étape 48 décrite ci-avant pour déterminer le point de descente T ou T vers la piste d'atterrissage.The computer then goes to step 48 described above to determine the point of descent T or T towards the runway.
En pratique, l'altitude à respecter par l'aérodyne est calculée sous la forme d'un niveau de vol, les niveaux de vol étant espacés entre eux de 100 pieds (30,48 m). Ainsi, à l'étape 42, le calculateur 4 détermine également les niveaux de vol optimal, respectivement maximal, en arrondissant les altitudes calculées au niveau de vol le plus proche, respectivement inférieur. A l'étape 43, on compare en fait l'altitude supérieure de la zone au niveau de vol maximum. Aux étapes 44 et 60, on compare l'altitude inférieure de la zone à la valeur alt.D obtenue en retranchant au niveau de vol initialement prévu, par exemple, la hauteur de trois niveaux de vol, ainsi qu'au niveau de vol minimum FL195.In practice, the altitude to be respected by the aerodyne is calculated in the form of a flight level, the flight levels being spaced apart by 100 feet (30.48 m). Thus, in step 42, the computer 4 also determines the optimal, respectively maximum flight levels, by rounding the altitudes calculated to the nearest, respectively lower flight level. In step 43, the upper altitude of the area is in fact compared to the maximum flight level. In steps 44 and 60, the lower altitude of the zone is compared to the value alt.D obtained by subtracting from the flight level initially planned, for example, the height of three flight levels, as well as from the minimum flight level FL195.
De même, l'altitude d'évitement est calculée en niveau de vol, et la marge utilisée aux étapes 47, 67 et 69 correspond à un niveau de vol. Likewise, the avoidance altitude is calculated in flight level, and the margin used in steps 47, 67 and 69 corresponds to a flight level.

Claims

REVENDICATIONS
1. Procédé de pilotage automatique d'un aérodyne pour l'évitement vertical d'une zone fixe à contours géométriques prédéfinis, l'aérodyne (1) étant équipé d'un dispositif de pilotage automatique (14), dans lequel ont été introduits une route prévue (2, 2') et un profil vertical de trajectoire comprenant une altitude de vol de croisière et la position d'un point de descente (T) vers la piste d'atterrissage prévue, caractérisé en ce qu'il comprend successivement les étapes suivantes :1. Automatic piloting method of an aerodyne for the vertical avoidance of a fixed area with predefined geometric contours, the aerodyne (1) being equipped with an automatic piloting device (14), into which a planned route (2, 2 ') and a vertical trajectory profile comprising a cruise flight altitude and the position of a point of descent (T) towards the planned landing runway, characterized in that it successively comprises the following steps :
- l'acquisition (21 ) des limites de la zone à éviter sous la forme d'un contour horizontal et d'altitudes supérieure (alt.sup.zone) et inférieure (alt.inf.zone), et la modélisation de la zone à éviter par un volume cylindrique (10) délimité par le contour horizontal et les altitudes supérieures et inférieures,- the acquisition (21) of the limits of the area to be avoided in the form of a horizontal contour and of higher (alt.sup.zone) and lower (alt.inf.zone) altitudes, and the modeling of the area to be avoided by a cylindrical volume (10) delimited by the horizontal contour and the upper and lower altitudes,
- la localisation du volume cylindrique (10) par rapport à la route prévue (2, 2') de l'aérodyne (1 ) pour déterminer si celle-ci traverse le volume cylindrique,- the location of the cylindrical volume (10) relative to the planned route (2, 2 ') of the aerodyne (1) to determine whether it crosses the cylindrical volume,
- si la route prévue (2, 2') traverse le volume cylindrique (10), la détermination (41 ) des points d'entrée (Z) et de sortie (Z') de la route prévue (2,2') dans le volume cylindrique (10),- if the planned route (2, 2 ') crosses the cylindrical volume (10), the determination (41) of the entry (Z) and exit (Z') points of the planned route (2,2 ') in the cylindrical volume (10),
- le calcul (42) des altitudes optimale (alt.opti) et maximale (alt.max) susceptibles d'être atteintes par l'aérodyne (1 ), et de la masse de celui-ci lors du passage par le point d'entrée (Z) compte tenu de la masse courante de l'aérodyne, et de sa consommation en carburant pour atteindre ce point,- the calculation (42) of the optimal (alt.opti) and maximum (alt.max) altitudes likely to be reached by the aerodyne (1), and of the mass thereof when passing through the point of input (Z) taking into account the current mass of the aerodyne, and its fuel consumption to reach this point,
- le calcul d'une nouvelle altitude de vol (alt.evit) pour l'évitement vertical du volume cylindrique (10), et d'un point de changement d'altitude (A1 , B1 ) pour atteindre l'altitude d'évitement (alt.evit), en fonction des altitudes des limites inférieure (alt.inf.zone) et supérieure (alt.sup.zone) de la zone à éviter, des altitudes courante (alt.avion), maximale (alt.max) et optimale (alt.opti) de l'aérodyne (1 ), et de la position des points prévus de sortie (Z) et de descente (T) de l'aérodyne (1 ), et- the calculation of a new flight altitude (alt.evit) for the vertical avoidance of the cylindrical volume (10), and of an altitude change point (A1, B1) to reach the avoidance altitude (alt.evit), depending on the altitudes of the lower (alt.inf.zone) and upper (alt.sup.zone) limits of the area to be avoided, current altitudes (alt.avion), maximum (alt.max) and optimal (alt.opti) of the aerodyne (1), and of the position of the planned exit (Z) and descent (T) points of the aerodyne (1), and
la mise à jour (28) de la nouvelle altitude de vol (alt.avion), et l'introduction de la position du point de changement d'altitude (A1 , B1 ), dans le dispositif de pilotage automatique (14). updating (28) of the new flight altitude (aircraft alt.), and introduction of the position of the altitude change point (A1, B1), into the automatic piloting device (14).
2. Procédé selon la revendication 1 , caractérisé en ce qu'il comprend l'évitement (46, 47, 69, 70) de la zone par en dessous du volume cylindrique (10) lorsque l'altitude inférieure (alt.inf.zone) de la zone est supérieure à une certaine limite prédéterminée (alt.D, alt.min), et lorsque l'altitude supérieure (alt.sup.zone) de la zone se trouve au-dessus de l'altitude maximale (alt.max) susceptible d'être atteinte par l'aérodyne au point d'entrée (Z) dans la zone, ou bien lorsque le point de descente prévu (T) se trouve dans le volume cylindrique (10).2. Method according to claim 1, characterized in that it comprises the avoidance (46, 47, 69, 70) of the zone below the cylindrical volume (10) when the lower altitude (alt.inf.zone ) of the zone is higher than a certain predetermined limit (alt.D, alt.min), and when the upper altitude (alt.sup.zone) of the zone is above the maximum altitude (alt. max) likely to be reached by the aerodyne at the point of entry (Z) into the area, or when the planned point of descent (T) is in the cylindrical volume (10).
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'altitude d'évitement (alt.evit) est de préférence égale à l'altitude optimale (alt.opti) de l'aérodyne (1 ) au point d'entrée (Z).3. Method according to claim 1 or 2, characterized in that the avoidance altitude (alt.evit) is preferably equal to the optimal altitude (alt.opti) of the aerodyne (1) at the point of entry (Z).
4. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre périodiquement le calcul et l'affichage (27) de la distance entre la position courante de l'aérodyne (1 ) et le point de sortie (A1 ) de la route prévue (2) vers la trajectoire d'évitement (A1- A4), l'activation (28) de la nouvelle route incluant la trajectoire d'évitement sélectionnée étant effectuée si celle-ci a été validée par l'opérateur.4. Method according to one of the preceding claims, characterized in that it also periodically comprises the calculation and display (27) of the distance between the current position of the aerodyne (1) and the exit point ( A1) from the planned route (2) to the avoidance path (A1- A4), the activation (28) of the new route including the selected avoidance path being carried out if it has been validated by the operator.
5. Procédé selon la revendication 4, caractérisé en ce qu'il comprend en outre périodiquement le calcul et l'affichage (31 ) de la distance entre la position courante de l'aérodyne (1 ) et la zone à éviter (10), si le point de sortie (A1 ) est dépassé sans que la nouvelle route ait été validée, et l'affichage (32) d'un message d'alerte lorsque l'aérodyne (1 ) pénètre dans la zone à éviter (10).5. Method according to claim 4, characterized in that it also periodically comprises the calculation and display (31) of the distance between the current position of the aerodyne (1) and the area to be avoided (10), if the exit point (A1) is exceeded without the new route having been validated, and the display (32) of an alert message when the aerodyne (1) enters the zone to be avoided (10).
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que dans le cas d'un évitement par en dessous de la zone à éviter, et si la distance entre le point de sortie (Z) de la route prévue (2, 2') du volume cylindrique (10) et le point prévu de descente (T) est inférieure à un seuil prédéterminé, il comprend le calcul (51 ) d'un nouveau point de descente (T) correspondant au point de jonction de la trajectoire d'évitement à l'altitude d'évitement (alt.evit) avec la trajectoire de descente (2') initialement prévue. 6. Method according to one of the preceding claims, characterized in that in the case of avoidance from below the area to be avoided, and if the distance between the exit point (Z) of the planned route (2, 2 ') of the cylindrical volume (10) and the planned point of descent (T) is less than a predetermined threshold, it includes the calculation (51) of a new point of descent (T) corresponding to the junction point of the trajectory avoidance at the avoidance altitude (alt.evit) with the descent trajectory (2 ') initially planned.
EP97926088A 1996-06-07 1997-06-03 Method for controlling an aerodyne for the vertical avoidance of a zone Expired - Lifetime EP0904574B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9607078A FR2749675B1 (en) 1996-06-07 1996-06-07 METHOD FOR CONTROLLING AN AERODYNE FOR THE VERTICAL AVOIDANCE OF A ZONE
FR9607078 1996-06-07
PCT/FR1997/000972 WO1997048027A1 (en) 1996-06-07 1997-06-03 Method for controlling an aerodyne for the vertical avoidance of a zone

Publications (2)

Publication Number Publication Date
EP0904574A1 true EP0904574A1 (en) 1999-03-31
EP0904574B1 EP0904574B1 (en) 2000-01-26

Family

ID=9492823

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97926088A Expired - Lifetime EP0904574B1 (en) 1996-06-07 1997-06-03 Method for controlling an aerodyne for the vertical avoidance of a zone

Country Status (7)

Country Link
US (1) US6161063A (en)
EP (1) EP0904574B1 (en)
JP (1) JP2000515088A (en)
CA (1) CA2257338C (en)
DE (1) DE69701223T2 (en)
FR (1) FR2749675B1 (en)
WO (1) WO1997048027A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830274B2 (en) 2007-02-14 2010-11-09 Siemens Aktiengesellschaft Method and device for improving traffic safety

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6244540B1 (en) * 1998-05-18 2001-06-12 James R. Stabile Method of calculating oxygen required and system for monitoring oxygen supply and/or calculating flight level after emergency cabin decompression
FR2787587B1 (en) * 1998-12-18 2001-10-05 Sextant Avionique PROCESS FOR THE REAL-TIME DEVELOPMENT OF TRAJECTORIES FOR AN AIRCRAFT
FR2821466B1 (en) 2001-02-26 2003-05-16 Eads Airbus Sa DEVICE FOR REVIEWING THE FLIGHT PLAN OF AN AIRCRAFT, IN PARTICULAR A TRANSPORT PLANE
AUPR772001A0 (en) * 2001-09-17 2001-10-11 Kenny, Craig Anthony Aircraft avoidance system for preventing entry into an exclusion zone
WO2003030125A1 (en) * 2001-09-25 2003-04-10 Werner Keber Method and device for preventing unpermitted approach of airplanes to objects on the ground which are to be protected
US6584383B2 (en) * 2001-09-28 2003-06-24 Pippenger Phillip Mckinney Anti-hijacking security system and apparatus for aircraft
US6675095B1 (en) 2001-12-15 2004-01-06 Trimble Navigation, Ltd On-board apparatus for avoiding restricted air space in non-overriding mode
US20040054472A1 (en) * 2002-09-17 2004-03-18 Koncelik Lawrence J. Controlling aircraft from collisions with off limits facilities
FR2861871B1 (en) * 2003-11-04 2006-02-03 Thales Sa METHOD FOR MONITORING THE FLOW OF THE FLIGHT PLAN OF A COOPERATIVE AIRCRAFT
FR2864269B1 (en) * 2003-12-19 2006-04-07 Thales Sa METHOD FOR AIDING LOW ALTITUDE NAVIGATION OF AN AIRCRAFT
FR2875916B1 (en) * 2004-09-28 2015-06-26 Eurocopter France METHOD AND DEVICE FOR AIDING THE STEERING OF A ROTATING SAILBOAT AIRCRAFT IN THE VICINITY OF A POSITION OR TAKE-OFF POINT
US20090177339A1 (en) * 2005-03-03 2009-07-09 Chen Robert H Optimization and Mechanization of Periodic Flight
FR2883403A1 (en) * 2005-03-17 2006-09-22 Airbus France Sas METHOD AND SYSTEM FOR FIELD ENJOYMENT FOR AN AIRCRAFT
US8078344B2 (en) * 2005-04-21 2011-12-13 Honeywell International Inc. System and method for displaying the protected airspace associated with a circle-to-land maneuver
FR2887065B1 (en) * 2005-06-14 2007-07-20 Airbus France Sas METHOD AND SYSTEM FOR AIDING THE STEERING OF A LOW ALTITUDE FLYING AIRCRAFT
FR2894365B1 (en) * 2005-12-02 2008-01-11 Thales Sa DEVICE AND METHOD FOR CHANGING AREAS PROHIBITED TO AN AIRCRAFT
FR2906921B1 (en) * 2006-10-10 2010-08-13 Thales Sa METHOD FOR FORMING A 3D EMERGENCY TRACK FOR AN AIRCRAFT AND DEVICE FOR IMPLEMENTING THE SAME
FR2923623B1 (en) * 2007-11-13 2015-02-27 Thales Sa SYSTEM FOR SECURING A FLIGHT PLAN FOR AN AIRCRAFT
US9513125B2 (en) * 2008-01-14 2016-12-06 The Boeing Company Computing route plans for routing around obstacles having spatial and temporal dimensions
US8082102B2 (en) * 2008-01-14 2011-12-20 The Boeing Company Computing flight plans for UAVs while routing around obstacles having spatial and temporal dimensions
FR2937454B1 (en) * 2008-10-22 2015-01-02 Airbus France METHOD AND SYSTEM FOR FIELD ENJOYMENT FOR AN AIRCRAFT
JP5696987B2 (en) * 2010-01-13 2015-04-08 独立行政法人 宇宙航空研究開発機構 Turbulence avoidance operation support device
US20130046459A1 (en) * 2010-04-22 2013-02-21 Eiji Itakura Flight state control device of flying object
WO2012046327A1 (en) * 2010-10-07 2012-04-12 トヨタ自動車株式会社 Aircraft designing method, safety map generating device, and aircraft controlling device
US9117368B2 (en) * 2011-09-09 2015-08-25 Honeywell International Inc. Ground based system and methods for providing multiple flightplan re-plan scenarios to a pilot during flight
US8965600B2 (en) * 2012-07-26 2015-02-24 Ge Aviation Systems, Llc Method for displaying a flight plan
US9043136B2 (en) 2012-07-26 2015-05-26 Ge Aviation Systems, Llc Method for displaying suitability of future waypoint locations
US8797190B2 (en) 2012-07-26 2014-08-05 General Electric Company Method for displaying a user entered flight path
JP6133506B2 (en) 2014-04-17 2017-05-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd Flight control for flight restricted areas
US9262929B1 (en) * 2014-05-10 2016-02-16 Google Inc. Ground-sensitive trajectory generation for UAVs
EP3274255A4 (en) * 2015-03-26 2018-12-05 Matternet, Inc. Route planning for unmanned aerial vehicles
JP2019503295A (en) 2015-11-10 2019-02-07 マターネット, インコーポレイテッドMatternet, Inc. Method and system for transport using unmanned aerial vehicles
CN113342038A (en) * 2016-02-29 2021-09-03 星克跃尔株式会社 Method and system for generating a map for flight of an unmanned aerial vehicle
US10420397B2 (en) 2016-12-14 2019-09-24 Black Brass, Inc. Foot measuring and sizing application
US20180160777A1 (en) 2016-12-14 2018-06-14 Black Brass, Inc. Foot measuring and sizing application
KR102643553B1 (en) 2017-01-06 2024-03-05 나이키 이노베이트 씨.브이. System, platform and method for personalized shopping using an automated shopping assistant
JP7211983B2 (en) 2017-06-27 2023-01-24 ナイキ イノベイト シーブイ Systems, platforms, and methods for personalized shopping using automated shopping assistants
WO2021243258A1 (en) 2020-05-29 2021-12-02 Nike Innovate C.V. Systems and methods for processing captured images

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265024A (en) * 1991-04-05 1993-11-23 Vigyan, Inc. Pilots automated weather support system
US5337982A (en) * 1991-10-10 1994-08-16 Honeywell Inc. Apparatus and method for controlling the vertical profile of an aircraft
JPH06139498A (en) * 1992-10-30 1994-05-20 Mitsubishi Electric Corp Obstacle evading device
FR2712251B1 (en) * 1993-11-10 1996-01-26 Eurocopter France Method and device for assisting the piloting of an aircraft.
US5581250A (en) * 1995-02-24 1996-12-03 Khvilivitzky; Alexander Visual collision avoidance system for unmanned aerial vehicles
US5872526A (en) * 1996-05-23 1999-02-16 Sun Microsystems, Inc. GPS collision avoidance system
US5838262A (en) * 1996-12-19 1998-11-17 Sikorsky Aircraft Corporation Aircraft virtual image display system and method for providing a real-time perspective threat coverage display

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9748027A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830274B2 (en) 2007-02-14 2010-11-09 Siemens Aktiengesellschaft Method and device for improving traffic safety

Also Published As

Publication number Publication date
DE69701223D1 (en) 2000-03-02
FR2749675B1 (en) 1998-08-28
CA2257338C (en) 2005-10-25
FR2749675A1 (en) 1997-12-12
JP2000515088A (en) 2000-11-14
CA2257338A1 (en) 1997-12-18
DE69701223T2 (en) 2000-06-21
WO1997048027A1 (en) 1997-12-18
EP0904574B1 (en) 2000-01-26
US6161063A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
EP0904574B1 (en) Method for controlling an aerodyne for the vertical avoidance of a zone
EP0902877B1 (en) Method for the lateral avoidance of a mobile zone by a vehicle
EP0902878B1 (en) Method for controlling a vehicle in order to change course and application of method for the lateral avoidance of a zone
CA2508287A1 (en) Method of validating a flight plan constraint
EP0902879A1 (en) Method for automatically controlling a vehicle for the lateral avoidance of a fixed zone
EP0989386A1 (en) Landing aid device, especially for inhibiting the ground anti-collision alarm
FR2908533A1 (en) Reference trajectory follow-up monitoring method for civil aircraft, involves triggering alarm, if extrapolated values of flight parameters are not equal to theoretical values or if values are not compatible with real parameters
FR2945622A1 (en) METHOD FOR SHORT TERM JOINING A RADAR GUIDED FLIGHT PLAN OF AN AIRCRAFT
FR2752934A1 (en) METHOD FOR ASSISTING THE PILOTAGE OF AN AERODYNE
EP1761829A1 (en) Method of changing the approach procedure of an aircraft
FR2949897A1 (en) AIRCRAFT ASSISTING ASSISTANCE METHOD AND CORRESPONDING DEVICE.
EP2775367B1 (en) Rotorcraft guidance method, reducing noise annoyance during the approach procedure to a landing point
FR3032043A1 (en) METHOD OF AVOIDING ONE OR MORE OBSTACLES BY AN AIRCRAFT, COMPUTER PROGRAM PRODUCT, ELECTRONIC SYSTEM AND AIRCRAFT
EP1057160A1 (en) Assistance system for avoiding terrain collision for an aircraft
FR3018364A1 (en) METHOD OF DETERMINING AN OBSTACLE AVIATION GUIDANCE LAW BY AN AIRCRAFT, COMPUTER PROGRAM PRODUCT, ELECTRONIC SYSTEM AND AIRCRAFT
FR2912243A1 (en) Engine failure management assisting method for multi-engine cargo aircraft, involves determining aircraft guiding setpoints e.g. speed and altitude setpoints, to rejoin airport and transmitting setpoints to system, during failure detection
FR3067132A1 (en) METHOD AND DEVICE FOR CONTROLLING THE TRACK OF A FOLLOWING AIRCRAFT IN RELATION TO VORTEX GENERATED BY AN AIRCRAFT.
FR2944887A1 (en) METHOD AND DEVICE FOR ADJUSTING THE TRACK OF AN AIRCRAFT IN A RUNWAY CIRCUIT
EP1520152A1 (en) Method for an aircraft navigational aid and corresponding device
FR3068490B1 (en) METHOD FOR CALCULATING A VERTICAL TRACK OF AN AIRCRAFT FROM ITS CURRENT POSITION, COMPUTER PROGRAM PRODUCT AND CALCULATION SYSTEM THEREFOR
FR2941794A1 (en) Method for managing optional route at initial route of aircraft, involves determining point of vertical divergence on lateral profile in upstream of point of lateral divergence, and displaying point of vertical divergence
FR3081580A1 (en) ELECTRONIC METHOD AND DEVICE FOR MANAGING THE DISPLAY OF AN AIRCRAFT FLIGHT PROFILE, COMPUTER PROGRAM AND RELATED ELECTRONIC DISPLAY SYSTEM
FR3123863A1 (en) Process for managing the longitudinal speed of a motor vehicle.
FR3067804A1 (en) METHOD AND DEVICE FOR MONITORING AIR TRAFFIC PRECEDING AN AIRCRAFT.
FR3063551A1 (en) DEVICE AND METHOD FOR FIELD ENJOYMENT FOR AN AIRCRAFT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990521

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF SEXTANT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 69701223

Country of ref document: DE

Date of ref document: 20000302

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050602

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070530

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140609

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630