EP0897801B1 - Ink-jet recording head - Google Patents

Ink-jet recording head Download PDF

Info

Publication number
EP0897801B1
EP0897801B1 EP97912457A EP97912457A EP0897801B1 EP 0897801 B1 EP0897801 B1 EP 0897801B1 EP 97912457 A EP97912457 A EP 97912457A EP 97912457 A EP97912457 A EP 97912457A EP 0897801 B1 EP0897801 B1 EP 0897801B1
Authority
EP
European Patent Office
Prior art keywords
pressure generating
ink
printing head
generating chamber
jet printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97912457A
Other languages
German (de)
French (fr)
Other versions
EP0897801A4 (en
EP0897801A1 (en
Inventor
Tsuyoshi Seiko Epson Corporation KITAHARA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of EP0897801A1 publication Critical patent/EP0897801A1/en
Publication of EP0897801A4 publication Critical patent/EP0897801A4/en
Application granted granted Critical
Publication of EP0897801B1 publication Critical patent/EP0897801B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14274Structure of print heads with piezoelectric elements of stacked structure type, deformed by compression/extension and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14387Front shooter

Definitions

  • the present invention relates to an ink-jet printing head, more particularly relates to a method of producing a flow passage forming substrate.
  • a flow passage unit is constituted by a flow passage forming substrate F in which a reservoir A to which ink is supplied from an outside tank, a pressure generating chamber B which is concave and pressurized from the outside, an ink supply port C connecting the reservoir A and the pressure generating chamber B and a nozzle communicating hole E which is a through hole and connects the pressure generating chamber B and a nozzle aperture D are formed, an elastic plate G for sealing one surface of the flow passage forming substrate F and a nozzle plate H provided with the nozzle aperture D for sealing the other surface of the flow passage forming substrate F.
  • the ink-jet printing head is constituted so that ink in the reservoir A is sucked in the pressure generating chamber B via the ink supply port C by touching a piezoelectric vibrator J to the elastic plate G and expanding the pressure generating chamber B by the displacement of the piezoelectric vibrator J and an ink droplet ejects from the nozzle aperture D by pressurizing ink the pressure generating chamber B by contracting the pressure generating chamber B.
  • the ink-jet printing head As in such an ink-jet printing head, full color printing can be readily executed by using color ink, the ink-jet printing head is rapidly popularized as a printing head of a color printer and hereby, it is demanded that printing quality and density are further enhanced.
  • a pressure generating chamber can be reduced as much as possible and, in addition, pressure generating chambers can be arrayed in high density by arraying pressure generating chambers in high density, selecting a substrate 300 ⁇ m or more thick, desirably a substrate approximately 500 ⁇ m thick, for example a monocrystalline silicon substrate in view of working precision as a flow passage forming substrate in consideration of preventing a flow passage forming substrate from being deformed by pressure when an ink droplet ejects and, further, facility in handling in assembly and forming the pressure generating chamber as a shallow concave portion by photolithography and anisotropic etching as disclosed in Unexamined Japanese Patent Application No. Sho. 58-40509.
  • the nozzle communicating hole E for connecting the pressure generating chamber and the nozzle aperture is required to let the pressure generating chamber communicate with the nozzle aperture D of the nozzle plate arranged on the surface on the side reverse to the surface on which the pressure generating chamber is formed.
  • Such a nozzle communicating hole E is formed by making a through hole with a minute diameter pierced from one surface to the other surface in an area to be the nozzle communicating hole E beforehand as disclosed in Unexamined Japanese Patent Application No. Sho. 5-309835 and executing anisotropic etching to the depth using the above through hole as an etching pilot hole so that the width of the nozzle communicating hole E is approximately equal to the width of the pressure generating chamber B at the maximum.
  • An ink-jet printing head is provided with a flow passage forming substrate in which a pressure generating chamber, a reservoir, an ink supply port and a nozzle communicating hole which is a through hole are formed, a nozzle plate provided with a nozzle communicating with the pressure generating chamber via the nozzle communicating hole, a capping member for sealing the side of the pressure generating chamber of the flow passage forming substrate and pressure generating means for pressurizing the pressure generating chamber, two reservoirs are formed with the pressure generating chamber held between the two reservoirs, the pressure generating chamber communicates with at least one reservoir of them via the ink supply port, and the nozzle communicating holes are arranged zigzag in an approximately symmetrical position in which the center in the longitudinal direction of the pressure generating chamber is held between the adjacent nozzle communicating holes and so that one of the adjacent nozzle communicating holes is shifted in the longitudinal direction of the pressure generating chamber.
  • the flow passage forming substrate can be provided with sufficient rigidity. Therefore, even if the pressure generating chambers are arrayed in high density, a piezoelectric vibrator smaller than the outside diameters of a diaphragm may be used and crosstalk can be prevented.
  • Figs. 1 (a) and 1 (b) show an embodiment of the present invention as the sectional structure viewed along a center line (a line A-A and a line B-B in Fig. 2) between adjacent pressure generating chambers 2, a flow passage forming substrate 1 is made of a monocrystalline silicon substrate in this embodiment, a pressure generating chamber 2 is formed by anisotropic half-etching as a shallow concave portion, and a first reservoir 3 and a second reservoir 4 are also formed by anisotropic etching in two columns as a through hole in this embodiment on both sides of each pressure generating chamber 2. Each pressure generating chamber 2 adjacent in a row communicates with the first reservoir 3 or the second reservoir 4 via an ink supply port 5 or 6 which is a concave portion with depth approximately equal to the depth of the pressure generating chamber 2.
  • a nozzle communicating hole 7 or 8 pierced from the pressure generating chamber 2 to the other surface, that is, to the surface of a nozzle plate 13 is formed.
  • zigzag hatching shows an area which is not etched
  • oblique hatching shows a half-etched area and further, an area which is not hatched shows a through hole.
  • the surface on the side of the pressure generating chamber of the spacer 1 constituted as described above is sealed by an elastic plate 10, the other surface is sealed by a nozzle plate 13 in which a nozzle aperture 11 or 12 is made in an area opposite to each nozzle communicating hole 7 or 8 and a flow passage unit is composed of the above members.
  • a piezoelectric vibrator 14 in a longitudinal vibration mode which is pressure generating means in the present embodiment is provided in an approximately central area on the center line A-A or B-B between the pressure generating chambers 2 on the elastic plate 10 with the end of the piezoelectric vibrator in contact with an island part 10a formed on the elastic plate 10 and with the other end fixed to a head frame not shown which also functions as a fixing member.
  • the piezoelectric vibrators 14 which respectively function as pressure generating means are arranged by the number of the pressure generating chambers 2 in the row of the pressure generating chambers 2.
  • the piezoelectric vibrator 14 when a driving signal is applied to the piezoelectric vibrator 14, the piezoelectric vibrator 14 is contracted and the pressure generating chamber 2 is expanded. Ink in the first or second reservoir 3 or 4 flows into the pressure generating chamber 2 via the ink supply port 5 or 6 because of the above expansion.
  • the piezoelectric vibrator 14 expands to an original state and compresses the pressure generating chamber 2.
  • pressurized ink is jetted as an ink droplet from the nozzle aperture 11 or 12 via the nozzle communicating hole 7 or 8.
  • the nozzle communicating holes 7 and 8 of adjacent pressure generating chambers 2 are arranged at least at an interval L shown in Fig. 2 in the longitudinal direction of the pressure generating chamber 2 and the height M of areas 15' and 15" respectively opposite to the nozzle communicating holes 7 and 8 of a partition 15 for partitioning adjacent pressure generating chambers 2 as shown in Fig. 3 is equal to the depth N of each pressure generating chamber 2 and shallow, the areas 15' and 15" are provided with sufficient rigidity approximately equal to the rigidity of the partition 15 partitioning adjacent pressure generating chambers 2. Therefore, the areas 15' and 15" adjacent to each nozzle communicating hole 7 or 8 of the partition 15 are never deformed by pressure when ink is jetted and crosstalk is prevented.
  • the nozzle apertures 11 and 12 which respectively communicate with adjacent pressure generating chambers 2 can be arranged at an interval in the longitudinal direction of the pressure generating chamber 2, the degree of freedom is enhanced in the layout of nozzle apertures and distortion when the nozzle plate 13 is pressed can be dispersed.
  • Figs. 4 to 6 show a method of manufacturing the above flow passage forming substrate, taking a case that one reservoir and one nozzle communicating hole are formed as an example and a silicon oxide film 22 which functions as a film for protecting from etching is formed on the whole surface of a monocrystalline silicon substrate 21 with thickness easy to handle, for example the thickness of approximately 500 ⁇ m and the orientation of a crystal plane of (110) by thermal oxidation so that the silicon oxide film has predetermined thickness, for example, is 1 ⁇ m thick.
  • the film for protecting from etching if a substance provided with corrosion resistance to anisotropic etchant is formed as a film such as a silicon nitride film and a metallic film as shown in Fig. 4 (I), the similar action as a film for protecting from etching is produced.
  • a photoresist is applied uniformly on both surfaces of the silicon oxide film 22 by spinning and others to form photoresist layers 23 and 24 as shown in Fig. 4 (II) and resist patterns 25, 25', 26 and 26' to be the pressure generating chamber 2 and the reservoir 3 are formed on both sides by photolithography as shown in Fig. 4 (III).
  • Patterns 27, 27', 28 and 28' respectively corresponding to the resist patterns 25, 25', 26 and 26' are transferred as a result of half-etching the silicon oxide film 22 by dipping the monocrystalline silicon substrate 21 in buffer hydrofluoric solution as shown in Fig. 4 (IV).
  • a pattern 29 for an ink supply port is formed on one surface by exposing and developing areas to be the ink supply ports 5 and 6 and the pressure generating chamber 2 as shown in Fig. 5 (I) and the monocrystalline silicon substrate 21 is etched by dipping the monocrystalline silicon substrate in buffer hydrofluoric solution again until the patterns 27, 27', 28 and 28' of the silicon oxide film formed in the above process shown in Fig. 4 (IV) disappear as shown in Fig. 5 (II).
  • a pattern 30 of the silicon oxide film is left and patterns 31, 31', 32 and 32' for anisotropic etching respectively corresponding to the pressure generating chambers 2 and the reservoirs 3 and 4 are formed on both sides.
  • an etching pilot hole 33 with depth to the extent that etching can reach the other surface from one surface of the patterns 31 and 31' to be the approximately parallelogrammatic pressure generating chamber 2 is made desirably in the center of the pattern 31 by irradiating a laser beam with wavelength suitable for boring the monocrystalline silicon substrate 21, for example a YAG laser beam as shown in Fig. 5 (IV).
  • the monocrystalline silicon substrate 21 is dipped in the aqueous solution of potassium hydroxide (KOH) of 20 percent by weight kept approximately 80°C for anisotropic etching.
  • KOH potassium hydroxide
  • a reservoir 35 is formed by a monocrystalline silicon plane (111) with an angle ⁇ to the surface of the monocrystalline silicon substrate 21 by the above anisotropic etching.
  • concave patterns 36 and 37 to be the ink supply ports 5 and 6 and the pressure generating chamber 2 are formed as shown in Fig. 6 (II)
  • anisotropic etching is executed as shown in Fig. 6 (III) until the above patterns become concave portions 38 and 39 with depth suitable for the ink supply ports 5 and 6 and the pressure generating chamber 2 and finally, when the silicon oxide film 22 is removed by etching, a flow passage forming substrate is completed as shown in Fig. 6 (IV).
  • the ink supply ports 5 and 6 are formed only on the side of the elastic plate 10, however, when a second ink supply port 40 or 41 and a second pressure generating chamber 42 or 43 communicating with the above ink supply port 40 or 41 and the nozzle communicating hole 7 or 8 is formed on the side of the nozzle plate 13 as shown in Figs. 7 (a) and 7 (b), ink in the reservoir 3 or 4 can be supplied to the pressure generating chamber 2 via the two ink supply ports 5 and 40 or 6 and 41.
  • time required for supplying ink to the pressure generating chamber 2 is reduced and the printing head can be driven at high speed.
  • nozzle aperture 11 or 12 is formed in a position opposite to the nozzle communicating hole 7 or 8 but a nozzle aperture 11' or 11" is formed in an area opposite to the second pressure generating chamber 42 or 43 and ink pressurized in the pressure generating chamber 2 can be jetted as an ink droplet.
  • each pressure generating chamber 2 is alternately arranged in a different direction as shown in Fig. 9, the nozzle apertures 11' and 12' can be also arranged on the same line Lr and timing when an ink droplet is jetted can be simplified.
  • the ink supply port 5 or 6 is formed with the width at the end of the pressure generating chamber 2 narrowed, however, as shown in Fig. 9, a part not etched 44 or 45 may be also provided on the side of the reservoir in the pressure generating chamber 2 to adjust resistance in a passage.
  • first and second ink supply ports 5 and 46 or 6 and 47 may be also formed on both sides of each pressure generating chamber 2 as shown in Figs. 10 so that the two ink supply ports respectively communicate with the two reservoirs 3 and 4 arranged with the pressure generating chamber 2 between the two reservoirs.
  • the nozzle communicating hole 7 and the pressure generating chamber 2 are formed so that they have the same width, however, even if a nozzle communicating hole 48 or 49 with width Wb narrower than the width Wa of the pressure generating chamber 2 is formed as shown in Fig. 11, the similar action is produced.
  • zigzag hatching shows an area which is not etched
  • oblique hatching shows a half-etched area
  • an area which is not hatched shows a through hole.
  • the width of the pressure generating chambers 2 alternately arranged in a reverse direction is equalized, however, as ink droplet jetting performance can be changed by making a difference between the width Wc and Wd of the pressure generating chambers 2 different in a direction as shown in Fig. 12, the width suitable for the viscosity and property of ink can be selected, each ink droplet of different types of ink in one printing head, for example each ink droplet of black ink and color ink or each ink droplet of different colors of ink can be adjusted in size suitable for printing and the degree of freedom of usable ink can be enhanced.
  • the flow passage forming substrate is processed by anisotropically etching a monocrystalline silicon substrate in which a concave portion and a through hole can be formed precisely, however, as it is clear that the strength of the partition in the vicinity of the nozzle communicating hole can be also enhanced if the flow passage forming substrate is formed by boring a thin plate made of metal, ceramics or glass or by the injection molding of polymeric material, the similar action is also produced in case the flow passage forming substrate is formed by material except a monocrystalline silicon substrate.
  • the two reservoirs are formed with the pressure generating chamber between them, the pressure generating chamber communicates with at least one reservoir via the ink supply port and adjacent nozzle communicating holes are arranged in approximately opposite positions with the center in the longitudinal direction of the pressure generating chamber between the adjacent nozzle communicating holes and arranged zigzag with the adjacent nozzle communicating holes shifted in the longitudinal direction of the pressure generating chamber, the height of the partition for partitioning the nozzle communicating hole which is a through hole and the adjacent pressure generating chamber is approximately equal to the height of the partition between the adjacent pressure generating chambers and rigidity enough to prevent crosstalk can be kept.
  • the nozzle apertures can be arranged in different positions in the longitudinal direction of the pressure generating chamber, the degree of freedom of the position of the nozzle aperture is high and distortion when the nozzle plate is added can be dispersed.

Abstract

Two reservoirs (3, 4) are formed with a pressure-generating chamber (2, 2) being sandwiched therebetween. The pressure-generating chamber (2) communicates with at least either one of the reservoirs (3, 4) through an ink-feeding port (5, 6). Neighboring nozzle communication holes (7, 8) are arranged at nearly symmetrical positions on both sides of a central point of the pressure-generating chamber (2) in the lengthwise direction, being staggered in the lengthwise direction of the pressure-generating chamber (2). A partitioning wall separating the nozzle communication holes (7, 8) that are through holes from the pressure-generating chamber (2), has a height (M) nearly equal to that of a partitioning wall (N) of the pressure-generating chamber (2). Even when the pressure-generating chambers are highly densely arranged, therefore, it is possible to prevent a crosstalk caused by the partitioning wall separating the nozzle communication holes.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to an ink-jet printing head, more particularly relates to a method of producing a flow passage forming substrate.
  • 2. Description of the Related Art
  • In an ink-jet printing head, as shown in Fig. 13, a flow passage unit is constituted by a flow passage forming substrate F in which a reservoir A to which ink is supplied from an outside tank, a pressure generating chamber B which is concave and pressurized from the outside, an ink supply port C connecting the reservoir A and the pressure generating chamber B and a nozzle communicating hole E which is a through hole and connects the pressure generating chamber B and a nozzle aperture D are formed, an elastic plate G for sealing one surface of the flow passage forming substrate F and a nozzle plate H provided with the nozzle aperture D for sealing the other surface of the flow passage forming substrate F. The ink-jet printing head is constituted so that ink in the reservoir A is sucked in the pressure generating chamber B via the ink supply port C by touching a piezoelectric vibrator J to the elastic plate G and expanding the pressure generating chamber B by the displacement of the piezoelectric vibrator J and an ink droplet ejects from the nozzle aperture D by pressurizing ink the pressure generating chamber B by contracting the pressure generating chamber B.
  • As in such an ink-jet printing head, full color printing can be readily executed by using color ink, the ink-jet printing head is rapidly popularized as a printing head of a color printer and hereby, it is demanded that printing quality and density are further enhanced.
  • As the printing quality and density of an ink-jet printing head greatly depend upon the size of a dot which an ink droplet forms, it is required to reduce the quantity of ink per droplet as much as possible to miniaturize the size of a dot.
  • Therefore, the volume of a pressure generating chamber can be reduced as much as possible and, in addition, pressure generating chambers can be arrayed in high density by arraying pressure generating chambers in high density, selecting a substrate 300 µm or more thick, desirably a substrate approximately 500 µm thick, for example a monocrystalline silicon substrate in view of working precision as a flow passage forming substrate in consideration of preventing a flow passage forming substrate from being deformed by pressure when an ink droplet ejects and, further, facility in handling in assembly and forming the pressure generating chamber as a shallow concave portion by photolithography and anisotropic etching as disclosed in Unexamined Japanese Patent Application No. Sho. 58-40509.
  • When the pressure generating chamber is constituted on one surface of the substrate as a concave portion as described above, the nozzle communicating hole E for connecting the pressure generating chamber and the nozzle aperture is required to let the pressure generating chamber communicate with the nozzle aperture D of the nozzle plate arranged on the surface on the side reverse to the surface on which the pressure generating chamber is formed.
  • Such a nozzle communicating hole E is formed by making a through hole with a minute diameter pierced from one surface to the other surface in an area to be the nozzle communicating hole E beforehand as disclosed in Unexamined Japanese Patent Application No. Sho. 5-309835 and executing anisotropic etching to the depth using the above through hole as an etching pilot hole so that the width of the nozzle communicating hole E is approximately equal to the width of the pressure generating chamber B at the maximum.
  • Therefore, as shown in Fig. 14, as the height of a partition in an area K' which faces the nozzle communicating hole E is equal to the thickness d' of the monocrystalline silicon substrate and large though the partition in the vicinity of the pressure generating chamber is provided with high rigidity because the depth d of the pressure generating chamber B is small in an area K in the vicinity of the pressure generating chamber of partitions for partitioning the pressure generating chambers B, the rigidity of the partition between the adjacent nozzle communicating holes E is extremely small and there is a problem that pressure when ink is jetted elastically deforms the area K' and crosstalk is caused between the adjacent pressure generating chambers B.
  • SUMMARY OF THE INVENTION
  • An ink-jet printing head according to the present invention is provided with a flow passage forming substrate in which a pressure generating chamber, a reservoir, an ink supply port and a nozzle communicating hole which is a through hole are formed, a nozzle plate provided with a nozzle communicating with the pressure generating chamber via the nozzle communicating hole, a capping member for sealing the side of the pressure generating chamber of the flow passage forming substrate and pressure generating means for pressurizing the pressure generating chamber, two reservoirs are formed with the pressure generating chamber held between the two reservoirs, the pressure generating chamber communicates with at least one reservoir of them via the ink supply port, and the nozzle communicating holes are arranged zigzag in an approximately symmetrical position in which the center in the longitudinal direction of the pressure generating chamber is held between the adjacent nozzle communicating holes and so that one of the adjacent nozzle communicating holes is shifted in the longitudinal direction of the pressure generating chamber.
  • Hereby, as the height of a partition for partitioning the nozzle communicating hole which is a through hole and the adjacent pressure generating chamber is approximately equal to the height of a partition between the pressure generating chambers, the flow passage forming substrate can be provided with sufficient rigidity. Therefore, even if the pressure generating chambers are arrayed in high density, a piezoelectric vibrator smaller than the outside diameters of a diaphragm may be used and crosstalk can be prevented.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Figs. 1 (a) and 1 (b) show an embodiment of an ink-jet printing head according to the present invention as the sectional structure viewed along a center line between adjacent pressure generating chambers, Fig. 2 is a top view showing an embodiment of a flow passage forming substrate in the above ink-jet printing head by enlarging the vicinity of an ink supply port, a pressure generating chamber and a nozzle communicating hole and Fig. 3 is a perspective drawing showing the vicinity of a reservoir, the ink supply port, the pressure generating chamber and the nozzle communicating hole in the flow passage forming substrate of the above ink-jet printing head by enlarging the above vicinity;
  • Figs. 4, 5 and 6 respectively show an embodiment in case the flow passage forming substrate according to the present invention is manufactured by anisotropic etching using a monocrystalline silicon substrate;
  • Figs. 7 (a) and 7 (b) show another embodiment of the ink-jet printing head according to the present invention as the sectional structure viewed along a center line between adjacent pressure generating chambers;
  • Figs. 8 (a) and 8 (b) show further another embodiment of the ink-jet printing head according to the present invention as the sectional structure viewed along a center line between adjacent pressure generating chambers;
  • Fig. 9 is a top view showing the arrangement of nozzle apertures which may be applied to the ink-jet printing head shown in Figs. 8 in relationship between the arrangement of nozzle apertures and the flow passage forming substrate;
  • Figs. 10 (a) and 10 (b) each shows the other embodiment of the ink-jet printing head according to the present invention as the sectional structure viewed along a center line between adjacent pressure generating chambers;
  • Fig. 11 is a top view showing another embodiment of the flow passage forming substrate used for the ink-jet printing head according to the present invention;
  • Fig. 12 is a top view showing the other embodiment of the flow passage forming substrate used for the ink-jet printing head according to the present invention;
  • Fig. 13 shows an example of a conventional type ink-jet printing head and Fig. 14 is a perspective drawing showing an example of a flow passage forming substrate in the conventional type ink-jet printing head.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention will be described in detail based upon embodiments shown in the drawings below.
  • Figs. 1 (a) and 1 (b) show an embodiment of the present invention as the sectional structure viewed along a center line (a line A-A and a line B-B in Fig. 2) between adjacent pressure generating chambers 2, a flow passage forming substrate 1 is made of a monocrystalline silicon substrate in this embodiment, a pressure generating chamber 2 is formed by anisotropic half-etching as a shallow concave portion, and a first reservoir 3 and a second reservoir 4 are also formed by anisotropic etching in two columns as a through hole in this embodiment on both sides of each pressure generating chamber 2. Each pressure generating chamber 2 adjacent in a row communicates with the first reservoir 3 or the second reservoir 4 via an ink supply port 5 or 6 which is a concave portion with depth approximately equal to the depth of the pressure generating chamber 2.
  • At the end on the side on which the ink supply port 5 or 6 is not formed, a nozzle communicating hole 7 or 8 pierced from the pressure generating chamber 2 to the other surface, that is, to the surface of a nozzle plate 13 is formed. In Fig. 2, zigzag hatching shows an area which is not etched, oblique hatching shows a half-etched area and further, an area which is not hatched shows a through hole.
  • The surface on the side of the pressure generating chamber of the spacer 1 constituted as described above is sealed by an elastic plate 10, the other surface is sealed by a nozzle plate 13 in which a nozzle aperture 11 or 12 is made in an area opposite to each nozzle communicating hole 7 or 8 and a flow passage unit is composed of the above members.
  • In each pressure generating chamber 2, pressure generating means, a piezoelectric vibrator 14 in a longitudinal vibration mode which is pressure generating means in the present embodiment is provided in an approximately central area on the center line A-A or B-B between the pressure generating chambers 2 on the elastic plate 10 with the end of the piezoelectric vibrator in contact with an island part 10a formed on the elastic plate 10 and with the other end fixed to a head frame not shown which also functions as a fixing member. The piezoelectric vibrators 14 which respectively function as pressure generating means are arranged by the number of the pressure generating chambers 2 in the row of the pressure generating chambers 2.
  • In this embodiment, when a driving signal is applied to the piezoelectric vibrator 14, the piezoelectric vibrator 14 is contracted and the pressure generating chamber 2 is expanded. Ink in the first or second reservoir 3 or 4 flows into the pressure generating chamber 2 via the ink supply port 5 or 6 because of the above expansion.
  • Next, when the charges of the piezoelectric vibrator 14 are discharged, the piezoelectric vibrator 14 expands to an original state and compresses the pressure generating chamber 2. Hereby, pressurized ink is jetted as an ink droplet from the nozzle aperture 11 or 12 via the nozzle communicating hole 7 or 8.
  • In this embodiment, as the nozzle communicating holes 7 and 8 of adjacent pressure generating chambers 2 are arranged at least at an interval L shown in Fig. 2 in the longitudinal direction of the pressure generating chamber 2 and the height M of areas 15' and 15" respectively opposite to the nozzle communicating holes 7 and 8 of a partition 15 for partitioning adjacent pressure generating chambers 2 as shown in Fig. 3 is equal to the depth N of each pressure generating chamber 2 and shallow, the areas 15' and 15" are provided with sufficient rigidity approximately equal to the rigidity of the partition 15 partitioning adjacent pressure generating chambers 2. Therefore, the areas 15' and 15" adjacent to each nozzle communicating hole 7 or 8 of the partition 15 are never deformed by pressure when ink is jetted and crosstalk is prevented.
  • As the nozzle apertures 11 and 12 which respectively communicate with adjacent pressure generating chambers 2 can be arranged at an interval in the longitudinal direction of the pressure generating chamber 2, the degree of freedom is enhanced in the layout of nozzle apertures and distortion when the nozzle plate 13 is pressed can be dispersed.
  • Figs. 4 to 6 show a method of manufacturing the above flow passage forming substrate, taking a case that one reservoir and one nozzle communicating hole are formed as an example and a silicon oxide film 22 which functions as a film for protecting from etching is formed on the whole surface of a monocrystalline silicon substrate 21 with thickness easy to handle, for example the thickness of approximately 500 µm and the orientation of a crystal plane of (110) by thermal oxidation so that the silicon oxide film has predetermined thickness, for example, is 1 µm thick. As for the film for protecting from etching, if a substance provided with corrosion resistance to anisotropic etchant is formed as a film such as a silicon nitride film and a metallic film as shown in Fig. 4 (I), the similar action as a film for protecting from etching is produced.
  • Next, a photoresist is applied uniformly on both surfaces of the silicon oxide film 22 by spinning and others to form photoresist layers 23 and 24 as shown in Fig. 4 (II) and resist patterns 25, 25', 26 and 26' to be the pressure generating chamber 2 and the reservoir 3 are formed on both sides by photolithography as shown in Fig. 4 (III).
  • Patterns 27, 27', 28 and 28' respectively corresponding to the resist patterns 25, 25', 26 and 26' are transferred as a result of half-etching the silicon oxide film 22 by dipping the monocrystalline silicon substrate 21 in buffer hydrofluoric solution as shown in Fig. 4 (IV).
  • Next, a pattern 29 for an ink supply port is formed on one surface by exposing and developing areas to be the ink supply ports 5 and 6 and the pressure generating chamber 2 as shown in Fig. 5 (I) and the monocrystalline silicon substrate 21 is etched by dipping the monocrystalline silicon substrate in buffer hydrofluoric solution again until the patterns 27, 27', 28 and 28' of the silicon oxide film formed in the above process shown in Fig. 4 (IV) disappear as shown in Fig. 5 (II). Hereby, a pattern 30 of the silicon oxide film is left and patterns 31, 31', 32 and 32' for anisotropic etching respectively corresponding to the pressure generating chambers 2 and the reservoirs 3 and 4 are formed on both sides.
  • After unnecessary photoresist layers 33 and 34 are peeled as shown in Fig. 5 (III), an etching pilot hole 33 with depth to the extent that etching can reach the other surface from one surface of the patterns 31 and 31' to be the approximately parallelogrammatic pressure generating chamber 2 is made desirably in the center of the pattern 31 by irradiating a laser beam with wavelength suitable for boring the monocrystalline silicon substrate 21, for example a YAG laser beam as shown in Fig. 5 (IV).
  • When boring operation is finished, the monocrystalline silicon substrate 21 is dipped in the aqueous solution of potassium hydroxide (KOH) of 20 percent by weight kept approximately 80°C for anisotropic etching. A reservoir 35 is formed by a monocrystalline silicon plane (111) with an angle  to the surface of the monocrystalline silicon substrate 21 by the above anisotropic etching.
  • An area in which the patterns 31 and 31' for the nozzle communicating holes 7 and 8 are formed is etched in the range of the patterns 31 and 31' in the direction of the thickness, being guided by the etching pilot hole 33 and finally, a through hole with predetermined cross section is formed as shown in Fig. 6 (I).
  • Next, after concave patterns 36 and 37 to be the ink supply ports 5 and 6 and the pressure generating chamber 2 are formed as shown in Fig. 6 (II), anisotropic etching is executed as shown in Fig. 6 (III) until the above patterns become concave portions 38 and 39 with depth suitable for the ink supply ports 5 and 6 and the pressure generating chamber 2 and finally, when the silicon oxide film 22 is removed by etching, a flow passage forming substrate is completed as shown in Fig. 6 (IV).
  • In the above embodiment, the ink supply ports 5 and 6 are formed only on the side of the elastic plate 10, however, when a second ink supply port 40 or 41 and a second pressure generating chamber 42 or 43 communicating with the above ink supply port 40 or 41 and the nozzle communicating hole 7 or 8 is formed on the side of the nozzle plate 13 as shown in Figs. 7 (a) and 7 (b), ink in the reservoir 3 or 4 can be supplied to the pressure generating chamber 2 via the two ink supply ports 5 and 40 or 6 and 41. Hereby, time required for supplying ink to the pressure generating chamber 2 is reduced and the printing head can be driven at high speed.
  • According to this embodiment, as shown in Figs. 8 (a) and 8 (b), not only the nozzle aperture 11 or 12 is formed in a position opposite to the nozzle communicating hole 7 or 8 but a nozzle aperture 11' or 11" is formed in an area opposite to the second pressure generating chamber 42 or 43 and ink pressurized in the pressure generating chamber 2 can be jetted as an ink droplet.
  • Hereby, if each pressure generating chamber 2 is alternately arranged in a different direction as shown in Fig. 9, the nozzle apertures 11' and 12' can be also arranged on the same line Lr and timing when an ink droplet is jetted can be simplified.
  • In the above embodiment, the ink supply port 5 or 6 is formed with the width at the end of the pressure generating chamber 2 narrowed, however, as shown in Fig. 9, a part not etched 44 or 45 may be also provided on the side of the reservoir in the pressure generating chamber 2 to adjust resistance in a passage.
  • Also, in the above embodiment, the ink supply port 5 or 6 is formed at one end on the side apart from the nozzle aperture 11 or 12 in the pressure generating chamber 2 and ink is supplied from one side, however, first and second ink supply ports 5 and 46 or 6 and 47 may be also formed on both sides of each pressure generating chamber 2 as shown in Figs. 10 so that the two ink supply ports respectively communicate with the two reservoirs 3 and 4 arranged with the pressure generating chamber 2 between the two reservoirs.
  • Further, in the above embodiment, the nozzle communicating hole 7 and the pressure generating chamber 2 are formed so that they have the same width, however, even if a nozzle communicating hole 48 or 49 with width Wb narrower than the width Wa of the pressure generating chamber 2 is formed as shown in Fig. 11, the similar action is produced. In Fig. 11, zigzag hatching shows an area which is not etched, oblique hatching shows a half-etched area and further, an area which is not hatched shows a through hole.
  • Furthermore, in the above embodiment, the width of the pressure generating chambers 2 alternately arranged in a reverse direction is equalized, however, as ink droplet jetting performance can be changed by making a difference between the width Wc and Wd of the pressure generating chambers 2 different in a direction as shown in Fig. 12, the width suitable for the viscosity and property of ink can be selected, each ink droplet of different types of ink in one printing head, for example each ink droplet of black ink and color ink or each ink droplet of different colors of ink can be adjusted in size suitable for printing and the degree of freedom of usable ink can be enhanced.
  • In the above embodiment, the flow passage forming substrate is processed by anisotropically etching a monocrystalline silicon substrate in which a concave portion and a through hole can be formed precisely, however, as it is clear that the strength of the partition in the vicinity of the nozzle communicating hole can be also enhanced if the flow passage forming substrate is formed by boring a thin plate made of metal, ceramics or glass or by the injection molding of polymeric material, the similar action is also produced in case the flow passage forming substrate is formed by material except a monocrystalline silicon substrate.
  • As described above, as in an ink-jet printing head according to the present invention, the two reservoirs are formed with the pressure generating chamber between them, the pressure generating chamber communicates with at least one reservoir via the ink supply port and adjacent nozzle communicating holes are arranged in approximately opposite positions with the center in the longitudinal direction of the pressure generating chamber between the adjacent nozzle communicating holes and arranged zigzag with the adjacent nozzle communicating holes shifted in the longitudinal direction of the pressure generating chamber, the height of the partition for partitioning the nozzle communicating hole which is a through hole and the adjacent pressure generating chamber is approximately equal to the height of the partition between the adjacent pressure generating chambers and rigidity enough to prevent crosstalk can be kept.
  • As the nozzle apertures can be arranged in different positions in the longitudinal direction of the pressure generating chamber, the degree of freedom of the position of the nozzle aperture is high and distortion when the nozzle plate is added can be dispersed.

Claims (12)

  1. An ink-jet printing head comprising:
    a flow passage forming substrate (1) made of a plate in which a plurality of pressure generating chambers (2), a plurality of ink supply ports (5, 6) and a plurality of nozzle communicating holes (7, 8) are formed, wherein said nozzle communicating holes (7, 8) are through holes in said plate, wherein each said pressure generating chamber (2) communicates with a reservoir (3, 4) via at least one said ink supply port (5, 6), and wherein said plurality of pressure generating chambers (2) is provided adjacent to each other in an arrangement direction of said pressure generating chambers;
    a nozzle plate (13) provided on one side of said substrate plate and provided with a plurality of nozzles (11, 12), each nozzle communicating with said pressure generating chamber (2) via said nozzle communicating hole (7, 8);
    an elastic plate (10) provided on the other side of said substrate plate for sealing said pressure generating chambers (2); and
    a plurality of pressure generating means (14) contacting said elastic plate (10) for pressurising said pressure generating chambers (2);
    characterized by
    two reservoirs (3, 4) extending in said arrangement direction and spaced apart from each other in a longitudinal direction transverse to said arrangement direction, wherein said said pressure generating chambers (2) are arranged between said two reservoirs (3, 4);
    wherein said plurality of pressure generating means (14) contact said elastic plate (10) in an area approximately central between said two reservoirs (3, 4); and
    wherein each pair of nozzle communicating holes (7, 8) adjacent in the arrangement direction is arranged on opposite sides of said areas of contact in said longitudinal direction.
  2. An ink-jet printing head according to Claim 1, wherein: said ink supply port is formed on the side on which said pressure generating chamber is formed.
  3. An ink-jet printing head according to Claim 1, wherein: said ink supply ports are formed on the sides of said capping member and said nozzle plate.
  4. An ink-jet printing head according to Claim 1, wherein: said ink supply ports are formed at both ends of said pressure generating chamber.
  5. An ink-jet printing head according to Claim 1, wherein: said nozzle communicating hole is formed so that the width is narrower than the width of said pressure generating chamber.
  6. An ink-jet printing head according to Claim 1, wherein: said nozzle communicating hole is formed by being etched from a hole with a minute diameter.
  7. An ink-jet printing head according to Claim 1, wherein: said pressure generating means is constituted by a piezoelectric vibrator; said pressure generating means is extended in the direction of the row of said pressure generating chambers; and said pressure generating means is arranged on the approximately center line of said pressure generating chamber.
  8. An ink-jet printing head according to Claim 1, wherein: the width of adjacent said pressure generating chambers is different.
  9. An ink-jet printing head according to Claim 1, wherein: a second ink supply port is also provided on the side of said nozzle plate; and a passage from said second ink supply port to said nozzle communicating hole is provided.
  10. An ink-jet printing head according to Claim 9, wherein: said nozzle aperture is formed in a position opposite to said passage.
  11. An ink-jet printing head according to Claim 9, wherein: said nozzle apertures are arranged approximately straight.
  12. An ink-jet printing head according to Claim 1, wherein: said flow passage forming substrate is constituted by anisotropically etching a monocrystalline silicon substrate.
EP97912457A 1996-11-18 1997-11-14 Ink-jet recording head Expired - Lifetime EP0897801B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP32234596 1996-11-18
JP322345/96 1996-11-18
JP32234596 1996-11-18
PCT/JP1997/004150 WO1998022288A1 (en) 1996-11-18 1997-11-14 Ink-jet recording head

Publications (3)

Publication Number Publication Date
EP0897801A1 EP0897801A1 (en) 1999-02-24
EP0897801A4 EP0897801A4 (en) 2001-04-04
EP0897801B1 true EP0897801B1 (en) 2003-03-12

Family

ID=18142613

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97912457A Expired - Lifetime EP0897801B1 (en) 1996-11-18 1997-11-14 Ink-jet recording head

Country Status (5)

Country Link
US (1) US6213594B1 (en)
EP (1) EP0897801B1 (en)
JP (1) JP3454833B2 (en)
DE (1) DE69719747T2 (en)
WO (1) WO1998022288A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3473675B2 (en) * 1997-01-24 2003-12-08 セイコーエプソン株式会社 Ink jet recording head
US6530652B1 (en) * 1998-12-30 2003-03-11 Samsung Electronics Co., Ltd. Micro actuator and ink jet printer head manufactured using the same
JP2000218787A (en) * 1999-01-29 2000-08-08 Seiko Epson Corp Ink-jet recording head and image recording apparatus
JP3327246B2 (en) * 1999-03-25 2002-09-24 富士ゼロックス株式会社 Ink jet recording head and method of manufacturing the same
US6631980B2 (en) 2000-01-19 2003-10-14 Seiko Epson Corporation Liquid jetting head
US6675476B2 (en) * 2000-12-05 2004-01-13 Hewlett-Packard Development Company, L.P. Slotted substrates and techniques for forming same
DE60237229D1 (en) 2001-12-11 2010-09-16 Ricoh Kk DROP DISCHARGE HEAD AND MANUFACTURING METHOD THEREFOR
US7387373B2 (en) * 2002-09-30 2008-06-17 Seiko Epson Corporation Liquid ejecting head and liquid ejecting apparatus
JP2008273183A (en) * 2007-04-03 2008-11-13 Canon Inc Ink-jet recording head, ink-jet recording head manufacturing method, and recording device
JP2009172969A (en) * 2008-01-28 2009-08-06 Ricoh Co Ltd Liquid discharge head and image forming apparatus
JP2012139991A (en) * 2010-12-17 2012-07-26 Ricoh Co Ltd Inkjet head, and inkjet recording apparatus
JP2012152970A (en) * 2011-01-25 2012-08-16 Seiko Epson Corp Liquid jetting head and liquid jetting device
JP5954567B2 (en) * 2012-03-19 2016-07-20 株式会社リコー Liquid ejection head and image forming apparatus
JP6318475B2 (en) * 2013-06-10 2018-05-09 セイコーエプソン株式会社 Channel unit, liquid jet head equipped with channel unit, and liquid jet device
GB2516845A (en) * 2013-07-31 2015-02-11 Ingegneria Ceramica S R L An Improved Actuator and Method of Driving Thereof
JP7439482B2 (en) 2019-12-03 2024-02-28 セイコーエプソン株式会社 Liquid jetting heads and liquid jetting systems

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840509A (en) 1981-09-03 1983-03-09 Nippon Telegr & Teleph Corp <Ntt> Housing body for optical fiber cable
US4611219A (en) * 1981-12-29 1986-09-09 Canon Kabushiki Kaisha Liquid-jetting head
JPS61193859A (en) * 1985-02-22 1986-08-28 Nec Corp Drop on-demand type ink jet head
JP2708769B2 (en) * 1988-03-24 1998-02-04 株式会社リコー Liquid jet recording head
US4924241A (en) * 1989-08-01 1990-05-08 Diagraph Corporation Printhead for ink jet printing apparatus
JP3041952B2 (en) * 1990-02-23 2000-05-15 セイコーエプソン株式会社 Ink jet recording head, piezoelectric vibrator, and method of manufacturing these
JPH0450983A (en) 1990-06-15 1992-02-19 Hitachi Koki Co Ltd Toner image forming method and device therefor
US5208605A (en) * 1991-10-03 1993-05-04 Xerox Corporation Multi-resolution roofshooter printheads
JP3108954B2 (en) 1992-05-08 2000-11-13 セイコーエプソン株式会社 Method for manufacturing inkjet head, inkjet head, and inkjet printer
US5424769A (en) * 1992-06-05 1995-06-13 Seiko Epson Corporation Ink jet recording head
US5412410A (en) * 1993-01-04 1995-05-02 Xerox Corporation Ink jet printhead for continuous tone and text printing
JPH0760957A (en) * 1993-06-30 1995-03-07 Rohm Co Ltd Line type ink jet head
DE4336416A1 (en) * 1993-10-19 1995-08-24 Francotyp Postalia Gmbh Face shooter ink jet printhead and process for its manufacture
JP3231523B2 (en) 1993-12-01 2001-11-26 株式会社リコー On-demand type inkjet head
DE9404328U1 (en) * 1994-03-10 1994-05-19 Francotyp Postalia Gmbh Inkjet printhead
JP3422342B2 (en) * 1994-03-28 2003-06-30 セイコーエプソン株式会社 Inkjet recording head
JP2850762B2 (en) * 1994-04-26 1999-01-27 日本電気株式会社 Inkjet head
US5907339A (en) * 1994-11-10 1999-05-25 Diagraph Corporation Ink jet printhead having solenoids controlling ink flow
JPH08336970A (en) * 1995-04-14 1996-12-24 Seiko Epson Corp Ink-jet type recording device
JPH09174830A (en) 1995-12-22 1997-07-08 Nec Corp Ink jet recording head
US6042219A (en) * 1996-08-07 2000-03-28 Minolta Co., Ltd. Ink-jet recording head
JPH10217461A (en) * 1997-02-06 1998-08-18 Minolta Co Ltd Ink jet recorder

Also Published As

Publication number Publication date
US6213594B1 (en) 2001-04-10
WO1998022288A1 (en) 1998-05-28
EP0897801A4 (en) 2001-04-04
DE69719747T2 (en) 2004-02-05
EP0897801A1 (en) 1999-02-24
DE69719747D1 (en) 2003-04-17
JP3454833B2 (en) 2003-10-06

Similar Documents

Publication Publication Date Title
EP0897801B1 (en) Ink-jet recording head
US5992978A (en) Ink jet recording apparatus, and an ink jet head manufacturing method
US5041190A (en) Method of fabricating channel plates and ink jet printheads containing channel plates
US7681987B2 (en) Inkjet recording head
EP1170127B1 (en) Ink jet recording head
EP2230081B1 (en) Ink jet head and printing method using the same
EP0047609A2 (en) Ink jet head
US6371598B1 (en) Ink jet recording apparatus, and an ink jet head
EP0855275B1 (en) Ink-jet recording head
US6231169B1 (en) Ink jet printing head including a backing member for reducing displacement of partitions between pressure generating chambers
US6290341B1 (en) Ink jet printing head which prevents the stagnation of ink in the vicinity of the nozzle orifices
CN100398322C (en) Drop discharge head and method of producing the same
JP3386093B2 (en) Ink jet recording head
US20070236537A1 (en) Fluid jet print module
JPH07178909A (en) Ink jet recording head
JP3334752B2 (en) Ink jet recording head
JP2000190497A (en) Ink jet type recording head and ink jet type recording apparatus
JP3326970B2 (en) Ink jet recording head and method of manufacturing the same
JP2000127382A (en) Ink jet recording head and ink jet recorder
JP3233189B2 (en) Ink jet recording head and method of manufacturing the same
US20060201908A1 (en) Liquid ejection head and method of producing same
JP2607308B2 (en) Ink jet printer head and method of manufacturing the same
JP2003103778A (en) Ink-jet head and production method therefor
JP3890852B2 (en) Inkjet recording head and inkjet recording apparatus
JPH05318730A (en) Ink jet head

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19980717

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

A4 Supplementary search report drawn up and despatched

Effective date: 20010219

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20011025

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69719747

Country of ref document: DE

Date of ref document: 20030417

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151124

Year of fee payment: 19

Ref country code: GB

Payment date: 20151111

Year of fee payment: 19

Ref country code: DE

Payment date: 20151110

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151008

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69719747

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161114

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161114