EP0895790A2 - Rotational flatness improvement - Google Patents

Rotational flatness improvement Download PDF

Info

Publication number
EP0895790A2
EP0895790A2 EP98113491A EP98113491A EP0895790A2 EP 0895790 A2 EP0895790 A2 EP 0895790A2 EP 98113491 A EP98113491 A EP 98113491A EP 98113491 A EP98113491 A EP 98113491A EP 0895790 A2 EP0895790 A2 EP 0895790A2
Authority
EP
European Patent Office
Prior art keywords
mounting plate
accelerator
accordance
strut section
stiffener bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98113491A
Other languages
German (de)
French (fr)
Other versions
EP0895790A3 (en
Inventor
Bert David Egley
Joseph Scott Saba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Medical Solutions USA Inc
Original Assignee
Siemens Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Medical Systems Inc filed Critical Siemens Medical Systems Inc
Publication of EP0895790A2 publication Critical patent/EP0895790A2/en
Publication of EP0895790A3 publication Critical patent/EP0895790A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the invention relates generally to a radiation treatment apparatus, and more particularly to such apparatus employing a linear accelerator to provide X-rays or other particle beams for therapeutic medical applications.
  • a linear accelerator typically have an injection point where particles originate in the accelerator, an insertion point where RF energy enters the accelerator, and an exit point from which the particles are discharged from the accelerator.
  • the particles may be used directly for treatment or converted to X-rays by striking a target, typically made from a high density material such as gold.
  • linear accelerators are used for generating a high energy radiation beam to be directed at tissue for treatment.
  • a typical radiation therapy apparatus includes a stand anchored firmly to the floor of a room and a gantry rotatable on a bearing in the stand.
  • the operational accelerator structure housed within and oriented substantially parallel to a cantilevered strut section of the gantry, is rotatable with the gantry about the bearing to enable the treatment head at the remote end of the strut section to be positioned in a continuum of positions and orientations around a patient or object situated on a platform at the isocenter of the apparatus.
  • a radiation treatment apparatus with an improved rotational flatness characteristic.
  • the inventive radiation treatment apparatus improves the rotational flatness characteristic of the radiation treatment apparatus by mechanically matching the deflection of the accelerated particle beam and the bending magnet supported by the cantilevered strut in which the accelerator is housed.
  • the radiation treatment apparatus includes a stand for movably supporting a gantry thereon; the gantry having a vertical section and a generally linear cantilevered strut section. Inside the cantilevered strut section of the gantry, and longitudinally supported in generally parallel relationship therewith, is a substantially linear particle accelerator.
  • a tuneable stiffening apparatus or other means for maintaining alignment between the accelerated particle beam and the bending magnet housed in the cantilevered strut section is provided. By maintaining beam alignment, the rotational flatness is greatly improved.
  • the radiation treatment apparatus 10 includes a stand 12 and a gantry 14 rotatable on a bearing 20 which transversely extends through the stand 12 and gantry 14.
  • the gantry 14 may be formed in two sections: a vertical section 16, and a cantilevered strut section 18; the cantilevered strut section 18 being generally perpendicular to and cantilevered from the vertical section 16.
  • a treatment head 22 At the end of the strut section 18, remote from the vertical section 16, is a treatment head 22 from which a radiation beam 27 generated by the apparatus is directed toward a patient 23 situated on platform 28.
  • a linear accelerator 30 is disposed within and longitudinally supported in generally parallel relationship with the cantilevered strut section 18.
  • the accelerator 30 has a linear accelerating portion 31 and an RF insertion waveguide portion 36 extending substantially perpendicularly from the linear accelerating portion 31 at a junction 38.
  • a particle gun 32 or "injection point" of the accelerator.
  • the particles exit the linear portion of the accelerator 30 at point 34, where they enter a 270° achromatic bending magnet 35 and exit at point 37 to strike a high density target 39 from which X-rays 27 are created.
  • the RF insertion waveguide portion 36 provides transmission of RF energy, thereby enabling particle acceleration within the accelerator 30.
  • the RF energy is typically provided by a magnetron or klystron 15. The RF energy enters the linear accelerating portion 31 of the accelerator 30 at the accelerator junction 38.
  • the generated X-rays 27 are used to treat a treatment area, such as a cancer tumor 26 at or near the isocenter.
  • the X-ray energy delivered to the treatment area 26 is constant regardless of the angular position of the gantry.
  • a normalized beam intensity profile with the gantry up, or at zero degrees, is shown in FIGURE 1a at graph 27b, and one with the gantry down, or at 180 degrees, is shown in FIGURE 1a at graph 27a. These are typical of sub-optimal rotational flatness.
  • the beam intensity profile graph 27a has a positive slope and energy profile graph 27b has a negative slope; neither is flat. Examples of energy profiles which are flat at all gantry angles are shown in FIGURE 1a at graphs 27c and 27d, and in FIGURE 1 at 27d.
  • the gantry 14 may be rotated on its bearing 20 about a rotational axis 25 with respect to the stand 12 so that the treatment head 22 encircles the patient located at the isocenter 26 of the apparatus.
  • the cantilevered strut section 18 may be positioned with respect to stand 12 in a continuum of positions angularly identified from 0° to 360°.
  • the angular orientation of the gantry 14 contributes to the application of deflection forces on the bending magnet 35 and the accelerator 30 therein. Additional bending and torsional forces are also present due to the weight of the treatment head 22 and its position at the end of the strut section 18.
  • the bending magnet 35 and accelerator 30 thus have differential deflections at different angular orientations of the gantry 14 (i.e., the accelerator 30 and the bending magnet 35 deflect at different angles). These differential deflections can result in a relative misalignment between the components such that the accelerated particle beam hits the target 39 at different input angles depending upon the angular orientation of the gantry 14, affecting the flatness of the X-ray beam intensity profile shown in FIGURE 1a at graphs 27a and 27b.
  • a tuneable plate 40 is used to affix the accelerator 30 to strut section 18.
  • the stiffness of the plate 40 is chosen, as will be discussed in greater detail below, such that the particle beam remains aligned with the bending magnet 35, thereby improving the rotational flatness characteristic of the machine.
  • an embodiment of the invention which provides improved rotational flatness employs an improved support plate 40 to be attached to accelerator 30 to inhibit the above-described differential deflection.
  • the support plate 40 is coupled to the accelerator 30 by a pair of stabilizing blocks 46a and 46b.
  • the blocks 46a and 46b and the support plate 40 may be held together by a number of long bolts 47a, 47b or other conventional means, while the accelerator 30 is firmly gripped between the blocks 46a and 46b.
  • the support plate 40 is also attached to an inner surface 19 of the cantilevered strut section 18 by conventional means, such as machine screws or bolts 49a, 49b, which extend through the cantilevered strut section 18.
  • the thickness of the support plate 40 is chosen to allow the deflection of the accelerator to be tuned to match the deflection of the bending magnet. Because different size accelerators deflect differently, a common support plate 40 is chosen, as seen in FIGURE 3, and, in one embodiment, is provided with a pair of symmetrically placed stiffener bars 50 along opposite sides of the support plate 40. It is noted that, while illustrated as being generally rectangular, the support plate 40 may be of any suitable configuration. In addition, while two stiffener bars 50 are illustrated, one or more may be employed. Similarly, while a support plate 40 is shown, the support may be embodied in support bars having a predetermined stiffness disposed on opposite sides and/or above the accelerator assembly; additional stiffener bars configured for tuning the support bars may be provided. Thus, FIGURE 3 is exemplary only.
  • the stiffener bars 50 preferably each have a plurality of holes 51a and 51b, which are used as bolt holes to affix the stiffener bars 50 to the plate 40.
  • the plurality of holes allows use of a plurality of bolts, which allows "tuning" of the stiffness of the plate 40. In this manner a composite stiffness is achieved, wherein the radiation or accelerated particle beam remains aligned with the bending magnet and target.
  • the stiffener bars 50 are illustrated with a plurality of holes, they may alternatively be configured to be affixed to the support plate 40 in any tuneable fashion, such as by clamps or welding, so long as the composite structure has a tuneable stiffness. Providing a plate having a tuneable stiffness thus permits the same plate and bars to be used for accelerators having different lengths.
  • the plate 40 also has holes 43 for machine screws or bolts to be inserted therethrough for attachment to the cantilevered strut section 18.
  • the inclusion of the tuneable support plate 40 allows adjustment of the aggregate bending moment of inertia of the accelerator support assembly, thereby increasing or decreasing its deflection due to gravitation over its length.
  • the support plate 40 is essentially a stiffening apparatus attached to the accelerator 30 for substantially maintaining alignment between the accelerated particle beam, bending magnet and target. Therefore, the tuneable rigidity provided by the plate 40 serves to improve the rotational flatness characteristic of the radiation treatment apparatus.
  • the invention provides a novel radiation treatment apparatus and a method for maintaining relative alignment between the accelerated particle beam, bending magnet, and target to improve the rotational flatness of the device.
  • the invention is not limited to the embodiment described herein, or to any particular embodiment. Specific examples of alternative embodiments considered to be within the scope of the invention include embodiments where the stiffening apparatus is attached to the accelerator or interior surface of the cantilevered strut section in a different manner than is described herein.
  • the invention contemplates a stiffening apparatus of differing configuration or material from that described in the preferred embodiment.
  • the invention contemplates a gantry which is differently movable or differently orientable with respect to the stand of the radiation treatment apparatus. Other modifications to the preferred embodiment may also be made within the scope of the invention.
  • the invention is defined by the following claims.

Abstract

A radiation treatment apparatus (10) including a stand (12), a gantry (14) movably supported on the stand (12), the gantry (14) having a vertical section (16) and a generally linear cantilevered strut section (18), the cantilevered strut section (18) having a supported end adjacent the vertical section (16) and a projecting end opposite the supported end, a substantially linear particle accelerator (30) disposed within and longitudinally supported in generally parallel relationship with the cantilevered strut section (18), the accelerator (30) having a predetermined injection point (32) where particles are launched in the accelerator and a predetermined exit point (34) where the particles are discharged from the accelerator, a treatment head (22) coupled to the remote end of the cantilevered strut section proximate the exit point (34), the treatment head (22) for emitting a radiation beam (27), and a tuneable stiffening apparatus (40) attached to the accelerator (30) for substantially maintaining alignment between accelerated particle beam (27) and the bending magnet (35) and target (39) supported by the strut section (18).

Description

    BACKGROUND OF THE INVENTION
  • The invention relates generally to a radiation treatment apparatus, and more particularly to such apparatus employing a linear accelerator to provide X-rays or other particle beams for therapeutic medical applications. Such linear accelerators typically have an injection point where particles originate in the accelerator, an insertion point where RF energy enters the accelerator, and an exit point from which the particles are discharged from the accelerator. The particles may be used directly for treatment or converted to X-rays by striking a target, typically made from a high density material such as gold.
  • The use of linear accelerators in radiation therapy is generally known. Linear accelerators are used for generating a high energy radiation beam to be directed at tissue for treatment. As is well-known, a typical radiation therapy apparatus includes a stand anchored firmly to the floor of a room and a gantry rotatable on a bearing in the stand. The operational accelerator structure, housed within and oriented substantially parallel to a cantilevered strut section of the gantry, is rotatable with the gantry about the bearing to enable the treatment head at the remote end of the strut section to be positioned in a continuum of positions and orientations around a patient or object situated on a platform at the isocenter of the apparatus.
  • While such radiation therapy systems have been very successful, a problem has arisen in radiation therapy systems employing cantilevered linear accelerators. When the gantry is oriented at specific angular positions/orientations with respect to the stand, the accelerated particle beam may become slightly misdirected with respect to the target, producing potentially unsatisfactory results. More particularly, depending upon the angular position of the gantry, the cantilevered strut section of the gantry and the similarly cantilevered linear accelerator disposed therein differentially deflect. This differential deflection will cause the particle beam to follow a different path within the bending magnet and to strike the target at different input angles, ultimately affecting the X-ray beam intensity profile of the radiated X-rays as the gantry is rotated. The flatness of the beam intensity profile at all gantry angles is referred to as "rotational flatness".
  • Attempts have been made to electronically correct the misalignment problem attributable to gravitational deflection, but such efforts, standing alone, have not been entirely effective. In particular, such electronic solutions must generally include circuitry to measure the amount of misalignment and incorporate a feedback mechanism to correct for the misalignment. An example of an appropriate feedback mechanism is one or more wound coils disposed proximately to the beam path for directing the beam path. This type of solution is considerably more complex than the invention disclosed herein, and fails to likewise address the cause of the misalignment problem.
  • Additional attempts have been made to improve rotational flatness by stiffening the support plate used to affix the linear waveguide accelerator to the cantilevered gantry section. However, such methods for resolving the rotational flatness problem have been relatively ineffective because they offer no ready means of adjustment.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention there is provided a radiation treatment apparatus with an improved rotational flatness characteristic. In particular, the inventive radiation treatment apparatus improves the rotational flatness characteristic of the radiation treatment apparatus by mechanically matching the deflection of the accelerated particle beam and the bending magnet supported by the cantilevered strut in which the accelerator is housed.
  • The radiation treatment apparatus includes a stand for movably supporting a gantry thereon; the gantry having a vertical section and a generally linear cantilevered strut section. Inside the cantilevered strut section of the gantry, and longitudinally supported in generally parallel relationship therewith, is a substantially linear particle accelerator. In order to improve the rotational flatness characteristic of the radiation treatment apparatus, a tuneable stiffening apparatus or other means for maintaining alignment between the accelerated particle beam and the bending magnet housed in the cantilevered strut section is provided. By maintaining beam alignment, the rotational flatness is greatly improved.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGURE 1 is an elevation view of a radiation treatment apparatus according to the present invention showing specific internal components thereof;
  • FIGURE 1a is a diagram illustrating exemplary beam intensity profile graphs;
  • FIGURE 2 is an enlarged elevation view of a cantilevered strut section and treatment head of a radiation treatment apparatus in accordance with the invention; and
  • FIGURE 3 is a perspective view of a stiffening apparatus in accordance with the invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Referring to the drawings and especially to FIGURE 1, a radiation treatment apparatus 10 is shown such that specific internal components of the apparatus are visible. The radiation treatment apparatus 10 includes a stand 12 and a gantry 14 rotatable on a bearing 20 which transversely extends through the stand 12 and gantry 14. The gantry 14 may be formed in two sections: a vertical section 16, and a cantilevered strut section 18; the cantilevered strut section 18 being generally perpendicular to and cantilevered from the vertical section 16. At the end of the strut section 18, remote from the vertical section 16, is a treatment head 22 from which a radiation beam 27 generated by the apparatus is directed toward a patient 23 situated on platform 28.
  • A linear accelerator 30 is disposed within and longitudinally supported in generally parallel relationship with the cantilevered strut section 18. The accelerator 30 has a linear accelerating portion 31 and an RF insertion waveguide portion 36 extending substantially perpendicularly from the linear accelerating portion 31 at a junction 38. At the end of the accelerator 30, remote from the treatment head 22, is a particle gun 32, or "injection point", of the accelerator. The particles exit the linear portion of the accelerator 30 at point 34, where they enter a 270° achromatic bending magnet 35 and exit at point 37 to strike a high density target 39 from which X-rays 27 are created. The RF insertion waveguide portion 36 provides transmission of RF energy, thereby enabling particle acceleration within the accelerator 30. The RF energy is typically provided by a magnetron or klystron 15. The RF energy enters the linear accelerating portion 31 of the accelerator 30 at the accelerator junction 38.
  • In operation, the generated X-rays 27 are used to treat a treatment area, such as a cancer tumor 26 at or near the isocenter. Notably, the X-ray energy delivered to the treatment area 26 is constant regardless of the angular position of the gantry. A normalized beam intensity profile with the gantry up, or at zero degrees, is shown in FIGURE 1a at graph 27b, and one with the gantry down, or at 180 degrees, is shown in FIGURE 1a at graph 27a. These are typical of sub-optimal rotational flatness. The beam intensity profile graph 27a has a positive slope and energy profile graph 27b has a negative slope; neither is flat. Examples of energy profiles which are flat at all gantry angles are shown in FIGURE 1a at graphs 27c and 27d, and in FIGURE 1 at 27d.
  • In order to facilitate applying a radiation beam to a properly situated patient from one of a continuum of angular positions, the gantry 14 may be rotated on its bearing 20 about a rotational axis 25 with respect to the stand 12 so that the treatment head 22 encircles the patient located at the isocenter 26 of the apparatus. Thus, the cantilevered strut section 18 may be positioned with respect to stand 12 in a continuum of positions angularly identified from 0° to 360°.
  • The angular orientation of the gantry 14 contributes to the application of deflection forces on the bending magnet 35 and the accelerator 30 therein. Additional bending and torsional forces are also present due to the weight of the treatment head 22 and its position at the end of the strut section 18. The bending magnet 35 and accelerator 30 thus have differential deflections at different angular orientations of the gantry 14 (i.e., the accelerator 30 and the bending magnet 35 deflect at different angles). These differential deflections can result in a relative misalignment between the components such that the accelerated particle beam hits the target 39 at different input angles depending upon the angular orientation of the gantry 14, affecting the flatness of the X-ray beam intensity profile shown in FIGURE 1a at graphs 27a and 27b.
  • One approach to solving this problem would be to couple the accelerator 30 and the bending magnet 35 together nearer the treatment head 22. However, the density of components near the treatment head 22 makes this approach unfeasible. Additionally, directly coupling the accelerator to the bending magnet at one point only constrains position (translation), not slope (rotation), at that point. Accordingly, in order to resolve these problems, a tuneable plate 40 according to the present invention is used to affix the accelerator 30 to strut section 18. The stiffness of the plate 40 is chosen, as will be discussed in greater detail below, such that the particle beam remains aligned with the bending magnet 35, thereby improving the rotational flatness characteristic of the machine.
  • Referring now to FIGURE 2, an embodiment of the invention which provides improved rotational flatness employs an improved support plate 40 to be attached to accelerator 30 to inhibit the above-described differential deflection. Specifically, the support plate 40 is coupled to the accelerator 30 by a pair of stabilizing blocks 46a and 46b. The blocks 46a and 46b and the support plate 40 may be held together by a number of long bolts 47a, 47b or other conventional means, while the accelerator 30 is firmly gripped between the blocks 46a and 46b. The support plate 40 is also attached to an inner surface 19 of the cantilevered strut section 18 by conventional means, such as machine screws or bolts 49a, 49b, which extend through the cantilevered strut section 18.
  • The thickness of the support plate 40 is chosen to allow the deflection of the accelerator to be tuned to match the deflection of the bending magnet. Because different size accelerators deflect differently, a common support plate 40 is chosen, as seen in FIGURE 3, and, in one embodiment, is provided with a pair of symmetrically placed stiffener bars 50 along opposite sides of the support plate 40. It is noted that, while illustrated as being generally rectangular, the support plate 40 may be of any suitable configuration. In addition, while two stiffener bars 50 are illustrated, one or more may be employed. Similarly, while a support plate 40 is shown, the support may be embodied in support bars having a predetermined stiffness disposed on opposite sides and/or above the accelerator assembly; additional stiffener bars configured for tuning the support bars may be provided. Thus, FIGURE 3 is exemplary only.
  • As illustrated, the stiffener bars 50 preferably each have a plurality of holes 51a and 51b, which are used as bolt holes to affix the stiffener bars 50 to the plate 40. The plurality of holes allows use of a plurality of bolts, which allows "tuning" of the stiffness of the plate 40. In this manner a composite stiffness is achieved, wherein the radiation or accelerated particle beam remains aligned with the bending magnet and target. It is noted that while the stiffener bars 50 are illustrated with a plurality of holes, they may alternatively be configured to be affixed to the support plate 40 in any tuneable fashion, such as by clamps or welding, so long as the composite structure has a tuneable stiffness. Providing a plate having a tuneable stiffness thus permits the same plate and bars to be used for accelerators having different lengths. The plate 40 also has holes 43 for machine screws or bolts to be inserted therethrough for attachment to the cantilevered strut section 18.
  • The inclusion of the tuneable support plate 40 allows adjustment of the aggregate bending moment of inertia of the accelerator support assembly, thereby increasing or decreasing its deflection due to gravitation over its length. The support plate 40 is essentially a stiffening apparatus attached to the accelerator 30 for substantially maintaining alignment between the accelerated particle beam, bending magnet and target. Therefore, the tuneable rigidity provided by the plate 40 serves to improve the rotational flatness characteristic of the radiation treatment apparatus.
  • From the foregoing, it will be appreciated that the invention provides a novel radiation treatment apparatus and a method for maintaining relative alignment between the accelerated particle beam, bending magnet, and target to improve the rotational flatness of the device. The invention is not limited to the embodiment described herein, or to any particular embodiment. Specific examples of alternative embodiments considered to be within the scope of the invention include embodiments where the stiffening apparatus is attached to the accelerator or interior surface of the cantilevered strut section in a different manner than is described herein. Also, the invention contemplates a stiffening apparatus of differing configuration or material from that described in the preferred embodiment. Additionally, the invention contemplates a gantry which is differently movable or differently orientable with respect to the stand of the radiation treatment apparatus. Other modifications to the preferred embodiment may also be made within the scope of the invention. The invention is defined by the following claims.

Claims (10)

  1. An apparatus (10) including a gantry (14) having a vertical section (16) and a generally linear cantilevered strut section (18), and a body (30) disposed within and longitudinally supported in generally parallel relationship with said cantilevered strut section (18), said apparatus (10) CHARACTERIZED by a tuneable stiffening apparatus attached to said body (30) and said strut section (18) for enabling adjustment of the stiffness therebetween.
  2. An apparatus (10) in accordance with claim 1, wherein said stiffening apparatus comprises a mounting plate (40).
  3. An apparatus (10) in accordance with claim 2, wherein said stiffening apparatus further comprises at least one stiffener bar (50) attached to said mounting plate (40), said stiffener bar (50) providing said mounting plate (40) with additional bending stiffness.
  4. An apparatus (10) in accordance with claim 3, wherein said stiffener bar (50) is configured to be selectably attached to said mounting plate (40) such that a composite stiffness of said stiffener bar (50) and said mounting plate (40) are selectably tuneable.
  5. An apparatus (10) in accordance with claim 4, wherein said stiffener bar (50) includes a plurality of bolt holes (51a and 51b) adapted to receive a plurality of bolts for affixing said stiffener bar (50) to said mounting plate (40).
  6. An apparatus (10) in accordance with claim 5, wherein said stiffening apparatus is also attached to said strut section (18) thereby providing alignment between an accelerated particle beam generated by said body (30), a bending magnet (35) disposed at an end of said body (30) and a target (39).
  7. An apparatus (10) in accordance with claim 1, further comprising a bearing (20) on a stand (12) for rotatably anchoring said apparatus (10) to a floor.
  8. An apparatus (10) in accordance with claim 7, wherein said gantry (14) is rotatable in a 360° range with respect to said stand (12).
  9. An apparatus (10) in accordance with claim 8 wherein said stiffening apparatus comprises a mounting plate (48), at least one stiffener bar (50) attached to said mounting plate (40), and a stiffener bar (50) for providing said mounting plate (40) with additional bending stiffness, said stiffener bar (50) being selectably attached to said mounting plate (40) such that a composite stiffness of said stiffener bar (50) and said mounting plate (40) is selectively tuneable.
  10. An apparatus (10) in accordance with claim 9, wherein said stiffening apparatus is selectably tuneable such that said apparatus (10) produces a substantially flat energy profile graph.
EP98113491A 1997-08-08 1998-07-20 Rotational flatness improvement Withdrawn EP0895790A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/907,582 US5963615A (en) 1997-08-08 1997-08-08 Rotational flatness improvement
US907582 1997-08-08

Publications (2)

Publication Number Publication Date
EP0895790A2 true EP0895790A2 (en) 1999-02-10
EP0895790A3 EP0895790A3 (en) 1999-07-28

Family

ID=25424341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98113491A Withdrawn EP0895790A3 (en) 1997-08-08 1998-07-20 Rotational flatness improvement

Country Status (3)

Country Link
US (2) US5963615A (en)
EP (1) EP0895790A3 (en)
JP (1) JPH11104250A (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253687A (en) * 2001-03-02 2002-09-10 Mitsubishi Heavy Ind Ltd Radiotherapeutic apparatus
DE10241178B4 (en) * 2002-09-05 2007-03-29 Mt Aerospace Ag Isokinetic gantry arrangement for the isocentric guidance of a particle beam and method for its design
AU2005267078B8 (en) 2004-07-21 2009-05-07 Mevion Medical Systems, Inc. A programmable radio frequency waveform generator for a synchrocyclotron
US7957507B2 (en) 2005-02-28 2011-06-07 Cadman Patrick F Method and apparatus for modulating a radiation beam
US8232535B2 (en) 2005-05-10 2012-07-31 Tomotherapy Incorporated System and method of treating a patient with radiation therapy
US7803743B2 (en) * 2005-06-06 2010-09-28 Baker Hughes Incorporated Invert emulsion carrier fluid and oil-wetting agent and method of using same
CN101268467B (en) * 2005-07-22 2012-07-18 断层放疗公司 Method and system for evaluating quality assurance criteria in delivery of a treament plan
DE602006021803D1 (en) 2005-07-22 2011-06-16 Tomotherapy Inc A system for delivering radiotherapy to a moving target area
US8442287B2 (en) 2005-07-22 2013-05-14 Tomotherapy Incorporated Method and system for evaluating quality assurance criteria in delivery of a treatment plan
AU2006272742A1 (en) 2005-07-22 2007-02-01 Tomotherapy Incorporated System and method of delivering radiation therapy to a moving region of interest
JP2009502251A (en) 2005-07-22 2009-01-29 トモセラピー・インコーポレーテッド System and method for evaluating dose delivered by a radiation therapy system
WO2007014090A2 (en) 2005-07-23 2007-02-01 Tomotherapy Incorporated Radiation therapy imaging and delivery utilizing coordinated motion of gantry and couch
EP2389981A3 (en) 2005-11-18 2012-03-07 Still River Systems, Inc. Charged particle radiation therapy
US7511286B2 (en) * 2006-01-26 2009-03-31 Siemens Medical Solutions Usa, Inc. Image-based flat panel alignment
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
JP2009189643A (en) * 2008-02-15 2009-08-27 Sumitomo Heavy Ind Ltd Neutron beam rotary irradiation apparatus
CN103764039B (en) * 2011-07-29 2017-08-29 保罗·基尔 Image guiding radiotherapy component
WO2014052708A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
CN104822417B (en) 2012-09-28 2018-04-13 梅维昂医疗系统股份有限公司 Control system for particle accelerator
WO2014052716A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Magnetic field regenerator
WO2014052718A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Focusing a particle beam
EP3581242B1 (en) 2012-09-28 2022-04-06 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9155186B2 (en) 2012-09-28 2015-10-06 Mevion Medical Systems, Inc. Focusing a particle beam using magnetic field flutter
TW201424467A (en) 2012-09-28 2014-06-16 Mevion Medical Systems Inc Controlling intensity of a particle beam
EP3581243A1 (en) 2012-09-28 2019-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
EP2962309B1 (en) 2013-02-26 2022-02-16 Accuray, Inc. Electromagnetically actuated multi-leaf collimator
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN110237447B (en) 2013-09-27 2021-11-02 梅维昂医疗系统股份有限公司 Particle therapy system
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
JP6383244B2 (en) * 2014-10-21 2018-08-29 株式会社東芝 Particle beam therapy system
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
CN109803723B (en) 2016-07-08 2021-05-14 迈胜医疗设备有限公司 Particle therapy system
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
WO2019006253A1 (en) 2017-06-30 2019-01-03 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
US11291861B2 (en) 2019-03-08 2022-04-05 Mevion Medical Systems, Inc. Delivery of radiation by column and generating a treatment plan therefor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2346274A (en) * 1941-01-15 1944-04-11 Albert L Raven Projection screen stand
US3318457A (en) * 1966-10-18 1967-05-09 Irwin R Krasnoff Assembly for use in intravenous feeding
US3955089A (en) * 1974-10-21 1976-05-04 Varian Associates Automatic steering of a high velocity beam of charged particles
US4527763A (en) * 1984-05-07 1985-07-09 Nicholas Woytowich Detachable tool and paint can platform for ladder
US4600175A (en) * 1984-10-18 1986-07-15 Charles D. Bell Incorporated Refracting instrument support arm
WO1989005171A2 (en) * 1987-12-03 1989-06-15 University Of Florida Apparatus for stereotactic radiosurgery
JPH05154210A (en) * 1991-12-06 1993-06-22 Mitsubishi Electric Corp Radiotherapeutic device
US5233990A (en) * 1992-01-13 1993-08-10 Gideon Barnea Method and apparatus for diagnostic imaging in radiation therapy
US5279486A (en) * 1993-03-31 1994-01-18 Harmon Elbert C Medical support device
ES1034279U (en) * 1996-05-30 1996-12-16 Telefonica Nacional Espana Co Multi-position television monitor stand
US5723808A (en) * 1996-07-24 1998-03-03 Devall; Jeffrey D. Adjustable rest

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
US6158708A (en) 2000-12-12
EP0895790A3 (en) 1999-07-28
JPH11104250A (en) 1999-04-20
US5963615A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
US6158708A (en) Rotational flatness improvement
CA2407809C (en) Radiation applying apparatus
DE60310710T2 (en) MACHINE FOR INTRAOPERATIVE RADIOTHERAPY
US4812658A (en) Beam Redirecting
WO2012014705A1 (en) Charged particle beam irradiation device
US6493424B2 (en) Multi-mode operation of a standing wave linear accelerator
US3360647A (en) Electron accelerator with specific deflecting magnet structure and x-ray target
TWI448313B (en) System having an inner gantry
US7619374B2 (en) Radiotherapy system for performing radiotherapy with presice irradiation
US20080043910A1 (en) Method and apparatus for stabilizing an energy source in a radiation delivery device
JPH01146565A (en) Multileaf collimator
US9011002B2 (en) Radiation generation unit
US7759883B2 (en) Dual-rotary-coupling, internal-waveguide linac for IORT
CA1104728A (en) Charged particle beam scanning apparatus
US20180104513A1 (en) Method and apparatus for an ion beam accelerator and beam delivery system integrated on a rotating gantry
KR20140102031A (en) Radiotherapy apparatus
JPS62206798A (en) Linear accelerator
JPH06154349A (en) Radiotherapy device
US20080315113A1 (en) Beam guidance magnet
JP5030893B2 (en) Charged particle beam accelerator and particle beam irradiation medical system using the accelerator
JPH02228973A (en) Radiation treatment apparatus
JP3541323B2 (en) Rotary irradiation device for proton beam therapy
ITLT20010014A1 (en) THERAROBOT SCAN X-RAY RADIOTHERAPY EQUIPMENT
JP2001116899A (en) Radiation generator
JPS63270066A (en) Radiation therapy apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE GB SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19990716

AKX Designation fees paid

Free format text: DE GB SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041126