EP0887511A1 - Méthode et système de détection de la précession d'un élément d'une garniture de forage - Google Patents

Méthode et système de détection de la précession d'un élément d'une garniture de forage Download PDF

Info

Publication number
EP0887511A1
EP0887511A1 EP98401475A EP98401475A EP0887511A1 EP 0887511 A1 EP0887511 A1 EP 0887511A1 EP 98401475 A EP98401475 A EP 98401475A EP 98401475 A EP98401475 A EP 98401475A EP 0887511 A1 EP0887511 A1 EP 0887511A1
Authority
EP
European Patent Office
Prior art keywords
measurement
precession
line
significant
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP98401475A
Other languages
German (de)
English (en)
Other versions
EP0887511B1 (fr
Inventor
Isabelle Rey-Fabret
Claude Mabile
Nathalie Oudin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0887511A1 publication Critical patent/EP0887511A1/fr
Application granted granted Critical
Publication of EP0887511B1 publication Critical patent/EP0887511B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions

Definitions

  • the present invention relates to the field of drilling techniques for oil and gas wells, and more specifically detection techniques of the precession during drilling of the element of the drill string commonly called "BHA" for "Bottom Hole Assembly".
  • BHA Bottom Hole Assembly
  • BHA is subject to precession when it undergoes a movement proper rotation due in particular to bending. This clean movement is influenced by drilling parameters (weight on the tool, rotation speed, etc.) and geometric parameters (dimensions of the BHA constituents, tool diameter, hole path, type of terrain, etc.). He is considered as a serious malfunction because it prevents the smooth running of the drilling and can even cause significant material damage, particularly to elements of the BHA.
  • the measurements acquired at the surface can be a function of the couple S (t) and of the voltage V (t) at the top of the drill rods.
  • the average jump can be identified from the torque measurement S (t) and the location of said significant line from the measurement of the voltage V (t).
  • ], ⁇ being the average speed of the lining and ⁇ b - ⁇ R c / ( R b - R c ) where Rc is the radius of said element in precession and Rb is the radius of the well, and said skate can have a power at least greater than 65% of the main maximum.
  • the acquisition means may include measurement sensors related to the torque S (t) and to the voltage V (t) at the upper end of the packing.
  • the torque S (t) can be measured by means of the motorization in lining rotation and tension can be measured from the tension of the cable.
  • precession can be defined as movement of the drill collar when the contact of the drill collar against the walls of the well generates an orbital movement of one or more sections of the BHA. It is therefore a composition of two rotational movements.
  • the purpose of detection is to determine ⁇ , to deduce in which precession conditions we find our by studying the value of s, and of trigger an alarm if necessary.
  • Several alarm levels can be defined according to the value of s.
  • the factors influencing precession are essentially the operational drilling parameters (rotation speed, tool weight, type of mud %), the geometry of the whole (dimension of the well, inclination of the well, %) and the type of rock drilled.
  • Precession is therefore particularly present in wells or parts of vertical or slightly deviated wells.
  • the main objective of the invention is to detect precession from only signals available on the surface. Now, the bending phenomena are not very sensitive on the surface because on the one hand, there is such a dissipation bending waves (structural and due to the well fluid) that the latter tend to to disappear before reaching the surface, and on the other hand, the well is a bad guide for bending waves.
  • Figure 1 depicts the drilling of a well 1 using a surface 2 comprising a tower 3 and suspension means 4 to which is attached to the drill string 5.
  • the drill string 5 is composed as it is known in the art of drilling, by a drilling tool 6, a set of rods 7 in which one or more stabilizers 8 can be integrated, drill rods 9 screwed together to make the connection mechanical with the injection head, for example motorized 10, suspended from the lifting means 4. It is the precession of part of BHA 7 which concerns the present invention.
  • a connector 11 includes sensors sensitive to the vibration of the train stems.
  • the vibrations recorded can be torsion, bending, tension, or even pressure in the drilling fluid injected through the head 10.
  • the sensors are sensitive to the torque and at the tension at the upper end of the rods 9.
  • suitable sensors can be installed in the setting means gasket rotation: rotary table or motorized injection head 10.
  • the tension can also be measured from the tension of a strand of the cable drilling.
  • Means of acquisition and processing 12 of the corresponding signals to the vibration of the torque and the surface tension, respectively (S (t) and V (t), are in connection with the instrumented fitting 11, either by a cable 13 or by radio wave received by the antenna 14.
  • a drilling control cabin 15 receives, either by radio means 16 or by cable 17, the information from the acquisition and processing means 12. This information can trigger signaling means 18 of the alarm type, by example of lights of different colors depending on a specific level of precession.
  • the automatic data processing is done according to the following scheme:
  • represents the instantaneous rotation speed imparted to the drilling assembly by the engine.
  • t am is the time when an average jump of the signal studied in time is detected, here the surface torque S (t).
  • An example of automatic processing for detecting the average jump of the signal processed in time (for example here, the couple).
  • the CUSUM algorithm makes it possible to give precisely the time t am when there is a change in the mean of the signal.
  • C ⁇ / ⁇ b, where ⁇ is the proper rotation speed of the BHA in its precession movement.
  • Figures 2 and 3 illustrate two more detailed algorithms of the automatic data processing and alarm triggering based on the principles of precession detection described above.
  • Block 40 represents the frequency treatments on upstream and downstream windows with respect to t am .
  • an estimate of the spectrum of the front torque is calculated and after the average jump by conventional signal processing methods (for example: averaged periodograms, high resolution methods, ).
  • Convention signal processing methods for example: averaged periodograms, high resolution methods, .
  • the alarm threshold is taken at 0.6. If C is greater than 0.6, an alarm is triggered to prevent the significant risk of having a dysfunction close to the retrograde type.
  • FIG. 3 shows another example of automatic processing in which the monitoring of the mean and the spectral content is done in parallel over time (block 30 ′).
  • the search for a significant line is then triggered (block 40 ').
  • the same functionality for triggering an alarm is then found.
  • Figures 4a, 4b, 5a and 5b are comparative examples of what is can actually measure at the BHA level and what we measure in area.
  • Figure 4a is the recording of the bending recorded at the level drill collars, for example in fitting 20 ( Figure 1). Such means of measurement are for example described in document EP-B1-0558379, cited here in reference. We note the average jump referenced 21.
  • FIG. 4b gives the spectrum corresponding to the signal of the moment of bending at the BHA level.
  • the continuous curve 23 corresponds to the spectrum in upstream of the mean jump, i.e. without whirling
  • the dotted curve 24 corresponds to the spectrum after the average jump, i.e. in whirling.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Earth Drilling (AREA)
  • Drilling And Boring (AREA)

Abstract

  • La présente invention concerne un système et une méthode de détection automatique de la précession d'un élément d'une garniture de forage, en particulier de l'ensemble des masses-tiges d'une garniture de forage.
  • La méthode comporte l'étape d'acquisition de signaux en surface liés à la vibration de l'extrémité des tiges de forage, le traitement automatique sur au moins un signal pour détecter un saut de moyenne et une raie significative dans le spectre du signal.
  • On calcule un critère de précession et on déclenche une alarme.
  • L'invention concerne également un système de détection de la précession d'un élément d'une garniture de forage.

Description

La présente invention concerne le domaine des techniques de forage de puits de pétrole et de gaz, et plus particulièrement les techniques de détection de la précession pendant le forage de l'élément de la garniture de forage appelée communément « BHA » pour « Bottom Hole Assembly ». Pour simplifier, la partie de la garniture concernée par la présente invention sera dénommée BHA dans la suite de la description.
La BHA est soumise à de la précession lorsqu'elle subit un mouvement de rotation propre dû notamment à de la flexion. Ce mouvement propre est influencé par des paramètres de forage (poids sur l'outil, vitesse de rotation, etc.) et des paramètres géométriques (dimensions des constituants de la BHA, diamètre de l'outil, trajectoire du trou, type de terrain, etc.). Il est considéré comme un dysfonctionnement sérieux car il empêche le bon déroulement du forage et peut même causer des dégâts matériels importants notamment aux éléments de la BHA.
On connaít dans la profession le dysfonctionnement dit « whirling », mais il n'a pour l'instant été pris en compte qu'au niveau de l'outil de forage pour réduire les ruptures et les usures excessives des éléments de coupe, dues à ce dysfonctionnement.
Ainsi, la présente invention concerne une méthode de détection de la précession d'un élément d'une garniture de forage en rotation dans un puits. La méthode comporte les étapes suivantes :
  • acquisition d'au moins une mesure par des moyens de mesure placés proches de la surface, ladite mesure étant représentative de la vibration dudit élément dans ledit puits,
  • traitement automatique de ladite mesure comprenant le repérage d'un saut de moyenne et le repérage d'une raie significative dans le spectre de ladite mesure, lesdits repérages apparaissant dans un intervalle de temps inférieur à environ 10 secondes,
  • détermination d'un critère de précession à partir des caractéristiques de ladite raie,
  • déclenchement d'une alarme si le critère atteint une valeur seuil déterminée.
Les mesures acquises en surface peuvent être fonction du couple S(t) et de la tension V(t) au sommet des tiges de forage.
Le saut de moyenne peut être repéré à partir de la mesure du couple S(t) et le repérage de ladite raie significative à partir de la mesure de la tension V(t).
La raie significative peut être comprise dans l'intervalle de fréquence correspondant à l'intervalle I= [ω/2π ; |Ωb/2π|], ω étant la vitesse moyenne de la garniture et Ω b = - ω Rc / (Rb - Rc ) où Rc est le rayon dudit élément en précession et Rb est le rayon du puits, et ladite raie peut avoir une puissance au moins supérieure à 65% du maximum principal.
On peut calculer C=Ω/Ωb, Ω étant calculé à partir de la fréquence de ladite raie significative, et on peut déclencher l'alarme lorsque C est supérieur à environ 0,5, et de préférence à 0,6.
L'invention concerne également un système de détection de la précession d'un élément d'une garniture de forage en rotation dans un puits. Le système comporte :
  • des moyens d'acquisition d'au moins une mesure, lesdits moyens de mesure étant placés proches de la partie supérieure de ladite garniture, ladite mesure étant représentative de la vibration dudit élément dans ledit puits,
  • des moyens de traitement automatique de ladite mesure comprenant des moyens de repérage d'un saut de moyenne et de repérage d'une raie significative dans le spectre de ladite mesure, lesdits repérages apparaissant dans un intervalle de temps inférieur à environ 10 secondes,
  • des moyens de détermination d'un critère de précession à partir des caractéristiques de ladite raie,
  • des moyens de déclenchement d'une alarme si le critère atteint une valeur seuil déterminée.
Les moyens d'acquisition peuvent comporter des capteurs de mesures liées au couple S(t) et à la tension V(t) à l'extrémité supérieure de la garniture.
Le couple S(t) peut être mesuré par le moyen de la motorisation en rotation de la garniture et la tension peut être mesurée à partir de la tension du câble.
On rappelle que la précession peut être définie comme étant le mouvement de la masse-tige lorsque le contact de la masse-tige contre les parois du puits engendre un mouvement orbital d'une ou plusieurs section de la BHA. Il s'agit donc d'une composition de deux mouvements de rotation.
En notant :
  • la vitesse de rotation imposée au train de tiges par l'appareil de surface (rotation autour de l'axe de la garniture),
  • la vitesse propre de rotation due à la précession (rotation autour de l'axe du trou foré),
  • V la vitesse de glissement au point de contact (dans le cas où il n'y a pas choc),
  • b vitesse de précession sans glissement (V=0),
  • Rb rayon du trou, et Rc rayon d'une section en précession,
on obtient la relation V=(Rb-Rc).Ω+Rc. ω, donc pour V=0, on a Ωb=- ω.Rc/(Rb-Rc)
On définit s = Ω/Ωb
Lorsque Ω est dans le même sens que ω, on parle de précession « forward », sinon on parle de précession « backward » ou « rétrograde ». La précession synchrone (Ω = ω) est la plus défavorable d'un point de vue abrasion du train de tiges, car celle-ci se fait toujours au même endroit, et que la vitesse de glissement est maximale. Par contre, en précession rétrograde, il n'y a pas de phénomène d'abrasion spécifique, mais la fréquence étant grande, la fatigue est importante. En fait, on est en situation de flexion alternée qui est d'autant plus grande que l'on se rapproche de Ωb. En pratique, la majeure partie des ruptures et pannes sont liées à la fatigue, et il faudra donc éviter en priorité la forte précession rétrograde, c'est-à-dire le cas où s = Ω/Ωb s'approche de 1.
Le but de la détection est de déterminer Ω, d'en déduire dans quelles conditions de précession on se trouve en étudiant la valeur de s, et de déclencher une alarme si nécessaire. Plusieurs niveaux d'alarme peuvent être définis en fonction de la valeur de s.
Les facteurs d'influence de la précession sont essentiellement les paramètres opérationnels de forage (vitesse de rotation, poids sur l'outil, type de boue...), la géométrie de l'ensemble (dimension du puits, inclinaison du puits,...) et le type de roche forée.
En effet, il apparaít que la tendance à la précession augmente quand le poids sur l'outil diminue et que la vitesse de rotation augmente. Une forte friction entre paroi et BHA (à cause d'une paroi rugueuse, et/ou d'une boue peu lubrifiante) favorise une précession rétrograde. On constate les mêmes faits dans le cas d'une roche dure, d'une part, l'amortissement de l'interaction outil/roche et des vibrations y est faible, d'autre part, la vitesse d'avance est généralement peu importante.
De plus, la déformation de flexion est naturellement limitée par le diamètre foré.
Dans les puits déviés, elle est réduite par l'amortissement des vibrations au niveau des stabilisateurs.
La précession est donc particulièrement présente dans les puits ou parties de puits verticaux ou faiblement déviés.
En pratique, la majeure partie des ruptures et pannes sont liées à la fatigue, et il faut donc éviter essentiellement la précession rétrograde de la BHA. Le remède consiste presque toujours à arrêter la rotation de la tige pour faire disparaítre la précession. Détecter la précession est donc indispensable pour arrêter le mouvement avant qu'il ait pris une ampleur trop importante.
Il est également très avantageux de déterminer le phénomène de précession à partir de signaux caractéristiques que l'on peut disposer en plaçant des capteurs sur l'extrémité supérieure des tiges de forage liées à la partie supérieure de la BHA. En effet, les capteurs de fond (situés au niveau de la BHA) nécessitent des moyens de transmission lourds, dans la mesure où il est ici indispensable d'avoir un volume d'information important.
La présente invention sera mieux comprise et ses avantages apparaítront plus clairement à la lecture de la description d'un exemple de réalisation, nullement limitatif, illustré par les figures ci-annexées, parmi lesquelles :
  • La figure 1 montre schématiquement une ensemble de forage comportant un système de détection de la précession selon l'invention,
  • La figure 2 est un exemple d'organigramme de la méthode,
  • La figure 3 est un autre exemple d'organigramme.
  • Les figures 4a et 4b montrent la mesure et le spectre de la flexion de la BHA,
  • Les figures 5a et 5b montrent la mesure du couple en surface et le spectre de la tension en surface.
Selon l'invention, l'organigramme simplifié de l'alarme de précession de la BHA est le suivant :
Un ensemble de capteurs fournit des mesures caractéristiques des vibrations latérales de la BHA, (par exemple le couple et la tension) à :
  • des moyens d'acquisition desdites mesures qui font transiter les signaux correspondant vers :
  • des moyens de traitement automatiques des données qui déterminent le déclenchement ou non :
  • d'une alarme.
L'invention a pour principal objectif de détecter la précession à partir seulement des signaux disponibles en surface. Or, les phénomènes de flexion sont assez peu sensibles en surface car d'une part, il y a une telle dissipation des ondes de flexion (structurelle et due au fluide de puits) que celle-ci tendent à disparaítre avant d'arriver en surface, et d'autre part, le puits est un mauvais guide pour les ondes de flexion.
Cependant, il existe de nombreux couplage entre les différents modes (longitudinal, torsion, flexion). On peut donc trouver des signes caractéristiques de précession dans des signaux de surface autres que la flexion.
La figure 1 décrit le forage d'un puits 1 à l'aide d'une installation de surface 2 comportant une tour 3 et des moyens de suspension 4 auxquels est accrochée la garniture de forage 5. La garniture de forage 5 se compose comme il est connu dans l'art du forage, par un outil de forage 6, un ensemble de masses-tiges 7 dans lequel on peut intégrer un ou plusieurs stabilisateurs 8, des tiges de forage 9 vissées les unes aux autres pour effectuer la liaison mécanique avec la tête d'injection, par exemple motorisée 10, suspendue aux moyens de levage 4. C'est la précession d'une partie de la BHA 7 qui concerne la présente invention.
Un raccord 11 comporte des capteurs sensibles à la vibration du train de tiges. Les vibrations enregistrées peuvent être de torsion, de flexion, de tension, ou même de pression dans le fluide de forage injecté à travers la tête d'injection 10. Dans le présent exemple, les capteurs sont sensibles au couple et à la tension au niveau de l'extrémité supérieure des tiges 9. Pour la mesure du couple, on peut installer des capteurs adaptés dans les moyens de mise en rotation de la garniture : table de rotation ou tête d'injection motorisée 10. La tension peut aussi être mesurée à partir de la tension d'un brin du câble de forage.
Des moyens d'acquisition et de traitement 12 des signaux correspondant à la vibration du couple et de la tension en surface, respectivement (S(t) et V(t), sont en liaison avec le raccord instrumenté 11, soit par un câble 13 soit par onde radio reçue par l'antenne 14. Une cabine de contrôle du forage 15 reçoit, soit par des moyens radio 16, soit par câble 17, les informations provenant des moyens d'acquisition et de traitement 12. Ces informations peuvent déclencher des moyens de signalisation 18 du type alarme, par exemple des feux de couleurs différentes en fonction d'un niveau spécifique de précession.
Le traitement automatique des données et de l'alarme utilise dans le présent exemple comme signaux caractéristiques des vibrations latérales :
  • S(t) = couple en surface,
  • V(t) = tension en surface.
  • Le traitement automatique des données se fait selon le schéma suivant :
    Figure 00070001
    On rappelle que :
       ω représente la vitesse de rotation instantanée imprimée à l'ensemble de forage par le moteur.
    Ωb est la vitesse de précession sans glissement. Elle se calcule à partir de l'expression suivante : Ω b = -ω Rc (Rb - Rc )    où Rc est le rayon de la BHA et Rb est le rayon du puits.
    tam est le temps où l'on détecte un saut de moyenne du signal étudié en temporel, ici le couple en surface S(t).
    On cite ici en référence les documents suivants :
    • « Detection of Abrupt Changes. Theory and Application » par Basseville et Nikiforov-Prentice Hall Information and System Sciences Series, 1993.
    • « Digital Processing of Random Signals. Theory and Methods» par Porat- Prentice Hall Information and System Sciences Series, 1994.
    Détection du saut de moyenne en temporel :
    On donne ici un exemple de traitement automatique de détection du saut de moyenne du signal traité en temporel (par exemple ici, le couple).
    Pour détecter le saut de moyenne du couple, on peut choisir d'utiliser des fenêtres glissantes, une de grande dimension (par exemple 2000 points) et l'autre de petite dimension (par exemple 400 points) qui contient les points les plus récents de la grande fenêtre. On compare alors la moyenne obtenue dans la grande fenêtre avec celle obtenue par la petite fenêtre. Au moment du changement de moyenne, les deux résultats deviennent sensiblement différents, car la petite fenêtre est très sensible au changement alors que la grande l'est nettement moins. Cette comparaison peut être faite à partir du logarithme du rapport de vraisemblance des deux moyennes, calculé de manière continue à l'aide de l'algorithme CUSUM. L'algorithme CUSUM a été décrit par M. Page en 1954 dans «Continuous Inspection Schemes» Biometrika, Vol. 41, PP 100-115.
    L'algorithme CUSUM permet de donner de manière précise le temps tam où il y a changement dans la moyenne du signal.
    Détection du changement spectral:
    A partir de moment où l'on connaít l'instant tam du changement de moyenne temporelle du couple, on peut calculer le spectre du signal de tension avant cet instant et le spectre après cet instant et les comparer. Ces spectres sont utiles sur la bande de fréquence I= [ω/2π; |Ωb/2π|] mentionnée dans l'organigramme précédent. C'est dans cet intervalle que l'on cherche à détecter l'apparition d'une raie.
    Pour les comparer, on propose ici deux solutions :
  • 1) Utiliser à nouveau la comparaison, en fréquentiel cette fois, entre une petite fenêtre et une grande fenêtre comme définies précédemment. Pour cela, il faut connaítre suffisamment précisément les caractéristiques fréquentielles du signal. On modélise donc au préalable le signal par une modélisation autorégressive. Ensuite, on peut calculer la distance spectrale entre les deux spectres des deux fenêtres, en utilisant à nouveau l'algorithme CUSUM.
  • 2) Faire une comparaison directe des spectres avant et après tam. Cette méthode consiste à faire la différence directe entre les 2 spectres ainsi calculés, en admettant une petite fluctuation de la valeur de la fréquence associée à chaque raie.
  • Quelle que soit la solution choisie, la comparaison des deux spectres nous permet de répondre à la question suivante :
       « A l'instant tam, y a-t-il eu apparition d'une raie dans l'intervalle I ? »
    • Si la réponse est non, il n'y a pas déclenchement d'alarme et on se borne à continuer à repérer un éventuel changement de moyenne temporelle dans le signal de couple.
    • Si la réponse est oui, on détermine alors la puissance de cette raie par rapport aux autres, afin de déterminer si elle est significative. Un pourcentage spécifique de la puissance totale du signal est défini comme palier pour sélectionner les raies « significatives ».
    Ainsi, en fin de traitement automatique des données, on a sélectionné des raies considérées comme importantes et qui peuvent être la preuve de la présence d'un mouvement de précession de la BHA. La fréquence de la raie significative permet de calculer la vitesse de précession Ω.
    L'alarme peut se décrire selon le schéma suivant :
    Figure 00100001
    On définit un critère, noté C, de caractérisation de la précession comme suit :
       C = Ω/Ωb, où Ω est la vitesse de rotation propre de la BHA dans son mouvement de précession.
    On définit par ailleurs un seuil s tel que si C>s, alors la précession considérée est une précession rétrograde, et donc très nocive pour la garniture de forage.
    On déclenche donc une alarme dans la mesure où le calcul du critère C et sa comparaison avec le seuil s nous permet de conclure sur l'apparition d'un mouvement de précession rétrograde de la BHA.
    Les figures 2 et 3 illustrent deux algorithmes plus détaillés du traitement automatique des données et de déclenchement de l'alarme basés sur les principes de la détection de la précession décrits plus haut.
    Selon l'organigramme de la figure 2, on n'effectue un traitement spectral qu'à partir du moment où l'on a déterminé un instant tam où l'on a détecté un saut de moyenne (bloc 30). Le bloc 40 représente les traitements fréquentiels sur des fenêtres amont et aval par rapport à tam.
    Dans ce bloc 40, on calcule une estimation du spectre du couple avant et après le saut de moyenne par les méthodes classiques de traitement de signal (par exemple : périodogrammes moyennés, méthodes haute résolution,...). On calcule également la moyenne de la vitesse de rotation considérée comme stationnaire au moment de l'apparition du whirling. On évalue ensuite la différence des spectres ainsi obtenus et l'on garde, par exemple, les quatre raies les plus énergétiques.
    En parallèle (cas de la figure 2) ou en séquentiel (cas de la figure 3), on calcule Ωb à partir de ω et des caractéristiques physiques Rb et Rc.
    Enfin, on sélectionne une ou plusieurs raies en effectuant un tri des différentes raies spectrales en énergie, par exemple à 65% par rapport à l'énergie maximale, et en fréquence en ne conservant que les fréquences appartenant à l'intervalle . I= [ω/2π; |Ωb/2π|].
    A la suite du bloc 40, on calcule C pour la raie significative.
    Dans cet exemple, le seuil d'alarme est pris à 0,6. Si C est supérieur à 0,6, on déclenche une alarme pour prévenir le risque important d'avoir un dysfonctionnement proche du type rétrograde.
    La figure 3 montre un autre exemple de traitement automatique dans lequel le suivi de la moyenne et du contenu spectral se fait en parallèle dans le temps (bloc 30'). Dans le cas où, il y a saut de moyenne à l'instant tam et changement spectral à l'instant tas et que ces deux instants soient suffisamment proches, par exemple si |tam-tas| est inférieur à 8 secondes, on déclenche alors la recherche d'une raie significative (bloc 40'). On retrouve ensuite les mêmes fonctionnalités pour le déclenchement d'une alarme.
    Ces différentes procédures ne sont que des exemples de déclenchement automatique d'alarme concernant la précession de la BHA, mais d'autres procédures sont possibles, dont, par exemple, un traitement automatique fondé sur la statistique bayésienne.
    Les figures 4a, 4b , 5a et 5b sont des exemples comparatifs de ce que l'on peut mesurer effectivement au niveau de la BHA et de ce que l'on mesure en surface. La figure 4a est l'enregistrement de la flexion enregistrée au niveau des masses-tiges, par exemple dans le raccord 20 (figure 1). De tels moyens de mesure sont par exemple décrits dans le document EP-B1-0558379, cité ici en référence. On note le saut de moyenne référencé 21.
    La figure 4b donne le spectre correspondant au signal du moment de flexion au niveau de la BHA. La courbe continue 23 correspond au spectre en amont du saut de moyenne, c'est-à-dire sans whirling, la courbe pointillée 24 correspond au spectre après le saut de moyenne, c'est-à-dire en whirling. On note la raie référencée 25 significative car dans l'intervalle de fréquence 15-20 Hertz et de puissance caractéristique.
    Dans le même temps, on a enregistré en surface les signaux vibratoires du couple (figure 5a) et le spectre de la tension en surface (figure 5b). On retrouve bien le saut de moyenne 31 correspondant effectivement à du whirling de la BHA et la raie significative de même fréquence que la fréquence du whirling directement enregistrée au fond.

    Claims (8)

    1. Méthode de détection de la précession d'un élément d'une garniture de forage en rotation dans un puits, caractérisée en ce qu'elle comporte les étapes suivantes :
      acquisition d'au moins une mesure par des moyens de mesure placés proches de la surface, ladite mesure étant représentative de la vibration dudit élément dans ledit puits,
      traitement automatique de ladite mesure comprenant le repérage d'un saut de moyenne et le repérage d'une raie significative dans le spectre de ladite mesure, lesdits repérages apparaissant dans un intervalle de temps inférieur à environ 10 secondes,
      détermination d'un critère de précession à partir des caractéristiques de ladite raie,
      déclenchement d'une alarme si le critère atteint une valeur seuil déterminée.
    2. Méthode selon la revendication 1, dans laquelle lesdites mesures acquises en surface sont fonction du couple S(t) et de la tension V(t) au sommet des tiges de forage.
    3. Méthode selon la revendication 2, dans laquelle le saut de moyenne est repéré à partir de la mesure du couple S(t) et dans laquelle ladite raie significative est déterminée à partir de la mesure de la tension V(t).
    4. Méthode selon l'une des revendication précédentes, dans laquelle ladite raie significative est comprise dans l'intervalle de fréquence correspondant à l'intervalle I= [ω/2π ; |Ωb/2π|], ω étant la vitesse moyenne de la garniture et Ω b = -ω Rc / (Rb - Rc )
         où Rc est le rayon dudit élément en précession et Rb est le rayon du puits,
         et ladite raie a une puissance au moins supérieure à 65% du maximum principal.
    5. Méthode selon l'une des revendications précédentes, dans laquelle on calcule C=Ω/Ωb, Ω étant calculé à partir de la fréquence de ladite raie significative, et dans laquelle on déclenche ladite alarme lorsque C est supérieur à environ 0,5, et de préférence à 0,6.
    6. Système de détection de la précession d'un élément d'une garniture de forage en rotation dans un puits, caractérisé en ce qu'il comporte :
      des moyens d'acquisition d'au moins une mesure, lesdits moyens de mesure étant placés proches de la partie supérieure de ladite garniture, ladite mesure étant représentative de la vibration dudit élément dans ledit puits,
      des moyens de traitement automatique de ladite mesure comprenant des moyens de repérage d'un saut de moyenne et de repérage d'une raie significative dans le spectre de ladite mesure, lesdits repérages apparaissant dans un intervalle de temps inférieur à environ 10 secondes,
      des moyens de détermination d'un critère de précession à partir des caractéristiques de ladite raie,
      des moyens de déclenchement d'une alarme si le critère atteint une valeur seuil déterminée.
    7. Système selon la revendication 6, dans lequel les moyens d'acquisition comportent des capteurs de mesures liées au couple S(t) et à la tension V(t) à l'extrémité supérieure de la garniture.
    8. Système selon la revendication 7, dans lequel le couple S(t) est mesuré par le moyen de la motorisation en rotation de la garniture et dans lequel la tension est mesuré à partir de la tension du câble.
    EP98401475A 1997-06-25 1998-06-17 Méthode et système de détection de la précession d'un élément d'une garniture de forage Expired - Lifetime EP0887511B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9707931 1997-06-25
    FR9707931A FR2765264B1 (fr) 1997-06-25 1997-06-25 Methode et systeme de detection de la precession d'un element d'une garniture de forage

    Publications (2)

    Publication Number Publication Date
    EP0887511A1 true EP0887511A1 (fr) 1998-12-30
    EP0887511B1 EP0887511B1 (fr) 2003-09-03

    Family

    ID=9508408

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98401475A Expired - Lifetime EP0887511B1 (fr) 1997-06-25 1998-06-17 Méthode et système de détection de la précession d'un élément d'une garniture de forage

    Country Status (5)

    Country Link
    US (1) US5999891A (fr)
    EP (1) EP0887511B1 (fr)
    CA (1) CA2240479C (fr)
    FR (1) FR2765264B1 (fr)
    NO (1) NO982936L (fr)

    Families Citing this family (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB9824248D0 (en) 1998-11-06 1998-12-30 Camco Int Uk Ltd Methods and apparatus for detecting torsional vibration in a downhole assembly
    US9482055B2 (en) 2000-10-11 2016-11-01 Smith International, Inc. Methods for modeling, designing, and optimizing the performance of drilling tool assemblies
    US7251590B2 (en) * 2000-03-13 2007-07-31 Smith International, Inc. Dynamic vibrational control
    US8589124B2 (en) * 2000-08-09 2013-11-19 Smith International, Inc. Methods for modeling wear of fixed cutter bits and for designing and optimizing fixed cutter bits
    US7003439B2 (en) * 2001-01-30 2006-02-21 Schlumberger Technology Corporation Interactive method for real-time displaying, querying and forecasting drilling event and hazard information

    Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB2275283A (en) * 1993-02-19 1994-08-24 Baker Hughes Inc Detection of bit whirl

    Family Cites Families (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB2217012B (en) * 1988-04-05 1992-03-25 Forex Neptune Sa Method of determining drill bit wear
    US5419405A (en) * 1989-12-22 1995-05-30 Patton Consulting System for controlled drilling of boreholes along planned profile
    US5220963A (en) * 1989-12-22 1993-06-22 Patton Consulting, Inc. System for controlled drilling of boreholes along planned profile
    US5058077A (en) * 1990-10-09 1991-10-15 Baroid Technology, Inc. Compensation technique for eccentered MWD sensors
    US5159577A (en) * 1990-10-09 1992-10-27 Baroid Technology, Inc. Technique for reducing whirling of a drill string
    US5313829A (en) * 1992-01-03 1994-05-24 Atlantic Richfield Company Method of determining drillstring bottom hole assembly vibrations
    FR2720439B1 (fr) * 1994-05-24 1996-07-05 Inst Francais Du Petrole Méthode et système d'analyse du comportement d'une garniture de forage.
    FR2720440B1 (fr) * 1994-05-24 1996-07-05 Inst Francais Du Petrole Méthode et système de transmission d'un signal de forage.

    Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    GB2275283A (en) * 1993-02-19 1994-08-24 Baker Hughes Inc Detection of bit whirl

    Non-Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Title
    HENNEUSE: "Surface detection of vibrations and drilling optimization : field experience", IADC/SPE DRILLING CONFERENCE, PAPER SPE 23888, 18 February 1992 (1992-02-18) - 21 February 1992 (1992-02-21), NEW ORLEANS, pages 409 - 423, XP002059287 *
    REY-FABRET ET AL.: "Detecting whirling behaviour of the drill string from surface measurements", SPE ANNUAL TECHNICAL CONFERENCE AND EXHIBITION, PAPER SPE 38587, 5 October 1997 (1997-10-05) - 8 October 1997 (1997-10-08), SAN ANTONIO, TEXAS, USA, pages 223 - 231, XP002059288 *
    VANDIVER ET AL.: "Case studies of the bending vibration and whirling motion of drill collars", SPE/IADC DRILLING CONFERENCE, PAPER SPE 18652, 28 February 1989 (1989-02-28) - 3 March 1989 (1989-03-03), NEW ORLEANS, pages 282 - 290, XP002059285 *
    ZHANG ET AL.: "Precession of rotary drillstrings should be eliminated", SPE ADVANCED TECHNOLOGY SERIES, PAPER SPE 19360, vol. 3, no. 1, May 1995 (1995-05-01), RICHARDSON, TEXAS, USA, pages 23 - 28, XP002059286 *

    Also Published As

    Publication number Publication date
    CA2240479A1 (fr) 1998-12-25
    FR2765264B1 (fr) 1999-08-06
    NO982936D0 (no) 1998-06-24
    US5999891A (en) 1999-12-07
    CA2240479C (fr) 2007-10-02
    NO982936L (no) 1998-12-28
    EP0887511B1 (fr) 2003-09-03
    FR2765264A1 (fr) 1998-12-31

    Similar Documents

    Publication Publication Date Title
    EP1046781B1 (fr) Méthode et système de détection du déplacement longitudinal d'un outil de forage
    EP0330558B1 (fr) Méthode et dispositif de transmission de l'information par câble et par ondes de boue
    BE1007274A5 (fr) Procede de commande de la tete d'un dispositif de forage ou de carottage et installation pour la mise en oeuvre de ce procede.
    FR2732403A1 (fr) Methode et systeme de prediction de l'apparition d'un dysfonctionnement en cours de forage
    CA1310753C (fr) Methode de determination de l'usure d'organes de decoupe d'un outil en cours de forage d'une formation rocheuse
    FR2872296A1 (fr) Procede destine a amiliorer la resolution sismique
    EP2391776B1 (fr) Procede et systeme de surveillance de l'etat d'une fondation encastree dans le sol
    FR2869067A1 (fr) Systeme et procede de synthese de champ pour l'optimisation d'un dispositif de forage
    FR2804468A1 (fr) Detection de limite de gisement et profilage d'invasion par des capteurs de resistivite a ondes electromagnetiques non-compensees
    FR2948145A1 (fr) Tige de forage et train de tiges de forage correspondant
    FR2876407A1 (fr) Procede et appareil d'identification de proprietes de roches et systeme de forage incorporant cet appareil.
    EP0684363B1 (fr) Méthode et système de transmission d'un signal de forage
    FR2905725A1 (fr) Procede et systeme pour determiner le point libre dans un tube de forage
    WO2011064490A1 (fr) Procede et dispositif de surveillance de vibrations en torsion d'un arbre rotatif d'une turbomachine
    FR2599423A1 (fr) Procede et dispositif permettant de guider un forage a travers des formations geologiques.
    FR2611804A1 (fr) Procede de controle des operations de forage d'un puits
    EP0887511B1 (fr) Méthode et système de détection de la précession d'un élément d'une garniture de forage
    CA2072138C (fr) Procede de conduite d'un forage
    CA2190772C (fr) Methode et dispositif de prospection sismique utilisant un outil de forage en action dans un puits
    EP0836670B1 (fr) Methode et systeme de diagraphie de parametres mecaniques de terrains traverses par un forage
    CA2933504C (fr) Procede de detection d'un dysfonctionnement en forage
    FR2549132A1 (fr) Procede et appareil pour la detection de la penetration d'un fluide dans un trou de forage
    WO1993001971A1 (fr) Station portable de mesure et de reglage de la signature magnetique d'un batiment naval
    FR2666113A1 (fr) Procede et appareil de forage de trous de sondage et ensemble de trepan pour la mise en óoeuvre de ce procede.
    WO2007077311A1 (fr) Procede et dispositif pour determiner l'emplacement du coincement d'une tige en materiau magnetostrictif situee dans un puits

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): GB IT NL

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 19990630

    AKX Designation fees paid

    Free format text: GB IT NL

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: 8566

    17Q First examination report despatched

    Effective date: 20020429

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): GB IT NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040617

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040604

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050101

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20040617

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20050101

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20070622

    Year of fee payment: 10

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080617