EP0885872B1 - Procédé continu de fabrication de solutions aqueuses de sels alcalins d'acides arylacétiques. - Google Patents

Procédé continu de fabrication de solutions aqueuses de sels alcalins d'acides arylacétiques. Download PDF

Info

Publication number
EP0885872B1
EP0885872B1 EP98401244A EP98401244A EP0885872B1 EP 0885872 B1 EP0885872 B1 EP 0885872B1 EP 98401244 A EP98401244 A EP 98401244A EP 98401244 A EP98401244 A EP 98401244A EP 0885872 B1 EP0885872 B1 EP 0885872B1
Authority
EP
European Patent Office
Prior art keywords
aqueous solution
zone
mixing
introducing
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98401244A
Other languages
German (de)
English (en)
Other versions
EP0885872A1 (fr
Inventor
Christophe Rupin
Joan-Philippe Gendarme
Philippe Corbiere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Atofina SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atofina SA filed Critical Atofina SA
Publication of EP0885872A1 publication Critical patent/EP0885872A1/fr
Application granted granted Critical
Publication of EP0885872B1 publication Critical patent/EP0885872B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/08Preparation of carboxylic acids or their salts, halides or anhydrides from nitriles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets

Definitions

  • alkaline salts of arylacetic acids are raw materials important to the chemical industry. They are very widely used for the synthesis of various pharmaceutical products. So the phenylacetates of sodium or potassium are synthetic intermediates for the penicillin G preparation.
  • alkali salts of arylacetic acids can be precursors for the synthesis of arylacetic acids and their esters used in particular for the preparation of pharmaceutical products, dyes and perfumes.
  • the methods commonly described for obtaining the alkaline salts of arylacetic acids consist in carrying out the alkaline hydrolysis of arylacetonitriles.
  • This alkaline hydrolysis reaction is a slow reaction requiring efficient stirring means and long heating which, given the instability of arylacetonitriles to heat, is likely to lead to the formation of by-products lowering the yield and causing costly subsequent purification operations, prohibitive for a industrial process.
  • Raw alkaline aqueous solutions as obtained previously, i.e. not purified, can be acidified to lead to arylacetic acids which must then be purified by distillation or crystallization.
  • arylacetic acids can be prepared by direct acid hydrolysis of arylacetonitriles.
  • Sulfuric acid is generally used, but its use has many drawbacks. Poor selectivity is noted due to the presence of by-products resulting in particular from the sulfonation of aromatic rings. In Consequently, the yields are low and in addition there are effluents such that ammonium sulphate difficult to recover without further treatment expensive.
  • aqueous solutions of alkali salts of said arylacetic acids - obtained by acid hydrolysis of arylacetonitriles - can be obtained by neutralization of said arylacetic acids. But this way of operating is expensive considering that the preparation of said arylacetic acids by acid hydrolysis of arylacetonitriles is not very selective and also expensive.
  • the Applicant has found a simple, continuous process for lead in a very short time to aqueous solutions of alkaline salts arylacetic acids by alkaline hydrolysis of arylacetonitriles do not all of these drawbacks and, moreover, provides pure arylacetic acids by simple acidification of said solutions.
  • the aqueous alkali hydroxide solution MOH and arylacetonitrile (II) can be preheated to a temperature at least equal to 50 ° C and preferably at a temperature between 100 ° C and 130 ° C.
  • the preheating temperatures of the identical reagents but we would not go beyond the scope of the invention if we used different reagent preheating temperatures.
  • the mixing technique used in step a) must be adapted to carry out an intimate mixing of the reagents.
  • contact time between the reagents is at most equal to 10 minutes, and preferably ranges from 0.01 seconds to 6 minutes.
  • the weight concentration of MOH of aqueous solutions of alkali hydroxide can vary to a large extent. She is at least equal to 10% and, preferably, between 20% and 60%.
  • the reaction medium obtained in step b), which is in the form of an alkaline aqueous solution comprising alkaline salt of an arylacetic acid and of the ammonia formed during the reaction, is introduced into a separation zone in which most of the ammonia is eliminated.
  • the temperature and the pressures are preferably at most equal to those of step b).
  • the ammonia recovered can be advantageously recovered in the form aqueous solutions.
  • the alkaline aqueous solution of the alkali salt of arylacetic acid almost rid of its ammonia is introduced into an area of stripping in which the residual ammonia is removed.
  • the solution is advantageously stripped with steam superheated, air or an inert gas such as nitrogen.
  • the solution leaving the stripping zone of step d) is brought into contact in a mixing zone with a sufficient quantity of an arylacetic acid of formula: to neutralize any unused amount of alkaline hydroxide.
  • arylacetic which can be optionally diluted in order to obtain a solution of alkali arylacetate having a weight concentration of alkali arylacetate suitable for its subsequent use and to obtain an alkaline salt solution arylacetic acid fully soluble at room temperature.
  • This process is particularly applicable to the preparation of sodium or potassium phenylacetates, from phenylacetonitrile.
  • the invention also relates to an installation for the manufacture of aqueous solutions of alkali salts of arylacetic acids.
  • This installation shown schematically in Figure 1 comprises an enclosure (1) containing mixing means provided with a supply of arylacetonitrile (2) and supply in aqueous solution of alkali hydroxide (3), a line (4) for admitting the mixture into a reactor (5) comprising at least one empty vertical cylindrical tube (T), one line (6) for admitting the aqueous solution containing an alkaline salt arylacetic acid and ammonia in an enclosure (7) containing gas / liquid separation means, a pipe (8) for admitting the solution aqueous degassed in a stripping column (9), a pipe (10) of the stripped aqueous solution into an enclosure (11) containing mixing means provided with a neutralizing agent supply (12), a pipe (13) for admission into an enclosure (14) containing mixing means provided with a water supply (15), a pipe (16) of admission of the aqueous solution of the alkaline salt of arylacetic acid into a storage area (17) and vents (18) and (19).
  • a reactor (5) comprising at least one empty vertical
  • the mixing means contained in the enclosure (1) can be constituted by any device making it possible to obtain intimate contact of reagents.
  • static mixers can include one or more identical or different mixing elements.
  • These mixing elements may include pleated lamellas or an array of crossed blades, nested in each other.
  • the reagents are introduced into (1) through the supplies (2) and (3). These reagents can be preheated by means not shown on the Figure 1.
  • the mixture leaving (1) is transferred through line (4) into the reactor (5) preferably at its lower part.
  • the tube (s) contained (have) loose packing such as Raschig rings, Pall rings, balls, an ordered packing.
  • the number of tubes can vary widely. It is proportional to the productivity of aqueous solutions of alkaline acid salt arylacetic desired.
  • the reactor (5) is provided with heating means not shown on Figure 1, such as heat transfer fluid, high pressure steam.
  • heating means such as heat transfer fluid, high pressure steam.
  • the aqueous solution, consisting mainly of ammonia and salt alkaline arylacetic acid, leaving the reactor (5) is conveyed by a line (6) in a gas / liquid separation zone consisting of a separator (7) which can be a large empty container in which the ammonia gas separates from the aqueous solution, in particular by expansion.
  • the stripping means can be constituted by a stripping column (9) containing a loose packing consisting in particular of Raschig rings, Pall rings, packing ordered and at the base of which a stream of water vapor, air or of an inert gas.
  • a stripping column 9 containing a loose packing consisting in particular of Raschig rings, Pall rings, packing ordered and at the base of which a stream of water vapor, air or of an inert gas.
  • gas is eliminated by the vent (19) consisting mainly of steam, air or inert gas and residual ammonia.
  • aqueous solution alkaline of arylacetic acid alkaline salt which is conveyed by a line (10) to a first mixing zone (11) consisting of preferably by static mixers as mentioned above.
  • These mixers can be of the same type or different from those used in (1).
  • This mixing zone (11) is supplied with an agent capable of neutralize any excess alkalinity through the supply line (12).
  • the neutralized aqueous solution leaving (11) is transferred to a second mixing zone (14) via a pipe (13).
  • This mixing zone (14) is also preferably made up by static mixers as mentioned above and which may be of the same type or different from those used in (1) and (11).
  • this mixing zone is carried out (14) dilution of the aqueous solution of alkali salt of arylacetic acid with water which is introduced by (15).
  • the aqueous solution thus diluted is transferred to a zone of storage (17) through the pipe (16).
  • the mixing means contained in the enclosure (1) can be integrated into the reactor (5).
  • the mixing means can be advantageously arranged at the bottom of said reactor (5) or directly inside the tube (s), these mixing means can be constituted by mixing elements such as those used in the static mixers as mentioned above.
  • the process according to the present invention makes it possible to obtain, with a very high yield of alkali salt of arylacetic acid and an almost quantitative transformation of the corresponding arylacetonitrile, aqueous solutions of alkali salt of arylacetic acid pure and free of NH 3 .
  • the method also has the advantage of being implemented by means of a simple installation, in particular devoid of any agitation system of the dynamic type which is likely to cause leaks and is costly in energy.
  • the method according to the present invention allows great flexibility.
  • the ammonia formed can be recovered in the form of directly marketable ammonia solutions.
  • Aqueous solutions of arylacetic acid alkali salt can advantageously be precursors to obtain acids directly arylacetic by acidification.
  • a tubular reactor formed from a stainless steel tube with a diameter is used 2.3 cm and 18 cm long and lined with Raschig rings leaving a useful volume of 36 ml.
  • the tube is surrounded by a double envelope allowing its heating by means of an oil circulation.
  • 0.25 mol / h (29.5 g / h) of phenylacetonitrile) is then introduced preheated to 100 ° C. and 0.30 mol / h of NaOH in the form of a 26% aqueous solution (46.1 g / h) also preheated to 100 ° C (20% excess) in the reactor maintained at 170 ° C under a regulated pressure of 8.10 5 Pa (8 bar).
  • the residence time is 30 minutes.
  • the flow leaving the reactor is recovered in a pressure vessel 5 atmospheric. After separation of a transitional phase corresponding to the soda initially present in the reactor, a stabilized regime is obtained aqueous solution of sodium phenylacetate, the composition of which is determined by potentiometric analysis and chromatographic analysis (organic extraction with a solvent). The duration of the steady-state test stabilized is 3h.
  • the tube is surrounded by a double envelope allowing it to be heated at by means of an oil circulation.
  • the reactor previously filled with an aqueous solution of sodium phenylacetate at 44% and placed under a nitrogen pressure of 3.10 5 Pa (3 bar) is heated to 150 ° C.
  • 1.5 mol / h (176 g / h) of preheated phenylacetonitrile are then introduced at 100 ° C and 1.6 mol / h of NaOH in the form of a 5% aqueous solution (excess of 6.5%) in a mixing enclosure (by magnetic stirring) connected to the base of the reactor.
  • the mixture is introduced into the reactor maintained at 150 ° C. under a regulated pressure of 3.10 5 Pa (3 bars) the residence time is 26 minutes.
  • the flow leaving the reactor is recovered in a pressure vessel atmospheric. After separation of a transitional phase corresponding to the solution of sodium phenylacetate initially present in the reactor, obtains in stabilized regime an aqueous solution of sodium phenylacetate whose composition is determined by potentiometric analysis and analysis chromatographic (extraction of organics with a solvent). The duration of the test is 5h in steady state.
  • Example 2 The same tubular reactor is used as in Example 2 but packed Raschig rings leaving a useful volume of 82 ml.
  • the reactor previously filled with an aqueous solution of sodium phenylacetate at 44% and placed under a nitrogen pressure of 5 bars is heated to 150 ° C.
  • the mixture is introduced into the reactor maintained at 150 ° C. under a regulated pressure of 6.10 5 Pa (6 bars), the residence time is 26 minutes.
  • the flow leaving the reactor is recovered in a pressure vessel atmospheric. After separation of a transitional phase corresponding to the solution of sodium phenylacetate initially present in the reactor, obtains in stabilized regime an aqueous solution of sodium phenylacetate whose composition is determined by potentiometric analysis and analysis chromatographic (extraction of organics with a solvent). The duration of the test is 5h in steady state;
  • FIG. 1 A device as shown in FIG. 1 is used.
  • the mixture is introduced into a tubular reactor made of 316L stainless steel consisting of 6 tubes, each tube having a height equal to 3 m and a diameter equal to 2, 5 cm.
  • Said tubes are previously filled with an aqueous solution of sodium phenylacetate and are maintained at 150 ° C (external heating with steam 12.10 5 Pa) under a pressure of 6 bars.
  • the residence time in the reactor is 8.5 minutes.
  • the flow leaving said reactor is introduced by (6) into a separator gas / liquid (7) consisting of a capacity of 316L stainless steel of 12 liters.
  • the aqueous sodium phenylacetate solution leaving the separator which has been freed of its NH 3 after expansion at atmospheric pressure, has the following average composition: PhCH 2 CO 2 Na 55.2% NaOH 2.3% NH 3 1.1% H 2 O 41.4% with a residual amount of phenylacetonitrile less than 25 mg / kg.
  • This solution is then introduced by (8) into a stripping column (9) of 6 theoretical plates constituted by an ordered packing in stainless steel.
  • the stripping is carried out at a temperature of 120 ° C. with steam 2.10 5 Pa (2 bars).
  • column head (19) leaves a stream consisting essentially of ammonia and water while the sodium phenylacetate solution almost completely rid of its ammonia (residual content less than 50 ppm) is extracted at the bottom of the column (9) and is introduced by (10) into a static mixer (11) of the SMXE type.
  • this second static mixer (11) simultaneously introduced by (10) the solution from the stripping column and by (12) a stream a sufficient amount of phenylacetic acid ( ⁇ 3.7 kg / h) at 90 ° C to neutralize excess soda.
  • the solution leaving the static mixer (11) is then introduced by (13) into a static mixer (14) identical to (11) at the same time as a stream of water introduced by (15) in order to obtain a aqueous solution of sodium phenylacetate having a concentration by weight in sodium phenylacetate of 44%.
  • the duration of the steady-state test is 4 hours.
  • the same device is used as for example 4.
  • the mixture is introduced into the tubular reactor (5), the tubes of which are previously filled with a 40.8% potash solution and are kept at 150 °. C under a pressure of 6.10 5 Pa (6 bars).
  • the residence time in the reactor is 10 minutes.
  • this solution is then stripped in the column (9) to obtain a residual content of ammonia less than 50 mg / kg and then introduced into the static mixer (11) with a stream of a sufficient amount of phenylacetic acid ( ⁇ 1.9 kg / h) at 90 ° C to neutralize excess potash.
  • the solution coming out of static mixer (11) is then introduced into the static mixer (14) together with a stream of water in order to obtain an aqueous solution of potassium phenylacetate having a weight concentration of 64% potassium phenylacetate.
  • the duration of the steady-state test is 5 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

L'invention concerne un procédé continu de fabrication de solutions aqueuses de sels alcalins d'acides arylacétiques.
Les sels alcalins des acides arylacétiques sont des matières premières importantes de l'industrie chimique. Ils sont très largement utilisés pour la synthèse de divers produits pharmaceutiques. Ainsi, les phénylacétates de sodium ou de potassium sont des intermédiaires de synthèse pour la préparation de la pénicilline G.
Egalement, ces sels alcalins des acides arylacétiques peuvent être des précurseurs pour la synthèse des acides arylacétiques et de leurs esters utilisés notamment pour la préparation de produits pharmaceutiques, de colorants et parfums.
Les méthodes couramment décrites pour obtenir les sels alcalins des acides arylacétiques consistent à réaliser l'hydrolyse alcaline des arylacétonitriles. Cette réaction d'hydrolyse alcaline est une réaction lente nécessitant des moyens d'agitation efficaces et un chauffage long lequel, compte tenu de l'instabilité des arylacétonitriles à la chaleur, est de nature à conduire à la formation de sous-produits abaissant le rendement et entraínant des opérations ultérieures de purification coûteuses, rédhibitoires pour un procédé industriel.
Les solutions aqueuses brutes alcalines telles qu'obtenues précédemment, c'est-à-dire non purifiées, peuvent être acidifiées pour conduire aux acides arylacétiques qui doivent être alors purifiées par distillation ou cristallisation.
Afin de raccourcir la période d'induction de la réaction d'hydrolyse alcaline, on préconise dans le brevet US 2,817,681 d'utiliser une quantité pondérale mineure (de préférence 5 % à 10 % par rapport à l'arylacétonitrile mis en oeuvre) de l'acide arylacétique (ou de son sel) correspondant à l'arylacétonitrile à hydrolyser.
Ainsi, l'addition de 5,4 % en poids d'acide méthoxy-3-éthoxy-4-phénylacétique par rapport au méthoxy-3-éthoxy-4 phénylacétonitrile. permet de réduire la durée de réaction d'environ 2 heures.
Cependant, on constate qu'il est nécessaire de purifier et de décolorer la solution acidifiée et que le rendement en acide méthoxy-3-éthoxy-4 phénylacétique passe seulement de 75 % à 80 % (sans addition mineur d'acide arylacétique lors de la réaction d'hydrolyse alcaline) à 91 % (avec addition).
Il est connu également que l'on peut préparer les acides arylacétiques par hydrolyse acide directe des arylacétonitriles. L'acide sulfurique est généralement utilisé, mais son utilisation présente de nombreux inconvénients. On note une mauvaise sélectivité du fait de la présence de sous-produits résultant notamment de la sulfonation des noyaux aromatiques. En conséquence, les rendements sont faibles et en outre il y a des effluents tels que le sulfate d'ammonium difficilement valorisable sans traitement ultérieur coûteux.
Les solutions aqueuses de sels alcalin desdits acides arylacétiques - obtenues par hydrolyse acide des arylacétonitriles - peuvent être obtenues par neutralisation desdits acides arylacétiques. Mais cette façon d'opérer est coûteuse compte tenu que la préparation desdits acides arylacétiques par hydrolyse acide des arylacétonitriles est une opération peu sélective et également onéreuse.
La demanderesse a trouvé un procédé continu, simple permettant de conduire en des temps très courts à des solutions aqueuses de sels alcalins des acides arylacétiques par hydrolyse alcaline des arylacétonitriles ne présentant pas tous ces inconvénients et, qui plus est, permet d'obtenir des acides arylacétiques purs par simple acidification desdites solutions.
L'invention concerne donc un procédé continu de préparation d'une solution aqueuse d'un sel alcalin d'acide arylacétique de formule :
Figure 00020001
dans laquelle R représente un radical hydrocarboné aliphatique, linéaire ou ramifié ayant un nombre de carbone allant de 1 à 10, un atome d'halogène tel que chloré ou brome, un groupe alcoxy linéaire ou ramifié ayant un nombre de carbone allant de 1 à 6, un groupe phénoxy ; M représente un métal alcalin tel que Na ou K, n est un nombre, allant de O à 5, et x est un nombre allant de 1 à 2 avec n + x inférieur ou égal à 6 ; par hydrolyse alcaline d'un arylacétonitrile de formule :
Figure 00020002
R, n et x ayant les mêmes significations que dans la formule (I) selon la réaction
Figure 00030001
ledit procédé étant caractérisé en ce qu'il consiste essentiellement :
  • a) à mettre en contact dans une zone de mélange un arylacétonitrile (II) avec une solution aqueuse d'un hydroxyde alcalin MOH selon un rapport molaire MOH / (II) au moins égal à x et, de préférence, compris entre 1,05 x et 1,20 x,
  • b) à introduire le mélange obtenu en a) dans une zone de réaction sous une pression supérieure ou égale à la pression atmosphérique et, de préférence, comprise, entre 2 bars absolus et 12 bars absolus, et à maintenir ledit mélange dans ladite zone réactionnelle pendant une durée au plus égale à 60 minutes et, de préférence, comprise entre 5 minutes et 30 minutes, à une température comprise entre 100°C et 180°C et, de préférence entre 130°C et 160°C ;
  • c) à transférer le milieu obtenu en b) dans une zone de séparation,
  • d) à transférer le milieu obtenu en c) dans une zone de stripping,
  • e) à mettre en contact la solution obtenue en d) avec un agent neutralisant qui est un acide arylacétique de formule
    Figure 00030002
    dans une zone de mélange, puis,
  • f) à récupérer une solution aqueuse d'arylacétate alcalin pure qui peut être éventuellement diluée avec de l'eau.
  • Selon la présente invention, la solution aqueuse d'hydroxyde alcalin MOH et l'arylacétonitrile (II) peuvent être préalablement préchauffés à une température au moins égale à 50°C et, de préférence à une température comprise entre 100°C et 130°C.
    De préférence, on utilisera des températures de préchauffage des réactifs identiques, mais on ne sortirait pas du cadre de l'invention si on utilisait des températures de préchauffage des réactifs différentes.
    Selon la présente invention, la technique de mélange utilisée dans l'étape a) doit être adaptée pour réaliser un mélange intime des réactifs.Le temps de contact entre les réactifs est, au plus égal à 10 minutes, et, de préférence va de 0,01 seconde à 6 minutes.
    Selon la présente invention, la concentration pondérale en MOH des solutions aqueuses d'hydroxyde alcalin peut varier dans une large mesure. Elle est au moins égale à 10 % et, de préférence, comprise entre 20 % et 60 %.
    D'une façon générale, on utilisera des solutions commerciales courantes.
    Selon la présente invention, le milieu réactionnel obtenu dans l'étape b), qui se présente sous forme d'une solution aqueuse alcaline comprenant le sel alcalin d'un acide arylacétique et de l'ammoniac formé lors de la réaction, est introduit dans une zone de séparation dans laquelle la majeure partie de l'ammoniac est éliminée. Dans cette zone de séparation, la température et la pression sont, de préférence, au plus égales à celles de l'étape b).
    L'ammoniac récupéré peut être avantageusement valorisée sous forme de solutions aqueuses.
    La solutions aqueuse alcaline du sel alcalin d'acide arylacétique quasiment débarassée de son ammoniac est introduite dans une zone de stripping dans laquelle on élimine l'ammoniac résiduel.
    La solution est strippée avantageusement avec de la vapeur d'eau surchauffée, de l'air ou un gaz inerte tel que l'azote.
    La solution sortant de la zone de stripping de l'étape d) est mis en contact dans une zone de mélange avec une quantité suffisante d'un acide arylacétique de formule :
    Figure 00040001
    pour neutraliser l'éventuelle quantité d'hydroxyde alcalin non consommée.
    Ensuite, on récupère une solution aqueuse de sel alcalin d'acide arylacétique qui peut être éventuellement diluée afin d'obtenir une solution d'arylacétate alcalin ayant une concentration pondérale en arylacétate alcalin adaptée à son utilisation ultérieure et pour obtenir une solution de sel alcalin d'acide arylacétique totalement soluble à température ambiante.
    Ce procédé s'applique tout particulièrement à la préparation des phénylacétates de sodium ou de potassium, à partir de phénylacétonitrile.
    L'invention concerne également une installation pour la fabrication de solutions aqueuses de sels alcalins des acides arylacétiques.
    Cette installation représentée schématiquement sur la figure 1 comprend une enceinte (1) contenant des moyens de mélange munie d'une alimentation en arylacétonitrile (2) et d'une alimentation en solution aqueuse d'hydroxyde alcalin (3), une conduite (4) d'admission du mélange dans un réacteur (5) comprenant au moins un tube cylindrique (T) vertical vide, une conduite (6) d'admission de la solution aqueuse contenant un sel alcalin d'acide arylacétique et de l'ammoniac dans une enceinte (7) contenant des moyens de séparation gaz/liquide, une conduite (8) d'admission de la solution aqueuse dégazée dans une colonne de stripping (9), une conduite (10) d'admission de la solution aqueuse strippé dans une enceinte (11) contenant des moyens de mélange munie d'une alimentation en agent neutralisant (12), d'une conduite (13) d'admission dans une enceinte (14) contenant des moyens de mélange munie d'une alimentation (15) en eau, une conduite (16) d'admission de la solution aqueuse du sel alcalin d'acide arylacétique dans une zone de stockage (17) et des évents (18) et (19).
    Selon la présente invention, les moyens de mélange contenus dans l'enceinte (1) peuvent être constitués par tout dispositif permettant d'obtenir un contact intime des réactifs.
    Selon la présente invention, on utilisera tout particulièrement des mélangeurs statiques. Ces mélangeurs peuvent comprendre un ou plusieurs éléments mélangeurs identiques ou différents. Ces éléments mélangeurs peuvent comprendre des lamelles plissées ou un réseau de lames croisées, emboítées les unes dans les autres.
    Les réactifs sont introduits dans (1) par les alimentations (2) et (3). Ces réactifs peuvent être préchauffés par des moyens non représentés sur la figure 1. Le mélange sortant de (1) est transféré par la conduite (4) dans le réacteur (5) de préférence à sa partie inférieure.
    On ne sortirait pas du cadre de l'invention si le ou les tube(s) contenait(aient) un garnissage vrac tel que anneaux Raschig, anneaux Pall, des billes, un garnissage ordonné.
    Le nombre de tubes peut varier dans une large mesure. Il est proportionnel à la productivité des solutions aqueuses de sel alcalin d'acide arylacétique souhaitée.
    Le réacteur (5) est muni de moyens de chauffage non représentés sur la figure 1, tels que fluide caloporteur, vapeur haute pression. Dans l'éventualité où l'on utilise de la vapeur d'eau, on ne sortirait pas du cadre de l'invention si cette vapeur d'eau était injectée avec le mélange des réactifs à l'intérieur du ou des tubes.
    Afin d'assurer un chauffage initial homogène des tubes (T), on peut remplir préalablement lesdits tubes avec une solution aqueuse d'hydroxyde alcalin ou avec une solution aqueuse d'un sel alcalin d'acide arylacétique ou bien encore avec de l'eau.
    La solution aqueuse, constituée essentiellement d'ammoniac et du sel alcalin de l'acide arylacétique, sortant du réacteur (5) est véhiculée par une conduite (6) dans une zone de séparation gaz/liquide constitué par un séparateur (7) qui peut être un bac vide de grande dimension dans lequel le gaz ammoniac se sépare de la solution aqueuse notamment par détente.
    L'ammoniac gazeux est évacué dudit séparateur par l'évent (18). La solution aqueuse est transférée vers des moyens de stripping par une conduite (8). Selon la présente invention, les moyens de stripping peuvent être constitués par une colonne de stripping (9) contenant un garnissage vrac constitué notamment d'anneaux Raschig, d'anneaux Pall, de garnissage ordonné et à la base de laquelle on injecte un courant de vapeur d'eau, d'air ou d'un gaz inerte. En tête de ladite colonne, on élimine par l'évent (19) des gaz constitués majoritairement par de la vapeur d'eau, d'air ou de gaz inerte et de l'ammoniac résiduel. En bas de ladite colonne sort une solution aqueuse alcaline de sel alcalin d'acide arylacétique laquelle est véhiculée par une conduite (10) vers une première zone de mélange (11) constituée de préférence par des mélangeurs statiques tels que mentionnés précédemment. Ces mélangeurs peuvent être de type identique ou différent de ceux utilisés dans (1).
    Cette zone de mélange (11) est alimentée en agent susceptible de neutraliser l'éventuel excès d'alcalinité par la conduite d'alimentation (12).
    Selon la présente invention on utilisera de préférence comme agent de neutralisation l'acide arylacétique correspondant à l'arylacétonitrile hydrolysé.
    La solution aqueuse neutralisée sortant de (11) est transférée dans une seconde zone de mélange (14) par une conduite (13).
    Cette zone de mélange (14) est également de préférence constituée par des mélangeurs statiques tels que mentionnés précédemment et qui peuvent être de type identique ou différent de ceux utilisés dans (1) et (11).
    Selon la présente invention, on effectue dans cette zone de mélange (14) une dilution de la solution aqueuse de sel alcalin d'acide arylacétique par de l'eau qui est introduite par (15).
    La solution aqueuse ainsi diluée est transférée dans une zone de stockage (17) par la conduite (16).
    Selon une variante de l'installation, les moyens de mélange contenus dans l'enceinte (1) peuvent être intégrés dans le réacteur (5).
    Dans cette éventualité, les moyens de mélange peuvent être avantageusement disposés à la partie inférieure dudit réacteur (5) ou directement à l'intérieur du ou des tubes, ces moyens de mélange peuvent être constitués par des éléments mélangeurs tels que ceux utilisés dans les mélangeurs statiques tels que mentionnés précédemment.
    Le procédé selon la présente invention permet d'obtenir, avec un rendement très élevé en sel alcalin d'acide arylacétique et une transformation quasi quantitative de l'arylacétonitrile correspondant, des solutions aqueuses de sel alcalin d'acide arylacétique pures et exemptes de NH3. Le procédé présente également l'avantage d'être mis en oeuvre au moyen d'une installation simple, dépourvue notamment de tout système d'agitation du type dynamique qui est de nature à entraíner des fuites et est coûteux en énergie. Le procédé selon la présente invention permet une grande flexibilité. En outre, l'ammoniac formé peut être valorisé sous forme de solutions d'ammoniaque directement commercialisables.
    Les solutions aqueuses de sel alcalin d'acide arylacétique peuvent avantageusement être des précurseurs pour obtenir directement des acides arylacétiques par acidification.
    Les acides obtenus ne nécessitent pas de moyens de purification coûteux puisque les solutions de départ sont pures.
    Les exemples qui suivent illustrent l'invention.
    EXEMPLE 1
    On utilise un réacteur tubulaire formé d'un tube en inox d'un diamètre de 2,3 cm et d'une longueur de 18 cm et garni d'anneaux de Raschig laissant un volume utile de 36 ml. Le tube est entouré d'une double enveloppe permettant son chauffage au moyen d'une circulation d'huile.
    Le réacteur préalablement rempli avec une solution aqueuse de soude à 26 % et placé sous une pression d'azote de 5 bars est chauffé à 170°C.
    On introduit alors 0,25 mol/h (29,5 g/h) de phénylacétonitrile ) préchauffé à 100°C et 0,30 mol/h de NaOH sous forme d'une solution aqueuse à 26 % (46,1 g/h) préchauffée également à 100°C (excès de 20 %) dans le réacteur maintenu à 170°C sous une pression régulée de 8.105 Pa (8 bars).
    Le temps de séjour est de 30 minutes.
    Le flux sortant du réacteur est récupéré dans une capacité à pression 5 atmosphérique. Après séparation d'une phase transitoire correspondant à la soude initialement présente dans le réacteur, on obtient en régime stabilisé une solution aqueuse de phénylacétate de sodium dont la composition est déterminée par analyse potentiométrique et analyse chromatographique (extraction des organiques par un solvant). La-durée de l'essai en régime stabilisé est de 3h.
    Dans ces conditions, la conversion du phénylacétonitrile en phénylacétate de sodium n'est que de 79,5 %.
    EXEMPLE 2
    On utilise un réacteur tubulaire formé d'un tube vide en inox d'un diamètre de 2,3 cm et d'une hauteur de 39 cm ayant un volume libre de 162 ml. Le tube est entouré d'une double enveloppe permettant son chauffage au moyen d'une circulation d'huile.
    Le réacteur préalablement rempli avec une solution aqueuse de phénylacétate de sodium à 44 % et placé sous une pression d'azote de 3.105 Pa (3 bar) est chauffé à 150°C.
    On introduit alors 1,5 mol/h (176g/h) de phénylacétonitrile préchauffé à 100°C et 1,6 mol/h de NaOH sous forme d'une solution aqueuse à 5 % (excès de 6,5 %) dans une enceinte de mélange (par agitation magnétique) connectée à la base du réacteur.
    Après un temps de séjour dans ledit mélangeur de 3 minutes, le mélange est introduit dans le réacteur maintenu à 150°C sous une pression régulée de 3.105 Pa (3 bars) le temps de séjour est de 26 minutes.
    Le flux sortant du réacteur est récupéré dans une capacité à pression atmosphérique. Après séparation d'une phase transitoire correspondant à la solution de phénylacétate de sodium initialement présente dans le réacteur, on obtient en régime stabilisé une solution aqueuse de phénylacétate de sodium dont la composition est déterminée par analyse potentiométrique et analyse chromatographique (extraction des organiques par un solvant). La durée de l'essai est de 5h en régime stabilisé.
    Dans ces conditions, la conversion du phénylacétonitrile en phénylacétate de sodium est de 99,7 %.
    EXEMPLE 3
    On utilise le même réacteur tubulaire que dans l'exemple 2 mais garni d'anneaux Raschig laissant un volume utile de 82 ml.
    Le réacteur préalablement rempli avec une solution aqueuse de phénylacétate de sodium à 44 % et placé sous une pression d'azote de 5 bars est chauffé à 150°C.
    On introduit alors 0,745 mol/h (87,4 g/h) de phénylacétonitrile préchauffé à 110°C et 0,833 mol/h de NaOH sous forme d'une solution aqueuse à 25 % (133,4 g/h) préchauffée à 95°C (excès de 11,8 %) dans la - même enceinte de mélange que dans l'exemple 2.
    Après un temps de séjour dans ledit mélangeur de 5,6 minutes, le mélange est introduit dans le réacteur maintenu à 150°C sous une pression régulée d 6.105 Pa (6 bars), le temps de séjour est de 26 minutes.
    Le flux sortant du réacteur est récupéré dans une capacité à pression atmosphérique. Après séparation d'une phase transitoire correspondant à la solution de phénylacétate de sodium initialement présente dans le réacteur, on obtient en régime stabilisé une solution aqueuse de phénylacétate de sodium dont la composition est déterminée par analyse potentiométrique et analyse chromatographique (extraction des organiques par un solvant). La durée de l'essai est de 5h en régime stabilisé;
    Dans ces conditions, la conversion du phénylacétonitrile en phénylacétate de sodium est de 99,6 %.
    EXEMPLE 4
    On utilise un dispositif tel que représenté sur la figure 1.
    Dans un mélangeur statique Sulzer (1) en inox 316Ti d'une longueur de 4,8 cm et d'un diamètre de 0,48 cm constitué de 10 éléments de type SMXE DN4 (lamelles croisées) commercialisés par la Société SULZER, on introduit 175 mol/h (20,55 kg/h) de phénylacétonitrile préchauffé à 105°C et 202 mol/h de NaOH (soit un excès molaire de 15,4 %) sous forme d'une solution aqueuse à 25 % (32,33 kg/h) préchauffée également à 105°C.
    Après un temps de séjour dans ledit mélangeur de l'ordre de 0,05 seconde, le mélange est introduit dans un réacteur tubulaire en inox 316L constitué de 6 tubes, chaque tube ayant une hauteur égale à 3 m et un diamètre égal à 2,5 cm. Lesdits tubes sont remplis préalablement d'une solution aqueuse de phénylacétate de sodium et sont maintenus à 150°C (chauffage externe avec de la vapeur 12.105 Pa) sous une pression de 6 bars.
    Le temps de séjour dans le réacteur est de 8,5 minutes.
    Le flux sortant dudit réacteur est introduit par (6) dans un séparateur gaz/liquide (7) constitué d'une capacité en inox 316L de 12 litres.
    La solution aqueuse de phénylacétate de sodium sortant du séparateur fortement débarassée de son NH3 après détente à pression atmosphérique a la composition moyenne suivante :
    PhCH2CO2Na 55,2 %
    NaOH 2,3 %
    NH3 1,1 %
    H2O 41,4 %
    avec une quantité résiduelle de phénylacétonitrile inférieure à 25 mg/kg.
    Cette solution est alors introduite par (8) dans une colonne de stripping (9) de 6 plateaux théoriques constitués par un garnissage ordonné en inox. Le stripping est réalisé à une température de 120°C avec de la vapeur 2.105 Pa (2 bars). tête de colonne (19) sort un flux constitué essentiellement d'ammoniac et d'eau tandis que la solution de phénylacétate de sodium quasi totalement débarassée de son ammoniac (teneur résiduelle inférieure à 50 ppm) est extraite en bas de colonne (9) et est introduite par (10) dans un mélangeur statique (11) de type SMXE.
    Dans ce second mélangeur statique (11) on introduit simultanément par (10) la solution provenant de la colonne de stripping et par (12) un courant d'une quantité suffisante d'acide phénylacétique (∼3,7 kg/h) à 90°C pour neutraliser l'excès de soude. La solution sortant du mélangeur statique (11) est ensuite introduite par (13) dans un mélangeur statique (14) identique à (11) en même temps qu'un courant d'eau introduit par (15) afin d'obtenir une solution aqueuse de phénylacétate de sodium ayant une concentration pondérale en phénylacétate de sodium de 44 %.
    La durée de l'essai en régime stabilisé est de 4h.
    La conversion du phénylacétonitrile est quasi-quantitative et le rendement molaire en phénylacétate de sodium (par rapport au phénylacétonitrile) est supérieur à 99,9 %.
    Dans le tableau 1 ci-après, on rapporte les différents paramètres opérationnels ainsi que les taux de transformation du phénylacétonitrile pour l'exemple 4 et aussi les exemples 5, 6 et 7 réalisés selon un processus similaire à celui mis en oeuvre dans l'exemple 4.
    EXEMPLE N° 4 5 6 7
    Excès molaire de NaOH (en %) 15,4 12,0 13,7 11,3
    Zone de mélange :
       - température (en °C) 105 100 105,0 105
       - temps de séjour (en seconde) 0,05 0,05 0,07 0,05
    Zone réactionneile:
       - température (en °C) 150 150 145 135
       - temps de séjour (en minutes) 8,5 8,5 12 8,5
    Pression (en Pascal) 6.105 9.105 9.105 1.106
    Concentration moyenne de la solution aqueuse de phénylacétate de sodium en sortie dù séparateur gaz/liquide :
       - en C6H5CH2CO2Na (en %) 55,2 53,5 52,6 55,3
       - en C6H5CH2CN (en ppm) < 25 <25 <50 <50
    Conversion du phénylacétonitrile en phénylacétate de sodium (en %) >99,9 >99,9 >99,9 >99,9
    Durée de l'essai en régime stabilisé (en h) 4 5 5,5 3
    EXEMPLE 8
    On utilise le même dispositif que pour l'exemple 4.
    Dans le mélangeur statique (1) on introduit 172,1 mol/h (20,2 kg/h) de phénylacétonitrile préchauffé à 107°C et 186,1 mol/h de KOH (soit un excès molaire de 8,1 %) sous forme d'une solution aqueuse à 40,8 % (25,6 kg/h) préchauffée également à 107°C.
    Après un temps de séjour dans le mélangeur de l'ordre de 0,065 seconde, le mélange est introduit dans le réacteur tubulaire (5) dont les tubes sont remplis préalablement d'une solution de potasse à 40,8 % et sont maintenus à 150°C sous une pression de 6.105 Pa (6 bars).
    Le temps de séjour dans le réacteur est de 10 minutes.
    Après une durée de fonctionnement de 30 min permettant d'assurer l'extraction totale de la potasse initialement présente dans le réacteur, on obtient en régime établi en sortie du séparateur gaz/liquide (7) une solution aqueuse de phénylacétate de potassium dont la composition moyenne après détente à la pression atmosphérique est la suivante :
    PhCH2CO2K 69,6 %
    KOH 1,85 %
    NH3 0,65 %
    H2O 27,9 %
    avec une quantité résiduelle de phénylacétonitrile inférieure à 50 mg/kg.
    De façon analogue à l'exemple 4, cette solution subit alors un stripping à la vapeur dans la colonne (9) afin d'obtenir une teneur résiduelle en ammoniac inférieure à 50 mg/kg puis est introduite dans le mélangeur statique (11) avec un courant d'une quantité suffisante d'acide phénylacétique (∼1,9 kg/h) à 90°C pour neutraliser l'excès de potasse. La solution sortant du mélangeur statique (11) est ensuite introduite dans le mélangeur statique (14) en même temps qu'un courant d'eau afin d'obtenir une solution aqueuse de phénylacétate de potassium ayant une concentration pondérale en phénylacétate de potassium de 64 %.
    La durée de l'essai en régime stabilisé est de 5h.
    La conversion du phénylacétonitrile est quasi-quantitative et le rendement molaire en phénylacétate de potassium (par rapport au phénylacétonitrile) est supérieur à 99,9 %.

    Claims (16)

    1. Procédé continu de préparation d'une solution aqueuse d'un sel alcalin d'acide arylacétique de formule :
      Figure 00130001
      dans laquelle R représente un radical hydrocarboné aliphatique, linéaire ou ramifié ayant un nombre de carbone allant de 1 à 10, un atome d'halogène, un groupe alcoxy linéaire ou ramifié ayant un nombre de carbone allant de 1 à 6, un groupe phénoxy ; M représente un métal alcalin, n est un nombre allant de 0 à 5, et x est un nombre allant de 1 à 2 avec n + x inférieur ou égal à 6 ; par hydrolyse alcaline d'un arylacétonitrile de formule :
      Figure 00130002
      R, n et x ayant les mêmes significations que dans la formule (I) selon la réaction
      Figure 00130003
      ledit procédé étant caractérisé en ce qu'il consiste essentiellement :
      a) à mettre en contact dans une zone de mélange un arylacétonitrile (II) avec une solution aqueuse d'un hydroxyde alcalin MOH selon un rapport molaire MOH / (II) au moins égal à x,
      b) à introduire le mélange obtenu en a) dans une zone de réaction sous une pression supérieure ou égale à la pression atmosphérique et à maintenir ledit mélange dans ladite zone réactionnelle pendant une durée au plus égale à 60 minutes à une température comprise entre 100°C et 180°C,
      c) à transférer le milieu obtenu en b) dans une zone de séparation,
      d) à transférer le milieu obtenu en c) dans une zone de stripping,
      e) à mettre en contact la solution obtenue en d) avec un agent neutralisant qui est un acide arylacétique de formule
      Figure 00130004
      dans une zone de mélange, puis,
      f) à récupérer une solution aqueuse d'un sel alcalin d'acide arylacétique pure,
    2. Procédé selon la revendication 1, caractérisé en ce que le temps de contact entre les réactifs dans la zone de mélange de l'étape a) est, au plus égal à 10 minutes.
    3. Procédé selon la revendication 2, caractérisé en ce que le temps de contact entre les réactifs dans la zone de mélange de l'étape a) est compris entre 0,01 seconde et 6 minutes.
    4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le mélange obtenu dans l'étape a) est introduit dans une zone de réaction - étape b)- sous une pression comprise entre 2 bars absolus et 12 bars absolus et est maintenu dans ladite zone réactionnelle -pendant une durée comprise entre 5 minutes et 30 minutes à une température comprise entre 130°C et 160°C.
    5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le rapport molaire MOH/(II) est compris entre 1,05x et 1,20x.
    6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la solution aqueuse d'un sel alcalin d'acide arylacétique obtenue dans l'étape e) est dilué avec de l'eau.
    7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que n est nul.
    8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que x = 1.
    9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le métal alcalin est le sodium ou le potassium.
    10. Solution aqueuse de phénylacétate de sodium obtenue selon l'une quelconque des revendications 1 à 9.
    11. Solution aqueuse de phénylacétate de potassium obtenue selon l'une quelconque des revendications 1 à 9.
    12. Installation comprenant une enceinte (1) contenant des moyens de mélange munie d'une alimentation en arylacétonitrile (2) et d'une alimentation en solution aqueuse d'hydroxyde alcalin (3), une conduite (4) d'admission du mélange dans un réacteur (5) comprenant au moins un tube cylindrique (T) vertical vide, une conduite (6) d'admission de la solution aqueuse contenant un sel alcalin d'acide arylacétique et de l'ammoniac dans une enceinte (7) contenant des moyens de séparation gaz/liquide, une conduite (8) d'admission de la solution aqueuse dégazée dans une colonne de stripping (9), une conduite (10) d'admission de la solution aqueuse strippée dans une enceinte (11) contenant des moyens de mélange munie d'une alimentation en agent neutralisant (12), d'une conduite (13) d'admission dans une enceinte (14) contenant des moyens de mélange munie d'une alimentation (15) en eau, une conduite (16) d'admission de la solution aqueuse du sel alcalin d'acide arylacétique dans une zone de stockage (17) et des évents (18) et (19).
    13. Installation selon la revendication 12, caractérisée en ce que dans l'enceinte (1), le mélange est réalisé par un mélangeur statique.
    14. Installation selon la revendication 13, caractérisée en ce que le mélangeur statique comprend au moins un élément mélangeur comprenant des lamelles plissées ou un réseau de lames croisées, emboítées les unes dans les autres.
    15. Installation selon la revendication 12, caractérisée en ce que la colonne de stripping (9) contient un garnissage.
    16. Installation selon la revendication 12, caractérisée en ce que les moyens de mélange contenus dans les enceintes (11) et (14) sont des mélangeurs statiques.
    EP98401244A 1997-06-16 1998-05-26 Procédé continu de fabrication de solutions aqueuses de sels alcalins d'acides arylacétiques. Expired - Lifetime EP0885872B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9707440 1997-06-16
    FR9707440A FR2764600B1 (fr) 1997-06-16 1997-06-16 Procede continu de fabrication de solutions aqueuses de sels alcalins d'acides arylacetiques

    Publications (2)

    Publication Number Publication Date
    EP0885872A1 EP0885872A1 (fr) 1998-12-23
    EP0885872B1 true EP0885872B1 (fr) 2001-11-21

    Family

    ID=9508022

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP98401244A Expired - Lifetime EP0885872B1 (fr) 1997-06-16 1998-05-26 Procédé continu de fabrication de solutions aqueuses de sels alcalins d'acides arylacétiques.

    Country Status (10)

    Country Link
    EP (1) EP0885872B1 (fr)
    JP (1) JPH1171322A (fr)
    CN (1) CN1203220A (fr)
    AT (1) ATE209176T1 (fr)
    CA (1) CA2238398A1 (fr)
    DE (1) DE69803244T2 (fr)
    ES (1) ES2167851T3 (fr)
    FR (1) FR2764600B1 (fr)
    IN (1) IN187756B (fr)
    PT (1) PT885872E (fr)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN1300090C (zh) * 2005-03-02 2007-02-14 杭州师范学院 一种芳基乙酸的制备方法
    CN106278859B (zh) * 2016-08-24 2019-03-12 河北诚信集团有限公司 一种高品质苯乙酸的生产工艺
    CN113600119A (zh) * 2021-08-04 2021-11-05 江苏聚双环新材料科技有限公司 自留分离式供料罐

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2817681A (en) * 1954-12-20 1957-12-24 Monsanto Chemicals Arylacetic acids
    DE1909440A1 (de) * 1968-03-18 1969-11-13 Lummos Company Verfahren zur Herstellung von aromatischen Carbonsaeuren
    US4031243A (en) * 1975-07-03 1977-06-21 Juste, S.A. Quimico-Farmaceutica 2-(4-Isobutyl phenyl)butyric acid, salts thereof, and pharmaceutical compositions containing the same

    Also Published As

    Publication number Publication date
    EP0885872A1 (fr) 1998-12-23
    ES2167851T3 (es) 2002-05-16
    CA2238398A1 (fr) 1998-12-16
    ATE209176T1 (de) 2001-12-15
    PT885872E (pt) 2002-04-29
    FR2764600A1 (fr) 1998-12-18
    JPH1171322A (ja) 1999-03-16
    IN187756B (fr) 2002-06-15
    FR2764600B1 (fr) 1999-08-20
    CN1203220A (zh) 1998-12-30
    DE69803244T2 (de) 2002-08-08
    DE69803244D1 (de) 2002-02-21

    Similar Documents

    Publication Publication Date Title
    UA81971C2 (uk) Спосіб та пристрій для одержання дихлорпропанолів з гліцерину
    CA2589714A1 (fr) Processus chimique et appareil
    EP2222627B3 (fr) Procede de preparation de composes p-hydroxymandeliques eventuellement substitues et derives
    EP0885872B1 (fr) Procédé continu de fabrication de solutions aqueuses de sels alcalins d&#39;acides arylacétiques.
    EP0340070B1 (fr) Procédé de synthèse du chlorure ferrique
    CA1161063A (fr) Fabrication de chlorures d&#39;alcane sulfonyles
    EP0349406A1 (fr) Procédé de fabrication industrielle de solutions aqueuses d&#39;acide glyoxylique
    JPH0769970A (ja) カルボン酸塩化物の連続的製造方法
    EP0108675B1 (fr) Procédé de préparation de chlorure de trifluoroacétyle
    WO2021038159A1 (fr) Élimination du formaldehyde dans les eaux usées par un traitement d&#39;oxydation
    JPH0418049A (ja) 不飽和脂肪酸低級アルキルエステルのオゾン化物の酸素酸化分解方法
    EP0357103B1 (fr) Procédé pour la préparation de 2,6-dichloropyridine et utilisation de la bis(trichlorométhyl)sulfone dans ce procédé
    EP0214068A1 (fr) Procédé de préparation de composés aromatiques fluorés
    RU2041194C1 (ru) Способ получения октафторпропана и реактор для его осуществления
    CA2312416A1 (fr) Procede continu de fabrication de 3,5,5-trimethylcyclohexa-3-en-1-one(b-isophorone)
    EP0140438B1 (fr) Procédé pour la préparation de la 2-chloropyridine
    WO2023247908A1 (fr) Procede de preparation d&#39;hydrate d&#39;hydrazine utilisant une colonne d&#39;absorption
    FR2890965A1 (fr) Hydrolyse ammoniacale de l&#39;hydantoine de methionine sans catalyseur
    WO2007034066A1 (fr) Synthese de la methionine a partir de 2-hydroxy-4- (methylthio)butyronitrile, co2, nh3 et h2o en continu et sans isoler de produits intermediaires
    WO2002046096A1 (fr) Procede de fabrication d&#39;hydrazine en solution aqueuse
    MXPA98004815A (en) Continuous procedure to produce aqueous solutions of alkaline acid salts arilaceti
    WO2023247909A1 (fr) Procede de preparation d&#39;azine utilisant des reacteurs en cascade
    SU1724571A1 (ru) Способ получени углеродистого материала, содержащего фторид щелочного металла
    CH428716A (fr) Procédé de préparation de cétoximes
    EP0341099A1 (fr) Procédé de préparation de phénylpyruvate alcalin

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19980610

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AKX Designation fees paid

    Free format text: AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: CORBIERE, PHILIPPE

    Inventor name: GENDARME, JOAN-PHILIPPE

    Inventor name: RUPIN, CHRISTOPHE

    17Q First examination report despatched

    Effective date: 20000428

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ATOFINA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011121

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011121

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20011121

    REF Corresponds to:

    Ref document number: 209176

    Country of ref document: AT

    Date of ref document: 20011215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020221

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020221

    REF Corresponds to:

    Ref document number: 69803244

    Country of ref document: DE

    Date of ref document: 20020221

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20020216

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 20020206

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2167851

    Country of ref document: ES

    Kind code of ref document: T3

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20020522

    Year of fee payment: 5

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020526

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020526

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020526

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020531

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020531

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20020717

    Year of fee payment: 5

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20021203

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20020526

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030131

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20021201

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030527

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030531

    BERE Be: lapsed

    Owner name: *ATOFINA

    Effective date: 20030531

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031130

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

    Effective date: 20031130

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20030527

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050526

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020526