EP0874379A1 - Micro-contacteur magnétique et son procédé de fabrication - Google Patents

Micro-contacteur magnétique et son procédé de fabrication Download PDF

Info

Publication number
EP0874379A1
EP0874379A1 EP97106710A EP97106710A EP0874379A1 EP 0874379 A1 EP0874379 A1 EP 0874379A1 EP 97106710 A EP97106710 A EP 97106710A EP 97106710 A EP97106710 A EP 97106710A EP 0874379 A1 EP0874379 A1 EP 0874379A1
Authority
EP
European Patent Office
Prior art keywords
micro
blade
blades
contactor according
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97106710A
Other languages
German (de)
English (en)
Other versions
EP0874379B1 (fr
Inventor
François Gueissaz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asulab AG
Original Assignee
Asulab AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asulab AG filed Critical Asulab AG
Priority to DE1997614408 priority Critical patent/DE69714408T2/de
Priority to EP19970106710 priority patent/EP0874379B1/fr
Publication of EP0874379A1 publication Critical patent/EP0874379A1/fr
Application granted granted Critical
Publication of EP0874379B1 publication Critical patent/EP0874379B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/64Protective enclosures, baffle plates, or screens for contacts
    • H01H1/66Contacts sealed in an evacuated or gas-filled envelope, e.g. magnetic dry-reed contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • H01H2036/0093Micromechanical switches actuated by a change of the magnetic field

Definitions

  • the present invention relates to a microswitch with blades whose particular conformation ensures a reliable operation, both for closing a circuit electric by bringing two blades together the influence of a magnetic field, that for opening when the magnetic field is removed.
  • the invention also relates to a method of manufacture of such a microswitch by a method of galvanic growth from a substrate.
  • the invention belongs to well-known field of so-called “rod” contactors, and by “blade” extension, actuated by a magnetic field exterior may be either parallel to the rods or blades, or perpendicular to them.
  • a contactor at parallel field stems is generally referred to as “reed” contactor.
  • the standard model of such a contactor “reed” consists of a cylindrical glass bulb in which penetrates at each end a magnetizable rod and flexible, the free ends of each rod being able to, by their initial rimpedement, attracting themselves under the influence an external magnetic field to close a circuit electric, and be recalled to their original position by the elastic force of the rods, respectively of the blades, when the magnetic field is removed.
  • the thickness b of the blade we will reduce the influence of residual stresses and obtain better positioning of the two blades relative to each other, but at the same time we will increase their rigidity.
  • the length L of the blade must then be increased, which does not correspond to the objective of miniaturization of the invention.
  • the deflection is approximately proportional to L 3 / b ⁇ r, L being the length of the blade, b its thickness and r the length of superposition of the two blades in the air gap e . All other parameters being equal, the contact pressure is approximately proportional to b 2 / r 2 .
  • L and / or decreasing b Greater deflection can be achieved by increasing L and / or decreasing b .
  • L the overall size of the micro-contactor increases, which does not correspond to the aims of the invention, and which also has the negative effect of increasing the dispersion of the magnetic field in the air gap.
  • a decrease in b has the unfavorable effect, on the one hand of considerably reducing the contact pressure, on the other hand as indicated previously, of making the blade more sensitive to residual stresses.
  • the object of the present invention is therefore to propose a solution in which, without modifying the size overall of the microswitch, an original geometry of at least less one blade increases the flexibility of said blade without modifying the maximum force obtained at its end.
  • the subject of the invention is a magnetic microswitch, produced by galvanic method from a substrate, comprising two conductive strips of length L and L 'and of width a , connected by their respective ends to means of electrical connection, and each comprising a distal part of respective section a ⁇ b and a ⁇ b ', the superposition of which over a length r determines an air gap of distance e , at least one of said blades being made of a magnetic material and consisting of an end integral with the substrate by means of a foot, of a median part and of a distal part of length L o , flexible with respect to the distal part of the second blade between an open position in the absence of a magnetic field and a closed position in which the two blades are in contact with each other under the influence of the magnetic field, said micro-contactor being characterized in that said middle part of the flexible blade is shaped with a total cross section smaller than that of the distal part so as to have a lower resistance to flexion
  • both blades are grown by growth galvanic of the same magnetic material.
  • the flexible blade has a constant thickness b from its attachment to the foot to its distal part, and the middle part which forms the junction between these two ends is formed by one or more isthmus making the total cross section of said middle portion is smaller than the section of the distal portion, thereby allowing the blade to have greater flexibility without increasing bulk.
  • isthmus can delimit one or more openings in the blade. In case there is only one single isthmus, it preferably occupies a position central by delimiting two notches on the edges of the blade.
  • the isthmus can also have a section variable between the end fixed to the foot and the part distal, for example by forming contiguous openings substantially rectangular or square, having surfaces decreasing values from the attachment to the foot.
  • the blade has neither opening nor notch, but its middle part has a thickness less than the thickness b of the distal part, by forming in a way a notch in the thickness of the blade, said notch which can be formed on either of the faces of the blade.
  • the middle part has only a slight influence on the magnetic behavior of the micro-contactor, especially when it is placed in a magnetic field parallel to the length of the blades.
  • the active zone is the distal part of length L o .
  • the length L 'of this second blade is equal to the covering length r , the material constituting it be magnetic or not, and its thickness b 'may be greater than the thickness b of the flexible blade.
  • the second blade can also be integral with said substrate by through another foot.
  • This second blade will then also flexible and can be structured according to one of the modes described above, without having necessarily the same structure as the first blade.
  • the microswitch according to the invention also makes it possible, without modifying the overall size thereof, to act on the values b , b ′ of the thickness of the blades and on the value e of the air gap. Indeed, an increase in b , b ' causes a decrease in flexibility and correspondingly better relative positioning of the two blades to reduce the value e of the air gap.
  • FIG. 1 there is shown a first example of a micro-contactor, once isolated from its manufacturing batch. We see that it has two blades 1, 2 supported by a substrate 10, from which it was built by galvanic growth like this will be explained later.
  • the micro-switch is intended to be subjected to a magnetic field parallel to the blades.
  • the material forming the two blades should be ferromagnetic, for example an iron-nickel alloy exhibiting low magnetic hysteresis to allow a reproducible opening when the magnetic field is deleted.
  • Each of the two blades comprises means for connection to an electrical circuit, not shown, shown diagrammatically by the conductors 21 and 22, the skilled person being able to perfectly design other connection means, in particular when said micro-contactor is intended to be integrated into a more complex electronic assembly.
  • the two blades have substantially the same width a , between 50 and 150 ⁇ m, for example 100 ⁇ m, and a thickness b, b ′ of the order of 10 ⁇ m.
  • the strip 1, secured to the substrate 10 via a foot 9, has a total length L, typically between 300 and 900 ⁇ m, for example 500 ⁇ m.
  • This blade 1 comprises three zones having substantially the same length and assuming different functions. One end 3 of the blade allows attachment to the base 9, the rest of the blade being suspended above the substrate 10.
  • the other end 5, of length Lo designated by “distal part” ensures the magnetic operation.
  • the middle part 4 ensures its mechanical operation by making it possible to adjust the flexibility of the blade 1, that is to say in fact the maximum deflection of the distal end 5 in a given magnetic field.
  • the middle part 4 has in its center a square opening 6 delimiting on the edges of the blade 1 two isthmus 8a and 8b connecting the end 3 integral with the foot to the distal part 5.
  • the section total transverse is therefore less than the section a ⁇ b of the distal part 5, which gives the blade greater flexibility for a material having a given modulus of elasticity.
  • the second strip 2 integral with the substrate has a thickness b ' and a length L' and has no particular structure.
  • its thickness b ′ will preferably be substantially equal to the thickness b of the flexible blade 1.
  • the two blades are positioned relative to each other so that they overlap over a length r , defining between their facing surfaces an air gap e of between 10 and 50 ⁇ m, for example 5 ⁇ m
  • the length r superposition of the two plates will preferably be equal to sometimes the thickness b , b ' chosen for the plates, so as to reduce the effects of dispersion of the magnetic field.
  • the micro-contactor can be encapsulated in air or controlled atmosphere, by example by means of a plastic cover not shown, glued or welded to the surface of the substrate, either by mounting in a suitable case.
  • a bonding layer 12a and 13a for example titanium or chromium
  • a layer of protection 12b and 13b for example in gold
  • etching of the surface according to known techniques.
  • layers successive 14, 15 and 16 of thick photoresist each photoresist layer being configured by means of a mask (not shown) to provide openings allowing growth to be carried out in stages galvanic.
  • the first layer 14 is configured with two openings allowing the galvanic growth of a first stage 9a of foot 9 and of blade 2.
  • the second layer 15 is configured with a single opening allowing to obtain by galvanic growth the second floor 9b of foot 9.
  • This third layer 16 is configured to leave free for growth galvanic an opening corresponding to the end 3 integral with foot 9, distal part 5 and isthmus 8a and 8b, as appears more clearly on the figure 8.
  • all the steps of galvanic growth can be conducted with the same ferromagnetic material, for example an FerNickel alloy 20-80. It is also possible to improve the electrical contact of the blades when they are subjected to a magnetic field, covering their surfaces with gold opposite, i.e. after the first galvanic deposition and before the last galvanic deposit.
  • microstructure thus obtained is then subjected to an attack reagent to eliminate, at one or more times, the photoresist and the intermediate metallization layer 17 and release the micro-contactor.
  • attack reagent to eliminate, at one or more times, the photoresist and the intermediate metallization layer 17 and release the micro-contactor.
  • FIGS. 1 and 2 there is shown another example of micro-switch intended to be placed in a magnetic field parallel to the blades and in which there is always a single flexible blade.
  • the middle part 4 of the flexible blade has two rectangular openings 6a and 6b, delimited by three isthmus 8a, 8b and 8c.
  • the microswitch shown in Figure 3 is intended to be placed in a magnetic field perpendicular to the blades.
  • the second strip 2 secured to the substrate can be reduced to a contact pad having a length L ′ at least equal to the covering length r of the two strips, and a thickness b ′ greater than the thickness b of the flexible blade.
  • the middle part has three openings 6a, 6b and 6c substantially rectangular and contiguous, forming a single opening delimited on each edge of the blade by isthmus 8a and 8b composed of three zones s, m and l whose width increases from foot
  • the microswitch represented intended to be placed in a parallel magnetic field with blades, has in the middle part of its blade flexible a single isthmus 8c delimiting notches 6d and 6th on the edges of the blade.
  • the increase in the flexibility of the movable blade relative to the blade 2 secured to the substrate 10 is obtained by configuring the middle part 4 with a thickness b '' less than the thickness b of the distal part 5.
  • this configuration corresponds to a notch 6f open towards the substrate.
  • FIG. 6 there is shown a micro-contactor intended to be placed in a parallel magnetic field to the blades and in which the two blades are movable one compared to each other.
  • a first blade 1 is integral of the substrate 10 via a foot 9 and comprises in its middle part an opening 6.
  • a second blade 2 is secured to the substrate 10 by means of a foot 11. In the example shown, this second blade also has an opening in a middle part rectangular 7.
  • This part can also have one any of the conformations previously described for the blade 1, or still have a constant total section of its end fixed to the foot 1 to its end distal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Micromachines (AREA)

Abstract

Micro-contacteur actionnable par un champ magnétique, comportant deux lames (1, 2) comprenant chacune une partie distale (5, 5') dont la superposition forme un entrefer de distance e, l'une au moins desdites lames (1) en un matériau magnétique ayant une extrémité (3) solidaire du substrat par l'intermédiaire d'un pied (9), une partie médiane (4) et une partie distale (5) de longueur Lo, flexible par rapport à la deuxième lame (2). La partie médiane (4) de la lame flexible (1) est conformée avec une section transversale totale inférieure à celle de la partie distale (5) pour présenter une moindre résistance à la flexion permettant à la lame d'avoir à la fois un déflexion d'amplitude au moins égale à e pour établir un contact sous l'influence d'un champ magnétique et une force de rappel suffisante vers la position ouverte en absence de champ magnétique. <IMAGE>

Description

La présente invention concerne un micro-contacteur à lames dont la conformation particulière assure un fonctionnement fiable, tant pour la fermeture d'un circuit électrique par rapprochement de deux lames sous l'influence d'un champ magnétique, que pour l'ouverture lorsque le champ magnétique est supprimé.
L'invention concerne également un procédé de fabrication d'un tel micro-contacteur par une méthode de croissance galvanique à partir d'un substrat.
De façon plus générale, l'invention appartient au domaine bien connu des contacteurs dits "à tiges", et par extension "à lames", actionnables par un champ magnétique extérieur pouvant être, soit parallèle aux tiges ou aux lames, soit perpendiculaire à celles-ci. Un contacteur à tiges à champ parallèle est généralement désigné par contacteur "reed". Le modèle-type d'un tel contacteur "reed" se compose d'une ampoule cylindrique en verre dans laquelle pénètre à chaque extrémité une tige magnétisable et flexible, les extrémités libres de chaque tige pouvant, par leur rapprochement initial, s'attirer sous l'influence d'un champ magnétique extérieur pour fermer un circuit électrique, et être rappelées à leur position initiale par la force élastique des tiges, respectivement des lames, lorsque le champ magnétique est supprimé. La miniaturisation de ce modèle-type est nécessairement limitée par des facteurs purement techniques, faisant que les plus petits contacteurs "reed" obtenus ont encore une longueur de l'ordre de 7,5 mm et un diamètre de l'ordre de 1,5 mm, tout en ayant une stabilité mécanique parfois discutable.
Ce modèle-type a donc donné lieu à de nombreux perfectionnements parmi lesquels on retiendra, dans le cadre de la présente invention, d'une part ceux qui visent à en réduire l'encombrement, par exemple pour permettre leur intégration dans un ensemble micro-électronique, telle qu'une pièce d'horlogerie, d'autre part ceux qui visent à rendre leur comportement magnéto-mécanique plus fiable et plus performant.
En ce qui concerne les solutions apportées à la réduction de l'encombrement, on se reportera avantageusement au brevet US 5,430, 421 qui décrit un procédé de fabrication par croissance galvanique à partir d'un substrat, permettant de fabriquer par lot, ou "batch", des micro-contacteurs à lames de très petites dimensions, typiquement des dispositifs dont les lames ont une longueur L d'environ 500 µm, une largeur a d'environ 100 µm, pour une épaisseur b et un entrefer e de l'ordre de la dizaine de microns. A l'usage, il est toutefois apparu que certains micro-contacteurs issus d'un même lot, c'est-à-dire des micro-contacteurs fabriqués exactement dans les mêmes conditions, ne répondaient pas aux normes permettant d'assurer un fonctionnement fiable. En effet, la construction d'une structure métallique suspendue par croissance galvanique permet de contrôler de façon suffisamment précise la géométrie, et notamment l'épaisseur des dépôts d'un matériau ferromagnétique, mais ne permet pas de prévoir de façon certaine dans lesdits dépôts les contraintes résiduelles qui sont, de façon connue, plus importantes en début de croissance galvanique. Compte-tenu de la très faible épaisseur des lames, il en résulte que certains micro-contacteurs seront, après élimination des couches sacrificielles, toujours en position fermée, ou au contraire présenteront un entrefer trop grand pour que les lames soient amenées en position fermée sous l'influence du champ magnétique devant normalement être appliqué.
Pour palier aux inconvénients magnéto-mécaniques des micro-contacteurs ci-dessus mentionnés, on a recherché, pour des lames obtenues avec un matériau ayant un module d'élasticité donné et placées dans un champ magnétique donné, sur quels paramètres de construction il était possible d'agir pour réduire, voire éliminer les contraintes résiduelles tout en favorisant la déflexion et la pression de contact entre les deux lames.
En augmentant l'épaisseur b de la lame on va réduire l'influence des contraintes résiduelles et obtenir un meilleur positionnement des deux lames l'une par rapport à l'autre, mais on va en même temps en augmenter la rigidité. Pour avoir la flexibilité nécessaire à la fermeture on devra alors augmenter la longueur L de la lame, ce qui ne correspond pas à l'objectif de miniaturisation de l'invention.
Pour des dispositifs placés dans un champ magnétique et ayant un très petit entrefer e, la déflexion est approximativement proportionnelle à L3/b·r, L étant la longueur de la lame, b son épaisseur et r la longueur de superposition des deux lames dans l'entrefer e. Tous les autres paramètres étant égaux par ailleurs, la pression de contact est approximativement proportionnelle à b2/r2.
On peut obtenir une plus grande déflexion en augmentant L et/ou en diminuant b. Avec une augmentation de L, l'encombrement global du micro-contacteur augmente, ce qui ne correspond pas aux buts visés par l'invention, et ce qui a également comme effet négatif d'augmenter la dispersion du champ magnétique dans l'entrefer. Une diminution de b a pour effet défavorable, d'une part de diminuer considérablement la pression de contact, d'autre part comme indiqué précédemment, de rendre la lame plus sensible aux contraintes résiduelles.
Seule la diminution de la longueur de superposition r permet d'augmenter simultanément la déflexion et la pression de contact. Cependant la valeur de r doit rester sensiblement égale à quelques fois l'épaisseur b, faute de quoi les effets de dispersion du champ magnétique annulent l'avantage obtenu.
Il ressort donc des observations précédentes que les connaissances de l'homme de métier ne permettent pas d'apporter une solution satisfaisante aux inconvénients magnéto-mécaniques d'un micro-contacteur construit par croissance galvanique.
La présente invention a donc pour objet de proposer une solution dans laquelle, sans modifier l'encombrement global du micro-contacteur, une géométrie originale d'au moins une lame permet d'augmenter la flexibilité de ladite lame sans modifier la force maximale obtenue à son extrémité.
A cet effet l'invention a pour objet un micro-contacteur magnétique, réalisé par méthode galvanique à partir d'un substrat, comportant deux lames conductrices de longueur L et L' et de largeur a, reliées par leurs extrémités respectives à des moyens de connexion électrique, et comprenant chacune une partie distale de section respective a · b et a · b', dont la superposition sur une longueur r détermine un entrefer de distance e, l'une au moins desdites lames étant en un matériau magnétique et se composant d'une extrémité solidaire du substrat par l'intermédiaire d'un pied, d'une partie médiane et d'une partie distale de longueur Lo, flexible par rapport à la partie distale de la deuxième lame entre une position ouverte en l'absence d'un champ magnétique et une position fermée dans laquelle les deux lames sont en contact l'une avec l'autre sous l'influence du champ magnétique, ledit micro-contacteur étant caractérisé en ce que ladite partie médiane de la lame flexible est conformée avec une section transversale totale inférieure à celle de la partie distale de façon à présenter une moindre résistance à la flexion permettant à la lame d'avoir à la fois une déflexion d'amplitude au moins égale à e pour établir un contact sous l'influence d'un champ magnétique et une force de rappel suffisante vers la position ouverte en absence de champ magnétique.
Lorsque le champ magnétique appliqué est parallèle aux lames, les deux lames sont réalisées par croissance galvanique d'un même matériau magnétique.
En appliquant un champ magnétique à saturation de la partie médiane il est alors possible d'augmenter la pression de contact entre les lames en augmentant l'épaisseur b, respectivement b', de la partie distale, de façon à obtenir des contacts reproductibles à faible résistance de passage tout en permettant à la lame d'avoir une déflexion suffisante.
Selon un premier mode de réalisation la lame flexible a une épaisseur constante b depuis sa fixation au pied jusqu'à sa partie distale, et la partie médiane qui fait la jonction entre ces deux extrémités est formée d'un ou de plusieurs isthmes faisant que la section transversale totale de ladite partie médiane est plus faible que la section de la partie distale, en permettant ainsi à la lame d'avoir une plus grande flexibilité sans augmentation d'encombrement.
Ces isthmes peuvent délimiter une ou plusieurs ouvertures dans la lame. Dans le cas où il n'existe qu'un seul isthme, celui-ci occupe de préférence une position centrale en délimitant deux échancrures sur les bords de la lame. Les isthmes peuvent également avoir une section variable entre l'extrémité fixée au pied et la partie distale, par exemple en formant des ouvertures jointives sensiblement rectangulaires ou carrées, ayant des surfaces de valeurs décroissantes à partir de la fixation au pied.
Selon un deuxième mode de réalisation la lame ne présente ni ouverture, ni échancrure, mais sa partie médiane a une épaisseur inférieure à l'épaisseur b de la partie distale, en formant en quelque sorte une encoche dans l'épaisseur de la lame, ladite encoche pouvant être ménagée sur l'une ou l'autre des faces de la lame.
Comme cela a déjà été indiqué, la partie médiane n'a qu'une faible influence sur le comportement magnétique du micro-contacteur, notamment lorsque celui-ci est placé dans un champ magnétique parallèle à la longueur des lames. En d'autres termes, la zone active est la partie distale de longueur Lo. Dans ce cas il est alors avantageux, lorsque la deuxième lame est solidaire du substrat, que sa longueur L' soit égale à Lo et que son épaisseur b' soit égale à l'épaisseur b de la lame flexible, de façon à éviter au maximum une dispersion du champ magnétique.
Lorsque le micro-contacteur est placé dans un champ magnétique perpendiculaire aux lames et que la deuxième lame est solidaire du substrat, il est suffisant que la longueur L' de cette deuxième lame soit égale à la longueur de recouvrement r, le matériau la constituant pouvant être magnétique ou non, et son épaisseur b' pouvant être supérieure à l'épaisseur b de la lame flexible.
Au lieu d'être solidaire du substrat, la deuxième lame peut également être solidaire dudit substrat par l'intermédiaire d'un autre pied. Cette deuxième lame sera alors également flexible et pourra être structurée selon l'un des modes précédemment décrits, sans avoir nécessairement la même structuration que la première lame.
Le micro-contacteur selon l'invention permet également, sans en modifier l'encombrement global d'agir sur les valeurs b, b' de l'épaisseur de lames et sur la valeur e de l'entrefer. En effet, une augmentation de b, b' entraíne une diminution de la flexibilité et corrélativement un meilleur positionnement relatif des deux lames permettant de réduire la valeur e de l'entrefer.
D'autres caractéristiques et avantages de l'invention apparaítront à la lecture de la description détaillée d'exemples de réalisation, donnés à titre illustratif et non limitatif, en référence aux figures annexées dans lesquelles :
  • la figure 1 est une vue en perspective d'un premier exemple de micro-contacteur ayant une seule lame flexible, avec indication de toutes les longueurs caractéristiques;
  • les figures 2 à 5 sont des vues en perspective de quatre autres exemples de réalisation dans lesquels une seule lame est flexible;
  • la figure 6 est une vue en perspective d'un sixième exemple de réalisation dans lequel les deux lames sont flexibles;
  • la figure 7 représente la coupe selon la ligne VII-VII de la figure 1, avant l'élimination des couches sacrificielles, et
  • la figure 8 représente la coupe selon la ligne VIII-VIII de la figure 1, avant élimination des couches sacrificielles.
En se référant à la figure 1, on a représenté un premier exemple de micro-contacteur, une fois isolé de son lot de fabrication. On voit que celui-ci comporte deux lames 1, 2 supportées par un substrat 10, à partir duquel il a été construit par croissance galvanique comme cela sera expliqué plus loin.
Dans cet exemple, le micro-contacteur est destiné à être soumis à un champ magnétique parallèle aux lames. Le matériau formant les deux lames devra être ferromagnétique, par exemple un alliage fer-nickel présentant une faible hystérèse magnétique pour permettre une ouverture reproductible lorsque le champ magnétique est supprimé.
Chacune des deux lames comporte des moyens de connexion à un circuit électrique, non représenté, schématisé par les conducteurs 21 et 22, l'homme de métier pouvant parfaitement concevoir d'autres moyens de connexion, notamment lorsque ledit micro-contacteur est destiné à être intégré dans un ensemble électronique plus complexe. Les deux lames ont sensiblement la même largeur a, comprise entre 50 et 150 µm par exemple 100 µm, et une épaisseur b, b' de l'ordre de 10 µm. La lame 1, solidaire du substrat 10 par l'intermédiaire d'un pied 9, a une longueur totale L, typiquement comprise entre 300 et 900 µm par exemple 500 µm. Cette lame 1 comprend trois zones ayant sensiblement la même longueur et assumant des fonctions différentes. Une extrémité 3 de la lame permet la fixation au pied 9, le reste de la lame étant suspendu au-dessus du substrat 10. L'autre extrémité 5, de longueur Lo, désignée par "partie distale", assure le fonctionnement magnétique. La partie médiane 4 en assure le fonctionnement mécanique en permettant d'ajuster la flexibilité de la lame 1, c'est-à-dire en fait la déflexion maximale de l'extrémité distale 5 dans un champ magnétique donné. A cet effet, la partie médiane 4 comporte en son centre une ouverture 6 carrée délimitant sur les bords de la lame 1 deux isthmes 8a et 8b reliant l'extrémité 3 solidaire du pied à la partie distale 5. Dans cette partie médiane, la section transversale totale est donc inférieure à la section a · b de la partie distale 5, ce qui confère à la lame une plus grande flexibilité pour un matériau ayant un module d'élasticité donné. La deuxième lame 2, solidaire du substrat, a une épaisseur b' et une longueur L' et ne présente aucune structuration particulière. Toutefois son épaisseur b' sera de préférence sensiblement égale à l'épaisseur b de la lame 1 flexible. Les deux lames sont positionnées l'une par rapport à l'autre de telle sorte qu'elles se superposent sur une longueur r, en définissant entre leurs surfaces en regard un entrefer e compris entre 10 et 50 µm par exemple 5 µm La longueur r de superposition des deux lames sera de préférence égale à quelque fois l'épaisseur b, b' choisie pour les lames, de façon à réduire les effets de dispersion du champ magnétique.
Selon sa destination finale, le micro-contacteur peut être encapsulé sous air ou atmosphère contrôlée, par exemple au moyen d'un capot plastique non représenté, collé ou soudé à la surface du substrat, soit encore par montage dans un boítier adéquat.
On va maintenant brièvement décrire, en référence aux figures 7 et 8 un procédé de réalisation du micro-contacteur représenté à la figure 1, par croissance galvanique à partir d'un substrat 10. Ce procédé consiste essentiellement à adapter au moins une étape du procédé décrit dans le document US 5,430,421, auquel on pourra se reporter pour plus de détails. A la figure 7, on a représenté avant élimination des couches sacrificielles une coupe longitudinale à travers un isthme 8a d'un seul micro-contacteur isolé de son lot de fabrication. Le substrat 10 n'est en effet qu'une portion d'une plaquette, ou "wafer" en un matériau isolant, ou semi-conducteur voire conducteur recouvert d'une couche isolante permettant de fabriquer en un seul lot une multitude de micro-contacteurs. On effectue d'abord par évaporation thermique le dépôt d'une couche d'accrochage 12a et 13a, par exemple de titane ou de chrome, puis d'une couche de protection 12b et 13b par exemple en or, de façon à créer deux pistes 12 et 13 isolées électriquement par gravage de la surface selon des techniques connues. On dépose ensuite, par exemple à la tournette, des couches successives 14, 15 et 16 de photorésist épais, chaque couche de photorésist étant configurée au moyen d'un masque (non représenté) pour ménager des ouvertures permettant d'effectuer par étapes la croissance galvanique. La première couche 14 est configurée avec deux ouvertures permettant la croissance galvanique d'un premier étage 9a du pied 9 et de la lame 2. La deuxième couche 15 est configurée avec une seule ouverture permettant d'obtenir par croissance galvanique le deuxième étage 9b du pied 9. Avant d'effectuer le dépôt de la troisième couche 16 de photorésist on effectue une nouvelle double métallisation 17. Cette troisième couche 16 est configurée pour laisser libre pour la croissance galvanique une ouverture correspondant à l'extrémité 3 solidaire du pied 9, à la partie distale 5 et aux isthmes 8a et 8b, comme cela apparaít plus clairement sur la figure 8. Dans cet exemple, toutes les étapes de croissance galvanique peuvent être conduites avec le même matériau ferromagnétique, par exemple un alliage FerNickel 20-80. Il est également possible d'améliorer le contact électrique des lames lorsqu'elles seront soumises à un champ magnétique, en recouvrant d'or leurs surfaces en regard, c'est-à-dire après le premier dépôt galvanique et avant le dernier dépôt galvanique. La microstructure ainsi obtenue est ensuite soumise à un réactif d'attaque pour éliminer, en une ou plusieurs fois, le photorésist et la couche de métallisation intermédiaire 17 et libérer le micro-contacteur. Comme déjà indiqué, toutes ces opérations s'effectuent sur un lot de micro-contacteurs qu'il est possible d'encapsuler avant de les isoler par découpage, soit de façon unitaire, soit par groupes selon une disposition déterminée en fonction de leur destination finale.
En se référant maintenant à la figure 2, on a représenté un autre exemple de micro-contacteur destiné à être placé dans un champ magnétique parallèle aux lames et dans lequel on a toujours une seule lame flexible. La partie médiane 4 de la lame flexible comporte deux ouvertures rectangulaires 6a et 6b, délimitées par trois isthmes 8a, 8b et 8c. Comme on le voit, en comparant les figures 1 et 2, la deuxième lame 2 solidaire du substrat a une longueur L' = Lo, les deux lames ayant la même épaisseur b = b', d'une valeur supérieure à celle représentée à la figure 1, avec corrélativement une plus petite valeur pour l'entrefer e.
Le micro-contacteur représenté à la figure 3 est destiné à être placé dans un champ magnétique perpendiculaire aux lames. En fait, comme on le voit la deuxième lame 2 solidaire du substrat peut être réduite à un plot de contact ayant une longueur L' au moins égale à la longueur de recouvrement r des deux lames, et une épaisseur b' supérieure à l'épaisseur b de la lame flexible. Dans cet exemple, il est également possible d'effectuer la première étape de croissance, pour former le premier étage du pied et la lame 2 avec un matériau non magnétique, par exemple de l'or. La partie médiane comporte trois ouvertures 6a, 6b et 6c sensiblement rectangulaires et jointives, formant une unique ouverture délimitée sur chaque bord de la lame par des isthmes 8a et 8b composés de trois zones s, m et l dont la largeur va en croissant à partir du pied
A la figure 4, le micro-contacteur représenté, destiné à être placé dans un champ magnétique parallèle aux lames, comporte dans la partie médiane de sa lame flexible un seul isthme 8c délimitant des échancrures 6d et 6e sur les bords de la lame.
Dans le micro-contacteur représenté à la figure 5, l'augmentation de la flexibilité de la lame mobile par rapport à la lame 2 solidaire du substrat 10 est obtenu en configurant la partie médiane 4 avec une épaisseur b'' inférieure à l'épaisseur b de la partie distale 5. Dans l'exemple représenté, cette configuration correspond à une encoche 6f ouverte vers le substrat. Pour réaliser cette micro-structure par croissance galvanique, il conviendra bien entendu d'effectuer une étape supplémentaire pour configurer l'encoche 6f.
A la figure 6, on a représenté un micro-contacteur destiné à être placé dans un champ magnétique parallèle aux lames et dans lequel les deux lames sont mobiles l'une par rapport à l'autre. Une première lame 1 est solidaire du substrat 10 par l'intermédiaire d'un pied 9 et comporte dans sa partie médiane une ouverture 6. Une deuxième lame 2 est solidaire du substrat 10 par l'intermédiaire d'un pied 11. Dans l'exemple représenté, cette deuxième lame comporte également dans une partie médiane une ouverture rectangulaire 7. Cette partie peut également avoir l'une quelconque des conformations décrites précédemment pour la lame 1, soit encore avoir une section totale constante de son extrémité fixée au pied 1 jusqu'à son extrémité distale. Pour réaliser cette micro-stucture par croissance galvanique, il conviendra bien entendu d'effectuer une étape supplémentaire, pour configurer le pied 11, et de procéder à une métallisation supplémentaire avant de configurer et de faire croítre par dépôt galvanique la lame 2 et un étage supplémentaire du pied 9.
Sans sortir du cadre de la présente invention, l'homme de métier est en mesure d'imaginer d'autres configurations de la partie médiane d'au moins une lame pour avoir une plus grande flexibilité et en conséquence obtenir un micro-contacteur ayant des caractéristiques magnéto-mécaniques améliorées.

Claims (15)

  1. Micro-contacteur magnétique, réalisé par méthode galvanique à partir d'un substrat (10), comportant deux lames (1, 2) conductrices de longueur L et L' et de largeur a, reliées par leurs extrémités respectives (3, 3') à des moyens de connexion électrique (21, 22), et comprenant chacune une partie distale (5, 5') de section respective a · b et a · b' dont la superposition sur une longueur r détermine un entrefer de distance e, l'une au moins desdites lames (1) étant en un matériau magnétique et se composant d'une extrémité (3) solidaire du substrat par l'intermédiaire d'un pied (9), d'une partie médiane (4) et d'une partie distale (5) de longueur Lo, flexible par rapport à la partie distale de la deuxième lame (2) entre une position ouverte en l'absence d'un champ magnétique et une position fermée dans laquelle les deux lames sont en contact l'une avec l'autre sous l'influence du champ magnétique, caractérisé en ce que ladite partie médiane (4) de la lame flexible (1) est conformée avec une section transversale totale inférieure à celle de la partie distale (5) de façon à présenter une moindre résistance à la flexion permettant à la lame d'avoir à la fois un déflexion d'amplitude au moins égale à e pour établir un contact sous l'influence d'un champ magnétique et une force de rappel suffisante vers la position ouverte en absence de champ magnétique.
  2. Micro-contacteur selon la revendication 1, caractérisé en ce que les deux lames (1, 2) sont réalisées en un matériau magnétique lorsque le champ magnétique appliqué est parallèle auxdites lames.
  3. Micro-contacteur selon la revendication 1, caractérisé en ce que la lame flexible (1) a une épaisseur constante b et en ce que la partie médiane (4) est formée par au moins un isthme (8a, 8b, 8c) reliant ladite partie distale (5) à l'extrémité (3) fixée au pied (9).
  4. Micro-contacteur selon la revendication 3, caractérisé en ce que la partie médiane comporte deux isthmes (8a, 8b) situés sur les bords de la lame définissant une seule ouverture (6) sensiblement rectangulaire ou carrée.
  5. Micro-contacteur selon la revendication 3, caractérisé en ce que la partie médiane (4) comporte plus de deux isthmes (8a, 8b, 8c) s'étendant parallèlement à la longueur de la lame en formant plusieurs ouvertures (6a, 6b) sensiblement rectangulaires ou carrées.
  6. Micro-contacteur selon la revendication 4, caractérisé en ce que les deux isthmes (8a, 8b) situés sur le bord de la lame ont des sections allant en décroissant entre la zone de fixation au pied et la partie distale en formant ainsi plusieurs ouvertures jointives (6a, 6b, 6c) sensiblement rectangulaires ou carrées.
  7. Micro-contacteur selon la revendication 1, caractérisé en ce que la partie médiane (4) comporte un seul isthme central (8c) délimitant sur chacun des bords de la lame des échancrures (6d, 6e).
  8. Micro-contacteur selon la revendication 1, caractérisé en ce que l'épaisseur de la partie médiane (4) est inférieure à l'épaisseur b de la partie distale (5).
  9. Micro-contacteur selon la revendication 1, caractérisé en ce que la deuxième (2) lame est solidaire du substrat, à une section transversale constante et une longueur L' sensiblement égale à Lo lorsque le champ magnétique appliqué est parallèle à l'axe longitudinal des lames (1, 2).
  10. Micro-contacteur selon la revendication 1, caractérisé en ce que la deuxième lame (2) est solidaire du substrat, à une section transversale constante et une longueur L' sensiblement égale à r lorsque le champ magnétique appliqué est perpendiculaire à l'axe longitudinal des lames (1, 2).
  11. Micro-contacteur selon la revendication 1, caractérisé en ce que chacune des deux lames (1, 2) est solidaire du substrat par l'intermédiaire d'un pied (9, 11).
  12. Micro-contacteur selon la revendication 11, caractérisé en ce que les parties médianes de chaque lame sont conformées pour présenter une moindre résistance à la flexion.
  13. Micro-contacteur selon la revendication 1, caractérisé en ce que les deux lames (1, 2) ont des parties distales ayant la même épaisseur b = b', lorsque le champ magnétique appliqué est parallèle à l'axe longitudinal des lames (1, 2).
  14. Micro-contacteur selon la revendication 13, caractérisé en ce qu'une augmentation de l'épaisseur b, b' des lames (1, 2) permet corrélativement de diminuer l'entrefer e sans modifier l'encombrement global dudit micro-contacteur.
  15. Procédé de fabrication d'un micro-contacteur selon la revendication 1, caractérisé en ce qu'il comprend les étapes consistant à :
    créer sur un substrat (10) deux pistes (12, 13) électriquement isolées;
    conformer des couches successives (14, 15, 16) de photorésist épais permettant d'effectuer par étapes la croissance galvanique;
    avant chaque étape de conformation d'une lame (1, 2) effectuer une métallisation intermédiaire (17) de toute la surface de la structure déjà obtenue; et
    éliminer en une ou plusieurs fois le photorésist et les couches de métallisation intermédiaire au moyen d'un réactif d'attaque.
EP19970106710 1997-04-23 1997-04-23 Micro-contacteur magnétique et son procédé de fabrication Expired - Lifetime EP0874379B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE1997614408 DE69714408T2 (de) 1997-04-23 1997-04-23 Magnetischer Mikroschalter und Herstellungsverfahren
EP19970106710 EP0874379B1 (fr) 1997-04-23 1997-04-23 Micro-contacteur magnétique et son procédé de fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19970106710 EP0874379B1 (fr) 1997-04-23 1997-04-23 Micro-contacteur magnétique et son procédé de fabrication

Publications (2)

Publication Number Publication Date
EP0874379A1 true EP0874379A1 (fr) 1998-10-28
EP0874379B1 EP0874379B1 (fr) 2002-07-31

Family

ID=8226722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970106710 Expired - Lifetime EP0874379B1 (fr) 1997-04-23 1997-04-23 Micro-contacteur magnétique et son procédé de fabrication

Country Status (2)

Country Link
EP (1) EP0874379B1 (fr)
DE (1) DE69714408T2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191559A2 (fr) * 2000-09-01 2002-03-27 Little Things Factory GmbH Microcommutateur et son procédé de fabrication
EP1235244A1 (fr) * 1999-11-18 2002-08-28 NEC Corporation Commutateur de micromachine
DE10048880C2 (de) * 2000-09-29 2003-04-24 Little Things Factory Gmbh Mikroschalter und Verfahren zu dessen Herstellung
EP1471558A2 (fr) * 2003-04-25 2004-10-27 LG Electronics Inc. Micro-commutateur à basse tension
EP1533270A1 (fr) * 2003-11-21 2005-05-25 Asulab S.A. Procédé de contrôle de l'herméticité d'une cavité close d'un composant micrométrique, et composant micrométrique pour sa mise en oeuvre
EP1818958A1 (fr) * 2006-02-13 2007-08-15 Schneider Electric Industries SAS Microsystème incluant un dispositif d'arrêt
US9153394B2 (en) 2011-01-03 2015-10-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for fabricating a microswitch actuatable by a magnetic field

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357585A (en) * 1979-12-10 1982-11-02 W. H. Brady Co. Laminated magnetic switch
US4570139A (en) * 1984-12-14 1986-02-11 Eaton Corporation Thin-film magnetically operated micromechanical electric switching device
WO1989009477A1 (fr) * 1988-03-22 1989-10-05 Fraunhofer-Gesellschaft Zur Förderung Der Angewand Agencement micromecanique
EP0602538A1 (fr) * 1992-12-15 1994-06-22 Asulab S.A. Contacteur "reed" et procédé de fabrication de microstructures métalliques tridimensionnelles suspendues
US5463233A (en) * 1993-06-23 1995-10-31 Alliedsignal Inc. Micromachined thermal switch
EP0688033A1 (fr) * 1994-06-17 1995-12-20 Asulab S.A. Microcontacteur magnétique et son procédé de fabrication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357585A (en) * 1979-12-10 1982-11-02 W. H. Brady Co. Laminated magnetic switch
US4570139A (en) * 1984-12-14 1986-02-11 Eaton Corporation Thin-film magnetically operated micromechanical electric switching device
WO1989009477A1 (fr) * 1988-03-22 1989-10-05 Fraunhofer-Gesellschaft Zur Förderung Der Angewand Agencement micromecanique
EP0602538A1 (fr) * 1992-12-15 1994-06-22 Asulab S.A. Contacteur "reed" et procédé de fabrication de microstructures métalliques tridimensionnelles suspendues
US5430421A (en) * 1992-12-15 1995-07-04 Asulab S.A. Reed contactor and process of fabricating suspended tridimensional metallic microstructure
US5463233A (en) * 1993-06-23 1995-10-31 Alliedsignal Inc. Micromachined thermal switch
EP0688033A1 (fr) * 1994-06-17 1995-12-20 Asulab S.A. Microcontacteur magnétique et son procédé de fabrication

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1235244A1 (fr) * 1999-11-18 2002-08-28 NEC Corporation Commutateur de micromachine
EP1235244A4 (fr) * 1999-11-18 2004-03-03 Nec Corp Commutateur de micromachine
US6784769B1 (en) 1999-11-18 2004-08-31 Nec Corporation Micro machine switch
EP1191559A2 (fr) * 2000-09-01 2002-03-27 Little Things Factory GmbH Microcommutateur et son procédé de fabrication
DE10043549C1 (de) * 2000-09-01 2002-06-20 Little Things Factory Gmbh Mikroschalter und Verfahren zu dessen Herstellung
EP1191559A3 (fr) * 2000-09-01 2005-03-02 Little Things Factory GmbH Microcommutateur et son procédé de fabrication
DE10048880C2 (de) * 2000-09-29 2003-04-24 Little Things Factory Gmbh Mikroschalter und Verfahren zu dessen Herstellung
EP1471558A2 (fr) * 2003-04-25 2004-10-27 LG Electronics Inc. Micro-commutateur à basse tension
EP1533270A1 (fr) * 2003-11-21 2005-05-25 Asulab S.A. Procédé de contrôle de l'herméticité d'une cavité close d'un composant micrométrique, et composant micrométrique pour sa mise en oeuvre
WO2005049482A1 (fr) * 2003-11-21 2005-06-02 Asulab S.A. Procede de controle de l'hermeticite d'une cavite close d'un composant micrometrique, et composant micrometrique pour sa mise en oeuvre
US7601537B2 (en) 2003-11-21 2009-10-13 Asulab S.A. Method of checking the hermeticity of a closed cavity of a micrometric component and micrometric component for the implementation of same
US7833484B2 (en) 2003-11-21 2010-11-16 Asulab S.A. Method of checking the hermeticity of a closed cavity of a micrometric component and micrometric component for the implementation of the same
US7892839B2 (en) 2003-11-21 2011-02-22 Asulab S.A. Method of checking the hermeticity of a closed cavity of a micrometric component and micrometric component for the implementation of the same
EP1818958A1 (fr) * 2006-02-13 2007-08-15 Schneider Electric Industries SAS Microsystème incluant un dispositif d'arrêt
FR2897349A1 (fr) * 2006-02-13 2007-08-17 Schneider Electric Ind Sas Microsysteme incluant un dispositif d'arret
US9153394B2 (en) 2011-01-03 2015-10-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for fabricating a microswitch actuatable by a magnetic field

Also Published As

Publication number Publication date
DE69714408D1 (de) 2002-09-05
DE69714408T2 (de) 2003-04-24
EP0874379B1 (fr) 2002-07-31

Similar Documents

Publication Publication Date Title
CH691559A5 (fr) Micro-contacteur magnétique et son procédé de fabrication.
EP0602538B1 (fr) Contacteur &#34;reed&#34; et procédé de fabrication de microstructures métalliques tridimensionnelles suspendues
EP0869519B1 (fr) Moteur planaire magnétique et micro-actionneur magnétique comportant un tel moteur
EP0688033B1 (fr) Microcontacteur magnétique et son procédé de fabrication
EP1040492B1 (fr) Microsysteme a element deformable sous l&#39;effet d&#39;un actionneur thermique
CH680322A5 (fr)
LU84413A1 (fr) Transducteur de pression capacitif au silicium lie par voie electrostatique
WO2005101434A2 (fr) Microcommutateur a faible tension d’actionnement et faible consommation
EP1458095B1 (fr) Procédé de réalisation d&#39;un microrésonateur piézoélectrique accordable
EP0874379B1 (fr) Micro-contacteur magnétique et son procédé de fabrication
EP1543535B1 (fr) Procédé de réalisation des microcommutateurs a actuation electrostatique a faible temps de reponse et a commutation de puissance
EP1652205B1 (fr) Commutateur micro-mecanique bistable, methode d&#39; actionnement et procede de realisation correspondant
EP1438728A2 (fr) Micro-condensateur variable (mems) a fort rapport et faible tension d&#39;actionnement
EP1717830B1 (fr) Micro-condensateur électromécanique à capacité variable et procédé de fabrication d&#39;un tel micro-condensateur
FR2639085A1 (fr) Microvanne electrostatique integree et procede de fabrication d&#39;une telle microvanne
FR2885410A1 (fr) Dispositif de mesure de force par detection capacitive
EP0057130B1 (fr) Interrupteur à mercure utilisant la tension de surface du mercure pour le rappel de l&#39;élément mobile
FR2835963A1 (fr) Micro-composant du type micro-interrupteur et procede de fabrication d&#39;un tel micro-composant
EP0441269B1 (fr) Micromoteur électrostatique
EP2472542A1 (fr) Procédé de fabrication d&#39;un micro-contacteur actionnable par un champ magnétique
FR2881730A1 (fr) Dispositif micromecanique comportant une poutre mobile
CH688213A5 (fr) Contacteur &#39;&#39;reed&#39;&#39; et procédé de fabrication du contacteur &#39;&#39;reed&#39;&#39;.
FR3094789A1 (fr) Procédé de fabrication d&#39;un détecteur pyroélectrique
FR3099953A1 (fr) Procédé de fabrication collective d&#39;un détecteur pyroélectrique
WO2002091556A1 (fr) Actionneur electrostatique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19990428

AKX Designation fees paid

Free format text: CH DE FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010531

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASULAB S.A.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69714408

Country of ref document: DE

Date of ref document: 20020905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021031

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030506

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080409

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110330

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110401

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140326

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140321

Year of fee payment: 18

Ref country code: FR

Payment date: 20140422

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69714408

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430