EP0853867B1 - Method for sweeping charged particles out of an isochronous cyclotron, and device therefor - Google Patents

Method for sweeping charged particles out of an isochronous cyclotron, and device therefor Download PDF

Info

Publication number
EP0853867B1
EP0853867B1 EP96931694A EP96931694A EP0853867B1 EP 0853867 B1 EP0853867 B1 EP 0853867B1 EP 96931694 A EP96931694 A EP 96931694A EP 96931694 A EP96931694 A EP 96931694A EP 0853867 B1 EP0853867 B1 EP 0853867B1
Authority
EP
European Patent Office
Prior art keywords
cyclotron
hills
air gap
radius
sectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96931694A
Other languages
German (de)
French (fr)
Other versions
EP0853867A1 (en
Inventor
Yves Jongen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Publication of EP0853867A1 publication Critical patent/EP0853867A1/en
Application granted granted Critical
Publication of EP0853867B1 publication Critical patent/EP0853867B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/10Arrangements for ejecting particles from orbits

Definitions

  • the present invention relates to a method for extracting charged particles from a cyclotron isochronous in which the particle beam is focused by sectors.
  • the present invention also relates to said isochronous cyclotron applying this method of extraction of charged particles.
  • the present invention also relates to compact isochronous cyclotrons than focused cyclotrons by sectors. Likewise, the present invention relates to isochronous cyclotrons known as superconductive or not superconductors.
  • Cyclotrons are particle accelerators used in particular for the production of isotopes radioactive. These cyclotrons usually consist of two separate main sets, consisting on the one hand by the electromagnet and on the other hand by the high resonator frequency.
  • the electromagnet guides the particles loaded on a trajectory presenting approximately a spiral of increasing radius around the acceleration.
  • the poles of electromagnets are divided into sectors alternately presenting a reduced air gap and a larger air gap.
  • Variation azimuth of the resulting magnetic field has the effect ensure the vertical and horizontal focus of the beam during acceleration.
  • isochronous cyclotrons it is advisable to distinguish the compact type cyclotrons, which are energized by at least one main circular coil, and the so-called separate sector cyclotrons, where the structure magnetic is divided into completely separate units autonomous.
  • the second set consists of the electrodes accelerators, frequently called “gods" for reasons historical.
  • a voltage is thus applied to the electrodes alternative of several tens of kilovolts at the frequency of rotation of the particles in the magnet, or alternatively at a frequency which is an exact multiple of the frequency of rotation of the particles in the magnet. This has the effect to accelerate the particles of the rotating beam in the cyclotron.
  • This operation is considered by those skilled in the art as the most difficult step in producing a particle beam accelerated by a cyclotron.
  • This operation consists in bringing the beam from the part from the magnetic field where it is accelerated to where the magnetic field can no longer hold the beam. In this case, the beam is free to escape the action of the field and is extracted from the cyclotron.
  • cyclotrons accelerating positive particles produce higher beam current intensities, and increase the reliability of the system, and while allowing strong reduction in size and weight of the machine.
  • Document US-A-0324379 relates to a cyclotron type device intended to accelerate particles which has magnetic means being essentially independent of the azimuth angle. This means that it is a non-isochronous cyclotron.
  • the cyclotron described has beam extraction means which consist of “regenerators” and “compressors”, which allow, in disturbing the magnetic field, to obtain an extraction of the beam of particles.
  • the present invention aims to propose a method for extracting charged particles from a cyclotron isochronous avoiding the use of devices extraction as described above.
  • An additional aim of the present invention is to therefore to propose an isochronous cyclotron which is of simpler and more economical design than those usually used.
  • the present invention also aims to increase the extraction efficiency of the particle beam, and particularly in the case of extraction of positive particles.
  • the present invention relates to a method for extracting charged particles from a cyclotron isochronous comprising an electromagnet constituting the circuit magnetic which includes a number of pairs of sectors called “hills” where the air gap is reduced, separated by spaces in the form of sectors called “valleys” where the air gap is larger; this method being characterized by the fact that a cyclotron is produced isochronous with a magnet gap between the hills including the dimensions are chosen so that the minimum value of this air gap in the vicinity of the maximum radius between the hills be less than twenty times the gain in radius by round of particles accelerated by the cyclotron at this radius.
  • the air gap that the magnet is in generally between 5 and 20 cm, while the gain in radius per revolution is approximately 1 mm. In this case, the report of the air gap in radius gain per turn is greater than 50.
  • the magnetic field decreases very abruptly near the limit of the magnet pole, so that the point of self-extraction is reached before the phase shift of the particles relative to the accelerating voltage does not reach 90 degrees. In this way, the particles automatically exit the magnetic field without intervention of any device extraction.
  • the extraction of particles is concentrated on a sector thanks to a dissymmetry deliberately brought to the shape or magnetic field of said sector.
  • the angle of one of the sectors is reduced at the polar radius to allow movement of the orbits and thus get the extraction of the whole beam on this side, so, for example, to be able to irradiate a large volume target.
  • a particular distribution is carried out of the particle beam so as to simultaneously irradiate several targets mounted side by side on the trajectory of the beam.
  • the present invention advantageously makes it possible to be used for proton therapy or the production of radioisotopes, and more particularly of radioisotopes intended to positron emission tomography (PET).
  • PET positron emission tomography
  • the profile of the magnetic field in an isochronous cyclotron is such that the frequency of rotation of the particles must be constant and independent of their energy. To compensate for the relativistic increase in mass of the particles, the magnetic field must therefore increase with the radius to ensure this condition of isochronism.
  • Figure 1 illustrates the variation of the field in function of the radius in a classical isochronous cyclotron.
  • Figure 2 illustrates the variation of the field in function of the radius in an isochronous cyclotron using the extraction method according to the present invention.
  • An isochronous cyclotron as used in the method of extracting charged particles according to the present invention is shown schematically in the figures 3 and 4.
  • This cyclotron is a compact isochronous cyclotron intended for the acceleration of positive particles, and more especially protons.
  • the coils 6 are essentially shaped circular, and are located in the annular space left between sectors 3 or 3 'and flow returns 5.
  • the central duct is intended to receive at least part of the source of particles 7 to be accelerated. These particles are injected into the center of the device by means known per se.
  • the magnet For an isochronous cyclotron accelerating a beam of protons up to an energy of 11 MeV, the magnet is drawn, according to the present invention, with an air gap of 10 mm for a magnetic field of 2 teslas on the sectors magnetic 3 and 3 '.
  • the accelerating voltage is 80 kilovolts so as to obtain a radius gain of 1.5 mm at maximum radius.
  • one reduces the angle of one of the sectors at the polar radius so as to allow us to move the orbits and obtain the extraction of the whole beam on this side (see figure 4).
  • the extracted particle beam is then axially focused and radially defocused.
  • this beam profile for simultaneous irradiation of four targets located between the two coils 6 mounted side by side on the beam path.

Abstract

PCT No. PCT/BE96/00101 Sec. 371 Date Apr. 3, 1998 Sec. 102(e) Date Apr. 3, 1998 PCT Filed Sep. 25, 1996 PCT Pub. No. WO97/14279 PCT Pub. Date Apr. 17, 1997A method for extracting a charged particle beam out of an isochronous cyclotron (1) comprising an electromagnet forming a magnetic circuit that includes at least a number of sectors (3, 3') known as "hills" where the air-gap is reduced, and separated by sector-shaped spaces (4) known as "valleys" where the air-gap is larger. According to the extraction method, the particle beam is extracted without using an extraction device as the magnetic field has a special arrangement produced by designing the electromagnet air-gap at the "hills" (3, 3') of the isochronous cyclotron in such a way that the aspect ratio between the electromagnet air-gap at the "hills" in the region of the maximum radius, and the radius gain per turn of the particles accelerated by the cyclotron at said radius is less than 20.

Description

Objet de l'invention.Subject of the invention.

La présente invention se rapporte à une méthode d'extraction de particules chargées hors d'un cyclotron isochrone dans lequel le faisceau de particules est focalisé par secteurs.The present invention relates to a method for extracting charged particles from a cyclotron isochronous in which the particle beam is focused by sectors.

La présente invention se rapporte également audit cyclotron isochrone appliquant cette méthode d'extraction de particules chargées.The present invention also relates to said isochronous cyclotron applying this method of extraction of charged particles.

La présente invention se rapporte aussi bien aux cyclotrons isochrones compacts qu'aux cyclotrons focalisés par secteurs. De même, la présente invention se rapporte aux cyclotrons isochrones dits supraconducteurs ou non supraconducteurs.The present invention also relates to compact isochronous cyclotrons than focused cyclotrons by sectors. Likewise, the present invention relates to isochronous cyclotrons known as superconductive or not superconductors.

Etat de la technique.State of the art.

Les cyclotrons sont des accélérateurs de particules utilisés en particulier pour la production d'isotopes radioactifs. Ces cyclotrons se composent habituellement de deux ensembles principaux distincts, constitués d'une part par l'électro-aimant et d'autre part par le résonateur haute fréquence.Cyclotrons are particle accelerators used in particular for the production of isotopes radioactive. These cyclotrons usually consist of two separate main sets, consisting on the one hand by the electromagnet and on the other hand by the high resonator frequency.

L'électro-aimant assure le guidage des particules chargées sur une trajectoire présentant approximativement une spirale de rayon croissant autour de l'accélération. Dans les cyclotrons modernes de type isochrone, les pôles d'électroaimants sont divisés en secteurs présentant alternativement un entrefer réduit et un entrefer plus grand. La variation azimutale du champ magnétique qui en résulte a pour effet d'assurer la focalisation verticale et horizontale du faisceau au cours de l'accélération.The electromagnet guides the particles loaded on a trajectory presenting approximately a spiral of increasing radius around the acceleration. In the modern isochronous cyclotrons, the poles of electromagnets are divided into sectors alternately presenting a reduced air gap and a larger air gap. Variation azimuth of the resulting magnetic field has the effect ensure the vertical and horizontal focus of the beam during acceleration.

Parmi les cyclotrons isochrones, il convient de distinguer les cyclotrons de type compact, qui sont énergétisés par au moins une bobine circulaire principale, et les cyclotrons dits à secteurs séparés, où la structure magnétique est divisée en unités séparées entièrement autonomes.Among the isochronous cyclotrons, it is advisable to distinguish the compact type cyclotrons, which are energized by at least one main circular coil, and the so-called separate sector cyclotrons, where the structure magnetic is divided into completely separate units autonomous.

Le second ensemble est constitué par les électrodes accélératrices, appelées fréquemment "dées" pour des raisons historiques. On applique ainsi aux électrodes une tension alternative de plusieurs dizaines de kilovolts à la fréquence de rotation des particules dans l'aimant, ou alternativement à une fréquence qui est un multiple exacte de la fréquence de rotation des particules dans l'aimant. Ceci a pour effet d'accélérer les particules du faisceau tournant dans le cyclotron.The second set consists of the electrodes accelerators, frequently called "gods" for reasons historical. A voltage is thus applied to the electrodes alternative of several tens of kilovolts at the frequency of rotation of the particles in the magnet, or alternatively at a frequency which is an exact multiple of the frequency of rotation of the particles in the magnet. This has the effect to accelerate the particles of the rotating beam in the cyclotron.

Pour de nombreuses applications utilisant un cyclotron, il est nécessaire d'extraire le faisceau de particules accélérées hors du cyclotron, et de le guider jusqu'à une cible où on souhaite l'utiliser. Cette opération d'extraction du faisceau est considérée par l'homme de l'art comme l'étape la plus difficile dans la production d'un faisceau de particules accélérées au moyen d'un cyclotron. Cette opération consiste à amener le faisceau de la partie du champ magnétique où il est accéléré jusqu'à l'endroit où le champ magnétique ne parvient plus à retenir le faisceau. Dans ce cas, le faisceau est libre d'échapper à l'action du champ et est extrait hors du cyclotron.For many applications using a cyclotron, it is necessary to extract the beam from particles accelerated out of the cyclotron, and to guide it to a target where you want to use it. This operation beam extraction is considered by those skilled in the art as the most difficult step in producing a particle beam accelerated by a cyclotron. This operation consists in bringing the beam from the part from the magnetic field where it is accelerated to where the magnetic field can no longer hold the beam. In this case, the beam is free to escape the action of the field and is extracted from the cyclotron.

Dans le cas de cyclotrons accélérant des particules chargées positivement, on connaít l'utilisation d'un déflecteur électrostatique dont le rôle est de tirer les particules hors du champ magnétique comme dispositif d'extraction. Pour obtenir un tel effet, il est nécessaire d'interposer sur le chemin des particules une électrode appelée le septum, qui interceptera une partie de ces particules. De ce fait, le rendement d'extraction est relativement limité, et la perte en particules dans le septum contribuera notamment à rendre le cyclotron fortement radioactif.In the case of cyclotrons accelerating particles positively charged, we know the use of a electrostatic deflector whose role is to draw the particles outside the magnetic field as a device extraction. To achieve such an effect, it is necessary to interpose on the particle path an electrode called the septum, which will intercept some of these particles. Therefore, the extraction yield is relatively limited, and particle loss in the septum will notably contribute to making the cyclotron strongly radioactive.

Il est également connu d'extraire des particules chargées négativement en effectuant une conversion des ions négatifs en ions positifs en faisant passer ceux-ci à travers une feuille qui a pour fonction de dépouiller les ions négatifs de leurs électrons. Cette technique permet des rendements d'extraction proches de 100% et permet également l'utilisation d'un dispositif nettement moins complexe que celui décrit précédemment. Néanmoins, l'accélération des particules négatives présente quant à elle des difficultés importantes. Le principal inconvénient réside dans le fait que les ions négatifs sont fragiles, et sont de ce fait facilement dissociés par des molécules de gaz résiduelles ou par des champs magnétiques excessifs traversés à haute énergie et présents dans le cyclotron. La transmission du faisceau dans l'accélérateur est donc limitée, ce qui contribue aussi à l'activation de ce dernier.It is also known to extract particles negatively charged by converting ions negatives into positive ions by passing them through a sheet which has the function to strip the ions negatives of their electrons. This technique allows extraction yields close to 100% and also allows using a device that is significantly less complex than the one described above. However, the acceleration of negative particles presents difficulties important. The main drawback is that that the negative ions are fragile, and are therefore easily dissociated by residual gas molecules or by excessive magnetic fields crossed at high energy and present in the cyclotron. The transmission of beam in the accelerator is therefore limited, which also contributes to the activation of the latter.

A l'opposé, les cyclotrons accélérant des particules positives permettent de produire de plus hautes intensités de courant de faisceaux, et augmentent la fiabilité du système, et tout en permettant une forte réduction de la taille et du poids de la machine.In contrast, cyclotrons accelerating positive particles produce higher beam current intensities, and increase the reliability of the system, and while allowing strong reduction in size and weight of the machine.

Il est également connu par le document "The review of Scientist Instruments, 27 (1956), n° 7" et par le document "Nuclear Instruments and Methods 18, 19 (1962), pp. 41-45" de J. Reginald Richardson, une technique selon laquelle le faisceau de particules aurait pu être extrait du cyclotron sans l'utilisation d'un dispositif d'extraction. Les conditions requises pour obtenir cette auto-extraction sont des conditions particulières de résonnance du mouvement des particules dans le champ magnétique.It is also known by the document "The review of Scientist Instruments, 27 (1956), n ° 7 "and by the document "Nuclear Instruments and Methods 18, 19 (1962), pp. 41-45" by J. Reginald Richardson, a technique whereby the particle beam could have been extracted from the cyclotron without the use of an extraction device. The requirements for this self-extraction are special conditions for resonating the movement of particles in the magnetic field.

Néanmoins, cette méthode décrite est particulièrement difficile à réaliser, et aurait donné un faisceau dont les qualités optiques étaient tellement mauvaises qu'en pratique, elle n'a jamais été appliquée.However, this described method is particularly difficult to achieve, and would have given a beam whose optical qualities were so bad that in practice it has never been applied.

Le document US-A-0324379 se rapporte à un dispositif du type cyclotron destiné à accélérer des particules qui possède des moyens magnétiques étant essentiellement indépendants de l'angle azimutal. Ceci signifie qu'il s'agit d'un cyclotron non isochrone. En outre, il convient de noter que le cyclotron décrit possède des moyens d'extraction du faisceau qui sont constitués par des "regénérateurs" et des "compresseurs", qui permettent, en perturbant le champ magnétique, d'obtenir une extraction du faisceau de particules.Document US-A-0324379 relates to a cyclotron type device intended to accelerate particles which has magnetic means being essentially independent of the azimuth angle. This means that it is a non-isochronous cyclotron. In addition, it should be noted that the cyclotron described has beam extraction means which consist of "regenerators" and "compressors", which allow, in disturbing the magnetic field, to obtain an extraction of the beam of particles.

Le document WO-93/10651 au nom de la Demanderesse décrit un cyclotron isochrone compact présentant un entrefer localisé entre deux collines de forme essentiellement elliptique et tendant à se refermer complètement à l'extrémité radiale des collines sur le plan médian. Le dispositif décrit dans ce document comprend également des moyens classiques d'extraction du faisceau qui sont un déflecteur électrostatique dans le présent cas.Document WO-93/10651 in the name of the Applicant describes a compact isochronous cyclotron with an air gap located between two basically shaped hills elliptical and tending to close completely at the radial end of the hills on the median plane. The device described in this document also includes conventional means of beam extraction which are a electrostatic deflector in this case.

Buts de la présente invention.Aims of the present invention.

La présente invention vise à proposer une méthode d'extraction de particules chargées hors d'un cyclotron isochrone en évitant l'utilisation de dispositifs d'extraction tels que décrits précédemment.The present invention aims to propose a method for extracting charged particles from a cyclotron isochronous avoiding the use of devices extraction as described above.

Un but complémentaire de la présente invention vise de ce fait à proposer un cyclotron isochrone qui soit de conception plus simple et plus économique que ceux habituellement utilisés.An additional aim of the present invention is to therefore to propose an isochronous cyclotron which is of simpler and more economical design than those usually used.

La présente invention vise également à augmenter le rendement d'extraction du faisceau de particules, et en particulier dans le cas d'extraction de particules positives.The present invention also aims to increase the extraction efficiency of the particle beam, and particularly in the case of extraction of positive particles.

Principaux éléments caractéristiques de la présente invention.Main characteristic elements of this invention.

La présente invention se rapporte à une méthode d'extraction de particules chargées hors d'un cyclotron isochrone comportant un électro-aimant constituant le circuit magnétique qui inclut un certain nombre de paires de secteurs appelées "collines" où l'entrefer est réduit, séparées par des espaces en forme de secteurs appelés "vallées" où l'entrefer est de dimension plus grande; cette méthode étant caractérisée par le fait que l'on réalise un cyclotron isochrone avec un entrefer d'aimant entre les collines dont les dimensions sont choisies de sorte que la valeur minimale de cet entrefer au voisinage du rayon maximal entre les collines soit inférieure à vingt fois le gain en rayon par tour des particules accélérées par le cyclotron à ce rayon.The present invention relates to a method for extracting charged particles from a cyclotron isochronous comprising an electromagnet constituting the circuit magnetic which includes a number of pairs of sectors called "hills" where the air gap is reduced, separated by spaces in the form of sectors called "valleys" where the air gap is larger; this method being characterized by the fact that a cyclotron is produced isochronous with a magnet gap between the hills including the dimensions are chosen so that the minimum value of this air gap in the vicinity of the maximum radius between the hills be less than twenty times the gain in radius by round of particles accelerated by the cyclotron at this radius.

Selon cette configuration particulière, on observera que les ions peuvent être extraits de l'influence du champ magnétique sans l'aide d'aucun dispositif d'extraction.According to this particular configuration, we will observe that the ions can be extracted from the influence of the magnetic field without the help of any device extraction.

Il convient de noter que pour des cyclotrons isochrones de l'état de l'art, l'entrefer ce l'aimant est en général compris entre 5 et 20 cm, alors que le gain en rayon par tour est d'environ 1 mm. Dans ce cas, le rapport de l'entrefer au gain en rayon par tour est supérieur à 50.It should be noted that for cyclotrons isochronous of the state of the art, the air gap that the magnet is in generally between 5 and 20 cm, while the gain in radius per revolution is approximately 1 mm. In this case, the report of the air gap in radius gain per turn is greater than 50.

On observe qu'en appliquant la caractéristique principale de la présente invention, le champ magnétique diminue de façon très brutale au voisinage de la limite du pôle de l'aimant, de telle sorte que le point d'auto-extraction est atteint avant que le déphasage des particules par rapport à la tension accélératrice n'atteigne 90 degrés. De cette manière, les particules sortent automatiquement du champ magnétique sans intervention d'aucun dispositif d'extraction.We observe that by applying the characteristic principal of the present invention, the magnetic field decreases very abruptly near the limit of the magnet pole, so that the point of self-extraction is reached before the phase shift of the particles relative to the accelerating voltage does not reach 90 degrees. In this way, the particles automatically exit the magnetic field without intervention of any device extraction.

Selon une forme d'exécution particulièrement préférée de la présente invention, on peut envisager de dessiner un entrefer présentant un profil elliptique qui a tendance à se refermer à l'extrémité radiale des collines, tel que décrit dans le brevet W093/10651.According to a particular embodiment preferred of the present invention, one can consider draw an air gap with an elliptical profile which has tendency to close at the radial end of the hills, as described in patent W093 / 10651.

Selon une forme d'exécution préférée de la présente invention, l'extraction des particules est concentrée sur un secteur grâce à une dissymétrie apportée délibérément à la forme ou au champ magnétique dudit secteur.According to a preferred embodiment of this invention, the extraction of particles is concentrated on a sector thanks to a dissymmetry deliberately brought to the shape or magnetic field of said sector.

Selon une autre forme d'exécution préférée de la présente invention, on réduit l'angle de l'un des secteurs au niveau du rayon polaire pour permettre de déplacer les orbites et d'obtenir ainsi l'extraction de tout le faisceau de ce côté, de manière, par exemple, à pouvoir irradier une cible de large volume.According to another preferred embodiment of the present invention, the angle of one of the sectors is reduced at the polar radius to allow movement of the orbits and thus get the extraction of the whole beam on this side, so, for example, to be able to irradiate a large volume target.

Selon une autre forme d'exécution préférée de la présente invention, on réalise une distribution particulière du faisceau de particules de manière à irradier simultanément plusieurs cibles montées côte à côte sur la trajectoire du faisceau.According to another preferred embodiment of the present invention, a particular distribution is carried out of the particle beam so as to simultaneously irradiate several targets mounted side by side on the trajectory of the beam.

La présente invention permet avantageusement d'être utilisée pour la protonthérapie ou la production de radio-isotopes, et plus particulièrement de radio-isotopes destinés à la tomographie par émission de positrons (TEP).The present invention advantageously makes it possible to be used for proton therapy or the production of radioisotopes, and more particularly of radioisotopes intended to positron emission tomography (PET).

Brève description des figures.Brief description of the figures.

Les figures 1 et 2Figures 1 and 2
représentent les profils magnétiques d'un cyclotron isochrone selon l'état de la technique et d'un cyclotron isochrone utilisant la méthode d'extraction selon la présente invention.represent the magnetic profiles of a isochronous cyclotron according to the state of the technique and an isochronous cyclotron using the extraction method according to the present invention.
La figure 3Figure 3
représente de manière schématique une vue éclatée des principaux éléments constituant un cyclotron isochrone.schematically represents a view burst of the main elements constituting a isochronous cyclotron.
La figure 4Figure 4
représente une vue en coupe d'un cyclotron isochrone.represents a section view of a cyclotron isochronous.
Description d'une forme d'exécution préférée de l'invention.Description of a preferred embodiment of the invention.

Le profil du champ magnétique dans un cyclotron isochrone est tel que la fréquence de rotation des particules doit être constante et indépendante de leur énergie. Pour compenser l'augmentation de masse relativiste des particules, le champ magnétique doit donc augmenter avec le rayon pour assurer cette condition d'isochronisme. Pour décrire cette relation, on définit l'indice de champ par la relation suivante : n = dB B · R dR dans laquelle dB/B et dR/R sont respectivement les variations relatives du champ magnétique et du rayon au rayon R.The profile of the magnetic field in an isochronous cyclotron is such that the frequency of rotation of the particles must be constant and independent of their energy. To compensate for the relativistic increase in mass of the particles, the magnetic field must therefore increase with the radius to ensure this condition of isochronism. To describe this relation, the field index is defined by the following relation: not = dB B · R dR in which dB / B and dR / R are respectively the relative variations of the magnetic field and the radius to the radius R.

Il convient de noter qu'il est impossible de maintenir la condition d'isochronisme au voisinage du rayon maximal du pôle. En effet, à ce moment, le champ cesse d'augmenter avec le rayon. Il a atteint un maximum et commence ensuite à décroítre de plus en plus rapidement.It should be noted that it is impossible to maintain the isochronism condition near the radius maximum of the pole. Indeed, at this moment, the field stops increase with the radius. It has reached a maximum and then begins to decrease more and more quickly.

La figure 1 illustre la variation du champ en fonction du rayon dans un cyclotron isochrone classique. Un déphasage croissant s'installe entre la fréquence de rotation des particules et la fréquence de résonnance des électrodes accélératrices. Lorsque ce déphasage atteint 90 degrés, les particules cessent d'être accélérées et elles ne peuvent dépasser ce rayon.Figure 1 illustrates the variation of the field in function of the radius in a classical isochronous cyclotron. A increasing phase shift between the frequency of rotation of particles and the resonant frequency of the electrodes accelerators. When this phase shift reaches 90 degrees, the particles stop being accelerated and they cannot exceed this radius.

La figure 2 illustre la variation du champ en fonction du rayon dans un cyclotron isochrone utilisant la méthode d'extraction selon la présente invention. En choisissant de manière précise les dimensions de l'entrefer de l'aimant entre les collines, de telle sorte qu'il soit réduit à une valeur de moins de vingt fois le gain en rayon par tour, on observe un profil du champ magnétique tel que représenté à la figure 2.Figure 2 illustrates the variation of the field in function of the radius in an isochronous cyclotron using the extraction method according to the present invention. In choosing precisely the dimensions of the air gap of the magnet between the hills, so that it is reduces the shelf gain to less than twenty times per turn, we observe a profile of the magnetic field such that shown in figure 2.

Dans ce cas, le champ magnétique diminue de façon très brutale au voisinage de la limite du pôle de l'aimant, de telle manière que le point d'auto-extraction défini par l'indice de champ n = -1 est atteint avant que le déphasage des particules par rapport à la tension accélératrice n'atteigne 90 degrés.In this case, the magnetic field decreases so very brutal near the limit of the magnet pole, in such a way that the self-extraction point defined by the field index n = -1 is reached before the phase shift particles with respect to the accelerating voltage does not reach 90 degrees.

A partir de ce moment, les particules sortent automatiquement du champ magnétique sans intervention d'aucun dispositif extracteur.From this moment, the particles come out automatically from the magnetic field without any intervention extractor device.

Un cyclotron isochrone tel qu'il est utilisé dans la méthode d'extraction de particules chargées selon la présente invention est représenté schématiquement aux figures 3 et 4. Ce cyclotron est un cyclotron isochrone compact destiné à l'accélération de particules positives, et plus particulièrement des protons.An isochronous cyclotron as used in the method of extracting charged particles according to the present invention is shown schematically in the figures 3 and 4. This cyclotron is a compact isochronous cyclotron intended for the acceleration of positive particles, and more especially protons.

La structure magnétique 1 du cyclotron se compose d'un certain nombre d'éléments 2, 3, 4 et 5 réalisés en un matériau ferro-magnétique et de bobines 6 réalisées de préférence en un matériau conducteur ou supra-conducteur. La structure ferro-magnétique comporte de manière classique :

  • deux plaques de base appelées culasses 2 et 2',
  • au moins trois secteurs 3 supérieurs appelés collines et un même nombre de secteurs inférieurs 3' situés symétriquement par rapport à un plan de symétrie 10 dit plan médian aux secteurs supérieurs 3, et qui sont séparés par un faible entrefer 8,
  • entre deux collines consécutives, il existe un espace où l'entrefer est de dimension plus élevée et est qui appelé vallée 4,
  • au moins un retour de flux 5 réunissant de façon rigide la culasse inférieure 2 à la culasse supérieure 2',
The magnetic structure 1 of the cyclotron consists of a number of elements 2, 3, 4 and 5 made of a ferro-magnetic material and of coils 6 preferably made of a conductive or superconductive material. The ferro-magnetic structure conventionally comprises:
  • two base plates called cylinder heads 2 and 2 ',
  • at least three upper sectors 3 called hills and the same number of lower sectors 3 'situated symmetrically with respect to a plane of symmetry 10 said median plane to the upper sectors 3, and which are separated by a small air gap 8,
  • between two consecutive hills, there is a space where the air gap is of higher dimension and which is called valley 4,
  • at least one flow return 5 rigidly joining the lower cylinder head 2 to the upper cylinder head 2 ',

Les bobines 6 sont de forme essentiellement circulaire, et sont localisées dans l'espace annulaire laissé entre les secteurs 3 ou 3'et les retours de flux 5.The coils 6 are essentially shaped circular, and are located in the annular space left between sectors 3 or 3 'and flow returns 5.

Le conduit central est destiné à recevoir au moins une partie de la source de particules 7 à accélérer. Ces particules sont injectées au centre de l'appareil par des moyens connus en soi. The central duct is intended to receive at least part of the source of particles 7 to be accelerated. These particles are injected into the center of the device by means known per se.

Pour un cyclotron isochrone accélérant un faisceau de protons jusqu'à une énergie de 11 MeV, l'aimant est dessiné, selon la présente invention, avec un entrefer de 10 mm pour un champ magnétique de 2 teslas sur les secteurs magnétiques 3 et 3'. La tension accélératrice est de 80 kilovolts de manière à obtenir un gain en rayon de 1,5 mm au rayon maximal.For an isochronous cyclotron accelerating a beam of protons up to an energy of 11 MeV, the magnet is drawn, according to the present invention, with an air gap of 10 mm for a magnetic field of 2 teslas on the sectors magnetic 3 and 3 '. The accelerating voltage is 80 kilovolts so as to obtain a radius gain of 1.5 mm at maximum radius.

Ce choix inusuel des paramètres permet qu'à l'extrémité radiale des collines, on observe une décroissante extrêmement rapide de l'induction extérieure qui permet d'auto-extraire le faisceau de particules avant la limite d'accélération, ce qui est plus particulièrement représenté à la figure 2.This unusual choice of parameters allows that the radial end of the hills, we observe a decreasing extremely fast external induction which allows to self-extract the particle beam before the limit of acceleration, which is more particularly represented in Figure 2.

Selon une première forme d'exécution préférée, on réduit l'angle d'un des secteurs au niveau du rayon polaire de manière à permettre de déplacer les orbites et d'obtenir l'extraction de tout le faisceau de ce côté (voir figure 4).According to a first preferred embodiment, one reduces the angle of one of the sectors at the polar radius so as to allow us to move the orbits and obtain the extraction of the whole beam on this side (see figure 4).

Le faisceau de particules extrait est alors axialement focalisé et radialement défocalisé.The extracted particle beam is then axially focused and radially defocused.

Selon une autre forme d'exécution préférée, on utilise ce profil de faisceau pour l'irradiation simultanée de quatre cibles localisées entre les deux bobines 6 montées côte à côte sur la trajectoire du faisceau.According to another preferred embodiment, use this beam profile for simultaneous irradiation of four targets located between the two coils 6 mounted side by side on the beam path.

Claims (7)

  1. Method of extracting a beam of charged particles from an isochronous cyclotron (1) having an electromagnet constituting the magnetic circuit which includes at least a certain number of sectors (3, 3'), referred to as "hills", where the air gap is reduced, these being separated by spaces in the form of sectors (4), referred to as "valleys", where the air gap is of larger size, the extraction method being characterized in that the particle beam is extracted by a particular arrangement of the magnetic field, without resorting to an extraction device, this arrangement being obtained by designing the air gap of the magnet at the hills (3, 3') of the isochronous cyclotron in such a way that the ratio of the dimension of the air gap of the magnet at the hills in the vicinity of the maximum radius to the gain in radius per circuit of the particles accelerated by the cyclotron at this radius is less than 20.
  2. Isochronous cyclotron in which a particle beam is focused by sectors and which has an electromagnet constituting a magnetic circuit which includes at least a certain number of sectors (3, 3'), referred to as "hills", where an air gap is reduced, these being separated by spaces in the form of sectors (4), referred to as "valleys", where an air gap is of larger size, characterized in that the air gap of the magnet at the hills (3, 3') is designed in such a way that the ratio of the dimension of the air gap of the magnet at the hills in the vicinity of the maximum radius to the gain in radius per circuit of the particles accelerated by the cyclotron at this radius is less than 20.
  3. Isochronous cyclotron according to Claim 2, characterized in that the profile of the air gap of the magnet at the hills is an elliptical profile tending to close on itself at the radial end of the hills.
  4. Cyclotron according to Claim 2 or 3, characterized in that at least one sector has a shape or a magnetic field that is asymmetric with respect to the other sectors.
  5. Cyclotron according to any one of Claims 2 to 4, characterized in that the angle of one of the sectors is reduced at the pole radius.
  6. Cyclotron according to any one of Claims 2 to 4, characterized in that a particular distribution of the particle beam is produced so as simultaneously to irradiate a plurality of targets mounted side by side on the path of the beam.
  7. Use of the particle extraction method according to Claim 1 or of the device according to any one of Claims 2 to 6 for proton therapy or for the production of radioisotopes, and in particular for the production of radioisotopes which are intended for positron emission tomography.
EP96931694A 1995-10-06 1996-09-25 Method for sweeping charged particles out of an isochronous cyclotron, and device therefor Expired - Lifetime EP0853867B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
BE9500832A BE1009669A3 (en) 1995-10-06 1995-10-06 Method of extraction out of a charged particle isochronous cyclotron and device applying this method.
BE9500832 1995-10-06
PCT/BE1996/000101 WO1997014279A1 (en) 1995-10-06 1996-09-25 Method for sweeping charged particles out of an isochronous cyclotron, and device therefor

Publications (2)

Publication Number Publication Date
EP0853867A1 EP0853867A1 (en) 1998-07-22
EP0853867B1 true EP0853867B1 (en) 1999-07-28

Family

ID=3889224

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96931694A Expired - Lifetime EP0853867B1 (en) 1995-10-06 1996-09-25 Method for sweeping charged particles out of an isochronous cyclotron, and device therefor

Country Status (9)

Country Link
US (1) US6057655A (en)
EP (1) EP0853867B1 (en)
JP (1) JP4008030B2 (en)
AT (1) ATE182739T1 (en)
BE (1) BE1009669A3 (en)
DE (1) DE69603497T2 (en)
ES (1) ES2135918T3 (en)
GR (1) GR3031392T3 (en)
WO (1) WO1997014279A1 (en)

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE513190C2 (en) * 1998-09-29 2000-07-24 Gems Pet Systems Ab Method and system for minimizing magnetic size in a cyclotron
EP1069809A1 (en) * 1999-07-13 2001-01-17 Ion Beam Applications S.A. Isochronous cyclotron and method of extraction of charged particles from such cyclotron
EP1385362A1 (en) * 2002-07-22 2004-01-28 Ion Beam Applications S.A. Cyclotron provided with new particle beam sweeping means
CN101006541B (en) * 2003-06-02 2010-07-07 福克斯·彻斯癌症中心 High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers
JP5046928B2 (en) * 2004-07-21 2012-10-10 メヴィオン・メディカル・システムズ・インコーポレーテッド Synchrocyclotron and method for generating particle beams
US9077022B2 (en) * 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
WO2007061937A2 (en) 2005-11-18 2007-05-31 Still River Systems Inc. Charged particle radiation therapy
JP2009524201A (en) * 2006-01-19 2009-06-25 マサチューセッツ・インスティテュート・オブ・テクノロジー High-field superconducting synchrocyclotron
US7656258B1 (en) 2006-01-19 2010-02-02 Massachusetts Institute Of Technology Magnet structure for particle acceleration
FR2897398A1 (en) * 2006-02-14 2007-08-17 Claude Poher DEVICE THROUGH ACCELERATION OF PARTICLES AND APPLICATIONS OF SAID DEVICE
US8003964B2 (en) 2007-10-11 2011-08-23 Still River Systems Incorporated Applying a particle beam to a patient
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
CN102119585B (en) 2008-05-22 2016-02-03 弗拉迪米尔·叶戈罗维奇·巴拉金 The method and apparatus of charged particle cancer therapy patient location
US8378321B2 (en) * 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US8896239B2 (en) 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US8519365B2 (en) 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US8373143B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
EP2283711B1 (en) * 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Charged particle beam acceleration apparatus as part of a charged particle cancer therapy system
US8288742B2 (en) * 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
WO2009142550A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US8373146B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8487278B2 (en) * 2008-05-22 2013-07-16 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8178859B2 (en) * 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
AU2009249863B2 (en) 2008-05-22 2013-12-12 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US8598543B2 (en) * 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US8129694B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8144832B2 (en) * 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
EP2283713B1 (en) * 2008-05-22 2018-03-28 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy apparatus
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
WO2009142544A2 (en) * 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle cancer therapy beam path control method and apparatus
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US8198607B2 (en) * 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8436327B2 (en) * 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
EP2129193A1 (en) 2008-05-30 2009-12-02 Ion Beam Applications S.A. A stripping member, a stripping assembly and a method for extracting a particle beam from a cyclotron
EP2134145A1 (en) * 2008-06-09 2009-12-16 Ion Beam Applications S.A. A twin internal ion source for particle beam production with a cyclotron
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8627822B2 (en) * 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8229072B2 (en) * 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
AU2009341615B2 (en) 2009-03-04 2013-03-28 Zakrytoe Aktsionernoe Obshchestvo Protom Multi-field charged particle cancer therapy method and apparatus
US8153997B2 (en) 2009-05-05 2012-04-10 General Electric Company Isotope production system and cyclotron
US8106570B2 (en) 2009-05-05 2012-01-31 General Electric Company Isotope production system and cyclotron having reduced magnetic stray fields
US8106370B2 (en) * 2009-05-05 2012-01-31 General Electric Company Isotope production system and cyclotron having a magnet yoke with a pump acceptance cavity
US8374306B2 (en) 2009-06-26 2013-02-12 General Electric Company Isotope production system with separated shielding
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US9693443B2 (en) 2010-04-19 2017-06-27 General Electric Company Self-shielding target for isotope production systems
BE1019411A4 (en) 2010-07-09 2012-07-03 Ion Beam Applic Sa MEANS FOR MODIFYING THE MAGNETIC FIELD PROFILE IN A CYCLOTRON.
US8653762B2 (en) 2010-12-23 2014-02-18 General Electric Company Particle accelerators having electromechanical motors and methods of operating and manufacturing the same
JP5665721B2 (en) * 2011-02-28 2015-02-04 三菱電機株式会社 Circular accelerator and operation method of circular accelerator
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US9336915B2 (en) 2011-06-17 2016-05-10 General Electric Company Target apparatus and isotope production systems and methods using the same
US8558485B2 (en) 2011-07-07 2013-10-15 Ionetix Corporation Compact, cold, superconducting isochronous cyclotron
CN102624286A (en) * 2012-03-27 2012-08-01 上海耀江幕墙工程有限公司 Solar generating system used for building and adopting micro inverters
US9894746B2 (en) 2012-03-30 2018-02-13 General Electric Company Target windows for isotope systems
CN105103662B (en) 2012-09-28 2018-04-13 梅维昂医疗系统股份有限公司 magnetic field regenerator
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
WO2014052719A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
JP6121546B2 (en) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド Control system for particle accelerator
WO2014052718A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Focusing a particle beam
WO2014052708A2 (en) 2012-09-28 2014-04-03 Mevion Medical Systems, Inc. Magnetic shims to alter magnetic fields
JP6367201B2 (en) 2012-09-28 2018-08-01 メビオン・メディカル・システムズ・インコーポレーテッド Control of particle beam intensity
TWI604868B (en) 2012-09-28 2017-11-11 美威高能離子醫療系統公司 Particle accelerator and proton therapy system
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
WO2015048468A1 (en) 2013-09-27 2015-04-02 Mevion Medical Systems, Inc. Particle beam scanning
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
DE102014003536A1 (en) * 2014-03-13 2015-09-17 Forschungszentrum Jülich GmbH Fachbereich Patente Superconducting magnetic field stabilizer
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9961756B2 (en) 2014-10-07 2018-05-01 General Electric Company Isotope production target chamber including a cavity formed from a single sheet of metal foil
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
JP7059245B2 (en) 2016-07-08 2022-04-25 メビオン・メディカル・システムズ・インコーポレーテッド Decide on a treatment plan
CN106163073B (en) * 2016-07-29 2018-11-30 中国原子能科学研究院 A kind of line outbound course of middle energy superconduction bevatron
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
JP7311620B2 (en) 2019-03-08 2023-07-19 メビオン・メディカル・システムズ・インコーポレーテッド Collimators and energy degraders for particle therapy systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL112025C (en) * 1959-01-23
US3175131A (en) * 1961-02-08 1965-03-23 Richard J Burleigh Magnet construction for a variable energy cyclotron
FR2139671B1 (en) * 1971-05-28 1974-03-22 Thomson Csf
LU85895A1 (en) * 1985-05-10 1986-12-05 Univ Louvain CYCLOTRON
BE1005530A4 (en) * 1991-11-22 1993-09-28 Ion Beam Applic Sa Cyclotron isochronous
US5463291A (en) * 1993-12-23 1995-10-31 Carroll; Lewis Cyclotron and associated magnet coil and coil fabricating process

Also Published As

Publication number Publication date
DE69603497T2 (en) 2000-02-03
GR3031392T3 (en) 2000-01-31
ATE182739T1 (en) 1999-08-15
JP4008030B2 (en) 2007-11-14
EP0853867A1 (en) 1998-07-22
BE1009669A3 (en) 1997-06-03
DE69603497D1 (en) 1999-09-02
WO1997014279A1 (en) 1997-04-17
ES2135918T3 (en) 1999-11-01
US6057655A (en) 2000-05-02
JPH11513528A (en) 1999-11-16

Similar Documents

Publication Publication Date Title
EP0853867B1 (en) Method for sweeping charged particles out of an isochronous cyclotron, and device therefor
EP0613607B1 (en) Compact isochronic cyclotron
EP1566082B1 (en) Cyclotron
FR2472292A1 (en) FREE ELECTRON LASER USING A CATALYTIC LINEAR ACCELERATOR
EP0013242B1 (en) Generator for very high frequency electromagnetic waves
EP1385362A1 (en) Cyclotron provided with new particle beam sweeping means
FR2531570A1 (en) NEGATIVE ION SOURCE AND METHOD USING THE SOURCE TO REDUCE ELECTRONS NOT DESIRED OF AN OUTPUT FLOW
EP0248689A1 (en) Multiple-beam klystron
WO2012055958A1 (en) Synchrocyclotron
EP0410880A1 (en) Free electron laser with improved electron accelerator
FR2899426A1 (en) Low power x-ray generator for realizing non-invasive examination of object, has voltage multipliers arranged in shadow zones created by anode and cathode of bipolar x-ray tube and located behind respective inputs of cathode and anode
EP0499514B1 (en) Mode converter and power-dividing device for a microwave tube, and microwave tube with such a device
EP2633741B1 (en) Synchrocyclotron
EP0336850B1 (en) Linear accelerator with self-focalising cavities, with high electron capture rate at low injection voltages
BE1003551A3 (en) CYCLOTRONS FOCUSED BY SECTORS.
EP2311061B1 (en) Electron cyclotron resonance ion generator
FR2651406A1 (en) FREE ELECTRON LASER.
EP0238375A1 (en) Apparatus and method for the production of a braking radiation from accelerated electrons
WO2023170116A1 (en) Cyclotron having separate bi-sectors
FR2680940A1 (en) ELECTROSTATIC ACCELERATOR AND FREE ELECTRON LASER USING THE ACCELERATOR.
FR2699325A1 (en) Elimination of instability in a cross-field amplifier using a field emitter.
FR2598850A1 (en) AXIAL FLOW PLASMA SHUTTER
FR2526582A1 (en) METHOD AND APPARATUS FOR PRODUCING MICROWAVE
Ramos et al. The trapped-particle instability in the Boeing 1kW FEL oscillator
Dubrovin et al. Lasertron performance simulation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971229

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981103

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 182739

Country of ref document: AT

Date of ref document: 19990815

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABREMA AGENCE BREVETS ET MARQUES GANGUILLET & HUMP

REF Corresponds to:

Ref document number: 69603497

Country of ref document: DE

Date of ref document: 19990902

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2135918

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991028

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19991028

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20100823

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20100826

Year of fee payment: 15

Ref country code: FI

Payment date: 20100823

Year of fee payment: 15

Ref country code: AT

Payment date: 20100823

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20100823

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20100906

Year of fee payment: 15

Ref country code: DK

Payment date: 20100824

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20110826

Year of fee payment: 16

Ref country code: CH

Payment date: 20110829

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110830

Year of fee payment: 16

Ref country code: SE

Payment date: 20110824

Year of fee payment: 16

Ref country code: DE

Payment date: 20110902

Year of fee payment: 16

Ref country code: ES

Payment date: 20110913

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110824

Year of fee payment: 16

Ref country code: IT

Payment date: 20110826

Year of fee payment: 16

Ref country code: NL

Payment date: 20110826

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20111007

Year of fee payment: 16

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20120326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 990402483

Country of ref document: GR

Effective date: 20120403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110925

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 182739

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110925

BERE Be: lapsed

Owner name: S.A. *ION BEAM APPLICATIONS

Effective date: 20120930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120926

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110925

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130403

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120925

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120925

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120925

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69603497

Country of ref document: DE

Effective date: 20130403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120926