EP0795001A4 - Detergent composition containing combination of nonionic polysaccharide ether with synthetic oxyalkylene-containing soil release agent - Google Patents

Detergent composition containing combination of nonionic polysaccharide ether with synthetic oxyalkylene-containing soil release agent

Info

Publication number
EP0795001A4
EP0795001A4 EP19950942510 EP95942510A EP0795001A4 EP 0795001 A4 EP0795001 A4 EP 0795001A4 EP 19950942510 EP19950942510 EP 19950942510 EP 95942510 A EP95942510 A EP 95942510A EP 0795001 A4 EP0795001 A4 EP 0795001A4
Authority
EP
Grant status
Application
Patent type
Prior art keywords
detergent composition
soil release
composition according
release agent
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19950942510
Other languages
German (de)
French (fr)
Other versions
EP0795001A1 (en )
Inventor
Gerard Marcel Baillely
Nour-Eddine Guedira
Robin Gibson Hall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3715Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0036Soil deposition preventing compositions; Antiredeposition agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL AND VEGETABLE OILS, FATS, FATTY SUBSTANCES AND WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid, cyclodextrin
    • C11D3/225Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid, cyclodextrin etherified, e.g. CMC

Abstract

The present invention relates to detergent compositions comprising the combination of nonionic polysaccharide ethers having an average degree of polymerisation of 100 or more with a synthetic soil release agent having a molecular weight of less than 10000. Said combination provides improved soil release performance and clay soil removal and antiredeposition performance.

Description

DETERGENT COMPOSITION CONTAINING COMBINATION OF

NONIONIC POLYSACCHARIDE ETHER WITH SYNTHETIC

OXYALKYLENE-CONTAINING SOIL RELEASE AGENT

Technical Field of the Invention

The present invention relates to detergent compositions comprising soil release agents in combination with nonionic polysacchande ethers.

Background to the Invention

During the laundering operation of fabrics it is highly desirable to provide the fabric, particularly man-made fabrics produced from synthetic fibres, with soil release properties-

Due to the hydrophobic nature of fabrics composed of partially or completely synthetic fibres, the removal of greasy soils and stains therefrom is particularly difficult. In order to address this problem, soil release polymers may be incoφorated into the detergent composition. During laundering the soil release agents are adsorbed onto the surface of the fabric, thereby inducing greater hydrophobicity to the fabric surface. Once the fabric is treated with a soil release agent, the ease of removal of greasy soil and stains from the surface of the fabric is considerably improved.

The main types of soil release agents incoφorated into detergent compositions, which provide benefits to primarily hydrophobic synthetic fabrics include synthetic soil release agents, preferably terephthalate based and polysacchande ethers. Polymeric soil release agents are described in the art, for example US 4 795 584 and EPO- 253 567 disclose soil release polymers comprising ethyleneoxy terephthalate and polyethyleneoxy terephthalate units having a molecular weight of 900 to 9000.

Polysaccharide ethers such as cellulose ethers have been, described for example in EPO 054 325 which discloses a detergent composition having reduced soil redeposition effects comprising carboxy methyl cellulose, a linear poly carboxy late and a cellulose ether having a degree of substitution (ds) of at least 0.5 and a degree of polymerisation (dp) of less than 300. GB 1 534 641 discloses nonionic surfactant detergent compositions comprising cellulose ether soil release agents such as alkyl and hydroxyalkyl cellulose ethers. US 4 441 881 discloses detergent compositions comprising modified cellulose ethers such as alkyl and hydroxyalkyl cellulose ethers having a molecular weight of 19000 to 185000 and a degree of substitution up to 3.

The soil release performance of the polysaccharide ethers may be substantially improved upon greasy/oily stains by increasing the amount of ether used or by increasing the molecular weight or degree of polymerisation of the ether. However, such higher molecular weight polysaccharide ethers are known to have detrimental effects on the clay soil removal and anti-redeposition performance of the detergent composition in which they are incoφorated. This is particularly evident on fabrics after a number of repeated washing cycles or when high dosage or concentrations of detergent composition are utilised to clean heavily soiled fabrics. This problem is also acute on fabrics which contain a high percentage of synthetic fibres. Synthetic soil release agents, particularly those soil release agents having a significantly lower molecular weight than the polysaccharide ethers have been used to address this problem. The clay soil removal performance of the detergent composition is not as detrimentally affected by the use of synthetic soil release agents in comparison with compositions comprising poylsaccharide ether. Thus, synthetic soil release agents tend to be preferred. In particular those having a low molecular weight are preferred for solubility requirements and ease of manufacture.

Thus, it is an aim of the present invention to provide a detergent composition providing increased soil removal performance without negatively affecting the particulate/clay soil removal performance.

It has now been determined that this aim can be achieved by the use of the combination of a synthetic soil release agent having a molecular weight of less than 10000 with a nonionic polysaccharide ether having an average degree of polymerisation of 100 or more.

An additional advantage of the present invention is that this combination of synthetic soil release agent and polysaccharide ether provides improved overall cleaning performance, particularly on greasy food soils, mechanical oil stains and clay.

A further advantage of the present invention is that the improved cleaning performance, especially of clay soil is achieved on a broad range of fabric types, such as synthetics for example polyester and additionally on natural/synthetic blend fabrics such as poly cottons.

Synthetic soil release agents and polysaccharide ethers have been described for example in US 4 740 326 which discloses a laundry product comprising a substrate material coated with a soil release polymer for example dryer added sheets. The soil release polymers are selected from i) alkyl or hydroxyalkyl cellulose ethers having a molar degree of substitution (ds) of from 1.5 to 2.7 and average molecular weight of from 2000 to 100000 or ii) various ethylene terephthalate and polyethylene oxide terephthalate polymers having an average molecular weight of from 1000 to 100000 and mixtures of i) and ii).

US 4 770 666 discloses laundry detergent compositions comprising peroxyacid bleach and soil release polymers. The soil release polymers are selected from i) alkyl or hydroxyalkyl cellulose ethers having a ds of 1.5 to 2.7 and an average molar weight of 2000 to 100000 and ii) various ethylene terephthalate and polyethylene oxide terephthalate polymers having an average molecular weight of from 1000 to 100000 and mixtures of i) and ii). However, the art does not suggest the synergic effect of the combination of synthetic soil release agents with polysaccharide ethers.

Summary of the Invention

The present invention relates to a detergent composition comprising the combination of a nonionic polysaccharide ether having a degree of polymerisation of 100 or more with a soil release agent comprising at least one oxyalkylene unit and having a molecular weight of less than 10000.

All weights, ratios and percentages are given as a % weight of the total composition unless otherwise stated.

Detailed Description of the Invention

The present invention is a detergent composition comprising the combination of a nonionic polysaccharide ether with a soil release agent comprising at least one oxyalkylene unit.

Soil Release Agent

Thus, an essential ingredient of the present invention is a soil release agent. Any polymeric soil release agent known to those skilled in the art are employed in the compositions and processes of this invention. Polymeric soil release agents are characterised in that they impart hydrophilicity to the surface of hydrophobic fibres, such as polyester and nylon, and hydrophobic segments, to facilitate the attraction of the soil release agent to the synthetic fibres.

The soil release agents useful herein especially include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of at least one oxyalkylene unit, preferably having a degree of polymerisation of at least 2, more preferably 2 to 10. Preferably the soil release agent further comprises at least one terephthalate or substituted terephthalate unit, preferably the soil release agent further comprises a polyester backbone comprising at least one terephthalate unit and at least one sulphoisophthalate unit and at least one end capping unit.

The following structure is illustrative, but by no means limiting, of preferred structures of ester soil release agents of the invention:

Also encompassed are certain stabilisers which reduce the crystallization problems encountered during manufacture and storage of the soil release agents as well as when introduced to the wash liquor. The stabilisers are especially useful in compositions with high ratios of oxyethyleneoxy to oxy-l,2-oxypropylene in the "backbone" structure of the agent.

The esters herein can be simply characterised as soil release agents which comprise a substantially linear ester "backbone" and end- capping units which are derived from sulfonated monohydroxy polyethoxy/propoxy monomers, especially 2-(2- hydroxyethoxy)ethanesulfonate. Proper selection of the structural units which comprise the ester backbone and use of sufficient amounts of the charged end-capping units results in the desired soil-release properties of these materials. The integration of stabilisers into the agent reduces the crystallization of the agent during manufacture and when introduced into the wash liquor, thereby enhancing the dissolution/dispersion and the soil release performance.

Oligomeric Esters - It is to be understood that the compositions herein are not resinous, high molecular weight, macromolecular or fibre-forming polyesters but, instead are relatively low molecular weight and contain species more appropriately described as oligomers rather than as polymers. Individual ester molecules herein, including the end-capping units, can have molecular weights ranging from 500 to about 8,000. Relevant for puφoses of comparison with glycol- terephthalate fibrous polyesters (typically averaging 15,000 or more in molecular weight) is the molecular weight range from about 500 to about 5,000, within which molecules of the preferred esters of the invention which incoφorate the essential units and 5-sulfoisophthalate are generally found.

Molecular Geometry - The soil release agents employed herein are all "substantially linear" in the sense that they are not significantly branched or crosslinked by virtue of the incoφoration into their structure of units having more than two ester-bond forming sites. A typical example of polyester branching or crosslinking of this type is exemplified in Sinker et al, U.S. Patent 4,554,328, issued November 19, 1985.) Furthermore, no cyclic esters are essential for the puφoses of the invention but may be present in the compositions of the invention at low levels as a result of side-reactions during ester synthesis. Preferably, cyclic esters will not exceed about 2% by weight of the compositions; most preferably, they will be entirely absent from the compositions.

Contrasting with the above, the term "substantially linear" as applied to the esters herein does, however, expressly encompass materials which contain side-chains which are unreactive in ester- forming or transesterification reactions. Thus, oxy-l,2-propyleneoxy units are of an unsymmetrically substituted type; their methyl groups do not constitute what is conventionally regarded as "branching" in polymer technology (see Odian, Principles of Polymerisation, Wiley, N.Y., 1981, pages 18-19, with which the present definitions are fully consistent) and are unreactive in ester-forming reactions. Optional units in the esters of the invention can likewise have side-chains, provided that they conform with the same nonreactivity criterion.

Molecular Structures - The following structures are illustrative of structures of ester molecules falling within the foregoing preferred embodiments, and demonstrate how the units are connected:

a) doubly end-capped ester unit;

b) singly end-capped ester units;

c) doubly end-capped ester unit(termed a "hybrid backbone" ester molecule herein) may be comprised of a mixture of oxyethyleneoxy and oxy-1 ,2-propyleneoxy units, in the example shown below at a 2: 1 mole ratio (on average, in ester compositions as a whole in contrast to individual molecules such as illustrated here, ratios ranging from about 1:1 to about 10:1 are the most highly preferred.

d) doubly end-capped ester units. On average, in ester compositions as a whole in contrast to individual molecules such as illustrated below, the most highly preferred ratios of oxyethyleneoxy to oxy-1 ,2- propyleneoxy units range from about 0.5:1 to 1 :0.

In addition the moelcular structures of the ester molecules may also include singly or doubly-endcapped ester molecules having alkyl branching or having polyethyleneglycol extensions.

In the context of the structures of ester molecules disclosed herein it should be recognised that the present invention encompasses not only the arrangement of units at the molecular level but also the gross mixtures of esters which result from the reaction schemes herein and which have the desired range of composition and properties. Accordingly, when the number of monomer units or ratios of units are given, the numbers refer to an average quantity of monomer units present in oligomers of the composition.

Ester Backbone - As illustrated in the structures shown above, in the esters of this invention, the backbone is formed by oxyethyleneoxy and terephthaloyl units connected in alternation. Optionally, the backbone is formed by 5-sulfoisophthaloyl units, terephthaloyl units, oxyethyleneoxy or mixtures of oxyethyleneoxy, oxypropyleneoxy and poly(oxyethyleneoxy) units connected with alternation of the aryldicarbonyl and oxyalkyleneoxy units.

Groups at the Termini of the Ester Backbone - Likewise, the "polyester backbone of the invention" is a term which encompasses doubly and singly end-capped compounds disclosed herein, mixtures thereof, and mixtures of said end-capped materials which may unavoidably contain some non-capped species. Although, levels of the latter will be zero or at a minimum in all of the highly preferred compositions. Thus, when referred to herein, it is intended to refer, by definition, collectively to the mixture of capped and uncapped ester molecules resulting from any single preparation.

Any soil release molecules which are present in compositions of the invention which are not fully, i.e., doubly, end-capped by the end- capping units must terminate with units which are not sulfonated poly- ethoxy/propoxy end-capping units. These termini will typically be hydroxyl groups or other groups attributable to the unit-forming, reactant. In other structures which may be constructed, units such as - (0)CC6H4C(0)-OCH3 may be found in terminal positions. All the most highly preferred ester molecules herein will, however, as indicated above, have two sulfonated end-capping units and no backbone units occupying terminal positions.

Symmetry - It is to be appreciated that in esters in which oxy- 1 ,2-propyleneoxy units are also present, the oxy-l,2-propyleneoxy units can have the methyl groups randomly alternating with one of the adjacent -CH2-hydrogen atoms, thereby lowering the symmetry of the ester chain. Thus, the oxy-l,2-propyleneoxy unit can be depicted as having either the -OCH2CH(CH3)0- orientation or as having the opposite -OCH(CH3)CH2θ- orientation. Carbon atoms in the oxy- 1 ,2-propy lene units to which the methyl groups are attached are, furthermore, asymmetric, i.e., chiral; they have four non-equivalent chemical entities attached.

In contrast to the oxy-l,2-propyleneoxy units, oxyethyleneoxy units cannot be used herein as a sole source of oxy-l,2-alkyleneoxy units without the addition of stabilisers since they lack the needed unsymmetrical character. It is the presence of the unsymmetrical units and/or of the stabilisers that inhibit the crystallization of the oligomer during manufacture and later when added to the wash liquor. The use of oxyethyleneoxy units or high ratios of oxyethyleneoxy to oxypropyleneoxy units, therefore, must be accompanied by the use of stabilisers to retard the formation of crystals. Accordingly, such compositions herein contain sulfonate-type hydrotropes, linear or branched alkylbenzenesulfonates, paraffin sulfonates, and mixtures thereof integrated into the oligomer composition.

Preferably, various optional units of a hydrophilicity enhancing and nonpoly ester substantive type can be incoφorated into the esters. The pattern of such incoφoration will generally be random. Preferred optional units are anionic hydrophiles, such as 5-sulfoisophthaloyl or similar units. Such units will, when incoφorated into the ester backbone, generally divide it into two or more hydrophobic moieties separated by one or more hydrophilic moieties.

It should also be noted that the essential non-charged aryldicarbonyl units herein need not exclusively be terephthaloyl units, provided that the polyester fabric-substantivity of the ester is not harmed to a significant extent. Thus, for example, minor amounts of isomeric non-charged dicarbonyl units, such as isophthaloyl or the like, are acceptable for incoφoration into the esters.

Polyfoxyethylenetoxy units - The optional poly(oxyethylene)oxy units comprising the esters of the present invention have a degree of polymerization of from 2 to 4 and can constitute from 0 to about 25 mole percent of the total oxyalkyleneoxy units present. Preferably, poly(oxyethylene)oxy units are present when the backbone unit comprises 8 or more terephthaloyl units; however, at least some poly(oxyethylene)oxy units are present in esters with as few an average 1.5 terephthaloyl units. The poly(oxyethylene)oxy units, especially in esters with 8 or more terephthaloyl units, aid in the rate of dissolution of the soil release agent into the wash liquor.

The amount of poly(oxyethylene)oxy units present in the backbone is related to its degree of polymerisation. For example, oxyethyleneoxy ethyleneoxy units (formed from diethylene glycol), which have a degree of polymerisation of two, can constitute from 0 to 25 mole percent of the total oxyalkyleneoxy units in the backbone. Oxyethyleneoxyethyleneoxyethyleneoxyethyleneoxy units (formed from tetraethylene glycol), which have a degree of polymerisation of four, can constitute from 0 to 12 mole percent of the total oxyalkyleneoxy units present in the backbone.

Capping units - According to the present invention at least 50%, of said soil release agent comprises at least one terminal capping unit selected from anionic, nonionic, cationic capping units and mixtures thereof.

Suitable anionic capping unit for use herein are according to the formula (Mθ3S)(CH2)m(CH2CH2θ)(RO)n, wherein M is a salt forming cation such as sodium or tetraalkylammonium, m is 0 or 1 , R is ethylene, propylene or a mixture thereof and n is from 0 to 2. Preferably said end capping unit is derived from sulphobenzoic acid or derivatives thereof. These end-cap units provide anionic charged sites when the esters are dispersed in aqueous media, such as a laundry liquor. It is not intended to exclude the acid form, but most generally the esters herein are used as sodium salts, as salts of other alkali metals as salts with nitrogen-containing cations (especially tetraalkylammonium), or as the disassociated ions in a aqueous environment.

Examples of end-capping groups include sodium isethionate, sodium 2-(2-hydroxyethoxy) ethanesulfonate, sodium 2-[2-(2- hydroxyethoxy)ethoxy] ethanesulfonate, sodium 5-hydroxy-4-methyl-3- oxa-pentanesulfonate, sodium alpha-3-sulfopropyl-omega-hydroxy- poly-(oxy-l,2-ethanediyl) (with average degree of ethoxylation of 1-2), sodium 5-hydroxy-3-oxa-hexanesulfonate, and mixtures thereof.

On a mole basis, the compositions herein will preferably comprise from about one to about two moles of the sulfonated end- capping units per mole of the ester. Most preferably, the esters are doubly end-capped; i.e., there will be two moles of end-capping units present per mole of the ester. From the viewpoint of weight composition, it will be clear that the fractional contribution of end- capping units to the molecular weight of the esters will decrease as the molecular weight of the ester backbone increases.

Suitable nonionic endcapping units are consecutive polyethylene glycol units, preferably from 2 to 20 consecutive polyethylene glycol units.

Suitable cationic end capping units are quaternary ammonium or quaternary ammonium salts according to the formula R4N + , wherein each R is independently selected from C1-C4 alkyl groups, C1 -C4 hydroxyalkyl groups, C2-C4 alkylene groups, C2-C4 oxyalkylene groups, phenyl, phenyl C1-C4 alkyl groups, hydrogen and wherein two R groups can be joined to form cyclic structures. Suitable cationi* end capped soil release polymers for use herein are described in EPO- 398 133.

Stabilisers - Stabilisers useful in this invention should be water soluble or water dispersible. The stabilising agents that are useful herein include sulfonate-type hydrotropes, linear or branched alkylbenzenesulfonates, paraffin sulfonates, and other thermally-stable alkyl sulfonate variations with from about 4 to about 20 carbon atoms. Preferred agents include sodium dodecylbenzenesulfonate, sodium cumenesulfonate, sodium toluenesulfonate, sodium xylenesulfonate, and mixtures thereof. When higher levels of stabilisers are used, mixtures of hydrotropes and/or other stabilisers are preferred over pure components to insure full integration into the oligomer and to reduce the possibility of crystallization of the stabiliser.

In general, the level of such agents should be kept as low as possible while providing the primary benefit, i.e., the reduction in the amount of crystallization that the soil release agent undergoes during manufacture, storage and when introduced to the wash liquor. The composition may comprise from about 0.5% to about 20% stabiliser. Most preferably, these ester compositions comprise an amount sufficient to reduce the crystallization of the oligomer during manufacture and when introduced to the wash liquor, i.e., at least 3% by weight. The stabilisers may be added to the soil release agent in various ways. Preferably, the stabilisers are added to the oligomer reagents in the initial stages prior to full oligomerization. The stabilisers thereby integrate uniformly into the oligomer. Another method would entail first melting the pre-formed oligomer and then uniformly mixing the stabiliser into the molten oligomer.

Alkylbenzenesulfonates when used as surfactants in detergent compositions do not provide the stabilising and crystallization reducing effect, even during dissolution of the soil release agent in the laundry liquor, that the stabiliser does when it is added as directed above.

A preferred polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units contains 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a polyoxyethylene glycol of average molecular weight 300-5,000. Examples of this polymer include the commercially available material ZELCON 5126 (from Dupont) and MILEASE T (from ICI). See also U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink.

Another preferred polymeric soil release agent is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone. These soil release agents are described fully in U.S. Patent 4,968,451, issued November 6, 1990 to J.J. Scheibel and E.P. Gosselink. Other suitable polymeric soil release agents include the terephthalate polyesters of U.S. Patent 4,711,730, issued December 8, 1987 to Gosselink et al, the anionic end-capped oligomeric esters of U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink, and the block polyester oligomeric compounds of U.S. Patent 4,702,857, issued October 27, 1987 to Gosselink. Preferred polymeric soil release agents also include the soil release agents of U.S. Patent 4,877,896, issued October 31 , 1989 to Maldonado et al, which discloses anionic, especially sul- foarolyl, end-capped terephthalate esters. According to the present invention the soil release agent has a molecular weight of less than 10000, preferably less than 5000. According to the present invention the detergent compositions comprise from 0.01 % to 5%, typically from 0.01 % to 3% , preferably from 0.01 % to 1.

Methods of making soil release agents

The soil release agents of the present invention can be prepared using any one of combination of several alternative general reaction types, each being well known in the art. Types of synthetic and analytical methods useful herein are illustrated in EPO 185 427 and in "Principles of polymerisation", Odien, Wiley, NY, 1981. The general types of reactions suitable for preparing the soil release agents of the present invention include those classifiable as:

1. alcoholysis of acyl halides

2. esterification of organic acids

3. alcoholysis of esters(transesterification) and

4. reaction of alkylene carbonates with organic acids.

Reaction types 2-4, preferably 3-4 are preferred.

Polysaccharide ethers

According to the present invention an essential component of the detergent composition is a nonionic polysaccharide ether. Chemically, the polysaccharides are composed of pentoses or hexoses. Suitable polysaccharide ethers for use herein are selected from cellulose ethers, starch ethers, dextran ethers and mixtures thereof. Preferably said nonionic polysaccharide ether is a cellulose ether. Cellulose ethers are generally obtained from vegetable tissues and fibres, including cotton and wood pulp.

The hydroxy group of the anhydro glucose unit of cellulose can be reacted with various reagents thereby replacing the hydrogen of the hydroxyl group with other chemical groups. Various alkylating and hydroxyalkylating agents can be reacted with cellulose ethers to produce either alkyl-, hydroxyalkyl- or alkylhydroxyalkyl-cellulose ethers or mixtures thereof. The most preferred for use in the present invention are C1-C4 alkyl cellulose ether or a C1-C4 hydroxyalkyl cellulose ether or a C1-C4 alkylhydroxy alkyl cellulose ether or mixtures thereof. Preferably the polysaccharides of the present invention have a degree of substitution of up to 3, preferably from 0.5 to 2.5, most preferably from 0.5 to 2.2 inclusive.

Suitable cellulose ethers include methylcellulose ether, hydroxypropyl methylcellulose ether, hydroxyethyl methylcellulose ether, hydroxypropyl cellulose ether, hydroxybutyl methylcellulose ether, ethylhydroxy ethylcellulose ether, ethylcellulose ether and- hydroxy ethylcellulose ether. Most preferably said polysaccharide is a methylcellulose ether. Such agents are commercially available such as METHOCEL (Dow Chemicals).

According to the present invention said polysaccharide ether has a degree of polymerisation of more than 100, preferably from 100 to 10000. As used herein the term degree of polymerisation (dp) is the ratio of the weight average molecular weight on average molecular unit weight, i.e. dp=MWw/MUW. The weight average molecular weight (MWW) is obtained by standard analytical methods as described in Polymer handbooks. A preferred method is light scattering from polymer solutions as originally defined by Debye.

For example the average molecular unit weight (MUW) for methylcellulose ether may be determined from the sum of the molecular weight of the unsubstituted cellulose unit and the product of the degree of polymerisation and the molecular weight of the substituent less the hydrogen mass (1). i.e. MUW= 162 + (15-1)* ds -for methyl substituents found in methyl cellulose ethers.

MUW may also be determined from the "% methoxyl content" value (mc) also used by manufactures of methyl cellulose ethers instead of the degree of substitution, such that; MUW= 100 - [(mol. wt. of CH2/mol. wt. of OCH3)*mc]

The compositions of the present invention comprise from 0.01 % to 10%, preferably from 0.01 % to 3% of said nonionic polysaccharide ethers. According to the present invention the detergent compositions comprise said polysaccharide and soil release polymer in a ratio of from 0.1 : 1 to 20: 1 , preferably from 0.5: 1 to 10: 1.

According to the present invention the detergent compositions may comprise additional ingredients such as surfactants, other anti- redeposition agents, builders, chelants, bleaches and the like.

Clay Soil Removal/Anti-redeposition Agents

The compositions of the present invention can also optionally contain clay soil removal and antiredeposition agents. Granular detergent compositions which contain these compounds typically contain from 0.01 % to 10.0% by weight of said agents, liquid detergent compositions typically contain 0.01 % to 5%. Suitable clay soil removal and/or anti redeposition agents known in the art includes the carboxy methyl cellulose (CMC) materials.

Detersive Surfactants

According to the present invention the detergent composition may preferalby comprise surfactants. Surfactants useful herein include the conventional Cπ-Ci8 alkyl benzene sulphonates ("LAS") and primary, branched-chain and random C10-C20 alkyl sulphates ("AS"), the C10-C18 secondary (2,3) alkyl sulphates of the formula CH3(CH2)χ(CHOSθ3'M+) CH3 and CH3 (CH2)y(CHOSθ3"M+) CH2CH3 where x and (y + 1) are integers of at least about 7, preferably at least about 9, and M is a water-solubilizing cation, especially sodium, unsaturated sulphates such as oleyl sulphate, the C10-C18 alkyl alkoxy sulphates ("AEXS"; especially EO 1-7 ethoxy sulphates), C10-C18 alkyl alkoxy carboxylates (especially the EO 1-5 ethoxycarboxylates), the C10-I8 glycerol ethers, the CIQ-CIS alkyl polyglycosides and their corresponding sulphated polyglycosides, and C12-C18 alpha-sulphonated fatty acid esters.

If desired, the conventional nonionic and amphoteric surfactants such as the C12-C18 alkyl ethoxylates ("AE") including the so-called narrow peaked alkyl ethoxylates and C6-C12 alkyl phenol alkoxy lates (especially ethoxylates and mixed ethoxy/propoxy), C12-C1 betaines and sulphobetaines ("sultaines"), Cjo-Ci8 amine oxides, and the like, can also be included in the overall compositions. The C10-C18 N-alkyl polyhydroxy fatty acid amides can also be used. Typical examples include the C12-C18 N-methylglucamides. See WO 9,206,154. Other sugar-derived surfactants include the N-alkoxy polyhydroxy fatty acid amides, such as CJO-CI S N-(3-methoxypropyl) glucamide. The N** propyl through N-hexyl Cj2-Cl8 glucamides can be used for low sudsing. C10-C20 conventional soaps may also be used. If high sudsing is desired, the branched-chain C10-C16 soaps may be used. Mixtures of anionic and nonionic surfactants are especially useful. Other conventional useful surfactants such as cationics are listed in standard texts.

According to the present invention the compositions comprise from 1 % to 80%, preferably from 5% to 50%, most preferably from 10% to 40% of a surfactant. Preferred surfactants for use herein are linear alkyl benzene sulphonate, alkyl sulphates and alkyl alkoxylated nonionics or mixtures thereof.

Builders

Detergent builders can optionally be included in the compositions herein to assist in controlling mineral hardness. Inorganic as well as organic builders can be used. Builders are typically used in fabric laundering compositions to assist in the removal of paniculate soils.

The level of builder can vary widely depending upon the end use of the composition and its desired physical form. When present, the compositions will typically comprise at least 1 % builder. Liquid formulations typically comprise from 5% to 50% , more typically about 5% to 30%, by weight, of detergent builder. Granular formulations typically comprise from 10% to 80%, more typically from 15% to 50% by weight, of the detergent builder. Lower or higher levels of builder, however, are not meant to be excluded.

Inorganic or P-containing detergent builders include, but are not limited to, the alkali metal, ammonium and alkanolammonium salts of polyphosphates (exemplified by the tripolyphosphates, pyrophosphates, orthophosphates and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, carbonates (including bicarbonates and sesquicarbonates), sulphates, and aluminosilicates (see, for example, U.S. Patents 3,159,581 ; 3,213,030; 3,422,021 ; 3,400,148 and 3,422,137).

However, non-phosphate builders are required in some locales. Importantly, the compositions herein function suφrisingly well even in the presence of the so-called "weak" builders (as compared with phosphates) such as citrate, or in the so-called "underbuilt" situation that may occur with zeolite or layered silicate builders.

Examples of silicate builders are the alkali metal silicates, particularly those having a Siθ2:Na2θ ratio in the range 1.6:1 to 3.2:1 and layered silicates, such as the layered sodium silicates described in U.S. Patent 4,664,839, issued May 12, 1987 to H. P. Rieck. NaSKS-6 is the trademark for a crystalline layered silicate marketed by Hoechst (commonly abbreviated herein as "SKS-6"). Unlike zeolite builders, the Na SKS-6 silicate builder does not contain aluminum. NaSKS-6 has the delta-Na2Si2θ5 moφhology form of layered silicate. It can be prepared by methods such as those described in German DE-A- 3,417,649 and DE-A-3, 742,043. SKS-6 is a highly preferred layered silicate for use herein, but other such layered silicates, such as those having the general formula NaMSixθ2χ+i*yH2θ wherein M is sodium or hydrogen, x is a number from 1.9 to 4, preferably 2, and y is a number from 0 to 20, preferably 0 can be used herein. Various other layered silicates from Hoechst include NaSKS-5, NaSKS-7 and NaSKS-11, as the alpha, beta and gamma forms. As noted above, the delta-Na2Si2θ5 (NaSKS-6 form) is most preferred for use herein. Other silicates may also be useful such as for example magnesium silicate, which can serve as a crispening agent in granular formulations, as a stabilizing agent for oxygen bleaches, and as a component of suds control systems.

Examples of carbonate builders are the alkaline earth and alkali metal carbonates as disclosed in German Patent Application No. 2,321 ,001 published on November 15, 1973.

Aluminosilicate builders are useful in the present invention. Aluminosilicate builders are of great importance in most currently marketed heavy duty granular detergent compositions, and can also be. a significant builder ingredient in liquid detergent formulations. Aluminosilicate builders include those having the empirical formula:

Mz[(Si02)w(zAlθ2)y] xH2θ wherein w, z and y are integers of at least 6, the molar ratio of z to y is in the range from 1.0 to about 0.5, and x is an integer from about 15 to about 264.

Useful aluminosilicate ion exchange materials are commercially available. These aluminosilicates can be crystalline or amoφhous in structure and can be naturally-occurring aluminosilicates or synthetically derived. A method for producing aluminosilicate ion exchange materials is disclosed in U.S. Patent 3,985,669, Krummel, et al, issued October 12, 1976. Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designations Zeolite A, Zeolite P (B), Zeolite MAP and Zeolite X. In an especially preferred embodiment, the crystalline aluminosilicate ion exchange material has the formula:

Nai2[(Alθ2)l2(Siθ2)l2]-xH2θ wherein x is from about 20 to about 30, especially about 27. This material is known as Zeolite A. Dehydrated zeolites (x = 0 - 10) may also be used herein. Preferably, the aluminosilicate has a particle size of about 0.1-10 microns in diameter. Organic detergent builders suitable for the puφoses of the present invention include, but are not restricted to, a wide variety of polycarboxylate compounds. As used herein, "polycarboxylate" refers to compounds having a plurality of carboxylate groups, preferably at least 3 carboxylates. Polycarboxylate builder can generally be added to the composition in acid form, but can also be added in the form of a neutralized salt. When utilized in salt form, alkali metals, such as sodium, potassium, and lithium, or alkanolammonium salts are preferred.

Included among the polycarboxylate builders are a variety of categories of useful materials. One important category of polycarboxylate builders encompasses the ether polycarboxy lates r including oxydisuccinate, as disclosed in Berg, U.S. Patent 3,128,287, issued April 7, 1964, and Lamberti et al, U.S. Patent 3,635,830, issued January 18, 1972. See also "TMS/TDS" builders of U.S. Patent 4,663,071 , issued to Bush et al, on May 5, 1987. Suitable ether polycarboxylates also include cyclic compounds, particularly alicyclic compounds, such as those described in U.S. Patents 3,923,679; 3,835,163; 4,158,635; 4,120,874 and 4,102,903.

Other useful detergency builders include the ether hydroxypoly carboxy lates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1, 3, 5-trihydroxy benzene-2, 4, 6- trisulphonic acid, and carboxymethyloxysuccinic acid, the various alkali metal, ammonium and substituted ammonium salts of polyacetic acids such as ethylenediamine tetraacetic acid and nitrilotriacetic acid, as well as polycarboxylates such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof.

Citrate builders, e.g., citric acid and soluble salts thereof (particularly sodium salt), are polycarboxylate builders of particular importance for heavy duty liquid detergent formulations due to their availability from renewable resources and their biodegradability. Citrates can also be used in granular compositions, especially in combination with zeolite and/or layered silicate builders. Oxydisuccinates are also especially useful in such compositions and combinations.

Also suitable in the detergent compositions of the present invention are the 3,3-dicarboxy-4-oxa-l ,6-hexanedioates and the related compounds disclosed in U.S. Patent 4,566,984, Bush, issued January 28, 1986. Useful succinic acid builders include the C5-C20 alkyl and alkenyl succinic acids and salts thereof. A particularly preferred compound of this type is dodecenylsuccinic acid. Specific examples of succinate builders include: laurylsuccinate, myristylsuccinate, palmitylsuccinate, 2-dodecenylsuccinate (preferred), 2-pentadecenylsuccinate, and the like. Laurylsuccinates are the preferred builders of this group, and are described in European Patent- Application 86200690.5/0,200,263, published November 5, 1986.

Other suitable polycarboxylates are disclosed in U.S. Patent 4,144,226, Crutchfield et al, issued March 13, 1979 and in U.S. Patent 3,308,067, Diehl, issued March 7, 1967. See also Diehl U.S. Patent 3,723,322.

Fatty acids, e.g., C12-C18 monocarboxylic acids, can also be incoφorated into the compositions alone, or in combination with the aforesaid builders, especially citrate and/or the succinate builders, to provide additional builder activity. Such use of fatty acids will generally result in a diminution of sudsing, which should be taken into account by the formulator.

Chelating Agents

The detergent compositions herein may also optionally contain one or more iron and/or manganese chelating agents. Such chelating agents can be selected from the group consisting of amino carboxy lates, amino phosphonates, polyfunctionally-substituted aromatic chelating agents and mixtures therein, all as hereinafter defined. Without intending to be bound by theory, it is believed that the benefit of these materials is due in part to their exceptional ability to remove iron and manganese ions from washing solutions by formation of soluble chelates.

Amino carboxylates useful as optional chelating agents include. ethylenediaminetetracetates, N-hydroxyethylethylenediaminetriacetates, nitrilotriacetates, ethylenediamine tetraproprionates, triethylenetetra- aminehexacetates, diethylenetriaminepentaacetates, and ethanoldi- glycines, alkali metal, ammonium, and substituted ammonium salts therein and mixtures therein.

Amino phosphonates are also suitable for use as chelating agents in the compositions of the invention when at least low levels of total phosphorus are permitted in detergent compositions, and include ethylenediaminetetrakis (methylenephosphonates) as DEQUEST. Preferred, these amino phosphonates to not contain alkyl or alkenyl groups with more than about 6 carbon atoms.

Polyfunctionally-substituted aromatic chelating agents are also useful in the compositions herein. See U.S. Patent 3,812,044, issued May 21, 1974, to Connor et al. Preferred compounds of this type in acid form are dihydroxydisulfobenzenes such as l,2-dihydroxy-3,5- disulfobenzene.

A preferred biodegradable chelator for use herein is ethylenediamine disuccinate ("EDDS"), especially the [S,S] isomer as described in U.S. Patent 4,704,233, November 3, 1987, to Hartman and Perkins. If utilized, these chelating agents will generally comprise from .1 % to 10% more preferably, from 0.1 % to 3.0% by weight of such compositions.

Bleaching Compounds - Bleaching Agents and Bleach Activators

The detergent compositions herein may optionally contain bleaching agents or bleaching compositions containing a bleaching agent and one or more bleach activators. When present, bleaching agents will typically be at levels of from 1 % to 40%, more typically from 5% to 30%, of the detergent composition, especially for fabric laundering. If present, the amount of bleach activators will typically be from 0.1 % to 60%, more typically from 0.5% to 40% of the bleaching, composition comprising the bleaching agent-plus-bleach activator.

The bleaching agents used herein can be any of the bleaching agents useful for detergent compositions in textile cleaning, hard surface cleaning, or other cleaning puφoses that are now known or become known. These include oxygen bleaches as well as other bleaching agents.

Peroxygen bleaching agents can also be used. Suitable peroxygen bleaching compounds include sodium carbonate peroxy hydrate and equivalent "percarbonate" bleaches, sodium pyrophosphate peroxyhydrate, urea peroxyhydrate, and sodium peroxide. Persulfate bleach (e.g., OXONE, manufactured commercially by DuPont) can also be used.

A preferred percarbonate bleach comprises dry particles having an average particle size in the range from about 500 micrometers to about 1,000 micrometers, not more than about 10% by weight of said particles being smaller than about 200 micrometers and not more than about 10% by weight of said particles being larger than about 1,250 micrometers. Optionally, the percarbonate can be coated with silicate, borate or water-soluble surfactants. Preferred coatings are based on carbonate/sulphate mixtures. Percarbonate is available from various commercial sources such as FMC, Solvay and Tokai Denka. Another category of bleaching agent that can be used without restriction encompasses percarboxylic acid bleaching agents and salts thereof. Suitable examples of this class of agents include magnesium monoperoxyphthalate hexahydrate, the magnesium salt of metachloro perbenzoic acid, 4-nonylamino-4-oxoperoxybutyric acid and diperoxydodecanedioic acid. Such bleaching agents are disclosed in U.S. Patent 4,483,781, Hartman, issued November 20, 1984, U.S. Patent Application 740,446, Burns et al, filed June 3, 1985, European Patent Application 0,133,354, Banks et al, published February 20, 1985, and U.S. Patent 4,412,934, Chung et al, issued November 1 , 1983. Highly preferred bleaching agents also include 6-nonylamino-6- oxoperoxycaproic acid as described in U.S. Patent 4,634,551, issued January 6, 1987 to Burns et al.

Mixtures of bleaching agents can also be used. Peroxygen bleaching agents, the perborates, e.g., sodium perborate (e.g., mono- or tetra-hydrate) , the percarbonates, etc., are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e., during the washing process) of the peroxy acid corresponding to the bleach activator. Various nonlimiting examples of activators are disclosed in U.S. Patent 4,915,854, issued April 10, 1990 to Mao et al, and U.S. Patent 4,412,934. The nonanoyloxybenzene sulfonate (NOBS) and tetraacetyl ethylene diamine (TAED) activators are typical, and mixtures thereof can also be used. See also U.S. 4,634,551 for other typical bleaches and activators useful herein.

Highly preferred amido-derived bleach activators are those of the formulae:

RlN(R5)C(0)R2C(0)L or RlC(0)N(R5)R2c(0)L wherein R is an alkyl group containing from about 6 to about 12 carbon atoms, R2 is an alkylene containing from 1 to about 6 carbon atoms, R-5 is H or alkyl, aryl, or alkaryl containing from about 1 to about 10 carbon atoms, and L is any suitable leaving group. A leaving group is any group that is displaced from the bleach activator as a consequence of the nucleophilic attack on the bleach activator by the perhydroxyl anion. A preferred leaving group is phenol sulfonate.

Preferred examples of bleach activators of the above formulae include (6-octanamido-caproyl)oxybenzenesulfonate, (6- nonanamidocaproyl)- oxybenzenesulfonate, (6-decanamido- caproyl)oxybenzenesulfonate, and mixtures thereof as described in U.S. Patent 4,634,551 , incoφorated herein by reference.

Another class of bleach activators comprises the benzoxazin-type activators disclosed by Hodge et al in U.S. Patent 4,966,723, issued October 30, 1990, incoφorated herein by reference. A highly preferred activator of the benzoxazin-type is:

Still another class of preferred bleach activators includes the acyl lactam activators, especially acyl caprolactams and acyl valerolactams of the formulae:

wherein R^ is H or an alkyl, aryl, alkoxy aryl, or alkaryl group containing from 1 to about 12 carbon atoms. Highly preferred lactam activators include benzoyl caprolactam, octanoyl caprolactam, 3,5,5- trimethylhexanoyl caprolactam, nonanoyl caprolactam, decanoyl caprolactam, undecenoyl caprolactam, benzoyl valero lac tarn, octanoyl valerolactam, decanoyl valerolactam, undecenoyl valerolactam, nonanoyl valerolactam, 3,5,5-trimethylhexanoyl valerolactam and mixtures thereof. See also U.S. Patent 4,545,784, issued to Sanderson, October 8, 1985, incoφorated herein by reference, which discloses acyl caprolactams, adsorbed into sodium perborate. Other preferred activators are cationic bleach activators.

Bleaching agents other than oxygen bleaching agents are also known in the art and can be utilized herein. One type of non-oxygen bleaching agent of particular interest includes photoactivated bleaching agents such as the sulfonated zinc and/or aluminum phthalocyanines. See U.S. Patent 4,033,718, issued July 5, 1977 to Holcombe et al. If used, detergent compositions will typically contain from 0.025% to 1.25%, by weight, of such bleaches, especially sulfonate zinc phthalocyanine.

If desired, the bleaching compounds can be catalyzed by means of a manganese compound. Such compounds are well known in the art and include, for example, the manganese-based catalysts disclosed in U.S. Pat. 5,246,621, U.S. Pat. 5,244,594; U.S. Pat. 5,194,416; U.S. Pat. 5,114,606; and European Pat. App. Pub. Nos. 549,271 Al, 549,272A1, 544,440A2, and 544,490A1; Preferred examples of these catalysts include Mn^2(u^)3( »7-trimethyl-l,4,7- triazacyclononane)2(PF6)2, Mn^2(u-0)ι (u-OAc)2(l ,4,7-trimethyl- 1 ,4,7-triazacyclononane)2-(Clθ4)2, MnIV4(u-0)6(l ,4,7- triazacyclononane)4(C104)4, MnfflMnIV4(u-0) i (u-OAc)2-(l ,4,7- trimethyl-1 ,4,7-triazacyclononane)2(Clθ4)3, Mn-^(1 ,4,7-trimethyl- 1,4,7-triazacyclononane)- (OCH3)3(PFδ), and mixtures thereof. Other metal-based bleach catalysts include those disclosed in U.S. Pat. 4,430,243 and U.S. Pat. 5,114,611. The use of manganese with various complex ligands to enhance bleaching is also reported in the following United States Patents: 4,728,455; 5,284,944; 5,246,612; 5,256,779; 5,280,117; 5,274,147; 5,153,161; 5,227,084;

Polymeric Dispersing Agents

Polymeric dispersing agents can advantageously be utilized at levels from 0.1 % to 7%, by weight, in the compositions herein, especially in the presence of zeolite and/or layered silicate builders. Suitable polymeric dispersing agents include polymeric polycarboxylates and polyethylene glycols, although others known in the art can also be used. It is believed, though it is not intended to be limited by theory, that polymeric dispersing agents enhance overall detergent builder performance, when used in combination with other builders (including lower molecular weight polycarboxylates) by crystal growth inhibition, particulate soil release peptization, and anti- redeposition.

Polymeric polycarboxylate materials can be prepared by polymerizing or copolymerizing suitable unsaturated monomers, preferably in their acid form. Unsaturated monomeric acids that can be polymerized to form suitable polymeric polycarboxylates include acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid and methylenemalonic acid. The presence in the polymeric polycarboxylates herein or monomeric segments, containing no carboxylate radicals such as vinylmethyl ether, styrene, ethylene, etc. is suitable provided that such segments do not constitute more than about 40% by weight.

Particularly suitable polymeric polycarboxylates can be derived from acrylic acid. Such acrylic acid-based polymers which are useful herein are the water-soluble salts of polymerized acrylic acid. The average molecular weight of such polymers in the acid form preferably ranges from about 2,000 to 10,000, more preferably from about 4,000 to 7,000 and most preferably from about 4,000 to 5,000. Water-soluble salts of such acrylic acid polymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble polymers of this type are known materials. Use of polyacrylates of this type in detergent compositions has been disclosed, for example, in Diehl, U.S. Patent 3,308,067, issued march 7, 1967.

Acrylic/maleic-based copolymers may also be used as a preferred component of the dispersing/anti-redeposition agent. Such materials include the water-soluble salts of copolymers of acrylic acid and maleic acid. The average molecular weight of such copolymers in the acid form preferably ranges from about 2,000 to 100,000, more preferably from about 5,000 to 75,000, most preferably from about 7,000 to 65,000. The ratio of aery late to maleate segments in such copolymers will generally range from about 30:1 to about 1:1 , more preferably from about 70:30 to 30:70. Water-soluble salts of such acrylic acid/maleic acid copolymers can include, for example, the alkali metal, ammonium and substituted ammonium salts. Soluble acrylate/maleate copolymers of this type are known materials which are described in European Patent Application No. 66915, published December 15, 1982, as well as in EP 193,360, published September 3, 1986, which also describes such polymers comprising hydroxypropylacrylate. Still other useful dispersing agents include the maleic/acrylic/vinyl alcohol or acetate teφolymers. Such materials are also disclosed in EP 193,360, including, for example, the 45/45/10 teφolymer of aery lic/maleic/ vinyl alcohol.

Another polymeric material which can be included is polyethylene glycol (PEG). PEG can exhibit dispersing agent performance as well as act as a clay soil removal-antiredeposition agent. Typical molecular weight ranges for these puφoses range from about 500 to about 100,000, preferably from about 1,000 to about 50,000, more preferably from about 1,500 to about 10,000.

Polyamino acid dispersing agents such as polyaspartate and polyglutamatemay also be used, especially in conjunction with zeolite builders. Dispersing agents such as polyaspartate preferably have a molecular weight (avg.) of about 10,000.

Dye Transfer Inhibiting Agents

The compositions of the present invention may also include one or more materials effective for inhibiting the transfer of dyes from one fabric to another during the cleaning process. Generally, such dye transfer inhibiting agents include polyvinyl pyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, manganese phthalocyanine, peroxidases, and mixtures thereof. If used, these agents typically comprise from 0.01 % to 10% by weight of the composition, preferably from 0.01 % to 5% , and more preferably from 0.05% to 2%.

More specifically, the polyamine N-oxide polymers preferred for use herein contain units having the following structural formula: R-Ax- P; wherein P is a polymerizable unit to which an N-O group can be attached or the N-O group can form part of the polymerizable unit or the N-O group can be attached to both units; A is one of the following structures: -NC(O)-, -C(0)0-, -S-, -0-, -N = ; x is 0 or 1; and R is aliphatic, ethoxylated aliphatics, aromatics, heterocyclic or alicyclic groups or any combination thereof to which the nitrogen of the N-O group can be attached or the N-O group is part of these groups. Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, pyrrole, imidazole, pyrrolidine, piperidine and derivatives thereof.

The N-O group can be represented by the following general structures:

wherein R\ , R2, R3 are aliphatic, aromatic, heterocyclic or alicyclic groups or combinations thereof; x, y and z are 0 or 1 ; and the nitrogen of the N-O group can be attached or form part of any of the aforementioned groups. The amine oxide unit of the polyamine N- oxides has a pKa < 10, preferably pKa <7, more preferred pKa <6.

Any polymer backbone can be used as long as the amine oxide polymer formed is water-soluble and has dye transfer inhibiting properties. Examples of suitable polymeric backbones are poly vinyls, polyalkylenes, polyesters, polyethers, poly amide, polyimides, polyacrylates and mixtures thereof. These polymers include random or block copolymers where one monomer type is an amine N-oxide and the other monomer type is an N-oxide. The amine N-oxide polymers typically have a ratio of amine to the amine N-oxide of 10:1 to 1 : 1 ,000,000. However, the number of amine oxide groups present in the polyamine oxide polymer can be varied by appropriate copolymerization or by an appropriate degree of N-oxidation. The polyamine oxides can be obtained in almost any degree of polymerization. Typically, the average molecular weight is within the range of 500 to 1,000,000; more preferred 1,000 to 500,000; most preferred 5,000 to 100,000. This preferred class of materials can be referred to as "PVNO".

The most preferred polyamine N-oxide useful in the detergent compositions herein is poly(4-vinylpyridine-N-oxide) which as an average molecular weight of about 50,000 and an amine to amine N- oxide ratio of about 1 :4.

Copolymers of N-vinylpyrrolidone and N-vinylimidazole polymers (referred to as a class as "PVPVI") are also preferred for use herein. Preferably the PVPVI has an average molecular weight range from 5,000 to 1 ,000,000, more preferably from 5,000 to 200,000, and most preferably from 10,000 to 20,000. (The average molecular weight range is determined by light scattering as described in Barth, et al., Chemical Analysis. Vol 113. "Modern Methods of Polymer Characterization", the disclosures of which are incoφorated herein by reference.) The PVPVI copolymers typically have a molar ratio of N- vinylimidazole to N-vinylpyrrolidone from 1:1 to 0.2:1, more preferably from 0.8:1 to 0.3:1, most preferably from 0.6:1 to 0.4:1. These copolymers can be either linear or branched.

The present invention compositions also may employ a polyvinylpyrrolidone ("PVP") having an average molecular weight of from about 5,000 to about 400,000, preferably from about 5,000 to about 200,000, and more preferably from about 5,000 to about 50,000. PVP's are known to persons skilled in the detergent field; see, for example, EP-A-262,897 and EP-A-256,696, incoφorated herein by reference. Compositions containing PVP can also contain polyethylene glycol ("PEG") having an average molecular weight from about 500 to about 100,000, preferably from about 1,000 to about 10,000. Preferably, the ratio of PEG to PVP on a ppm basis delivered in wash solutions is from about 2: 1 to about 50: 1 , and more preferably from about 3: 1 to about 10:1.

The detergent compositions herein may also optionally contain from 0.005% to 5% by weight of certain types of hydrophilic optical brighteners which also provide a dye transfer inhibition action. If used, the compositions herein will preferably comprise from 0.01 % to 1 % by weight of such optical brighteners.

The hydrophilic optical brighteners useful in the present invention are those having the structural formula:

wherein Rj is selected from anilino, N-2-bis-hydroxyethyl and NH-2- hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2- hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.

When in the above formula, R\ is anilino, R2 is N-2-bis- hydroxyethyl and M is a cation such as sodium, the brightener is 4,4',- bis[(4-aniliιιo-6-(N-2-bis-hydroxyeΛyl)-s-triazine-2-yl)amino]-2,2'- stilbenedisulfonic acid and disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal-UNPA- GX by Ciba-Geigy Coφoration. Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.

When in the above formula, R\ is anilino, R2 is N-2- hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)- s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid disodium salt. This particular brightener species is commercially marketed under the tradename Tinopal 5BM-GX by Ciba-Geigy Coφoration. When in the above formula, R\ is anilino, R2 is moφhilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6- moφhilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the tradename Tinopal AMS-GX by Ciba Geigy Coφoration.

The specific optical brightener species selected for use in the present invention provide especially effective dye transfer inhibition performance benefits when used in combination with the selected polymeric dye transfer inhibiting agents hereinbefore described. The combination of such selected polymeric materials (e.g., PVNO and/or PVPVI) with such selected optical brighteners (e.g., Tinopal UNPA- GX, Tinopal 5BM-GX and/or Tinopal AMS-GX) provides significantly better dye transfer inhibition in aqueous wash solutions than does either of these two detergent composition components when used alone. Without being bound by theory, it is believed that such brighteners work this way because they have high affinity for fabrics in the wash solution and therefore deposit relatively quick on these fabrics. The extent to which brighteners deposit on fabrics in the wash solution can be defined by a parameter called the "exhaustion coefficient". The exhaustion coefficient is in general as the ratio of a) the brightener material deposited on fabric to b) the initial brightener concentration in the wash liquor. Brighteners with relatively high exhaustion coefficients are the most suitable for inhibiting dye transfer in the context of the present invention.

Of course, it will be appreciated that other, conventional optical brightener types of compounds can optionally be used in the present compositions to provide conventional fabric "brightness" benefits, rather than a true dye transfer inhibiting effect. Such usage is conventional and well-known to detergent formulations.

According to the present invention the detergent composition may comprise any other ingredients commonly employed in conventional detergent compositions such as soaps, suds suppressors, dye transfer inhibitors, perfumes, softeners, brighteners, enzymes and enzyme stabilisers. Use of the combination of soil release agents and polysaccharide ethers

The compositions of the present invention may be used in laundry detergent compositions, fabric treatment compositions and fabric softening compositions in addition to hard surface cleaners. The compositions may be formulated as conventional granules, bars, pastes or powder or non aqueous liquid forms or as part of a dryer added sheet. The detergent compositions are manufactured in conventional manner, for example in the case of powdered detergent compositions, spray drying or spray mixing processes may be utilised.

The polysaccharide ether and soil release agent combination of the present invention are present at aqueous concentrations of from lppm to 300ppm, preferably from 5ppm to lOOppm in the wash solution, preferably at a pH of from 7 to 11, preferably from 9 to 10.5.

The present invention also relates to a method of laundering fabrics and concurrently providing a soil release finish thereto. The method comprises contacting said fabric with an aqueous laundry liquor containing conventional detersive ingredients described herein in addition to the soil release agent and polysaccharide ether of the present invention. In a preferred method polyester and polyester- cotton blends and other synthetic fabrics are used. The most preferred method for simultaneously cleaning and soil release treatment is a "multi-cycle" method, whereby the best results are obtained after two or more cycles comprising the steps of: a) contacting said fabric with said aqueous laundry liquor in a conventional automatic washing machine or by hand washing for periods of from about 5 minutes to about 1 hour; b) rinsing said fabrics with water c) line- or tumble drying said fabrics; and d) exposing said fabrics to soiling through normal wear or domestic use.

Examples Abbreviations used in Examples

In the detergent compositions, the abbreviated component identifications have the following meanings:

XYAS Sodium C JX - Cιγ alkyl sulphate

25EY A C 12- 15 predominantly linear primary alcohol condensed with an average of Y moles of ethylene oxide

XYEZ A Cι x - Ciy predominantly linear primary alcohol condensed with an average of Z moles of ethylene oxide

XYEZS CJX - CJY sodium alkyl sulphate condensed with an average of Z moles of ethylene oxide per mole

TFAA C16-C1 alkyl N-methyl glucamide.

Silicate Amoφhous Sodium Silicate (Siθ2:Na2θ ratio = 2.0)

NaSKS-6 Crystalline layered silicate of formula δ- Na2Si2θ5

Carbonate Anhydrous sodium carbonate

MA/AA Copolymer of 30:70 maleic/acrylic acid, average molecular weight about 70,000. Zeolite A Hydrated Sodium Aluminosilicate of formula Nai2(Alθ2Siθ2)i2- 27H20 having a primary particle size in the range from 1 to 10 micrometers

Citrate Tri-sodium citrate dihydrate

Percarbonate Anhydrous sodium percarbonate bleach coated with a coating of sodium silicate (Si2θ:Na2θ ratio = 2:1) at a weight ratio of percarbonate to sodium silicate of 39: 1

CMC Sodium carboxymethyl cellulose

DETPMP Diethylene triamine penta (Methylene phosphonic acid), marketed by Monsanto under the Tradename Dequest 2060

PVNO Poly (4-vinylpyridine)-N-oxide copolymer of vinylimidazole and vinylpyrrolidone having an average molecular weight of 10,000.

Smectite Clay Calcium montmorillonite ex. Colin Stewart Minchem Ltd.

SRA 1* Soil release agent comprising a backbone of 4( oxyalkylene trephthalate units) and 1( sulpoisoterephthalate unit) end capped with sulphonated glycol based end caps having an ethylene to propylene ratio of 1.7 and an average molecular weight of less than 3000. SRA 2* Soil release agent comprising a backbone of 11 (oxyalkylene trephthalate units) and 2( sulpoisoterephthalate unit) end capped with sulphobenzoyl units and an average weight of less than 3000.

Granular Suds 12% Silicone/silica, 18% stearyl alcohol,70% Suppressor starch in granular form

LAS Sodium linear C^2 alkyl benzene sulphonate

TAS Sodium tallow alkyl sulphate

ss Secondary soap surfactant of formula J-butyl octanoic acid

Phosphate Sodium tripolyphosphate

TAED Tetraacetyl ethylene diamine

PVP Polyvinyl pyrrolidone polymer

HMWPEO High molecular weight polyethylene oxide

MCI Methyl cellulose ether with dp = 650 available from Shin Etsu Chemicals

MC2 Methyl cellulose ether (Methol 60 HG) obtained from Fluka, with a % mole of 28-30 dp

HPMC Hydroxypropyl methylcellulose ether with dp=

300-350 TAE 25 Tallow alcohol ethoxylate (25) Example 1

The following laundry detergent compositions A, B, C, D and E were prepared. Compositions B and D represent the invention.

Clay soil removal performance of composition D was compared to the performance of reference compositions (C and E). The soil removal testing was carried out using a standard UK Hotpoint washing machine using city water at 12 °H hardness (German hardness) at 40°C. The polyester and polycotton unstained fabrics were prewashed for two cycles (long cycle setting) using a 1kg. balast of housewife soiled cotton load with lOOg of one of the product compositions, delivered via the dispensing drawer of the Hotpoint machine . lOg. of clay sampled from the Newcastle area, UK, was added to 10ml. of distilled water to form a slurry, which was brushed homogeneously onto the fabric samples. The fabric samples were dried overnight at ambient temperatures and subsequently washed under the same conditions described herein above. The test was repeated four times* for each soil test.

The difference in soil removal performance using the well known Scheffe scale was recorded in panel score units (psu), positive values indicating a better performance than the reference products. The following grading was used: psu 0 = equal

1 = 1 think this one is better

2 = 1 know this one is better

3 — This one is a lot better

4 = This one is a whole lot better

The grading was carried out under controlled standard northern european lighting by four trained graders. The average score is given below.

Composition C E D LSD

ESI2

Polyester Ref -1.8s +0.8s

0.7

Polycotton Ref -1.9s + 1.5s 1.

(65/35 polyester/cotton ) The Y PSU values denotes that the score was significant on a 95% confidence limit. The results clearly show the synergistic effect of the combination of the invention.

Example 2

Granular fabric cleaning compositions in accord with the invention are prepared as follows:

I II

SRA 1* 0.14 0.14

SRA 2*

MCI 0.75 _

HPMC - 0.5

LAS 22.0 22.0

Phosphate 23.0 23.0

Carbonate 23.0 23.0

Silicate 14.0 14.0

Zeolite A 8.2 8.2

DETPMP 0.4 0.4

Sodium Sulfate 5.5 5.5

Water/minors Up to 100%

Example 3

Granular fabric cleaning compositions in accord with the invention are prepared as follows: i π

LAS 12.0 12.0

Zeolite A 26.0 26.0

SS 4.0 4.0

24AS 5.0 5.0

Citrate 5.0 5.0

Sodium Sulfate 17.0 17.0

Perborate 16.0 16.0

TAED 5.0 5.0

HPMC - 0.5

MCI 0.75 -

SRA 1* 0.14 0.14

Water/minors Up to 100% Example 4

Granular fabric cleaning compositions in accord with the invention which are especially useful in the laundering of coloured fabrics are prepared as follows:

LAS 11.4 10.7 11.4 10.7 - -

TAS 1.8 2.4 1.8 2.4 - -

TFAA - - - - 4.0 4.0

45AS 3.0 3.1 3.0 3.1 10.0 10.0

45E7 4.0 4.0 4.0 4.0 - -

25E3S - - - - 3.0 3.0

68E11 1.8 1.8 1.8 1.8 - -

25E5 - - - - 8.0 8.0

Citrate 14.0 15.0 14.0 15.0 7.0 7.0

Carbonate - - - - 10 10

Citric acid 3.0 2.5 3.0 2.5 3.0 3.0

Zeolite A 32.5 32.1 32.5 32.1 25.0 25.0

Na-SKS-6 - - - - 9.0 9.0

MA/AA 5.0 5.0 5.0 5.0 5.0 5.0

DETPMP 1.0 0.2 1.0 0.2 0.8 0.8

HPMC - - 0.5 - 0.5 -

MCI 0.75 0.75 - 0.75 - 0.75

SRA 1* 0.14 0.14 0.14 0.14 0.14 0.14

Silicate 2.0 2.5 2.0 2.5 - -

Sulphate 3.5 5.2 3.5 5.2 3.0 3.0

PVP 0.3 0.5 0.3 0.5 - -

Poly(4-vinyl - - - - 0.2 0.2 pyridine)-N- oxide/copolymer of vinyl-imidazole

& vinyl- py rruiiuυπc Perborate 0.5 1.0 0.5 1.0 _ -

Phenol sulfonate 0.1 0.2 0.1 0.2 - -

Water/Minors Up to 100% Example 5

Granular fabric cleaning compositions in accord with the invention are prepared as follows:

LAS 6.5 8.0

Sulfate 15.0 18.0

Zeolite A 26.0 22.0

Sodium nitrilotriacetate 5.0 5.0

PVP 0.5 0.7

TAED 3.0 3.0

Boric acid 4.0 -

Perborate 0.5 1.0

Phenol sulphonate 0.1 -

HPMC 0.5 -

MCI - 0.75

SRA 1* 0.14 0.14

Silicate 5.0 5.0

Carbonate 15.0 15.0

Water/minors Up to 100%

Example 6

A granular fabric cleaning compositions in accord with the invention which provide "softening through the wash" capability are prepared as follows:

45AS - - 10.0 10.0

LAS 7.6 7.6 - -

68AS 1.3 1.3 - -

45E7 4.0 4.0 - -

25E3 - - 5.0 5.0

Coco-alkyl-dimethyl 1.4 1.4 1.0 1.0 hydroxy- ethyl ammonium chloride

Citrate 5.0 5.0 3.0 3.0

Na-SKS-6 - - 11.0 11.0

Zeolite A 15.0 15.0 15.0 15.0

MA/AA 4.0 4.0 4.0 4.0

DETPMP 0.4 0.4 0.4 0.4

Perborate 15.0 15.0 - -

Percarbonate - - 15.0 15.0

TAED 5.0 5.0 5.0 5.0

Smectite clay 10.0 10.0 10.0 10.0

HMWPEO - - 0.1 0.1

HPMC - 0.5 - 0.5

MCI 0.75 - 0.75 -

SRA 1* 0.14 0.14 0.14 0.14

Silicate 3.0 3.0 5.0 5.0

Carbonate 10.0 10.0 10.0 10.0

Granular suds suppressor 1.0 1.0 4.0 4.0

CMC 0.2 0.2 0.1 0.1

Water/minors Up to 100%

Claims

1. A detergent composition comprising the combination of a nonionic polysaccharide ether having a degree of polymerisation of 100 or more with a soil release agent comprising at least one oxyalkylene unit and having a molecular weight of less than 10000.
2. A detergent composition according to claim 1, wherein said nonionic polysaccharide ether is selected from cellulose ethers, starch ethers, dextran ethers and mixtures thereof.
3. A detergent composition according to claim 1, wherein said polysaccharide ether has a degree of polymerisation of from TOO to 10000 and a degree of substitution of from 0.5 to 2.5 inclusive.
4. A detergent composition according to either of claims 2 or 3, wherein said cellulose ether is a C1-C4 alkyl cellulose ether, a C1-C4 hydroxyalkyl cellulose ether, a C1-C4 alkylhydroxy alkyl cellulose ether or mixtures thereof.
5. A detergent composition according to any of the preceding claims, wherein said polysaccharide is a methylcellulose ether.
6. A detergent composition according to any of the preceding claims, wherein said soil release agent further comprises at least one terephthalate or substituted terephthalate unit.
7. A detergent composition according to any of the preceding claims, wherein said soil release agent further comprises a polyester backbone comprising at least one dimethylterephthalate unit and at least one dimethylsulphoisophthalate unit.
8. A detergent composition according to any of the preceding claims, wherein at least 50% of said soil release agent comprises at least one terminal capping unit selected from anionic, nonionic, cationic capping units and mixtures thereof. 9. A detergent composition according to any of the preceding claims, wherein said terminal capping unit is an anionic capping unit.
10. A detergent composition according to claim 9, wherein said capping unit is according to the formula (Mθ3S)(CH2)m(CH2CH2θ)(RO)n, wherein M is a salt forming cation such as sodium or tetraalkylammonium, m is 0 or 1 , R is ethylene, propylene or a mixture thereof and n is from 0 to 2.
11. A detergent composition according to claim 9, wherein said end capping unit is derived from sulphobenzoic acid or derivatives, thereof.
12. A detergent composition according to claim 8, wherein said end capping unit is a nonionic capping unit comprising from 2 to 20 consecutive polyethylene glycol units.
13. A detergent composition according to claim 8, wherein said cationic end capping unit is a cationic unit is according to the formula R4N + , wherein each R is independently selected from C1-C4 alkyl groups, C1-C4 hydroxyalkyl groups, C2-C4 alkylene groups, C2-C4 oxyalkylene groups, phenyl, phenyl C1-C4 alkyl groups, hydrogen and wherein two R groups can be joined to form cyclic structures.
14. A detergent composition according to any of the preceding claims, wherein said soil release agent has a molecular weight of less than 5000.
15. A detergent composition according to any of the preceding claims, wherein the ratio of said polysaccharide ether to said soil release agent is from 0.1 : 1 to 20: 1.
16. A detergent composition according to any of the preceding claims, comprising from 0.01 % to 5% of said polymeric soil release agent and from 0.01 % to 10% of said polysaccharide ether.
17. A detergent composition according to any of the preceding claims, further comprising a detergent adjunct selected from surfactants, chelants, builders and mixtures thereof.
18. A method of treating fabrics and providing a soil release finish thereto, comprising contacting said fabrics with an aqueous liquor containing from lppm to 300ppm of the combination of said nonionic polysaccharide and said soil release agent according to claim 1.
EP19950942510 1994-12-01 1995-11-30 Detergent composition containing combination of nonionic polysaccharide ether with synthetic oxyalkylene-containing soil release agent Withdrawn EP0795001A4 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB9424291A GB2295623A (en) 1994-12-01 1994-12-01 Detergent Compositions
GB9424291 1994-12-01
PCT/US1995/015547 WO1996017048A1 (en) 1994-12-01 1995-11-30 Detergent composition containing combination of nonionic polysaccharide ether with synthetic oxyalkylene-containing soil release agent

Publications (2)

Publication Number Publication Date
EP0795001A1 true EP0795001A1 (en) 1997-09-17
EP0795001A4 true true EP0795001A4 (en) 1998-03-25

Family

ID=10765293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19950942510 Withdrawn EP0795001A4 (en) 1994-12-01 1995-11-30 Detergent composition containing combination of nonionic polysaccharide ether with synthetic oxyalkylene-containing soil release agent

Country Status (6)

Country Link
EP (1) EP0795001A4 (en)
JP (1) JPH10510003A (en)
CN (1) CN1174569A (en)
CA (1) CA2206260A1 (en)
GB (1) GB2295623A (en)
WO (1) WO1996017048A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2315765A (en) * 1996-08-01 1998-02-11 Procter & Gamble Detergent compositions for laundering clothes with low levels of sulphate and silicates
DE502004001801D1 (en) * 2003-02-10 2006-11-30 Henkel Kgaa Bleach-containing detergent with a cotton-active soil cellulose derivative
CN101130717B (en) 2006-08-21 2010-05-12 上海德桑精细化工有限公司 Agent for cleaning dacron and blending dyeing material
US20140274860A1 (en) * 2011-10-27 2014-09-18 The Dial Corporation Synergistic effect of soil release polymers on wash performance of fabrics

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0054325A1 (en) * 1980-12-17 1982-06-23 Unilever N.V. Detergent composition with reduced soil-redeposition effect
US4711730A (en) * 1986-04-15 1987-12-08 The Procter & Gamble Company Capped 1,2-propylene terephthalate-polyoxyethylene terephthalate polyesters useful as soil release agents
US4877896A (en) * 1987-10-05 1989-10-31 The Procter & Gamble Company Sulfoaroyl end-capped ester of oligomers suitable as soil-release agents in detergent compositions and fabric-conditioner articles
US4968451A (en) * 1988-08-26 1990-11-06 The Procter & Gamble Company Soil release agents having allyl-derived sulfonated end caps
EP0398133A2 (en) * 1989-05-19 1990-11-22 THE PROCTER &amp; GAMBLE COMPANY Cationic polyester soil release polymers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808086A (en) * 1985-03-06 1989-02-28 The Procter & Gamble Company Articles and methods for treating fabrics
US4770666A (en) * 1986-12-12 1988-09-13 The Procter & Gamble Company Laundry composition containing peroxyacid bleach and soil release agent
US4740326A (en) * 1987-02-19 1988-04-26 The Procter & Gamble Company Soil release polymer coated substrate containing a laundry detergent for improved cleaning performance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0054325A1 (en) * 1980-12-17 1982-06-23 Unilever N.V. Detergent composition with reduced soil-redeposition effect
US4711730A (en) * 1986-04-15 1987-12-08 The Procter & Gamble Company Capped 1,2-propylene terephthalate-polyoxyethylene terephthalate polyesters useful as soil release agents
US4877896A (en) * 1987-10-05 1989-10-31 The Procter & Gamble Company Sulfoaroyl end-capped ester of oligomers suitable as soil-release agents in detergent compositions and fabric-conditioner articles
US4968451A (en) * 1988-08-26 1990-11-06 The Procter & Gamble Company Soil release agents having allyl-derived sulfonated end caps
EP0398133A2 (en) * 1989-05-19 1990-11-22 THE PROCTER &amp; GAMBLE COMPANY Cationic polyester soil release polymers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9617048A1 *

Also Published As

Publication number Publication date Type
CN1174569A (en) 1998-02-25 application
WO1996017048A1 (en) 1996-06-06 application
GB9424291D0 (en) 1995-01-18 application
EP0795001A1 (en) 1997-09-17 application
JPH10510003A (en) 1998-09-29 application
GB2295623A (en) 1996-06-05 application
CA2206260A1 (en) 1996-06-06 application

Similar Documents

Publication Publication Date Title
US6491728B2 (en) Detergent compositions containing enduring perfume
US5723426A (en) Liquid laundry detergent compositions containing surfactants and silicone emulsions
US4891160A (en) Detergent compositions containing ethoxylated amines having clay soil removal/anti-redeposition properties
USH1468H (en) Detergent compositions containing cellulase enzyme and selected perfumes for improved odor and stability
US5710116A (en) Color-safe bleach boosters, compositions and laundry methods employing same
US5560748A (en) Detergent compositions comprising large pore size redox catalysts
US6008178A (en) Detergent composition comprising cationic ester surfactant and protease enzyme
US6689732B1 (en) Detergent compositions having a specific hydrophobic peroxyacid bleaching system and anionic surfactant
US5500154A (en) Detergent compositions containing enduring perfume
EP0256696A1 (en) Detergent composition
US5780404A (en) Detergent compositions containing enduring perfume
US5955419A (en) High efficiency delivery system comprising zeolites
US6121226A (en) Compositions comprising cotton soil release polymers and protease enzymes
US6579839B2 (en) Liquid laundry detergent compositions having enhanced clay removal benefits
US6004922A (en) Laundry detergent compositions comprising cationic surfactants and modified polyamine soil dispersents
US5932532A (en) Bleach compositions comprising protease enzyme
US6057278A (en) Laundry detergent compositions comprising zwitterionic cotton soil release polymers
EP0262897A2 (en) Detergent composition
US5759208A (en) Laundry detergent compositions containing silicone emulsions
US5747440A (en) Laundry detergents comprising heavy metal ion chelants
US6291415B1 (en) Cotton soil release polymers
WO1998029530A2 (en) Laundry detergent compositions with polyamide-polyamines
WO2001032816A1 (en) Laundry detergent compositions with fabric care
WO1997011151A1 (en) Delivery systems
US5728671A (en) Soil release polymers with fluorescent whitening properties

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 19970531

AK Designated contracting states:

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

RIN1 Inventor (correction)

Inventor name: HALL, ROBIN, GIBSON

Inventor name: BAILLELY, GERARD, MARCEL

Inventor name: GUEDIRA, NOUR-EDDINE

A4 Despatch of supplementary search report

Effective date: 19980206

AK Designated contracting states:

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

17Q First examination report

Effective date: 19990924

18D Deemed to be withdrawn

Effective date: 20000105