EP0790753A1 - System for sound spatial effect and method therefor - Google Patents

System for sound spatial effect and method therefor Download PDF

Info

Publication number
EP0790753A1
EP0790753A1 EP97400248A EP97400248A EP0790753A1 EP 0790753 A1 EP0790753 A1 EP 0790753A1 EP 97400248 A EP97400248 A EP 97400248A EP 97400248 A EP97400248 A EP 97400248A EP 0790753 A1 EP0790753 A1 EP 0790753A1
Authority
EP
European Patent Office
Prior art keywords
sound
channels
transfer functions
user
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97400248A
Other languages
German (de)
French (fr)
Other versions
EP0790753B1 (en
Inventor
Maîté Thomson-CSF SCPI Courneau
Christian Thomson-CSF SCPI Gulli
Gérard Thomson-CSF SCPI Raynaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Avionics SAS
Original Assignee
Thales Avionics SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Avionics SAS filed Critical Thales Avionics SAS
Publication of EP0790753A1 publication Critical patent/EP0790753A1/en
Application granted granted Critical
Publication of EP0790753B1 publication Critical patent/EP0790753B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S3/00Systems employing more than two channels, e.g. quadraphonic
    • H04S3/002Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
    • H04S3/004For headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S2400/00Details of stereophonic systems covered by H04S but not provided for in its groups
    • H04S2400/01Multi-channel, i.e. more than two input channels, sound reproduction with two speakers wherein the multi-channel information is substantially preserved

Definitions

  • the present invention relates to a sound spatialization system, as well as to a personalization method making it possible to implement sound spatialization.
  • An airplane pilot in particular a fighter airplane, wears a stereophonic helmet which restores not only radio communications, but also various alarms and on-board communications. Radiocommunications can be satisfied with a stereophonic, or even monophonic reproduction, while the alarms and on-board communications cannot be located in relation to the pilot (or the co-pilot ).
  • the subject of the present invention is an audiophonic communication system, which makes it possible to easily discriminate the location of a determined sound source, in particular in the case of the existence of several sound sources close to the user.
  • the sound spatialization system comprises, for each monophonic channel to be spatialized, a binaural processor with two channels of convolution filters combined linearly in each channel, this processor (s) being connected to one orienting device for calculating the spatial location of sound sources, itself connected to localization devices, characterized in that it includes, for at least part of the channels, a complementary sound illustration device connected to the corresponding binaural processor, this device additional sound illustration comprising at least one of the following circuits: bandwidth widening circuit, background noise production circuit, circuit for simulating the acoustic behavior of a room, Doppler effect simulation circuit, circuit producing different sound symbols each corresponding to a specific source or alarm.
  • the personalization method according to the invention consists in estimating the head transfer functions of the user by measuring these functions at a finite number of points in the surrounding space, then by interpolating the values thus measured to be calculated the head transfer functions, for each of the user's two ears, at the point in the space where the sound source is located, and to create the "spatialized” signal from the monophonic signal to be processed by convolving it with each of the two transfer functions thus estimated. It is thus possible to "personalize" the convolution filters for each user of the system implementing this method. Each user will then be able to locate in the best possible way the virtual sound source reproduced by his audio equipment.
  • the invention is described below with reference to an aircraft audio system, in particular a combat aircraft, but it is understood that it is not limited to such an application, and that it can be implementation as well in other types of vehicles (land or sea) as in fixed installations.
  • the user of this system is, in this case, the pilot of a combat aircraft, but it is understood that there can be several users simultaneously, in particular if it is a combat aircraft. civil transport, specific devices for each user being provided in corresponding number.
  • the role of the spatialization module 1 shown in FIG. 1 is to make sound signals (tones, speech, alarms, etc.) heard using a stereo headset so that they are perceived by the listener as if they came from a particular point in space, this point can be the actual position of the sound source or an arbitrary position.
  • the pilot of a combat aircraft hears the voice of his co-pilot as if it actually came from behind him, or else an audible missile attack alert is positioned spatially at the point of arrival of the threat.
  • the position of the sound source changes in function of the pilot's head movements and of the airplane's movements: for example, an alarm generated at the azimuth "3 hours” must be found at "noon” if the pilot turns his head 90 degrees to the right.
  • the module 1 is for example connected to a digital bus 2 from which it receives information supplied by: a head position detector 3, an inertial unit 4 and / or a location device such as a goniometer, a radar, etc. ., countermeasures devices 5 (detection of external threats such as missiles) and an alarm management device 6 (signaling in particular breakdowns of aircraft instruments or equipment).
  • a head position detector 3 an inertial unit 4 and / or a location device such as a goniometer, a radar, etc. .
  • countermeasures devices 5 detection of external threats such as missiles
  • an alarm management device 6 signalaling in particular breakdowns of aircraft instruments or equipment.
  • the module 1 includes an interpolator 7, the input of which is connected to the bus 2 to which various sound sources are connected (microphones, alarms, etc.). In general, these sources are sampled at relatively low frequencies (6, 12 or 24 kHz for example).
  • the interpolator 7 makes it possible to raise these frequencies to a multiple common, for example 48 kHz in the present case, a frequency necessary for the processors located downstream.
  • This interpolator 7 is connected to n binaural processors, referenced 8 as a whole, n being the maximum number of channels to be spatialized simultaneously.
  • the outputs of the processors 8 are connected to an adder 9 whose output constitutes the output of the module 1.
  • the module 1 also comprises in the connection between at least one output of the interpolator 7 and the input of the corresponding processor of the assembly 8 an adder 10, the other input of which is connected to the output of a device 11 for additional sound illustration.
  • This device 11 produces a sound signal covering in particular the high frequencies (for example from 5 to 16 kHz) of the audio spectrum. It thus completes the useful bandwidth of the transmission channel to which its output signal is added.
  • This transmission channel can advantageously be a radio channel, but it is understood that any other channel can be completed in this way, and that several channels can be completed in the same system, by providing a corresponding number of adders such as 10.
  • radio communications use reduced bandwidths (3 to 4 kHz in general). Such a bandwidth is insufficient for correct spatialization of the sound signal. Tests have shown that high frequencies (above about 14 kHz), located beyond the limit of the vocal spectrum, allow a better localization of the source of the sound. The device 11 is then a bandwidth widening device.
  • the additional sound signal can for example be background noise characteristic of a radio link.
  • the device 11 can also be, for example, a device simulating the acoustic behavior of a room, a building, or a device simulating a Doppler effect, or even a device producing different sound symbols each corresponding to a source or a specific alarm.
  • the processors 8 each generate a signal of stereophonic type from the monophonic signal coming from the interpolator 7 to which is added if necessary, the signal from the device 11, taking into account the data supplied by the head position detector 3 of the pilot.
  • the module 1 also includes a device 12 for managing the sources to be spatialized followed by an orienter 13 with n inputs (n being defined above) controlling the n different processors of the set 8.
  • the device 13 is a calculator calculating, from the data provided by the pilot's head position detector, the orientation of the aircraft relative to the terrestrial reference (provided by the aircraft's inertial unit) and the location of the source, the coordinates in the space of the point where the sounds emitted by this source must appear to come from.
  • n2 is advantageously equal to four at most.
  • the device 12 for managing the n sources to be spatialized is a computer which receives, via bus 2, information concerning the characteristics of the sources to be spatialized (site, deposit and distance by report to the pilot), personalization criteria at the user's choice and priority information (threats, alarms, important radio communications, etc.).
  • the device 12 receives from the device 4 information concerning the evolution of the location of certain sources (or of all the sources, if applicable). From this information, the device 12 selects the source (or at most the n2 sources) to be spatialized.
  • a memory card reader 15 is used 16 for the device in order to personalize the management of sound sources by the device 12.
  • the reader 15 is connected to the bus 2.
  • the card 16 then contains the characteristics of the filtering carried out by the flags of each user's ears. In the preferred embodiment, it is a set of pairs of digital filters (that is to say coefficients representing their impulse responses) corresponding to the acoustic filtering "left ear" and "right ear” produced for various points in the space surrounding the user.
  • the database thus formed is loaded, via bus 2, into the memory associated with the various processors 8.
  • the processors 8 each essentially comprise two channels (called “left ear” and “right ear”) for convolution filtering. More precisely, the role of each of the processors 8 is on the one hand to calculate by interpolation the head transfer functions (right and left) at the point at which the source will be placed, on the other hand to create the spatial signal on two channels from the original monophonic signal.
  • head transfer functions require spatial sampling: these transfer functions are only measured in a finite number of points (of the order of 100). However to correctly "spatialize” a sound, it would be necessary to know the transfer functions at the source point of the source, determined by the orienter 13. It is therefore necessary to be satisfied with an estimation of these functions: this operation is carried out by an interpolation "barycentric" of the four pairs of functions associated with the four measurement points closest to the point of the calculated space.
  • FIG. 2 shows a part of the "grid" G thus obtained for the points Pm, Pm + 1, Pm + 2, ... Pp, Pp + 1 .... Or a point P of said sphere, determined by the orienter 13 as being located in the direction of the sound source to be "spatialized".
  • This point P is inside the curvilinear quadrilateral delimited by the points Pm + 1, Pm + 2, Pn + 1, Pn + 2.
  • the barycentric interpolation is therefore carried out for the position of P with respect to these four points.
  • the different equipment determining the orientation of the sound source and the orientation and location of the user's head provide their respective data every 20 or 40 ms ( ⁇ T), that is to say that every ⁇ T a couple of transfer functions are available.
  • ⁇ T 20 or 40 ms
  • the signal to be spatialized is in fact convoluted by a pair of filters obtained by "temporal" interpolation performed between the convolution filters spatially interpolated at times T and T + ⁇ T. It then remains only to convert the digital signals thus obtained into analog before their restitution in the user's earphones.
  • FIG. 3 which relates to a channel to be spatialized, the various attitude (position) sensors used have been shown. These are: a head attitude sensor 17, a sound source attitude sensor 18, and an attitude sensor 19 of the carrier mobile (airplane for example).
  • the information from these sensors is supplied to the orienter 13, which determines from this information the spatial position of the source relative to the head of the user (in line of sight and in distance).
  • the orienter 13 is connected to a database 20 (included in the card 16) of which it controls the loading to the processors 8 of the "left" and "right” transfer functions of the four points closest to the position of the source (see Figure 2), or possibly the measurement point (if the position of the source coincides with that of one of the measurement points in grid G).
  • transfer functions are subjected to a spatial interpolation at 21, then to a temporal interpolation at 22, and the resulting values are convolved at 23 with the signal 24 to be spatialized.
  • functions 21 and 23 are performed by the same interpolator (interpolator 7 in FIG. 1), and the convolutions are performed by the binaural processor 8 corresponding to the spatialized channel.
  • a digital-analog conversion is carried out, in 25, and the sound reproduction (amplification and sending to a stereo headset) at 26.
  • operations 20 to 23 and 25, 26 are done separately for the left channel and for the right channel.
  • the “personalized” convolution filters constituting the previously mentioned database are established from measurements using a method described below with reference to FIG. 4.
  • an automated mechanical tool 27 is installed, consisting of a semi-circular rail 28 mounted on a motorized pivot 29 fixed to the floor of this chamber.
  • the rail 28 is arranged vertically, so that its ends are on the same perpendicular.
  • a support 30 moves on which a broadband speaker 31 is mounted. This device makes it possible to place the speaker at any point on the sphere defined by the rail when the latter performs a rotation of 360 degrees around a vertical axis passing through pivot 29.
  • the precision of the positioning of the loudspeaker is one degree in elevation and in bearing, for example.
  • a first series of readings is taken: the loudspeaker 31 is placed successively at X points of the sphere, that is to say that the space is "discretized”: it is a spatial sampling. At each measurement point, a pseudo-random code is generated and reproduced by the loudspeaker 31.
  • the sound signal emitted is picked up by a pair of reference microphones placed at the center 32 of the sphere (the distance separating the microphones is the order of the width of the head of the subject whose transfer functions are to be collected), in order to measure the resulting sound pressure as a function of frequency.
  • the method is the same but this time, the subject is placed so that his ears are located at the location of the microphones (the subject checks the position of his head by video feedback).
  • the subject is provided with individualized shutter earplugs in which miniature microphones are placed.
  • Complete obturation of the duct has the following advantages: the ear is acoustically protected, and the stapedial reflex (nonexistent in this case) does not modify the acoustic impedance of the assembly.
  • the database of transfer functions can be made up either of pairs of frequency responses (convolution by multiplication in the frequency domain) or of pairs of impulse responses (classical temporal convolution), inverse Fourier transforms of the previous ones.
  • acoustic sources emitting pseudo-random binary signals tends to be generalized in the impulse response measurement technique, especially with regard to the characterization of an acoustic room by the correlation method.
  • these signals make the assumption of linearity of the acoustic collection system acceptable. They also make it possible to overcome variations in the acoustic impedance of the ossicular chain by stapedial reflex, by limiting the emission level (70 dBa). Preferably, pseudo-random binary signals of maximum length sequence are produced. The advantage of maximum length sequences lies in their spectral characteristics (white noise) and their generation mode which allows optimization of the processing processor.
  • the impulse response is obtained over time (2n-1) / fe where N is the order of the sequence and where fe is the sampling frequency. It is up to the experimenter to choose a couple of values (sequence order, fe) sufficient to have all the useful decrease of the response.
  • the sound spatialization device described above makes it possible to increase the intelligibility of the sound sources which it processes, to decrease the reaction time of the operator with respect to alarm, alert or warning signals. 'other sound indicators, the sources of which seem to be located respectively at different points in space, therefore easier to discriminate between them and easier to classify in order of importance or urgency.

Abstract

The method involves using a binaural processor (*) with two channels operating for each monophonic sound channel which is to be located. The two channels include filters which are linked to combine signals linearly within the channels. The processor is linked to an orientating device (13) which determines the spatial location of a sound source and is itself connection to a position locating device (3,4,12). Convolution of the signals is performed between the monophonic signal and the user left ear transfer function and the user right ear transfer function. These functions are specific to the particular user. The transfer functions may also include use of a phase interpolation device to determine the appropriate phase for each signal within the two channels.

Description

La présente invention se rapporte à un système de spatialisation sonore, ainsi qu'à un procédé de personnalisation permettant de mettre en oeuvre la spatialisation sonore.The present invention relates to a sound spatialization system, as well as to a personalization method making it possible to implement sound spatialization.

Un pilote d'avion, en particulier d'avion de chasse, porte un casque stéréophonique qui lui restitue non seulement les communications radiophoniques, mais également des alarmes diverses et des communications de bord. Les radiocommunications peuvent se contenter d'une restitution stéréophonique, ou même monophonique, tandis que les alarmes et les communications de bord ne peuvent être localisées par rapport au pilote (ou au copilote...).An airplane pilot, in particular a fighter airplane, wears a stereophonic helmet which restores not only radio communications, but also various alarms and on-board communications. Radiocommunications can be satisfied with a stereophonic, or even monophonic reproduction, while the alarms and on-board communications cannot be located in relation to the pilot (or the co-pilot ...).

La présente invention a pour objet un système de communication audiophonique, qui permette de discriminer facilement la localisation d'une source sonore déterminée, en particulier dans le cas de l'existence de plusieurs sources sonores à proximité de l'utilisateur.The subject of the present invention is an audiophonic communication system, which makes it possible to easily discriminate the location of a determined sound source, in particular in the case of the existence of several sound sources close to the user.

Le système de spatialisation sonore conforme à l'invention comporte, pour chaque canal monophonique à spatialiser, un processeur binaural à deux voies de filtres de convolution combinés linéairement dans chaque voie, ce (s) processeur (s) étant relié (s) à un dispositif orienteur de calcul de localisation spatiale des sources sonores, lui-même relié à des dispositifs de localisation, caractérisé en ce qu'il comporte pour au moins une partie des voies un dispositif d'illustration sonore complémentaire relié au processeur binaural correspondant, ce dispositif d'illustration sonore complémentaire comprenant au moins l'un des circuits suivants : circuit d'élargissement de bande passante, circuit de production de bruit de fond, circuit de simulation du comportement acoustique d'une salle, circuit de simulation d'effet Doppler, circuit produisant différents symboles sonores correspondant chacun à une source ou à une alarme déterminée.The sound spatialization system according to the invention comprises, for each monophonic channel to be spatialized, a binaural processor with two channels of convolution filters combined linearly in each channel, this processor (s) being connected to one orienting device for calculating the spatial location of sound sources, itself connected to localization devices, characterized in that it includes, for at least part of the channels, a complementary sound illustration device connected to the corresponding binaural processor, this device additional sound illustration comprising at least one of the following circuits: bandwidth widening circuit, background noise production circuit, circuit for simulating the acoustic behavior of a room, Doppler effect simulation circuit, circuit producing different sound symbols each corresponding to a specific source or alarm.

Le procédé de personnalisation conforme à l'invention consiste à estimer les fonctions de transfert de tête de l'utilisateur par mesure de ces fonctions en un nombre fini de points de l'espace l'environnant, puis par interpolation des valeurs ainsi mesurées à calculer les fonctions de transfert de tête, pour chacune des deux oreilles de l'utilisateur, au point de l'espace où se trouve la source sonore, et à créer le signal "spatialisé" à partir du signal monophonique à traiter en le convoluant avec chacune des deux fonctions de transfert ainsi estimées. On peut ainsi "personnaliser" les filtres de convolution pour chaque utilisateur du système mettant en oeuvre ce procédé. Chaque utilisateur pourra alors localiser de la meilleure façon possible la source sonore virtuelle restituée par son équipement audiophonique.The personalization method according to the invention consists in estimating the head transfer functions of the user by measuring these functions at a finite number of points in the surrounding space, then by interpolating the values thus measured to be calculated the head transfer functions, for each of the user's two ears, at the point in the space where the sound source is located, and to create the "spatialized" signal from the monophonic signal to be processed by convolving it with each of the two transfer functions thus estimated. It is thus possible to "personalize" the convolution filters for each user of the system implementing this method. Each user will then be able to locate in the best possible way the virtual sound source reproduced by his audio equipment.

La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple non limitatif et illustré par le dessin annexé sur lequel :

  • la figure 1 est un bloc-diagramme d'un système de spatialisation sonore conforme à l'invention,
  • la figure 2 est un schéma explicatif de l'interpolation spatiale réalisée suivant le procédé de l'invention
  • la figure 3 est un bloc-diagramme fonctionnel des principaux circuits de spatialisation de l'invention, et
  • la figure 4 est une vue simplifiée de l'appareillage de recueil des fonctions de transfert de tête conformément au procédé de l'invention.
The present invention will be better understood on reading the detailed description of an embodiment, taken by way of nonlimiting example and illustrated by the appended drawing in which:
  • FIG. 1 is a block diagram of a sound spatialization system according to the invention,
  • FIG. 2 is an explanatory diagram of the spatial interpolation carried out according to the method of the invention
  • FIG. 3 is a functional block diagram of the main spatialization circuits of the invention, and
  • Figure 4 is a simplified view of the apparatus for collecting head transfer functions according to the method of the invention.

L'invention est décrite ci-dessous en référence à un système audiophonique d'avion, en particulier d'avion de combat, mais il est bien entendu qu'elle n'est pas limitée à une telle application, et qu'elle peut être mise en oeuvre aussi bien dans d'autres types de véhicules (terrestres ou maritimes) que dans des installations fixes. L'utilisateur de ce système est, dans le cas présent, le pilote d'un avion de combat, mais il est bien entendu qu'il peut y avoir simultanément plusieurs utilisateurs, en particulier s'il s'agit d'un avion de transport civil, des dispositifs particuliers à chaque utilisateur étant prévus en nombre correspondant.The invention is described below with reference to an aircraft audio system, in particular a combat aircraft, but it is understood that it is not limited to such an application, and that it can be implementation as well in other types of vehicles (land or sea) as in fixed installations. The user of this system is, in this case, the pilot of a combat aircraft, but it is understood that there can be several users simultaneously, in particular if it is a combat aircraft. civil transport, specific devices for each user being provided in corresponding number.

Le module 1 de spatialisation représenté sur la figure 1 a pour rôle de faire entendre des signaux sonores (tonalités, parole, alarmes, ...) à l'aide d'un casque stéréophonique de telle sorte qu'ils soient perçus par l'auditeur comme s'ils provenaient d'un point particulier de l'espace, ce point pouvant être la position effective de la source sonore ou bien une position arbitraire. Ainsi, par exemple, le pilote d'un avion de combat entend la voix de son copilote comme si elle provenait effectivement de derrière lui, ou bien une alerte sonore d'attaque de missile est positionnée spatialement au point d'arrivée de la menace. En outre, la position de la source sonore évolue en fonction des mouvements de la tête du pilote et des mouvements de l'avion : par exemple une alarme générée à l'azimut "3 heures" doit se retrouver à "midi" si le pilote tourne la tête de 90 degrés vers la droite.The role of the spatialization module 1 shown in FIG. 1 is to make sound signals (tones, speech, alarms, etc.) heard using a stereo headset so that they are perceived by the listener as if they came from a particular point in space, this point can be the actual position of the sound source or an arbitrary position. Thus, for example, the pilot of a combat aircraft hears the voice of his co-pilot as if it actually came from behind him, or else an audible missile attack alert is positioned spatially at the point of arrival of the threat. In addition, the position of the sound source changes in function of the pilot's head movements and of the airplane's movements: for example, an alarm generated at the azimuth "3 hours" must be found at "noon" if the pilot turns his head 90 degrees to the right.

Le module 1 est par exemple relié à un bus numérique 2 duquel il reçoit des informations fournies par : un détecteur de position de tête 3, une centrale inertielle 4 et/ou un dispositif de localisation tel qu'un goniomètre, un radar, ..., des dispositifs de contre-mesures 5 (détection des menaces extérieures telles que des missiles) et un dispositif de gestion d'alarmes 6 (signalant en particulier des pannes d'instruments ou d'équipements de l'avion).The module 1 is for example connected to a digital bus 2 from which it receives information supplied by: a head position detector 3, an inertial unit 4 and / or a location device such as a goniometer, a radar, etc. ., countermeasures devices 5 (detection of external threats such as missiles) and an alarm management device 6 (signaling in particular breakdowns of aircraft instruments or equipment).

Le module 1 comporte un interpolateur 7 dont l'entrée est reliée au bus 2 auquel sont reliées différentes sources sonores (microphones, alarmes, ...). En général, ces sources sont échantillonnées à des fréquences relativement faibles (6, 12 ou 24 kHz par exemple). L'interpolateur 7 permet d'élever ces fréquences à un commun multiple, par exemple 48 kHz dans le cas présent, fréquence nécessaire aux processeurs situés en aval. Cet interpolateur 7 est relié à n processeurs binauraux, référencés 8 dans leur ensemble, n étant le nombre maximal de voies à spatialiser simultanément. Les sorties des processeurs 8 sont reliées à un additionneur 9 dont la sortie constitue la sortie du module 1. Le module 1 comporte également dans la liaison entre au moins une sortie de l'interpolateur 7 et l'entrée du processeur correspondant de l'ensemble 8 un additionneur 10 dont l'autre entrée est reliée à la sortie d'un dispositif 11 d'illustration sonore complémentaire.The module 1 includes an interpolator 7, the input of which is connected to the bus 2 to which various sound sources are connected (microphones, alarms, etc.). In general, these sources are sampled at relatively low frequencies (6, 12 or 24 kHz for example). The interpolator 7 makes it possible to raise these frequencies to a multiple common, for example 48 kHz in the present case, a frequency necessary for the processors located downstream. This interpolator 7 is connected to n binaural processors, referenced 8 as a whole, n being the maximum number of channels to be spatialized simultaneously. The outputs of the processors 8 are connected to an adder 9 whose output constitutes the output of the module 1. The module 1 also comprises in the connection between at least one output of the interpolator 7 and the input of the corresponding processor of the assembly 8 an adder 10, the other input of which is connected to the output of a device 11 for additional sound illustration.

Ce dispositif 11 produit un signal sonore couvrant en particulier les fréquences élevées (par exemple de 5 à 16 kHz) du spectre audio. Il complète ainsi la bande passante utile du canal de transmission auquel son signal de sortie est ajouté. Ce canal de transmission peut être avantageusement un canal radio, mais il est bien entendu que tout autre canal peut être ainsi complété, et que plusieurs canaux peuvent être complétés dans un même système, en prévoyant un nombre correspondant d'additionneurs tels que 10. En effet, les radiocommunications utilisent des bandes passantes réduites (3 à 4 kHz en général). Une telle largeur de bande est insuffisante pour une spatialisation correcte du signal sonore. Des tests ont montré que les fréquences élevées (supérieures à 14 kHz environ), situées au-delà de la limite du spectre vocal, permettent une meilleure localisation de la provenance du son. Le dispositif 11 est alors un dispositif d'élargissement de bande passante. Le signal sonore complémentaire peut par exemple être un bruit de fond caractéristique d'une liaison radio. Le dispositif 11 peut être également, par exemple, un dispositif simulant le comportement acoustique d'une salle, d'un édifice..., ou un dispositif simulant un effet Doppler, ou bien encore un dispositif produisant différents symboles sonores correspondant chacun à une source ou à une alarme déterminée.This device 11 produces a sound signal covering in particular the high frequencies (for example from 5 to 16 kHz) of the audio spectrum. It thus completes the useful bandwidth of the transmission channel to which its output signal is added. This transmission channel can advantageously be a radio channel, but it is understood that any other channel can be completed in this way, and that several channels can be completed in the same system, by providing a corresponding number of adders such as 10. In radio communications use reduced bandwidths (3 to 4 kHz in general). Such a bandwidth is insufficient for correct spatialization of the sound signal. Tests have shown that high frequencies (above about 14 kHz), located beyond the limit of the vocal spectrum, allow a better localization of the source of the sound. The device 11 is then a bandwidth widening device. The additional sound signal can for example be background noise characteristic of a radio link. The device 11 can also be, for example, a device simulating the acoustic behavior of a room, a building, or a device simulating a Doppler effect, or even a device producing different sound symbols each corresponding to a source or a specific alarm.

Les processeurs 8 génèrent chacun, un signal de type stéréophonique à partir du signal monophonique provenant de l'interpolateur 7 auquel est additionné le cas échéant, le signal du dispositif 11, en tenant compte des données fournies par le détecteur 3 de position de la tête du pilote.The processors 8 each generate a signal of stereophonic type from the monophonic signal coming from the interpolator 7 to which is added if necessary, the signal from the device 11, taking into account the data supplied by the head position detector 3 of the pilot.

Le module 1 comporte également un dispositif 12 de gestion des sources à spatialiser suivi d'un orienteur 13 à n entrées (n étant défini ci-dessus) commandant les n différents processeurs de l'ensemble 8. Le dispositif 13 est un calculateur calculant, à partir des données fournies par le détecteur de position de la tête du pilote, l'orientation de l'avion par rapport au repère terrestre (fourni par la centrale inertielle de l'avion) et la localisation de la source, les coordonnées dans l'espace du point d'où doivent sembler provenir les sons émis par cette source.The module 1 also includes a device 12 for managing the sources to be spatialized followed by an orienter 13 with n inputs (n being defined above) controlling the n different processors of the set 8. The device 13 is a calculator calculating, from the data provided by the pilot's head position detector, the orientation of the aircraft relative to the terrestrial reference (provided by the aircraft's inertial unit) and the location of the source, the coordinates in the space of the point where the sounds emitted by this source must appear to come from.

Si l'on veut spatialiser simultanément, en n2 points distincts de l'espace (avec n2≤n) n2 sources distinctes, on utilise avantageusement, en tant que dispositif 13, un orienteur à n2 entrées calculant séquentiellement les coordonnées de chaque source à spatialiser. Du fait que le nombre de sources sonores que peut distinguer un observateur moyen est généralement de quatre, n2 est avantageusement égal à quatre au maximum.If we want to spatialize simultaneously, at n2 distinct points in space (with n2≤n) n2 distinct sources, we advantageously use, as device 13, an orienter with n2 inputs sequentially calculating the coordinates of each source to be spatialized . Because the number of sound sources that an average observer can distinguish is generally four, n2 is advantageously equal to four at most.

A la sortie de l'additionneur 9, on obtient une seule voie à deux canaux (gauche et droit) qui est transmise via le bus 2 à des circuits d'écoute audio 14.At the output of the adder 9, a single two-channel channel (left and right) is obtained which is transmitted via bus 2 to audio listening circuits 14.

Le dispositif 12 de gestion des n sources à spatialiser est un calculateur qui reçoit, via le bus 2, des informations concernant les caractéristiques des sources à spatialiser (site, gisement et distance par rapport au pilote), des critères de personnalisation au choix de l'utilisateur et des informations de priorité (menaces, alarmes, communications radio importantes ...). Le dispositif 12 reçoit du dispositif 4 des informations concernant l'évolution de la localisation de certaines sources (ou de toutes les sources, le cas échéant). A partir de ces informations, le dispositif 12 sélectionne la source (ou au maximum les n2 sources) à spatialiser.The device 12 for managing the n sources to be spatialized is a computer which receives, via bus 2, information concerning the characteristics of the sources to be spatialized (site, deposit and distance by report to the pilot), personalization criteria at the user's choice and priority information (threats, alarms, important radio communications, etc.). The device 12 receives from the device 4 information concerning the evolution of the location of certain sources (or of all the sources, if applicable). From this information, the device 12 selects the source (or at most the n2 sources) to be spatialized.

De façon avantageuse, on utilise un lecteur 15 de carte à mémoire 16 pour le dispositif afin de personnaliser la gestion des sources sonores par le dispositif 12. Le lecteur 15 est relié au bus 2. La carte 16 contient alors les caractéristiques du filtrage réalisé par les pavillons des oreilles de chaque utilisateur. Dans le mode de réalisation préféré, il s'agit d'un ensemble de couples de filtres numériques (c'est-à-dire des coefficients représentant leurs réponses impulsionnelles) correspondant aux filtrages acoustiques "oreille gauche" et "oreille droite" réalisés pour divers points de l'espace environnant l'utilisateur. La base de données ainsi constituée est chargée, via le bus 2, dans la mémoire associée aux différents processeurs 8.Advantageously, a memory card reader 15 is used 16 for the device in order to personalize the management of sound sources by the device 12. The reader 15 is connected to the bus 2. The card 16 then contains the characteristics of the filtering carried out by the flags of each user's ears. In the preferred embodiment, it is a set of pairs of digital filters (that is to say coefficients representing their impulse responses) corresponding to the acoustic filtering "left ear" and "right ear" produced for various points in the space surrounding the user. The database thus formed is loaded, via bus 2, into the memory associated with the various processors 8.

Les processeurs 8 comportent chacun essentiellement deux voies (dites "oreille gauche" et "oreille droite") de filtrage par convolution. Plus précisément, le rôle de chacun des processeurs 8 est d'une part de calculer par interpolation les fonctions de transfert de tête (droite et gauche) au point en lequel sera placée la source, d'autre part de créer le signal spatialisé sur deux canaux à partir du signal monophonique original.The processors 8 each essentially comprise two channels (called "left ear" and "right ear") for convolution filtering. More precisely, the role of each of the processors 8 is on the one hand to calculate by interpolation the head transfer functions (right and left) at the point at which the source will be placed, on the other hand to create the spatial signal on two channels from the original monophonic signal.

Le recueil des fonctions de transfert de tête impose un échantillonnage spatial : ces fonctions de transfert ne sont mesurées qu'en un nombre fini de points (de l'ordre de 100). Or pour "spatialiser" correctement un son, il faudrait connaître les fonctions de transfert au point origine de la source, déterminé par l'orienteur 13. Il faut donc se contenter d'une estimation de ces fonctions: cette opération est réalisée par une interpolation "barycentrique" des quatre couples de fonctions associées aux quatre points de mesure les plus proches du point de l'espace calculé.The collection of head transfer functions requires spatial sampling: these transfer functions are only measured in a finite number of points (of the order of 100). However to correctly "spatialize" a sound, it would be necessary to know the transfer functions at the source point of the source, determined by the orienter 13. It is therefore necessary to be satisfied with an estimation of these functions: this operation is carried out by an interpolation "barycentric" of the four pairs of functions associated with the four measurement points closest to the point of the calculated space.

Ainsi, comme représenté schématiquement en figure 2, on effectue des mesures en différents points de l'espace régulièrement espacés en site et en gisement et situés sur une même sphère. On a représenté en figure 2 une partie de la "grille" G ainsi obtenue pour les points Pm, Pm+1, Pm+2, ... Pp, Pp+1 .... Soit un point P de ladite sphère, déterminé par l'orienteur 13 comme étant situé dans la direction de la source sonore à "spatialiser". Ce point P est à l'intérieur du quadrilatère curviligne délimité par les points Pm+1, Pm+2, Pn+1, Pn+2. On effectue donc l'interpolation barycentrique pour la position de P par rapport à ces quatre points. Les différents équipements déterminant l'orientation de la source sonore et l'orientation et l'emplacement de la tête de l'utilisateur fournissent leurs données respectives toutes les 20 ou 40 ms (ΔT), c'est-à-dire que tous les Δ T un couple de fonctions de transfert est disponible. Afin d'éviter des "sauts" audibles lors de la restitution (lorsque l'opérateur modifie l'orientation de sa tête, il doit percevoir un son sans coupure), le signal à spatialiser est en fait convolué par une paire de filtres obtenue par interpolation "temporelle" réalisée entre les filtres de convolution interpolés spatialement aux instants T et T+ΔT. Il ne reste alors qu'à convertir les signaux numériques ainsi obtenus en analogique avant leur restitution dans les écouteurs de l'utilisateur.Thus, as shown diagrammatically in FIG. 2, measurements are made at different points of space regularly spaced in elevation and in bearing and located on the same sphere. FIG. 2 shows a part of the "grid" G thus obtained for the points Pm, Pm + 1, Pm + 2, ... Pp, Pp + 1 .... Or a point P of said sphere, determined by the orienter 13 as being located in the direction of the sound source to be "spatialized". This point P is inside the curvilinear quadrilateral delimited by the points Pm + 1, Pm + 2, Pn + 1, Pn + 2. The barycentric interpolation is therefore carried out for the position of P with respect to these four points. The different equipment determining the orientation of the sound source and the orientation and location of the user's head provide their respective data every 20 or 40 ms (ΔT), that is to say that every Δ T a couple of transfer functions are available. In order to avoid audible "jumps" during restitution (when the operator changes the orientation of his head, he must perceive an uninterrupted sound), the signal to be spatialized is in fact convoluted by a pair of filters obtained by "temporal" interpolation performed between the convolution filters spatially interpolated at times T and T + ΔT. It then remains only to convert the digital signals thus obtained into analog before their restitution in the user's earphones.

Sur le diagramme de la figure 3, qui se rapporte à une voie à spatialiser, on a représenté les différents capteurs d'attitude (de position) mis en oeuvre. Ce sont : un capteur 17 d'attitude de tête, un capteur 18 d'attitude de la source sonore, et un capteur 19 d'attitude du mobile porteur (avion par exemple). Les informations de ces capteurs sont fournies à l'orienteur 13, qui détermine à partir de ces informations la position spatiale de la source par rapport à la tête de l'utilisateur (en ligne de visée et en distance). L'orienteur 13 est relié à une base de données 20 (incluse dans la carte 16) dont il commande le chargement vers les processeurs 8 des fonctions de transfert "gauche" et "droite" des quatre points les plus proches de la position de la source (voir figure 2), ou éventuellement du point de mesure (si la position de la source coïncide avec celle de l'un des points de mesure de la grille G). Ces fonctions de transfert sont soumises à une interpolation spatiale en 21, puis à une interpolation temporelle en 22, et les valeurs résultantes sont convoluées en 23 avec le signal 24 à spatialiser. Bien entendu, les fonctions 21 et 23 sont réalisées par le même interpolateur (interpolateur 7 de la figure 1), et les convolutions sont réalisées par le processeur binaural 8 correspondant à la voie spatialisée. Après convolution, on effectue une conversion numérique-analogique, en 25, et la restitution sonore (amplification et envoi à un casque stéréophonique) en 26. Bien entendu, les opérations 20 à 23 et 25, 26 se font séparément pour la voie gauche et pour la voie droite.In the diagram of FIG. 3, which relates to a channel to be spatialized, the various attitude (position) sensors used have been shown. These are: a head attitude sensor 17, a sound source attitude sensor 18, and an attitude sensor 19 of the carrier mobile (airplane for example). The information from these sensors is supplied to the orienter 13, which determines from this information the spatial position of the source relative to the head of the user (in line of sight and in distance). The orienter 13 is connected to a database 20 (included in the card 16) of which it controls the loading to the processors 8 of the "left" and "right" transfer functions of the four points closest to the position of the source (see Figure 2), or possibly the measurement point (if the position of the source coincides with that of one of the measurement points in grid G). These transfer functions are subjected to a spatial interpolation at 21, then to a temporal interpolation at 22, and the resulting values are convolved at 23 with the signal 24 to be spatialized. Of course, functions 21 and 23 are performed by the same interpolator (interpolator 7 in FIG. 1), and the convolutions are performed by the binaural processor 8 corresponding to the spatialized channel. After convolution, a digital-analog conversion is carried out, in 25, and the sound reproduction (amplification and sending to a stereo headset) at 26. Of course, operations 20 to 23 and 25, 26 are done separately for the left channel and for the right channel.

Les filtres de convolution "personnalisés" constituant la base de données précédemment évoquée sont établis à partir de mesures faisant appel à un procédé décrit ci-dessous en référence à la figure 4.The “personalized” convolution filters constituting the previously mentioned database are established from measurements using a method described below with reference to FIG. 4.

Dans une chambre anéchoïque, est installé un outillage mécanique automatisé 27 se composant d'un rail semi-circulaire 28 monté sur un pivot motorisé 29 fixé au sol de cette chambre. Le rail 28 est disposé verticalement, de façon que ses extrémités soient sur la même perpendiculaire. Sur ce rail 28, se déplace un support 30 sur lequel est monté un haut-parleur large bande 31. Ce dispositif permet de placer le haut-parleur en n'importe quel point de la sphère définie par le rail lorsque celui-ci effectue une rotation de 360 degrés autour d'un axe vertical passant par le pivot 29. La précision du positionnement du haut-parleur est d'un degré en site et en gisement, par exemple.In an anechoic chamber, an automated mechanical tool 27 is installed, consisting of a semi-circular rail 28 mounted on a motorized pivot 29 fixed to the floor of this chamber. The rail 28 is arranged vertically, so that its ends are on the same perpendicular. On this rail 28, a support 30 moves on which a broadband speaker 31 is mounted. This device makes it possible to place the speaker at any point on the sphere defined by the rail when the latter performs a rotation of 360 degrees around a vertical axis passing through pivot 29. The precision of the positioning of the loudspeaker is one degree in elevation and in bearing, for example.

Une première série de relevés est effectuée: le haut-parleur 31 est placé successivement en X points de la sphère, c'est-à-dire que l'espace est "discrétisé": il s'agit d'un échantillonnage spatial. En chaque point de mesure, un code pseudo-aléatoire est généré et restitué par le haut-parleur 31. Le signal sonore émis est capté par une paire de microphones de référence placée au centre 32 de la sphère (la distance séparant les microphones est de l'ordre de la largeur de la tête du sujet dont on désire recueillir les fonctions de transfert), afin de mesurer la pression acoustique résultante en fonction de la fréquence.A first series of readings is taken: the loudspeaker 31 is placed successively at X points of the sphere, that is to say that the space is "discretized": it is a spatial sampling. At each measurement point, a pseudo-random code is generated and reproduced by the loudspeaker 31. The sound signal emitted is picked up by a pair of reference microphones placed at the center 32 of the sphere (the distance separating the microphones is the order of the width of the head of the subject whose transfer functions are to be collected), in order to measure the resulting sound pressure as a function of frequency.

On effectue ensuite une seconde série de relevés: la méthode est la même mais cette fois, le sujet est placé de telle sorte que ses oreilles soient situées à l'emplacement des microphones (le sujet contrôle la position de sa tête par retour vidéo). Le sujet est muni de bouchons d'oreille obturateurs individualisés dans lesquels sont placés des microphones miniatures. L'obturation complète du conduit présente les avantages suivants : l'oreille est acoustiquement protégée, et le réflexe stapédien (inexistant dans ce cas) ne vient pas modifier l'impédance acoustique de l'ensemble.We then carry out a second series of surveys: the method is the same but this time, the subject is placed so that his ears are located at the location of the microphones (the subject checks the position of his head by video feedback). The subject is provided with individualized shutter earplugs in which miniature microphones are placed. Complete obturation of the duct has the following advantages: the ear is acoustically protected, and the stapedial reflex (nonexistent in this case) does not modify the acoustic impedance of the assembly.

Pour chaque position du haut-parleur, pour chaque oreille, après compensation des réponses des microphones miniatures et du haut-parleur, on effectue le rapport des pressions acoustiques en fonction de la fréquence, mesurées dans les deux expériences précédentes. On obtient ainsi X couples (oreille gauche, oreille droite) de fonctions de transfert.For each position of the loudspeaker, for each ear, after compensation for the responses of the miniature microphones and the loudspeaker, the acoustic pressures as a function of the frequency, measured in the two previous experiments, are carried out. X couples (left ear, right ear) of transfer functions are thus obtained.

Selon la technique de convolution utilisée, la base de données des fonctions de transfert peut être constituée soit de couples de réponses en fréquence (convolution par multiplication dans le domaine fréquentiel) soit de couples de réponses impulsionnelles (convolution temporelle classique), transformées de Fourier inverses des précédentes.According to the convolution technique used, the database of transfer functions can be made up either of pairs of frequency responses (convolution by multiplication in the frequency domain) or of pairs of impulse responses (classical temporal convolution), inverse Fourier transforms of the previous ones.

L'utilisation d'un signal obtenu par génération d'un code binaire pseudo-aléatoire permet de disposer d'une réponse impulsionnelle de grande dynamique avec un niveau sonore émis moyen (70 dBa par exemple).The use of a signal obtained by generation of a pseudo-random binary code makes it possible to have an impulse response of great dynamics with an average sound level emitted (70 dBa for example).

L'emploi des sources acoustiques émettant des signaux binaires pseudo-aléatoires tend à se généraliser dans la technique de mesure de réponse impulsionnelle, surtout en ce qui concerne la caractérisation d'un local acoustique par la méthode de corrélation.The use of acoustic sources emitting pseudo-random binary signals tends to be generalized in the impulse response measurement technique, especially with regard to the characterization of an acoustic room by the correlation method.

Outre leurs caractéristiques (fonction d'autocorrélation) et leurs propriétés particulières qui se prêtent à des optimisations (transformée d'Hadamard), ces signaux rendent acceptable l'hypothèse de linéarité du système acoustique de recueil. Ils permettent également de s'affranchir des variations d'impédance acoustique de la chaîne ossiculaire par réflexe stapédien, en limitant le niveau d'émission (70 dBa). De préférence, on produit des signaux binaires pseudo-aléatoires à séquence de longueur maximale. L'avantage des séquences à longueur maximale réside dans leurs caractéristiques spectrales (bruit blanc) et leur mode de génération qui permet une optimisation du processeur de traitement.In addition to their characteristics (autocorrelation function) and their particular properties which lend themselves to optimizations (Hadamard transform), these signals make the assumption of linearity of the acoustic collection system acceptable. They also make it possible to overcome variations in the acoustic impedance of the ossicular chain by stapedial reflex, by limiting the emission level (70 dBa). Preferably, pseudo-random binary signals of maximum length sequence are produced. The advantage of maximum length sequences lies in their spectral characteristics (white noise) and their generation mode which allows optimization of the processing processor.

Les principes de mesure à l'aide de signaux binaires pseudo-aléatoires mis en oeuvre par la présente invention sont par exemple décrits dans les ouvrages suivants :

  • J.K.Holmes : "Coherent spread spectrum systems". Wiky Interscience
  • J. Borish and J.B. Angell : "An efficient algorithm for measuring the impulse response using pseudorandom noise" J. Audio Eng. Soc., Vol. 31, n° 7, July/August 1983.
  • L. Otshudi, J.P. Quilhot: "Considérations sur les propriétés énergétiques des signaux binaires pseudo-aléatoires et sur leur utilisation comme excitateurs acoustiques". Acustica Vol. 90, pp 76-81, 1990.
The principles of measurement using pseudo-random binary signals implemented by the present invention are for example described in the following works:
  • JKHolmes: "Coherent spread spectrum systems". Wiky Interscience
  • J. Borish and JB Angell: "An efficient algorithm for measuring the impulse response using pseudorandom noise" J. Audio Eng. Soc., Vol. 31, No. 7, July / August 1983.
  • L. Otshudi, JP Quilhot: "Considerations on the energetic properties of pseudo-random binary signals and their use as acoustic exciters". Acustica Vol. 90, pp 76-81, 1990.

Ils ne sont donc rappelés que brièvement ici.They are therefore only briefly recalled here.

A partir de la génération des séquences pseudo-aléatoires, on réalise les fonctions principales suivantes :

  • génération d'un signal de référence et enregistrement concomitant des deux voies microphoniques,
  • calcul de la réponse impulsionnelle du trajet acoustique, (diffraction)
  • calcul de certains critères (gain de chaque voie, ordre du moyennage, niveau numérique de sortie, indicateur de stockage, mesure du retard binaural des 2 voies par corrélation, décalage pour simuler les retards géométriques, ...)
  • visualisation des résultats, échogrammes, courbe de décroissance, sortie sur imprimante.
From the generation of pseudo-random sequences, the following main functions are carried out:
  • generation of a reference signal and concomitant recording of the two microphone channels,
  • calculation of the impulse response of the acoustic path, (diffraction)
  • calculation of certain criteria (gain of each channel, order of averaging, digital output level, storage indicator, measurement of binaural delay of the 2 channels by correlation, offset to simulate geometric delays, ...)
  • visualization of results, echograms, decay curve, output to printer.

La réponse impulsionnelle est obtenue sur la durée (2n-1)/fe où N est l'ordre de la séquence et où fe est la fréquence d'échantillonnage. Il revient à l'expérimentateur de choisir un couple de valeurs (ordre de la séquence, fe) suffisant afin d'avoir toute la décroissance utile de la réponse.The impulse response is obtained over time (2n-1) / fe where N is the order of the sequence and where fe is the sampling frequency. It is up to the experimenter to choose a couple of values (sequence order, fe) sufficient to have all the useful decrease of the response.

Le dispositif de spatialisation sonore décrit ci-dessus permet d'augmenter l'intelligibilité des sources sonores qu'il traite, de diminuer le temps de réaction de l'opérateur vis-à-vis des signaux d'alarmes, d'alertes ou d'autres indicateurs sonores, dont les sources semblent être situées respectivement en différents points de l'espace, donc plus faciles à discriminer entre elles et plus faciles à classer par ordre d'importance ou d'urgence.The sound spatialization device described above makes it possible to increase the intelligibility of the sound sources which it processes, to decrease the reaction time of the operator with respect to alarm, alert or warning signals. 'other sound indicators, the sources of which seem to be located respectively at different points in space, therefore easier to discriminate between them and easier to classify in order of importance or urgency.

Claims (8)

Procédé de personnalisation d'un système de spatialisation sonore, caractérisé en ce qu'il consiste à estimer les fonctions de transfert de tête de l'utilisateur par mesure de ces fonctions en un nombre fini de points de l'espace l'environnant, puis par interpolation des valeurs ainsi mesurées à calculer les fonctions de transfert de tête, pour chacune des deux oreilles de l'utilisateur, au point de l'espace où se trouve la source sonore, et à créer un signal spatialisé à partir du signal monophonique à traiter en le convoluant avec chacune des deux fonctions de transfert ainsi estimées.Method for customizing a sound spatialization system, characterized in that it consists in estimating the head transfer functions of the user by measuring these functions in a finite number of points in the surrounding space, then by interpolating the values thus measured to calculate the head transfer functions, for each of the user's two ears, at the point in the space where the sound source is located, and to create a spatialized signal from the monophonic signal at deal by convolving it with each of the two transfer functions thus estimated. Procédé selon la revendication 1, caractérisé en ce que l'interpolation comporte une phase d'interpolation spatiale et une phase d'interpolation temporelle.Method according to claim 1, characterized in that the interpolation comprises a phase of spatial interpolation and a phase of temporal interpolation. Procédé selon la revendication 1 ou 2, caractérisé en ce que la source sonore émet un signal binaire pseudo-aléatoire.Method according to claim 1 or 2, characterized in that the sound source emits a pseudo-random binary signal. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'on estime les fonctions de transfert de tête en environ 100 points.Method according to any one of Claims 1 to 3, characterized in that the head transfer functions are estimated at around 100 points. Système de spatialisation de sources sonores produisant chacune des canaux monophoniques, comportant, pour chaque canal monophonique à spatialiser, un processeur binaural (8) à deux voies de filtres de convolution combinés linéairement dans chaque voie, ce (s) processeur (s) étant relié (s) à un dispositif orienteur (13) de calcul de localisation spatiale des sources sonores, lui-même relié à au moins un dispositif de localisation (3, 4, 12), caractérisé en ce qu'il comporte pour au moins une partie des voies un dispositif d'illustration sonore complémentaire (11) relié au processeur binaural correspondant, ce dispositif d'illustration sonore complémentaire comprenant au moins l'un des circuits suivants : circuit d'élargissement de bande passante, circuit de production de bruit de fond, circuit de simulation du comportement acoustique d'une salle, circuit de simulation d'effet Doppler, circuit produisant différents symboles sonores correspondant chacun à une source ou à une alarme déterminée.Spatialization system of sound sources producing each of the monophonic channels, comprising, for each monophonic channel to be spatialized, a binaural processor (8) with two channels of convolution filters combined linearly in each channel, this processor (s) being connected (s) to an orienting device (13) for calculating the spatial location of sound sources, itself connected to at least one location device (3, 4, 12), characterized in that it comprises for at least part channels a complementary sound illustration device (11) connected to the corresponding binaural processor, this complementary sound illustration device comprising at least one of the following circuits: bandwidth widening circuit, background noise production circuit , circuit for simulating the acoustic behavior of a room, circuit Doppler effect simulation, circuit producing different sound symbols each corresponding to a specific source or alarm. Système selon la revendication 5, caractérisé en ce que le dispositif de localisation est l'un au moins des dispositifs suivants: centrale inertielle (4), détecteur de position de tête (3), radar, goniomètre.System according to claim 5, characterized in that the location device is at least one of the following devices: inertial unit (4), head position detector (3), radar, goniometer. Système selon l'une des revendications 5 ou 6, caractérisé en ce qu'il est relié à un dispositif de contre-mesures (5).System according to one of claims 5 or 6, characterized in that it is connected to a countermeasuring device (5). Système selon l'une des revendications 5 à 7, caractérisé en ce qu'il est relié à un dispositif (15) lecteur de cartes à mémoire (16) dans chacune desquelles sont mémorisées les données caractéristiques du filtrage réalisé par les pavillons des oreilles de l'utilisateur correspondant.System according to one of claims 5 to 7, characterized in that it is connected to a device (15) reader for memory cards (16) in each of which are stored the data characteristic of the filtering carried out by the flags of the ears of the corresponding user.
EP97400248A 1996-02-13 1997-02-05 System for sound spatial effect and method therefor Expired - Lifetime EP0790753B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9601740A FR2744871B1 (en) 1996-02-13 1996-02-13 SOUND SPATIALIZATION SYSTEM, AND PERSONALIZATION METHOD FOR IMPLEMENTING SAME
FR9601740 1996-02-13

Publications (2)

Publication Number Publication Date
EP0790753A1 true EP0790753A1 (en) 1997-08-20
EP0790753B1 EP0790753B1 (en) 2004-01-28

Family

ID=9489132

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97400248A Expired - Lifetime EP0790753B1 (en) 1996-02-13 1997-02-05 System for sound spatial effect and method therefor

Country Status (6)

Country Link
US (1) US5987142A (en)
EP (1) EP0790753B1 (en)
JP (1) JPH1042399A (en)
CA (1) CA2197166C (en)
DE (1) DE69727328T2 (en)
FR (1) FR2744871B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758336B (en) * 2001-07-10 2010-08-18 编码技术股份公司 Efficient and scalable parametric stereo coding for low bit rate audio coding applications
FR2977335A1 (en) * 2011-06-29 2013-01-04 France Telecom Method for rendering audio content in vehicle i.e. car, involves generating set of signals from audio stream, and allowing position of one emission point to be different from position of another emission point
FR3002205A1 (en) * 2013-08-14 2014-08-22 Airbus Operations Sas Cockpit for aircraft, has attitude indicating system configured for tri-dimensionally spatializing sound signals to be transmitted to pilot according to attitude of aircraft by audio processing controller and loudspeakers

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744277B1 (en) * 1996-01-26 1998-03-06 Sextant Avionique VOICE RECOGNITION METHOD IN NOISE AMBIENCE, AND IMPLEMENTATION DEVICE
FR2765715B1 (en) 1997-07-04 1999-09-17 Sextant Avionique METHOD FOR SEARCHING FOR A NOISE MODEL IN NOISE SOUND SIGNALS
AUPP272898A0 (en) * 1998-03-31 1998-04-23 Lake Dsp Pty Limited Time processed head related transfer functions in a headphone spatialization system
FR2786107B1 (en) 1998-11-25 2001-02-16 Sextant Avionique OXYGEN INHALER MASK WITH SOUND TAKING DEVICE
JP2003521202A (en) * 2000-01-28 2003-07-08 レイク テクノロジー リミティド A spatial audio system used in a geographic environment.
JP4304845B2 (en) * 2000-08-03 2009-07-29 ソニー株式会社 Audio signal processing method and audio signal processing apparatus
WO2002052895A1 (en) * 2000-12-22 2002-07-04 Harman Audio Electronic Systems Gmbh System for auralizing a loudspeaker in a monitoring room for any type of input signals
US20030227476A1 (en) * 2001-01-29 2003-12-11 Lawrence Wilcock Distinguishing real-world sounds from audio user interface sounds
GB2374502B (en) * 2001-01-29 2004-12-29 Hewlett Packard Co Distinguishing real-world sounds from audio user interface sounds
GB2374507B (en) * 2001-01-29 2004-12-29 Hewlett Packard Co Audio user interface with audio cursor
GB2372923B (en) * 2001-01-29 2005-05-25 Hewlett Packard Co Audio user interface with selective audio field expansion
GB0127776D0 (en) * 2001-11-20 2002-01-09 Hewlett Packard Co Audio user interface with multiple audio sub-fields
GB2374506B (en) * 2001-01-29 2004-11-17 Hewlett Packard Co Audio user interface with cylindrical audio field organisation
US7346172B1 (en) * 2001-03-28 2008-03-18 The United States Of America As Represented By The United States National Aeronautics And Space Administration Auditory alert systems with enhanced detectability
US7079658B2 (en) * 2001-06-14 2006-07-18 Ati Technologies, Inc. System and method for localization of sounds in three-dimensional space
US6956955B1 (en) * 2001-08-06 2005-10-18 The United States Of America As Represented By The Secretary Of The Air Force Speech-based auditory distance display
FR2842064B1 (en) * 2002-07-02 2004-12-03 Thales Sa SYSTEM FOR SPATIALIZING SOUND SOURCES WITH IMPROVED PERFORMANCE
US20060072764A1 (en) * 2002-11-20 2006-04-06 Koninklijke Philips Electronics N.V. Audio based data representation apparatus and method
GB0419346D0 (en) * 2004-09-01 2004-09-29 Smyth Stephen M F Method and apparatus for improved headphone virtualisation
US7756281B2 (en) * 2006-05-20 2010-07-13 Personics Holdings Inc. Method of modifying audio content
JP4780119B2 (en) * 2008-02-15 2011-09-28 ソニー株式会社 Head-related transfer function measurement method, head-related transfer function convolution method, and head-related transfer function convolution device
JP2009206691A (en) * 2008-02-27 2009-09-10 Sony Corp Head-related transfer function convolution method and head-related transfer function convolution device
WO2009115299A1 (en) * 2008-03-20 2009-09-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Device and method for acoustic indication
JP5540581B2 (en) 2009-06-23 2014-07-02 ソニー株式会社 Audio signal processing apparatus and audio signal processing method
JP5163685B2 (en) * 2010-04-08 2013-03-13 ソニー株式会社 Head-related transfer function measurement method, head-related transfer function convolution method, and head-related transfer function convolution device
JP5024418B2 (en) * 2010-04-26 2012-09-12 ソニー株式会社 Head-related transfer function convolution method and head-related transfer function convolution device
JP5533248B2 (en) 2010-05-20 2014-06-25 ソニー株式会社 Audio signal processing apparatus and audio signal processing method
JP2012004668A (en) 2010-06-14 2012-01-05 Sony Corp Head transmission function generation device, head transmission function generation method, and audio signal processing apparatus
US9031256B2 (en) 2010-10-25 2015-05-12 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for orientation-sensitive recording control
US8855341B2 (en) * 2010-10-25 2014-10-07 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for head tracking based on recorded sound signals
US9552840B2 (en) 2010-10-25 2017-01-24 Qualcomm Incorporated Three-dimensional sound capturing and reproducing with multi-microphones
JP6065370B2 (en) * 2012-02-03 2017-01-25 ソニー株式会社 Information processing apparatus, information processing method, and program
US8929573B2 (en) * 2012-09-14 2015-01-06 Bose Corporation Powered headset accessory devices
WO2014073968A2 (en) * 2012-11-09 2014-05-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Vehicle spacing control
CN108806704B (en) 2013-04-19 2023-06-06 韩国电子通信研究院 Multi-channel audio signal processing device and method
CN108810793B (en) 2013-04-19 2020-12-15 韩国电子通信研究院 Multi-channel audio signal processing device and method
US9319819B2 (en) * 2013-07-25 2016-04-19 Etri Binaural rendering method and apparatus for decoding multi channel audio
EP3090576B1 (en) 2014-01-03 2017-10-18 Dolby Laboratories Licensing Corporation Methods and systems for designing and applying numerically optimized binaural room impulse responses
CN105120419B (en) * 2015-08-27 2017-04-12 武汉大学 Method and system for enhancing effect of multichannel system
WO2017135063A1 (en) * 2016-02-04 2017-08-10 ソニー株式会社 Audio processing device, audio processing method and program
US9832587B1 (en) 2016-09-08 2017-11-28 Qualcomm Incorporated Assisted near-distance communication using binaural cues
KR102283964B1 (en) * 2019-12-17 2021-07-30 주식회사 라온에이엔씨 Multi-channel/multi-object sound source processing apparatus
WO2021138517A1 (en) 2019-12-30 2021-07-08 Comhear Inc. Method for providing a spatialized soundfield
FR3110762B1 (en) 2020-05-20 2022-06-24 Thales Sa Device for customizing an audio signal automatically generated by at least one avionic hardware item of an aircraft

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700389A (en) * 1985-02-15 1987-10-13 Pioneer Electronic Corporation Stereo sound field enlarging circuit
FR2633125A1 (en) * 1988-06-17 1989-12-22 Sgs Thomson Microelectronics Acoustic apparatus with voice filtering card
WO1990007172A1 (en) * 1988-12-19 1990-06-28 Honeywell Inc. System and simulator for in-flight threat and countermeasures training
WO1994001933A1 (en) * 1992-07-07 1994-01-20 Lake Dsp Pty. Limited Digital filter having high accuracy and efficiency
EP0664660A2 (en) * 1990-01-19 1995-07-26 Sony Corporation Audio signal reproducing apparatus
US5438623A (en) * 1993-10-04 1995-08-01 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Multi-channel spatialization system for audio signals

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652164A1 (en) * 1989-09-15 1991-03-22 Thomson Csf METHOD FOR FORMATION OF TRACKS FOR SONAR, IN PARTICULAR FOR SONAR TRAILER.
US5452359A (en) * 1990-01-19 1995-09-19 Sony Corporation Acoustic signal reproducing apparatus
FR2700055B1 (en) * 1992-12-30 1995-01-27 Sextant Avionique Method for denoising vector speech and device for implementing it.
US5371799A (en) * 1993-06-01 1994-12-06 Qsound Labs, Inc. Stereo headphone sound source localization system
US5659619A (en) * 1994-05-11 1997-08-19 Aureal Semiconductor, Inc. Three-dimensional virtual audio display employing reduced complexity imaging filters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700389A (en) * 1985-02-15 1987-10-13 Pioneer Electronic Corporation Stereo sound field enlarging circuit
FR2633125A1 (en) * 1988-06-17 1989-12-22 Sgs Thomson Microelectronics Acoustic apparatus with voice filtering card
WO1990007172A1 (en) * 1988-12-19 1990-06-28 Honeywell Inc. System and simulator for in-flight threat and countermeasures training
EP0664660A2 (en) * 1990-01-19 1995-07-26 Sony Corporation Audio signal reproducing apparatus
WO1994001933A1 (en) * 1992-07-07 1994-01-20 Lake Dsp Pty. Limited Digital filter having high accuracy and efficiency
US5438623A (en) * 1993-10-04 1995-08-01 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Multi-channel spatialization system for audio signals

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758336B (en) * 2001-07-10 2010-08-18 编码技术股份公司 Efficient and scalable parametric stereo coding for low bit rate audio coding applications
FR2977335A1 (en) * 2011-06-29 2013-01-04 France Telecom Method for rendering audio content in vehicle i.e. car, involves generating set of signals from audio stream, and allowing position of one emission point to be different from position of another emission point
FR3002205A1 (en) * 2013-08-14 2014-08-22 Airbus Operations Sas Cockpit for aircraft, has attitude indicating system configured for tri-dimensionally spatializing sound signals to be transmitted to pilot according to attitude of aircraft by audio processing controller and loudspeakers

Also Published As

Publication number Publication date
CA2197166A1 (en) 1997-08-14
CA2197166C (en) 2005-08-16
JPH1042399A (en) 1998-02-13
DE69727328D1 (en) 2004-03-04
DE69727328T2 (en) 2004-10-21
FR2744871A1 (en) 1997-08-14
FR2744871B1 (en) 1998-03-06
US5987142A (en) 1999-11-16
EP0790753B1 (en) 2004-01-28

Similar Documents

Publication Publication Date Title
EP0790753B1 (en) System for sound spatial effect and method therefor
US10433098B2 (en) Apparatus and method for generating a filtered audio signal realizing elevation rendering
EP3320692B1 (en) Spatial audio processing apparatus
US10334357B2 (en) Machine learning based sound field analysis
EP3441966A1 (en) System and method for determining audio context in augmented-reality applications
EP1992198B1 (en) Optimization of binaural sound spatialization based on multichannel encoding
US9237398B1 (en) Motion tracked binaural sound conversion of legacy recordings
FR2995754A1 (en) OPTIMIZED CALIBRATION OF A MULTI-SPEAKER SOUND RESTITUTION SYSTEM
CN104756526A (en) Signal processing device, signal processing method, measurement method, and measurement device
BR112015014380B1 (en) FILTER AND METHOD FOR INFORMED SPATIAL FILTRATION USING MULTIPLE ESTIMATES OF INSTANT ARRIVE DIRECTION
EP1658755B1 (en) Sound source spatialization system
JP2007158731A (en) Sound collecting/reproducing method and apparatus
EP3260875A1 (en) An automotive testing method, system and computer program product
EP2042000B1 (en) Method and device for diagnosing the operating state of a sound system
EP1502475B1 (en) Method and system of representing a sound field
FR2858403A1 (en) SYSTEM AND METHOD FOR DETERMINING REPRESENTATION OF AN ACOUSTIC FIELD
Martin A computational model of spatial hearing
FR2805433A1 (en) SIGNAL COMPARISON METHOD AND DEVICE FOR TRANSDUCER CONTROL AND TRANSDUCER CONTROL SYSTEM
JP5867799B2 (en) Sound collecting / reproducing apparatus, program, and sound collecting / reproducing method
FR3112017A1 (en) Electronic equipment including a distortion simulator
JP2021013063A (en) Audio signal processing device, audio signal processing method and audio signal processing program
EP0356327B1 (en) Apparatus for picking up sound signals with noise cancellation
Iida et al. Acoustic VR System
WO2023043963A1 (en) Systems and methods for efficient and accurate virtual accoustic rendering
JP2023122230A (en) Acoustic signal processing device and program

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19980115

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-CSF SEXTANT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES AVIONICS S.A.

17Q First examination report despatched

Effective date: 20021203

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69727328

Country of ref document: DE

Date of ref document: 20040304

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041029

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090203

Year of fee payment: 13

Ref country code: DE

Payment date: 20090129

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090204

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100205