EP0758732B1 - Kühlgerät - Google Patents

Kühlgerät Download PDF

Info

Publication number
EP0758732B1
EP0758732B1 EP19960112307 EP96112307A EP0758732B1 EP 0758732 B1 EP0758732 B1 EP 0758732B1 EP 19960112307 EP19960112307 EP 19960112307 EP 96112307 A EP96112307 A EP 96112307A EP 0758732 B1 EP0758732 B1 EP 0758732B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
plate
cooling space
refrigerator
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19960112307
Other languages
English (en)
French (fr)
Other versions
EP0758732A2 (de
EP0758732A3 (de
Inventor
Eugen Schmid
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Hausgeraete Ochsenhausen GmbH
Liebherr Hausgeraete GmbH
Original Assignee
Liebherr Hausgeraete Ochsenhausen GmbH
Liebherr Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE29603716U external-priority patent/DE29603716U1/de
Application filed by Liebherr Hausgeraete Ochsenhausen GmbH, Liebherr Hausgeraete GmbH filed Critical Liebherr Hausgeraete Ochsenhausen GmbH
Publication of EP0758732A2 publication Critical patent/EP0758732A2/de
Publication of EP0758732A3 publication Critical patent/EP0758732A3/de
Application granted granted Critical
Publication of EP0758732B1 publication Critical patent/EP0758732B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/022Evaporators with plate-like or laminated elements
    • F25B39/024Evaporators with plate-like or laminated elements with elements constructed in the shape of a hollow panel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0411Treating air flowing to refrigeration compartments by purification by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/08Refrigerator tables
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/02Geometry problems

Definitions

  • the invention relates to a refrigerator with a normal cold room, preferably with a normal cold room and a freezer compartment, whose evaporator consists of two evaporator sections connected in series with pipe sections carrying the refrigerant, of which the section in which the with a control device provided compressor that introduces refrigerant, the freezer compartment assigned.
  • thermostat The usual control of a refrigerator with freezer takes place by a thermostat, the temperature sensor of which is in the normal cold room and preferably located on the evaporator plate.
  • the Switch-on values of this thermostat are designed so that the Evaporator section for the normal cold room in every switch-off phase defrosting the compressor. To do this, the temperature on the surface the evaporator of the normal cold room at least above 0 ° C increase. Switch-on values of the thermostat at 3 ° C are common up to 5 ° C. This means that in the case where the switch-on value of the thermostat is, for example, 5 ° C, at one The ambient temperature drops below 5 ° C at all no longer switches on, so that the temperature inevitably increases in the freezer.
  • the goods in the freezer compartment can then heat until thawing so that the cooling device is no longer is fully functional. Even at ambient temperatures above 5 ° C to about 9 ° C there are still significant problems, the required Observe the minimum temperature in the freezer compartment because of the relative Duty cycle of the compressor is too short for to provide the evaporator compartment with the required cooling capacity.
  • the relative duty cycle of the compressor to the minimum to coordinate the required cooling capacity of the freezer compartment.
  • the cooling requirement for the refrigerator compartment is very small.
  • the cold room evaporator connected in series with the freezer evaporator is, the cold room evaporator also receives due to the on Cold requirement of the freezer compartment coordinated relative duty cycle the compressor has a relatively large amount of refrigerant. In order not to overcool the normal cold room, the cold room evaporator is made very small.
  • the cold room evaporator forms in addition to its function as a heat exchanger Dehumidification plate, on which the condensate is deposited, so that the condensed water is targeted from the cold room evaporator drain in gutters and over them, for example for evaporation to the compressor can.
  • Cooling space evaporator formed dehumidification area become too small, so that there is condensation on other parts of the Cold room can come, preferably on the cooling compartment ceiling, which is due to the neighboring freezer compartment on a lower one are below the dew point temperature can, and on the glass plates.
  • the problem of unwanted condensation in other places than on the cold room evaporator plate is not just about Refrigerators with a normal cold room and a freezer compartment, but also for refrigerators that do not have a freezer compartment.
  • the object of the invention is therefore a refrigerator of the beginning to create specified type, in which one leads to a dripping Condensation on parts of the refrigerator other than that Cold room evaporator is prevented.
  • this object is achieved at the beginning with a cooling device specified type solved in that the normal cold room assigned evaporator or evaporator section from a plate consists of a good heat-conducting material, the size of which is used for Dehumidification required area is designed, and that the plate thus connected to the pipe section carrying the refrigerant is that the temperature distribution is essentially the same the cooling capacity required for the normal cold room becomes.
  • Cooling capacity per surface is too large.
  • Such a small chilled one Area with high cooling capacity leads to dehumidification essentially only in the vicinity of the cooling surface, so that the moisture in the areas of the normal cold room enriches that of the area supplying the cooling capacity are further away.
  • the supply of cooling power through a Small area also has the disadvantage that it is too freezing of this surface can occur, which reduces the cooling capacity sinks.
  • the cooling capacity per Reduced area of the evaporator plate so that it the required Cooling capacity with a reduced surface temperature supplies.
  • the normal cold room assigned evaporator plate designed so large that it forms a sufficiently large dehumidification area, and secondly kept at such a temperature that it needed the Cooling power supplies.
  • the pipe section carrying the refrigerant can be used with the cooling space evaporator plate only over part of its length and / or over Heat poorer conductive material, such that the normal cold room despite the enlarged plate due to thermal Decoupling only the required cooling capacity is supplied.
  • the connected to the evaporator plate of the normal cold room or running in this plate and leading the refrigerant Pipe section corresponding to the heat output to be transferred Has length.
  • the pipe section can be clamped or conventional connections directly to the evaporator plate connected or integrated into the plate as is the case with roll or Z-bond evaporator boards is.
  • the refrigerant pipe section at least is connected to the plate over part of its length, or runs in this and that the plate with recesses or window-like Breakthroughs is provided.
  • the plate with recesses or window-like Breakthroughs can be the total area that the evaporator plate its outline after occupies, enlarge it further so that the flat Area over which the cooling capacity is supplied, still further is enlarged.
  • the plate is expediently provided with rows of cutouts, the pipe sections carrying the refrigerant between run in rows.
  • the pipe sections carrying the refrigerant expediently run, apart from the marginal rows, only between every other row of recesses. This way, in each section of the evaporator plate, which has the rows of recesses is provided, the cold is introduced only from one side, so that there is a particularly good, even temperature distribution comes over the plate.
  • the thermal Coupling of the pipe section assigned to the normal cold room selected on the evaporator plate of the normal cold room is that their temperature is substantially below the dew point temperature lies.
  • the size of the evaporator plate and their thermal coupling to the refrigerant Pipe section expediently chosen so that on the Condensate that temporarily forms the cooling compartment ceiling evaporates again and then settles on the evaporator plate of the normal cold room, if their temperature after restarting the compressor again below the dew point temperature and the temperature the cooling compartment ceiling is located.
  • the one that is assigned to the normal cold room Evaporator plate designed so large that it is sufficient forms large dehumidification area, and so thermally to the the refrigerant pipe section coupled or at complete heat-conducting connection with the evaporator plate only run so long that the surface temperature of the evaporator plate is just below the dew point. So that leaves a significantly larger surface area in the normal cold room, arrange an evaporator plate forming a heat exchanger or due to a much larger wall area of the normal cold room, if the evaporator is foamed in behind the cold room wall, supply the cooling capacity without the cooling capacity for the Normal cold room becomes too large and the cold room temperature as a result sinks too far.
  • the wall surface can be the cooling capacity is supplied to the normal cooling room, clearly enlarge.
  • the recesses themselves are made by the existing plastic wall of the normal cold room closed so that the temperature during the switch-on phases the compressor from the edges of the recesses to their middle Areas gradually decreases, so that the recessed Areas still participate in the transmission of the cooling capacity.
  • the arrangement of the recesses in the evaporator plate enables once the direct connection of the refrigerant leading Pipe section with this or the integration of this Section in this, so the reproducibility of the transfer the cooling capacity on the evaporator plate is cheaper than with a point-only coupling or a coupling only over short distances or insulating materials to the evaporator plate.
  • the type of thermal coupling of the pipe section to the evaporator plate or the length of that connected to the evaporator plate Leave the pipe section and the size of the evaporator plate calculate for the different types of cooling units or also determine empirically.
  • the surface of the evaporator plate of the normal cold room so large that they its function as a dehumidifying plate, the thermal coupling of the dehumidification and evaporator plate the pipe section carrying the refrigerant or its length to make and choose that the cooling capacity is not too gets high and still during the start-up phases of the compressor the dew point temperature is fallen below.
  • the liquefied refrigerant is sent to the evaporator via a capillary tube fed, which forms a throttle body. Because that liquefied Refrigerant has a relatively high temperature which leads the liquefied refrigerant to the capillary tube Line in the suction line through which the compressor evaporated refrigerant is sucked out of the evaporator. This will the liquefied refrigerant is cooled because the one in the intake manifold Refrigerant vapor is still on a proportionate basis low temperature. Nevertheless, this is in the capillary tube relaxed refrigerant before this still on a higher Temperature so that the residual heat of the refrigerant is dissipated must become what worsens the energy balance.
  • This feed of heat to the cold room evaporator plate is not only in the Vaporizer plate according to the invention expedient, which only with reduced Heat conduction to the pipe section carrying the refrigerant is coupled, but also with conventional cooling devices with 3-star subject. Because with cooling devices it is known at ambient temperatures below normal ambient temperatures a heating device in the normal cold room or behind the wall to arrange the normal cold room, the heat the normal cold room feeds if due to the too small temperature difference between the temperature of the normal cold room and the ambient temperature a temperature that ensures the target temperature in the freezer compartment, relative duty cycle of the compressor is no longer reached becomes. The supply of heat to the cold room evaporator a section of the conduit carrying the liquefied refrigerant can therefore be an additional heating device in the normal cold room make redundant.
  • the transition area of the evaporator is between the deep-freeze evaporator section and the normal cold room evaporator section, located in the area of the normal cold room, critical because this transition area is on a deeper level Temperature as the main area of the freezer evaporator is located, so that this transition part in an undesirable manner tends to freeze.
  • a further preferred embodiment of the invention for the independent protection is claimed, provided that a Section of the liquefied refrigerant leading to the capillary Pipe in the transition area between the two evaporator sections is installed in or near the normal cold room.
  • This liquefied refrigerant is expediently located leading line section in thermally conductive connection with the Transition area, so that it is ensured that this critical Transition area during compressor downtimes defrosts.
  • the cooling device shown schematically with reference to FIGS. 3 and 4 Conventional type consists of a housing 1 with an outer shell and Inner shell, with the space between the shells to Thermal insulation is foamed with a polyurethane foam.
  • the U-shaped curved evaporator section assigned to the freezer compartment 2 3 is arranged behind the shell of the freezer compartment and foamed.
  • the evaporator section assigned to the normal cooling space 4 5 is behind the inner normal cold room shell foamed.
  • Both evaporator sections 3, 5 are made of one common roll or Z-bond evaporator board bent out and connected to each other by a narrow board strip 6, in which the lines are arranged through which the two Evaporator sections are connected in series with each other.
  • the condenser is in the usual way behind the rear wall of the refrigerator 7 arranged and in a niche of the refrigerator housing
  • the compressor 8 is located on the cold room evaporator section a thermostat 9 is arranged, which the starting frequency controls the compressor.
  • a cooling device of this type can at high ambient temperatures and / or high humidity and / or high door opening frequency condensate on the cooling compartment ceiling below of the freezer or on glass plates so that Can drain water.
  • FIG. 3 a refrigerator can be seen, in which a corresponding the small cooling requirement of the normal cold room in size reduced evaporator plate 10 arranged in the normal cold room whose lower edge is indicated by the dashed line 11 is.
  • the front and the Back are effective as dehumidifying surfaces, the entire range is sufficient Size of the dehumidification area due to the reduced normal cold room evaporator not out to the normal cold room completely to dehumidify and condensation, for example to prevent the normal cold room ceiling.
  • the only point or section connection of the refrigerant leading coil 14 with the dehumidifying evaporator plate 10, 12 can in the usual way by spot welding, crimping, Glue or clamp connections.
  • FIG. 4 is a schematic plan view of a behind the Evaporator plate 15 foamed into the rear wall of a normal cooling space seen.
  • This consists of a so-called roll or Z-bond evaporator board, in the roughly rectangular course the pipe section 16 carrying the refrigerant is arranged.
  • the board is with four rows of side by side rectangular recesses 17 provided.
  • the influence of the vertical branches of the pipe section is neglected here. This could go through this bordering lateral, gap-shaped recesses diminished become.
  • each row of recesses 17 their cooling capacities essentially only from a horizontal one Branch of the pipe section, they run at a board with four rows of recesses between the first and second and between third and fourth rows, so that they are spaced from the top and bottom from a and from each other have a distance of aa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

Die Erfindung betrifft ein Kühlgerät mit einem Normalkühlraum, vorzugsweise mit einem Normalkühlraum und einem Tiefkühlfach, dessen Verdampfer aus zwei in Reihe geschalteten Verdampferabschnitten mit das Kältemittel führenden Rohrabschnitten besteht, von denen der Abschnitt, in den der mit einer Steuereinrichtung versehene Kompressor das Kältemittel einleitet, dem Tiefkühlfach zugeordnet ist.
Bei üblichen Kühlgeräten mit einem Normalkühlraum und einem 3-Sterne-Tiefkühlfach sind das zusammenhängende Verdampfersystem und die Isolation des Geräts grundsätzlich so ausgelegt, daß bei normalen Umgebungstemperaturen (+16 °C bis +32 °C) das Tiefkühlfach bei bestimmten Stellungen des die Temperatur im Normalkühlraum regelnden Thermostaten mindestens -18 °C einhält, während der Normalkühlraum entsprechend der Stellung des Thermostaten Temperaturen zwischen 0 °C und +5 °C aufweisen darf. Bei beispielsweise 25 °C Umgebungstemperatur und einer Temperatur von 5 °C des Normalkühlraums bedeutet dies eine Temperaturdifferenz von der Umgebungstemperatur zum Normalkühlraum von 20 K und zum 3-Sterne-Tiefkühlfach von 43 K. Aufgrund dieser Werte ist die Stärke der Isolation um das 3-Sterne-Tiefkühlfachs des Kühlgeräts herum in der Regel ergeblich dicker als um den Normalkühlraum.
Probleme bei der Einhaltung der Mindesttemperatur von -18 °C im Tiefkühlfach ergeben sich bei tieferen Umgebungstemperaturen, da beispielsweise bei 10 °C Umgebungstemperatur die Differenz der Umgebungstemperatur zur Temperatur des Normalkühlraums mit 5 °C nur noch 5 K und zum Tiefkühlfach 28 K beträgt.
Die übliche Steuerung eines Kühlgeräts mit Tiefkühlfach erfolgt durch einen Thermostaten, dessen Temperaturfühler sich im Normalkühlraum und vorzugsweise an der Verdampferplatte befindet. Die Einschaltwerte dieses Thermostaten sind so ausgelegt, daß der Verdampferabschnitt für den Normalkühlraum in jeder Ausschaltphase des Kompressors abtaut. Hierzu muß die Temperatur an der Oberfläche des Verdampfers des Normalkühlraums mindestens über 0 °C ansteigen. Üblich sind Einschaltwerte des Thermostaten bei 3 °C bis 5 °C. Dies bedeutet, daß in dem Fall, in dem der Einschaltwert des Thermostaten beispielsweise bei 5 °C liegt, bei einem Absinken der Umgebungstemperatur unter 5 °C der Thermostat überhaupt nicht mehr einschaltet, so daß zwangsläufig die Temperatur im Tiefkühlfach ansteigt. Das Gut in dem Tiefkühlfach kann sich dann bis zum Auftauen erwärmen, so daß das Kühlgerät nicht mehr voll funktionsfähig ist. Auch bei Umgebungstemperaturen über 5 °C bis etwa 9 °C bestehen noch erhebliche Probleme, die erforderliche Mindesttemperatur im Tiefkühlfach einzuhalten, da die relative Einschaltdauer des Kompressors zu gering ist, um die für das Verdampferfach erforderliche Kälteleistung zu erbringen.
Um sicherzustellen, daß die Mindesttemperatur im Tiefkühlfach auch dann aufrechterhalten wird, wenn die Umgebungstemperatur unter die Normaltemperatur, also unter 16 °C, absinkt, ist es bekannt, die relative Einschaltdauer des Kompressors auf die mindest erforderliche Kälteleistung des Tiefkühlfachs abzustimmen. Bei zum Zwecke der Energieeinsparung stark isolierten Kühlgeräten ist der Kältebedarf für das Kühlteil sehr klein. Da der Kühlraumverdampfer mit dem Tiefkühlfachverdampfer in Reihe geschaltet ist, erhält auch der Kühlraumverdampfer infolge der auf den Kältebedarf des Tiefkühlfachs abgestimmten relativen Einschaltdauer des Kompressors eine verhältnismäßig hohe Menge von Kühlmittel. Um den Normalkühlraum nicht zu stark zu kühlen, wird daher der Kühlraumverdampfer sehr klein gemacht. Der Kühlraumverdampfer bildet neben seiner Funktion als Wärmetauscher auch die Entfeuchtungsplatte, auf der sich das Kondensat niederschlägt, so daß das auskondensierte Wasser gezielt von dem Kühlraumverdampfer in Auffangrinnen abtropfen und über diese beispielsweise zum Zwecke des Verdampfens zum Kompressor, abgeleitet werden kann.
Bei hohen Umgebungstemperaturen und/oder hoher Luftfeuchtigkeit und/oder hoher Türöffnungsfrequenz kann die durch den kleinen Kühlraumverdampfer gebildete Entfeuchtungsfläche zu klein werden, so daß es zu einer Kondensatbildung an anderen Teilen des Kühlraums kommen kann, und zwar bevorzugt an der Kühlteildecke, die sich aufgrund des benachbarten Gefrierfachs auf einer tieferen unter der Taupunkttemperatur liegenden Temperatur befinden kann, und an den Glasplatten. Bildet sich Kondensat an anderen Stellen als auf der Kühlraumverdampferplatte, kann das auskondensierte Wasser nicht gezielt abgeführt werden, sondern es tropft in unerwünschter Weise auch auf das Kühlgut.
Das Problem der unerwünschten Kondensatbildung an anderen Stellen als auf der Kühlraumverdampferplatte besteht nicht nur bei Kühlgeräten mit einem Normalkühlraum und einem Tiefkühlfach, sondern auch bei Kühlgeräten, die kein Tiefkühlfach besitzen.
Aufgabe der Erfindung ist es daher, ein Kühlgerät der eingangs angegebenen Art zu schaffen, bei dem eine zu einem Abtropfen führende Kondensatbildung an anderen Teilen des Kühlraums als dem Kühlraumverdampfer verhindert wird.
Erfindungsgemäß wird diese Aufgabe bei einem Kühlgerät der eingangs angegebenen Art dadurch gelöst, daß der dem Normalkühlraum zugeordnete Verdampfer bzw. Verdampferabschnitt aus einer Platte aus gut wärmeleitendem Material besteht, deren Größe auf die zur Entfeuchtung benötigte Fläche ausgelegt ist, und daß die Platte derart mit dem das Kältemittel führenden Rohrabschnitt verbunden ist, daß dieser bei im wesentlichen gleicher Temperaturverteilung die für den Normalkühlraum erforderliche Kälteleistung zugeführt wird.
Wird die Kühlleistung dem Normalkühlraum durch eine kleine gekühlte Fläche zugeführt, ergibt sich der Nachteil, daß die Kühlleistung pro Fläche zu groß ist. Eine derart kleine gekühlte Fläche mit hoher Kühlleistung führt dazu, daß eine Entfeuchtung im wesentlichen nur in der Umgebung der Kühlfläche erfolgt, so daß sich die Feuchtigkeit in den Bereichen des Normalkühlraums anreichert, die von der die Kühlleistung zuführenden Fläche weiter entfernt sind. Die Zuführung der Kühlleistung durch eine kleine Fläche hat weiterhin den Nachteil zur Folge, daß es zu einem Vereisen dieser Fläche kommen kann, wodurch die Kühlleistung sinkt.
Bei dem erfindungsgemäßen Kühlgerät wird die Kühlleistung pro Fläche der Verdampferplatte verringert, so daß diese die benötigte Kälteleistung mit einer verringerten Oberflächentemperatur zuführt. Nach der Erfindung wird also die dem Normalkühlraum zugeordnete Verdampferplatte einmal so groß ausgebildet, daß sie eine genügend große Entfeuchtungsfläche bildet, und zum anderen auf einer derartigen Temperatur gehalten, daß sie die benötigte Kälteleistung zuführt.
Der das Kältemittel führende Rohrabschnitt kann mit der Kühiraumverdampferplatte nur über einen Teil seiner Länge und/oder über Wärme schlechter leitendes Material verbunden sein, derart, daß dem Normalkühlraum trotz vergrößerter Platte durch thermische Abkopplung nur die erforderliche Kälteleistung zugeführt wird.
Nach einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß der mit der Verdampferplatte des Normalkühlraums verbundene oder in dieser Platte verlaufende und das Kältemittel führende Rohrabschnitt eine der zu übertragenden Wärmeleistung entsprechende Länge aufweist. Der Rohrabschnitt kann durch Klemmverbindungen oder Verbindungen üblicher Art unmittelbar mit der Verdampferplatte verbunden oder aber auch in die Platte integriert sein, wie dies bei Roll- oder Z-Bond-Verdampferplatinen der Fall ist.
Nach einer bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß der das Kältemittel führende Rohrabschnitt zumindest über einen Teil seiner Länge mit der Platte verbunden ist oder in dieser verläuft und daß die Platte mit Aussparungen oder fensterartigen Durchbrüchen versehen ist. Durch diese Aussparungen läßt sich die Gesamtfläche, die die Verdampferplatte ihrem Umriß nach einnimmt, noch weiter vergrößern, so daß der flächige Bereich, über den die Kälteleistung zugeführt wird, noch weiter vergrößert wird.
Zweckmäßigerweise ist die Platte mit Reihen von Aussparungen versehen, wobei die das Kältemittel führenden Rohrabschnitte zwischen den Reihen verlaufen.
Zweckmäßigerweise verlaufen die das Kältemittel führenden Rohrabschnitte, abgesehen von den randseitigen Reihen, nur zwischen jeder zweiten Reihe der Aussparungen. Auf diese Weise wird in jeden Abschnitt der Verdampferplatte, die mit den Reihen von Aussparungen versehen ist, nur von einer Seite her die Kälte eingeleitet, so daß es zu einer besonders guten, gleichmäßigen Temperaturverteilung über die Platte kommt.
Auskondensierte Feuchtigkeit schlägt sich auf Teilen nieder, deren Temperatur unter der Taupunkttemperatur liegt. Während der Ausschaltzeiten des Kompressors steigt die Temperatur der Verdampferplatte des Kühlraums auf über 0 °C an, was zum Abtauen der Verdampferplatte und des auf dieser verlegten Rohrabschnitts oder der Kühlraumwandungen, hinter denen der Verdampfer eingeschäumt ist, erforderlich ist. Es ist daher möglich, daß vorübergehend während der Ausschaltzeiten des Kompressors beispielsweise die Kühlteildecke eine Temperatur aufweist, die unter der der Verdampferplatte und unter der Taupunkttemperatur liegt. Dennoch darf sich während der Zeiten, in denen eventuell die Temperatur der Kühlteildecke vorübergehend unter der der Verdampferplatte liegt, sich nicht so viel Feuchtigkeit auf der Kühlteildecke niederschlagen, daß es zu einem Abtropfen kommen kann. In weiterer Ausgestaltung der Erfindung ist daher vorgesehen, daß die thermische Ankopplung des dem Normalkühlraum zugeordneten Rohrabschnitts an die Verdampferplatte des Normalkühlraums so gewählt ist, daß deren Temperatur im wesentlichen unter der Taupunkttemperatur liegt. Dabei werden die Größe der Verdampferplatte und deren thermische Ankopplung an den das Kältemittel führenden Rohrabschnitt zweckmäßigerweise so gewählt, daß sich auf der Kühlteildecke vorübergehend bildendes Kondensat wieder verdampft und sich dann auf der Verdampferplatte des Normalkühlraums niederschlägt, wenn deren Temperatur nach erneutem Anlaufen des Kompressors wieder unter der Taupunkttemperatur und der Temperatur der Kühlteildecke liegt.
Nach der Erfindung wird also die dem Normalkühlraum zugeordnete Verdampferplatte so groß ausgebildet, daß sie eine genügend große Entfeuchtungsfläche bildet, und derart thermisch an den das Kältemittel führenden Rohrabschnitt angekoppelt oder bei vollständiger wärmeleitender Verbindung mit der Verdampferplatte nur so lang ausgeführt, daß die Oberflächentemperatur der Verdampferplatte nur knapp unter dem Taupunkt liegt. Damit läßt sich in dem Normalkühlraum eine flächenmäßig deutlich vergrößerte, einen Wärmetauscher bildende Verdampferplatte anordnen oder durch eine sehr viel größere Wandfläche des Normalkühlraums, wenn der Verdampfer hinter der Kühlraumwandung eingeschäumt ist, die Kälteleistung zuführen, ohne daß die Kälteleistung für den Normalkühlraum zu groß wird und die Kühlraumtemperatur dadurch zu weit absinkt.
Ist die mit Durchbrüchen versehene Verdampferplatte hinter einer Kühlraumwandung eingeschäumt, läßt sich die Wandfläche, durch die dem Normalkühlraum die Kälteleistung zugeführt wird, deutlich vergrößern. Die Aussparungen selbst werden durch die aus einer Kunststoffplatte bestehende Wandung des Normalkühlraums geschlossen, so daß die Temperatur während der Einschaltphasen des Kompressors von den Rändern der Aussparungen zu deren mittleren Bereichen hin graduell abnimmt, so daß auch die ausgesparten Bereiche noch an der Übertragung der Kälteleistung teilhaben.
Die Anordnung der Aussparungen in der Verdampferplatte ermöglicht einmal die unmittelbare Verbindung des das Kältemittel führenden Rohrabschnitts mit dieser oder die Integration dieses Abschnitts in diese, so daß die Reproduzierbarkeit der Übertragung der Kälteleistung auf die Verdampferplatte günstiger ist als bei einer nur punktuellen Ankopplung oder einer Ankopplung nur über kurze Strecken oder isolierende Stoffe an die Verdampferplatte. Durch die Anordnung der Aussparungen in der Verdampferplatte läßt sich diese über eine gewünschte größere Fläche der Normalkühlraum-Innenwandung strecken.
Die Art der thermischen Ankopplung des Rohrabschnitts an die Verdampferplatte oder die Länge des mit der Verdampferplatte verbundenen Rohrabschnitts und die Größe der Verdampferplatte lassen sich für die unterschiedlichen Kühlgerätetypen berechnen oder auch empirisch ermitteln. In jedem Falle ist die Fläche der Verdampferplatte des Normalkühlraums so groß zu wählen, daß sie ihrer Funktion als Entfeuchtungsplatte gerecht wird, wobei die thermische Ankopplung der Entfeuchtungs- und Verdampferplatte an den das Kältemittel führenden Rohrabschnitt oder dessen Länge so vorzunehmen und zu wählen ist, daß die Kälteleistung nicht zu hoch wird und dennoch während der Einschaltphasen des Kompressors die Taupunkttemperatur unterschritten wird.
Dem Verdampfer wird das verflüssigte Kältemittel über ein Kapillarrohr zugeführt, das ein Drosselorgan bildet. Da das verflüssigte Kältemittel eine relativ hohe Temperatur aufweist, wird die das verflüssigte Kältemittel zu dem Kapillarrohr führende Leitung in der Saugleitung verlegt, über die der Kompressor das verdampfte Kältemittel aus dem Verdampfer ansaugt. Dadurch wird das verflüssigte Kältemittel gekühlt, da der in dem Saugrohr vorhandene Kältemitteldampf immer noch auf einer verhältnismäßig tiefen Temperatur liegt. Dennoch befindet sich das im Kapillarrohr entspannte Kältemittel vor diesem immer noch auf einer höheren Temperatur, so daß auch die Restwärme des Kältemittels abgeführt werden muß, was die Energiebilanz verschlechtert.
Um die Restwärme des verflüssigten Kältemittels in günstiger Weise auszunutzen, ist nach einer bevorzugten Ausführungsform der Erfindung, für die selbständiger Schutz beansprucht wird, vorgesehen, daß ein Abschnitt der verflüssigtes Kältemittel zu dem Kapillarrohr führenden Leitung in wärmeleitender Verbindung mit der Normalkühlraumverdampferplatte steht. Diese Ausgestaltung führt einmal dazu, daß dem verflüssigten Kältemittel ein Teil der Restwärme entzogen wird, was energetische Vorteile hat und zu einer Verbesserung des Wirkungsgrades führt, und daß der Kühlraumverdampferplatte Wärme zugeführt wird, so daß deren Kälteleistung in erwünschter Weise herabgesetzt wird. Diese Zuführung von Wärme zu der Kühlraumverdampferplatte ist nicht nur bei der erfindungsgemäßen Verdampferplatte zweckmäßig, die nur mit verringerter Wärmeleitung an den das Kältemittel führenden Rohrabschnitt angekoppelt ist, sondern auch bei üblichen Kühlgeräten mit 3-Sterne-Fach. Denn bei Kühlgeräten ist es bekannt, bei unter normalen Umgebungstemperaturen liegenden Umgebungstemperaturen eine Heizeinrichtung im Normalkühlraum oder hinter der Wandung des Normalkühlraums anzuordnen, die dem Normalkühlraum Wärme zuführt, wenn aufgrund der zu geringen Temperaturdifferenz zwischen der Temperatur des Normalkühlraums und der Umgebungstemperatur eine die Soll-Temperatur im Tiefkühlfach gewährleistende, relative Einschaltdauer des Kompressors nicht mehr erreicht wird. Die Zuführung von Wärme zu dem Kühlraumverdampfer durch einen Abschnitt der das verflüssigte Kältemittel führenden Leitung kann daher eine zusätzliche Heizeinrichtung im Normalkühlraum überflüssig machen.
Bei Kühlgeräten mit einem Normalkühlraum und einem Tiefkühlfach, deren Verdampfer aus zwei in Reihe geschalteten Verdampferabschnitten bestehen, ist der Übergangsbereich des Verdampfers zwischen dem Tiefkühlverdampferabschnitt und dem Normalkühlraumverdampferabschnitt, der sich im Bereich des Normalkühlraums befindet, kritisch, weil sich dieser Übergangsbereich auf einer tieferen Temperatur als die Hauptfläche des Gefrierfachverdampfers befindet, so daß dieser Übergangsteil in unerwünschter Weise zu einem Vereisen neigt. Um ein derartiges Vereisen dieses kritischen Übergangsbereichs des Verdampfers zu vermeiden, ist nach einer weiteren bevorzugten Ausführungsform der Erfindung, für die selbständiger Schutz beansprucht wird, vorgesehen, daß ein Abschnitt der verflüssigtes Kältemittel zu dem Kapillarrohr führenden Leitung im Übergangsbereich zwischen den beiden Verdampferabschnitten im oder nahe dem Normalkühlraum verlegt ist. Zweckmäßigerweise befindet sich dieser verflüssigtes Kältemittel führende Leitungsabschnitt in wärmeleitender Verbindung mit dem Übergangsbereich, so daß gewährleistet ist, daß auch dieser kritische Übergangsbereich während der Stillstandszeiten des Kompressors abtaut.
Ein Ausführungsbeispiel der Erfindung wird nachstehend anhand der Zeichnung näher erläutert. In dieser zeigt
Fig. 1
eine perspektivische Ansicht eines Kühlgeräts, teilweise im Schnitt, der mit der erfindungsgemäß vergrößerten Entfeuchtungsverdampferplatte versehen ist,
Fig. 2
eine Draufsicht auf eine hinter der Rückwand des Normalkühlraums eingeschäumte und mit Aussparungen versehene Verdampferplatte,
Fig. 3
eine Rückansicht eines üblichen Kühlgeräts mit einem Normalkühlraum und einem Tiefkühlfach und
Fig. 4
einen Schnitt durch das Kühlgerät längs der Linie II-II in Fig. 3.
Das anhand der Fig. 3 und 4 schematisch dargestellte Kühlgerät üblicher Art besteht aus einem Gehäuse 1 mit Außenschale und Innenschale, wobei der Zwischenraum zwischen den Schalen zur Wärmeisolierung mit einem Polyurethanschaum ausgeschäumt ist. Der U-förmig gebogene, dem Tiefkühlfach 2 zugeordnete Verdampferabschnitt 3 ist hinter der Schale des Tiefkühlfachs angeordnet und eingeschäumt. Auch der dem Normalkühlraum 4 zugeordnete Verdampferabschnitt 5 ist hinter der inneren Normalkühlraumschale eingeschäumt. Beide Verdampferabschnitte 3, 5 sind aus einer gemeinsamen Roll- oder Z-Bond-Verdampfer-Platine herausgebogen und durch einen schmalen Platinenstreifen 6 miteinander verbunden, in dem die Leitungen angeordnet sind, durch die die beiden Verdampferabschnitte in Reihe miteinander geschaltet sind.
Hinter der Rückwand des Kühlgeräts ist in üblicher Weise der Verflüssiger 7 angeordnet und in einer Nische des Kühlgerätegehäuses befindet sich der Kompressor 8. Auf dem Kühlraumverdampferabschnitt ist ein Thermostat 9 angeordnet, der die Einschaltfrequenz des Kompressors steuert.
Bei dem aus den Fig. 3 und 4 ersichtlichen bekannten Kühlgerät ist nur eine sehr kleine Entfeuchtungsfläche vorgesehen, die durch den Bereich der Rückwand des Normalkühlraums gebildet wird, hinter der sich der Normalkühlraumverdampferabschnitt befindet. Bei einem Kühlgerät dieser Art kann sich infolgedessen bei hohen Umgebungstemperaturen und/oder hoher Feuchte und/oder hoher Türöffnungsfrequenz Kondensat an der Kühlteildecke unterhalb des Tiefkühlfachs oder auch an Glasplatten bilden, so daß Wasser abtropfen kann.
Aus Fig. 3 ist ein Kühlschrank ersichtlich, bei dem eine entsprechend dem geringen Kältebedarf des Normalkühlraums in ihrer Größe verringerte Verdampferplatte 10 in dem Normalkühlraum angeordnet ist, deren untere Kante durch die gestrichelte Linie 11 bezeichnet ist. Obwohl bei einer in dem Normalkühlraum frei hängend angeordneten Verdampferplatte deren Vorderseite und deren Rückseite als Entfeuchtungsflächen wirksam sind, reicht die gesamte Größe der Entfeuchtungsfläche wegen des verkleinerten Normalkühlraumverdampfers nicht aus, um den Normalkühlraum vollständig zu entfeuchten und eine Kondensatbildung beispielsweise an der Normalkühlraumdecke zu verhindern.
Um unter allen Bedingungen eine ausreichende Entfeuchtung des Normalkühlraums sicherzustellen, ist die Normalkühlraumverdampferplatte 10 um die gestrichelt gekennzeichnete Verdampferplatte 12 vergrößert, der sich an die gestrichelt eingezeichnete Unterkante der Verdampferplatte 10 einstückig anschließt. Um durch diese Art der Vergrößerung der Verdampferplatte die Kälteleistung für den Normalkühlraum nicht unzulässig zu steigern, ist die Verdampferplatte 10, 12 nur an den durch eingezeichnete Kreuze 13 gekennzeichneten Punkten mit der Verdampferplatte verbunden.
Die nur punktweise oder abschnittweise Verbindung der das Kältemittel führenden Rohrschlange 14 mit der Entfeuchtungsverdampferplatte 10, 12 kann in üblicher Weise durch Punktschweißung, Verkrimpen, Verkleben oder durch Klemmverbindungen erfolgen.
Unter der Entfeuchtungsverdampferplatte 10, 12 sind in üblicher Weise Rinnen zum Auffangen und Abführen des abtropfenden Wassers vorgesehen.
Aus Fig. 4 ist eine schematische Draufsicht auf eine hinter der Rückwand eines Normalkühlraums eingeschäumte Verdampferplatte 15 ersichtlich. Diese besteht aus einer sogenannten Roll- oder Z-Bond-Verdampferplatine, in der etwa mit rechteckigem Verlauf der das Kältemittel führende Rohrabschnitt 16 angeordnet ist. Die Platine ist mit vier Reihen von nebeneinander liegenden rechteckigen Aussparungen 17 versehen. Dabei verlaufen die waagerechten Zweige der Rohrabschnitte 16 in der Weise zwischen den Reihen der Aussparungen 17, daß jeder Reihe die Kälteleistung jeweils nur von einem horizontalen Zweig des Rohrabschnitts 16 zugeführt wird. Der Einfluß der vertikalen Zweige des Rohrabschnitts wird hierbei vernachlässigt. Dieser könnte auch durch diese einfassende seitliche, spaltförmige Ausnehmungen gemindert werden. Um zu gewährleisten, daß jede Reihe der Aussparungen 17 ihre Kälteleistungen im wesentlichen nur jeweils von einem horizontalen Zweig des Rohrabschnitts erhält, verlaufen diese bei einer Platine mit vier Reihen von Aussparungen zwischen der ersten und zweiten sowie zwischen der dritten und vierten Reihe, so daß sie von dem oberen und unteren Rand jeweils einen Abstand von a und voneinander einen Abstand von aa aufweisen.

Claims (10)

  1. Kühlgerät mit einem Normalkühlraum, und einem Tiefkühlfach, dessen Verdampfer aus zwei in Reihe geschalteten Verdampferabschnitten mit das Kältemittel führenden Rohrabschnitten besteht, von denen der Abschnitt, in den der mit einer Steuereinrichtung versehene Kompressor das Kältemittel einleitet, dem Tiefkühlfach zugeordnet ist,
    dadurch gekennzeichnet, daß der dem Normalkühlraum zugeordnete Verdampfer bzw. Verdampferabschnitt aus einer Platte aus gut wärmeleitendem Material besteht, deren Größe auf die zur Entfeuchtung benötigte Fläche ausgelegt ist, und
    daß die Platte derart mit dem das Kältemittel führenden Rohrabschnitt verbunden ist, daß dieser bei im wesentlichen gleicher Temperaturverteilung die für den Normalkühlraum erforderliche Kälteleistung zugeführt wird.
  2. Kühlgerät nach Anspruch 1, dadurch gekennzeichnet, daß der das Kältemittel führende Rohrabschnitt mit der Kühlraumverdampferplatte nur über einen Teil seiner Länge und/oder über Wärme schlechter leitendes Material verbunden ist, derart, daß dem Normalkühlraum trotz der vergrößerten Platte durch thermische Abkopplung nur die erforderliche Kälteleistung zugeführt wird.
  3. Kühlgerät nach Anspruch 1, dadurch gekennzeichnet, daß der mit der Kühlraumverdampferplatte verbundene oder in dieser Platte verlaufende Rohrabschnitt eine der zu übertragenden Kälteleistung entsprechende Länge aufweist.
  4. Kühlgerät nach Anspruch 1, dadurch gekennzeichnet, daß der das Kältemittel führende Rohrabschnitt mit der Kühlraumverdampferplatte zumindest über einen Teil seiner Länge verbunden ist oder in dieser verläuft und daß die Platte mit Aussparungen oder fensterartigen Durchbrüchen versehen ist.
  5. Kühlgerät nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß die Kühlraumverdampferplatte mit Reihen von Aussparungen versehen ist und Teile des mit dieser verbundenen Rohrabschnitts zwischen den Reihen verlaufen.
  6. Kühlgerät nach Anspruch 5, dadurch gekennzeichnet, daß Teile der Rohrabschnitte, abgesehen von den randseitigen Reihen, nur zwischen jeder zweiten Reihe verlaufen.
  7. Kühlgerät nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Verdampferplatte hinter mindestens einer Wandung des Normalkühlraums, vorzugsweise hinter der Rückwandung, eingeschäumt ist.
  8. Kühlgerät nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die thermische Ankopplung des dem Normalkühlraum zugeordneten Rohrabschnitts an die Normalkühlraumverdampferplatte oder dessen mit dieser verbundene Länge so gewählt ist, daß die Temperatur der Normalkühlraumverdampferplatte bzw. die Temperatur der Normalkühlraumwand, hinter der die Verdampferplatte eingeschäumt ist, im wesentlichen unter der Taupunkttemperatur liegt.
  9. Kühlgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Abschnitt der verflüssigtes Kältemittel zu dem Kapillarrohr führenden Leitung in wärmeleitender Verbindung mit der Normalkühlraumverdampferplatte steht.
  10. Kühlgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Abschnitt der verflüssigtes Kältemittel zu dem Kapillarrohr führenden Leitung im Übergangsbereich zwischen den beiden Verdampferabschnitten im oder nahe dem Kühlraum verlegt ist und in wärmeleitender Verbindung mit diesem Übergangsbereich steht.
EP19960112307 1995-08-16 1996-07-30 Kühlgerät Expired - Lifetime EP0758732B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE29513175 1995-08-16
DE29513175U 1995-08-16
DE29603716U DE29603716U1 (de) 1995-08-16 1996-02-29 Kühlgerät
DE29603716U 1996-02-29

Publications (3)

Publication Number Publication Date
EP0758732A2 EP0758732A2 (de) 1997-02-19
EP0758732A3 EP0758732A3 (de) 2000-07-12
EP0758732B1 true EP0758732B1 (de) 2002-12-04

Family

ID=26058140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19960112307 Expired - Lifetime EP0758732B1 (de) 1995-08-16 1996-07-30 Kühlgerät

Country Status (2)

Country Link
EP (1) EP0758732B1 (de)
ES (1) ES2099057T3 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29716572U1 (de) 1997-09-15 1997-12-04 Liebherr-Hausgeräte GmbH, 88416 Ochsenhausen Kühlgerät mit einem Normalkühlraum und einem Tiefkühlfach
IT246294Y1 (it) * 1998-01-09 2002-04-08 Whirlpool Co Frigorifero domestico
DE20001253U1 (de) 2000-01-25 2001-06-07 Liebherr-Hausgeräte GmbH, 88416 Ochsenhausen Kühlgerät mit einem Kühl-, einem Kaltlager- und einem Gefrierfach
KR100451221B1 (ko) * 2001-11-16 2004-10-02 엘지전자 주식회사 가연성 냉매를 이용한 직냉식 냉장고
DE202023102953U1 (de) 2023-05-30 2023-06-21 BINDER GmbH Rollbond-Verdampfer-Platte

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2390808A (en) * 1943-07-21 1945-12-11 Gen Electric Refrigerator
US2640329A (en) * 1949-09-24 1953-06-02 Ingvardsen Johan Freder Ingvar Cold plate with means to prevent condensation
FR2193186A1 (de) * 1972-07-20 1974-02-15 Soissonnais Manufacture
FR2203687B1 (de) * 1972-10-20 1975-06-13 Bonnet Ets
DD108809A1 (de) * 1973-04-12 1974-10-05
DE3306869A1 (de) * 1983-02-26 1984-08-30 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Kuehlgeraet mit einem waermeuebertrager

Also Published As

Publication number Publication date
EP0758732A2 (de) 1997-02-19
EP0758732A3 (de) 2000-07-12
ES2099057T3 (es) 2003-07-01
ES2099057T1 (es) 1997-05-16

Similar Documents

Publication Publication Date Title
EP0758732B1 (de) Kühlgerät
DE212014000178U1 (de) Kühlschrank
WO2016091621A1 (de) No-frost-kältegerät
WO2015018683A1 (de) Kältegerät mit seitenwandverflüssiger
WO2008077750A1 (de) Kältegerät mit einem eisbereiter
EP2376852B1 (de) Kältegerät mit mehreren fächern
DE19510268A1 (de) Kühlgerät mit einem Normalkühlraum und einem Tiefkühlfach
DE29603716U1 (de) Kühlgerät
DE2623879C2 (de) Kühlmöbel, insbesondere Zweitemperaturen-Kühlschrank
DE102018212209A1 (de) Einkreis-Kältegerät
WO2017025270A1 (de) Einkreis-kältegerät
EP3030848A1 (de) Kältegerät mit einem verdampfer
DE3314056A1 (de) Kuehlgeraet, insbesondere gefrierschrank oder dgl.
DE1751732C3 (de) Kühlmöbel
EP1427973B1 (de) Kältegerät mit zwei verdampfern
DE3109958A1 (de) Kuehlgeraet
DE3814238C2 (de)
EP0752563A2 (de) Verdampferanordnung für Haushalts-Kältegeräte
DE3224452A1 (de) Kuehlmoebel, insbesondere zweitemperaturen-einkreis-kuehlschrank
EP0902244B1 (de) Kühlgerät mit einem Normalkühlraum und einem Tiefkühlfach
DE1501053A1 (de) Kompressions-Kuehlschrank,insbesondere fuer den Haushalt
CH495540A (de) Verfahren zum Kühlen von Kühlräumen und Kühlschrank zur Durchführung des Verfahrens
DE19818288A1 (de) Kühlgerät
EP2396610A2 (de) Kältegerät mit vergleichmässigter temperaturverteilung
DE1601010C3 (de) Kühlgerät, insbesondere Zweitemperaturen-Kühlschrank

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR IT NL SE

ITCL It: translation for ep claims filed

Representative=s name: BUGNION S.P.A.

TCNL Nl: translation of patent claims filed
EL Fr: translation of claims filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: BA2A

Ref document number: 2099057

Country of ref document: ES

Kind code of ref document: T1

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR IT NL SE

17P Request for examination filed

Effective date: 20000629

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020422

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT NL SE

REF Corresponds to:

Ref document number: 59609940

Country of ref document: DE

Date of ref document: 20030116

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2099057

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060725

Year of fee payment: 11

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20080201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060719

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090722

Year of fee payment: 14

Ref country code: ES

Payment date: 20090707

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090731

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090723

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59609940

Country of ref document: DE

Effective date: 20110201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100730

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731