EP0745114B1 - Process for generating burnable gas - Google Patents

Process for generating burnable gas Download PDF

Info

Publication number
EP0745114B1
EP0745114B1 EP95908915A EP95908915A EP0745114B1 EP 0745114 B1 EP0745114 B1 EP 0745114B1 EP 95908915 A EP95908915 A EP 95908915A EP 95908915 A EP95908915 A EP 95908915A EP 0745114 B1 EP0745114 B1 EP 0745114B1
Authority
EP
European Patent Office
Prior art keywords
gas
gasification
process stage
temperature carbonization
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95908915A
Other languages
German (de)
French (fr)
Other versions
EP0745114A1 (en
Inventor
Bodo Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRG Kohlenstoffrecycling GmbH
Original Assignee
CRG Kohlenstoffrecycling GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRG Kohlenstoffrecycling GmbH filed Critical CRG Kohlenstoffrecycling GmbH
Publication of EP0745114A1 publication Critical patent/EP0745114A1/en
Application granted granted Critical
Publication of EP0745114B1 publication Critical patent/EP0745114B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1625Integration of gasification processes with another plant or parts within the plant with solids treatment
    • C10J2300/1628Ash post-treatment

Definitions

  • the invention relates to a method for producing fuel gas from water and ballasted organic substances such as coal, municipal and industrial Sludge, wood and biomass, municipal and industrial waste and refuse as well as waste products, residues and others.
  • the invention can be used in particular for energy recovery of biomass and wood from cyclically cultivated agricultural areas, especially recultivated mining areas and thus for the design of carbon dioxide neutral Converting natural fuels into mechanical and Thermal energy and for the useful disposal of municipalities, Commercial, agricultural and industrial waste, other organic waste, Residues, by-products and waste products.
  • Procedures determine accordingly for combustion, degassing and gasification individually or in combination State of the art with the following objectives: - Production of combustion gas as Thermal energy source for steam generation by combustion, - production of high calorific solid and liquid fuels such as coke, charcoal and liquid, oil-like tars through smoldering, degassing and gasification, - production of fuel gas while avoiding solid and liquid fuels through complete Gasification.
  • the process management decides whether the receive liquid and large molecular carbonization products or also by Oxidation be gasified.
  • the oldest type of gasification is fixed bed gasification, where fuel and Gasification agents are moved in countercurrent to each other. This procedure achieve the highest possible gasification efficiency with the lowest possible Oxygen demand.
  • the disadvantage of this type of gasification is that in Gasification gas the fuel lamp and all known liquid smoldering products are included. This type of gasification also requires lumpy fuel.
  • the gasification in the fluidized bed, known as Winkler gasification eliminated this lack of fixed bed gasification largely, but not completely.
  • gasifying bituminous fuels e.g. not always the necessary Freedom from tar of the gasification gas as used for the application of the gas Fuel required for internal combustion engines is reached. Furthermore is due to the higher average temperature level during process control compared to fixed bed gasification the oxygen consumption clearly higher.
  • the temperature level of the Winkler gasification has the consequence that a large part of the carbon input is not converted into fuel gas, but in the form of dust and, bound to the ashes, from the process again is carried out.
  • This lack of gasification technology can be compensated with the high temperature entrained flow gasification processes, which are usually above the melting point the ashes work, be avoided.
  • Waste is broken down by carbonization into carbonization gas and carbonization and thus into one required for gasification in an exothermic entrained-flow gasification Form prepared.
  • the transition to exothermic entrained flow gasification is combined with increasing oxygen demand and decreasing efficiency, although the organic matter of waste is almost entirely in Fuel gas is converted.
  • the causes are the high temperature level of these gasification processes, which have the consequence that a large part of the Fuel heat is converted into physical enthalpy of the fuel gas.
  • DE 42 09 549 remedies this deficiency by combining partial flow combustion / endothermic Entrained flow gasification a pyrolysis for thermal Preparation of the fuels, especially waste materials, upstream.
  • the lack this method is that here the hot gasifying agent by combustion of pyrolysis coke with air and / or oxygen and that Olefins, aromatics and others containing smoldering gas is used for the reduction.
  • the invention aims to provide a process for the gasification of organic substances, in particular water and ballast, to propose that the inorganic Share of these substances as a glazed, elution-resistant product and the organic Substance of these substances to tar-free fuel gas, which also converts to synthesis gas can be converted, compared to the prior art Entrained-flow gasification lower consumption of oxygen-containing gasifying agent as well as compared to the fluidized bed process and entrained-flow gasification higher gasification efficiency, based on the applied chemical Enthalpy of the fuel gas.
  • the technical problem to be solved by the invention is to provide a portion of the physical enthalpy required for reaching the temperature level above the melting point of the inorganic portion of the substances to be gasified is required to return to chemical enthalpy as the process continues convert.
  • the inorganic substance contains ballast, organic materials into a glazed, elution-resistant building material is reduced when the need for oxygen-containing gasifying agent is reduced the level of fluidized bed gasification and complete gasification of the organic matter at a temperature level that the Winkler gasification corresponds to and, measured by the chemical enthalpy of the fuel gas, higher gasification efficiency compared to the prior art.
  • This material is cut to an edge length of 20 to 50 mm in a shredder (1) crushed and indirectly via a gas-tight lock system (2) heated smoldering chamber (3) working under normal pressure, in which the feed material is moved mechanically if necessary.
  • a gas-tight lock system (2) heated smoldering chamber (3) working under normal pressure, in which the feed material is moved mechanically if necessary.
  • the indirect Heat supply (4) dries and smoldered the feed, it disintegrates a final temperature of 400 to 500 ° C in approx. 405 kg of solid, which is approximately too 40% carbon, while the rest is mineral, Glass, iron and non-ferrous metals as well as heavy metals and ashes, and 595 kg Smoldering gas, which consists of almost two thirds of water vapor, and all contains other known liquid and gaseous smoldering products.
  • the solids from the carbonization are in carbonization gas in a sieve (5) a coarse fraction mainly containing minerals, glass and scrap metal with an edge length greater than 5 mm and a small-grain carbon carrier Cut.
  • the coarse fraction is extracted from the via gas-tight lock systems (6) Process carried out and possibly passed to a separation.
  • the carbon carrier remains in the system and is passed through a continuous mill (7) and via a pneumatic conveying system (8), the recirculated fuel gas as the conveying medium used, fed to a reduction chamber (9).
  • the inorganic part of Carbon carrier is used with that in the reduction chamber (9) Carbon separated in a gas dedusting (10) and together with the in the smoldering chamber (3) produced smoldering gas from a smelting chamber combustion (11) supplied and there with oxygen above the melting temperature of the inorganic substance of the carbon carrier burned.
  • the resulting one Liquid slag is discharged into a water bath (12) and from there as elution-resistant Building material granules removed from the process.
  • Combustion gas enters the reduction chamber from the melting chamber furnace (11) (9), where part of its carbon dioxide and water vapor is associated with the Carbon carrier reacts endothermically to carbon monoxide and hydrogen, whereby the gas temperature drops to 800 to 900 ° C.
  • the feeding of the in the gas dedusting (10) accumulating carbon-containing dust Melting chamber firing (11) is also carried out with a pneumatic conveyor system (13), which uses recycled fuel gas as the carrier medium. That so
  • the fuel gas generated corresponds in its composition to a fuel gas that at 800 to 900 ° C during the gasification of the organic matter of the feed with oxygen under normal pressure. It is comparable to an after the gasification gas generated in the fluidized bed gasification process when used an oxygen-water vapor mixture as a gasifying agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)
  • Catalysts (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

PCT No. PCT/EP95/00443 Sec. 371 Date Aug. 14, 1996 Sec. 102(e) Date Aug. 14, 1996 PCT Filed Feb. 8, 1995 PCT Pub. No. WO95/21903 PCT Pub. Date Aug. 17, 1995A process is disclosed for generating burnable gas by gasifying water- and ballast-containing organic materials, be it coal or garbage. The drying, low temperature carbonization and gasification steps are carried out separately. The heat taken form cooled gasified gas is supplied to the endothermic drying low temperature in low temperature carbonation stages. The low temperature carbonization gas is burned in a melting chamber furnace with air and/or oxygen or oxygen-rich flue gas and the liquid slag is evacuated, whereas the low temperature carbonization coke is blown into the hot combustion gases that leave the melting reactions which take place and give carbon monoxide and hydrogen reduce the carbon is removed from the gasified gas, supplied to the melting chamber furnace and completely burned. The advantage of the invention is that the ashes may be transformed into an elution-resistant granulated building material, in that a tar-free burnable gas is generated and in that oxygen consumption is strongly reduced in comparison with the fly stream gasification process.

Description

Die Erfindung betrifft ein Verfahren zur Erzeugung von Brenngas aus wasser- und ballasthaltigen organischen Stoffen, wie Kohle, kommunale und industrielle Schlämme, Holz und Biomassen, Kommunaler und industrieller Müll und Abfall sowie Abprodukte, Reststoffe und anderes.The invention relates to a method for producing fuel gas from water and ballasted organic substances such as coal, municipal and industrial Sludge, wood and biomass, municipal and industrial waste and refuse as well as waste products, residues and others.

Die Erfindung kann insbesondere angewendet werden zur energetischen Verwertung von Biomassen und Holz von zyklisch bebauten landwirtschaftlichen Flächen, insbesondere rekultivierten Bergbauflächen und damit zur Gestaltung kohlendioxidneutraler Umwandlung natürlicher Brennstoffe in mechanische und Wärmeenergie sowie für die nutzbringende Entsorgung von Kommunen, Gewerbe, Landwirtschaft und Industrie von Müll, sonstigen organischen Abfällen, Reststoffen, Neben- und Abprodukten.The invention can be used in particular for energy recovery of biomass and wood from cyclically cultivated agricultural areas, especially recultivated mining areas and thus for the design of carbon dioxide neutral Converting natural fuels into mechanical and Thermal energy and for the useful disposal of municipalities, Commercial, agricultural and industrial waste, other organic waste, Residues, by-products and waste products.

Der Stand der Technik ist gekennzeichnet durch eine Vielzahl von Vorschlägen und praktischen Anwendungen zur energetischen Nutzung von Pflanzen sowie organischen Abfällen bis hin zum Müll aus Kommunen, Gewerbe, Industrie und Landwirtschaft. Ein im November 1981 von der Kernforschungsanlage Jülich GmbH durchgeführtes Seminar faßt den Stand der Technik zur thermischen Gaserzeugung aus Biomasse, d.h. der Ver- und Entgasung zusammen, der auch heute noch den Stand der Technik weitgehend charakterisiert (Bericht der Kernforschungsanlage Jülich - Jülconf-46). Dementsprechend bestimmen Verfahren zur Verbrennung, Entgasung und Vergasung einzeln oder in Kombination den Stand der Technik mit folgenden Zielen: - Produktion von Verbrennungsgas als Wärmeenergieträger zur Dampferzeugung durch Verbrennung, - Produktion von hochkalorischen festen und flüssigen Brennstoffen, wie Koks, Holzkohle und flüssigen, ölähnlichen Teeren durch Schwelung, Ent- und Vergasung, - Produktion von Brenngas unter Vermeidung fester und flüssiger Brennstoffe durch vollständige Vergasung.The prior art is characterized by a large number of proposals and practical applications for the energetic use of plants as well organic waste to municipal, commercial, industrial and waste Agriculture. One in November 1981 from the Jülich nuclear research facility GmbH held seminar summarizes the state of the art in thermal Gas generation from biomass, i.e. the gasification and degassing together, that too still largely characterizes the state of the art today (report of the nuclear research facility Jülich - Jülconf-46). Procedures determine accordingly for combustion, degassing and gasification individually or in combination State of the art with the following objectives: - Production of combustion gas as Thermal energy source for steam generation by combustion, - production of high calorific solid and liquid fuels such as coke, charcoal and liquid, oil-like tars through smoldering, degassing and gasification, - production of fuel gas while avoiding solid and liquid fuels through complete Gasification.

Bei den Vergasungsverfahren entscheidet die Prozeßführung darüber, ob die flüssigen und großmolekularen Schwelprodukte erhalten oder ebenfalls durch Oxidation vergast werden. In the gasification process, the process management decides whether the receive liquid and large molecular carbonization products or also by Oxidation be gasified.

Die älteste Art der Vergasung ist die Vergasung im Festbett, wobei Brennstoff und Vergasungsmittel im Gegenstrom zueinander bewegt werden. Diese Verfahren erreichen den höchstmöglichen Vergasungswirkungsgrad bei geringstmöglichem Sauerstoffbedarf. Der Nachteil dieser Art der Vergasung besteht darin, daß im Vergasungsgas die Brennstoffeuchte und alle bekannten flüssigen Schwelprodukte enthalten sind. Außerdem erfordert diese Art der Vergasung stückigen Brennstoff. Die Vergasung in der Wirbelschicht, bekannt als Winklervergasung, beseitigte diesen Mangel der Festbettvergasung weitestgehend, aber nicht vollständig. Bei der Vergasung bituminöser Brennstoffe wird z.B. nicht immer die notwendige Teerfreiheit des Vergasungsgases, wie sie für die Anwendung des Gases als Brennstoff für Verbrennungskraftmaschinen erforderlich ist, erreicht. Darüber hinaus ist aufgrund des höheren durchschnittlichen Temperaturniveaus bei der Prozessführung gegenüber der Festbettvergasung der Sauerstoffverbrauch deutlich höher. Außerdem hat das Temperaturniveau der Winklervergasung zur Folge, daß ein Großteil des eingetragenen Kohlenstoffes nicht in Brenngas umgesetzt, sondern in Form von Staub und, gebunden an die Asche, aus dem Prozeß wieder ausgetragen wird. Dieser Mangel der Vergasungstechnik kann mit den Hochtemperaturflugstromvergasungsverfahren, die in der Regel oberhalb des Schmelzpunktes der Asche arbeiten, vermieden werden.The oldest type of gasification is fixed bed gasification, where fuel and Gasification agents are moved in countercurrent to each other. This procedure achieve the highest possible gasification efficiency with the lowest possible Oxygen demand. The disadvantage of this type of gasification is that in Gasification gas the fuel lamp and all known liquid smoldering products are included. This type of gasification also requires lumpy fuel. The gasification in the fluidized bed, known as Winkler gasification, eliminated this lack of fixed bed gasification largely, but not completely. When gasifying bituminous fuels e.g. not always the necessary Freedom from tar of the gasification gas as used for the application of the gas Fuel required for internal combustion engines is reached. Furthermore is due to the higher average temperature level during process control compared to fixed bed gasification the oxygen consumption clearly higher. In addition, the temperature level of the Winkler gasification has the consequence that a large part of the carbon input is not converted into fuel gas, but in the form of dust and, bound to the ashes, from the process again is carried out. This lack of gasification technology can be compensated with the high temperature entrained flow gasification processes, which are usually above the melting point the ashes work, be avoided.

Ein Beispiel dafür ist die DE 41 39 512 A1. Bei diesem Verfahren werden Abfallstoffe durch Schwelung in Schwelgas und Schwelkoks zerlegt und damit in eine für die Vergasung in einer exothermen Flugstromvergasung erforderliche Form aufbereitet. Der Übergang zur exothermen Flugstromvergasung ist verbunden mit weiter steigendem Sauerstoffbedarf und sinkendem Wirkungsgrad, obwohl die organische Substanz der Abfallstoffe so gut wie vollständig in Brenngas umgewandelt wird. Die Ursachen liegen im hohen Temperaturniveau dieser Vergasungsverfahren, die zur Folge haben, daß ein Großteil der Brennstoffwärme in physikalische Enthalpie des Brenngases umgewandelt wird.An example of this is DE 41 39 512 A1. In this procedure Waste is broken down by carbonization into carbonization gas and carbonization and thus into one required for gasification in an exothermic entrained-flow gasification Form prepared. The transition to exothermic entrained flow gasification is combined with increasing oxygen demand and decreasing efficiency, although the organic matter of waste is almost entirely in Fuel gas is converted. The causes are the high temperature level of these gasification processes, which have the consequence that a large part of the Fuel heat is converted into physical enthalpy of the fuel gas.

Der Mangel dieser technischen Lösungen, wie sie auch der DE 41 39 512 anhaftet, wurde natürlich von der internationalen Fachwelt erkannt und mit neuen Lösungsvorschlägen beantwortet. Der neueste Stand der Technik der Vergasung von Kohle ist dadurch gekennzeichnet, daß ein Teilstrom der Kohle in einer Schmelzkammerfeuerung zu heißem Verbrennungsgas verbrannt wird, das im Fortgang des Verfahrens als Vergasungsmittel verwendet wird. Durch Einbringen des zweiten Kohleteilstromes in das heiße Vergasungsmittel werden die Voraussetzungen für eine endotherme Vergasung geschaffen, und das Verbrennungsgas mit Hilfe der Bouduard- und Wassergasreaktionen in Brenngas umgewandelt. Praktische Anwendung findet diese Art der Vergasung in Japan beim NEDO-Projekt und in den USA beim WABASH-RIVER-Projekt. Für Holz, Reststoffe und Müll ist diese Art der Vergasung nicht geeignet, da diese Stoffe nur mit hohem mechanischem Aufwand in die für diese Prozeßführung erforderliche Staubform überführt werden können.The lack of these technical solutions, as is inherent in DE 41 39 512, was of course recognized by the international experts and with new ones Proposed solutions answered. The latest state of the art in gasification of coal is characterized in that a partial stream of coal in a Melting chamber combustion is burned to hot combustion gas, which in the Progress of the process is used as a gasifying agent. By bringing in of the second coal partial flow into the hot gasification agent become the prerequisites created for endothermic gasification, and the combustion gas converted into fuel gas using the Bouduard and water gas reactions. This type of gasification is used in Japan in the NEDO project and in the USA for the WABASH RIVER project. For wood, residues and waste this type of gasification is not suitable because these substances only have a high mechanical effort in the dust form required for this process can be transferred.

Die DE 42 09 549 behebt diesen Mangel, indem sie der Kombination Teilstromverbrennung/endotherme Flugstromvergasung eine Pyrolyse zur thermischen Aufbereitung der Brennstoffe, insbesondere Abfallstoffe, vorschaltet. Der Mangel dieses Verfahrens ist jedoch, daß hier das heiße Vergasungsmittel durch Verbrennung des Pyrolysekokses mit Luft und/oder Sauerstoff hergestellt und das Olefine, Aromaten u.a. enthaltende Schwelgas für die Reduktion verwendet wird.DE 42 09 549 remedies this deficiency by combining partial flow combustion / endothermic Entrained flow gasification a pyrolysis for thermal Preparation of the fuels, especially waste materials, upstream. The lack this method, however, is that here the hot gasifying agent by combustion of pyrolysis coke with air and / or oxygen and that Olefins, aromatics and others containing smoldering gas is used for the reduction.

Langjährige Erfahrungen aus dem praktischen Betrieb von Vergasungsanlagen zeigen aber, daß olefin- und aromatenhaltige Brenngase bei Temperaturen bis 1500 °C und endothermer Prozeßführung nicht in teerfreies Brenngas, wie es für die Verwendung als Brenngas für Gasturbinen und Motoren erforderlich ist, umgewandelt werden können. Der wesentliche Mangel dieser Prozeßführung ist deshalb, daß im Zuge der erforderlichen Gaskühlung und -aufbereitung wäßrige Gaskondensate anfallen, die in dieser Form nicht an die Umwelt abgegeben werden können, so daß erheblicher Aufwand zu deren Aufbereitung erforderlich ist.Many years of experience from the practical operation of gasification plants but show that olefin and aromatic fuel gases at temperatures up to 1500 ° C and endothermic process control not in tar-free fuel gas as it is for use as fuel gas for gas turbines and engines is required can be converted. The main lack of this litigation is therefore that in the course of the necessary gas cooling and treatment, aqueous Gas condensates occur that are not released into the environment in this form can, so that considerable effort is required to prepare them.

Die Erfindung hat das Ziel, ein Verfahren zur Vergasung von organischen Stoffen, insbesondere wasser- und ballasthaltigen, vorzuschlagen, das den anorganischen Anteil dieser Stoffe als verglastes, eluierfestes Produkt abgibt und die organische Substanz dieser Stoffe zu teerfreiem Brenngas, das auch zu Synthesegas aufbereitet werden kann, umwandelt, bei gegenüber dem Stand der Technik der Flugstromvergasung niedrigerem Verbrauch an sauerstoffhaltigem Vergasungsmittel sowie gegenüber dem Wirbelschichtverfahren und der Flugstromvergasung höheren Vergasungswirkungsgrad, bezogen auf die ausgebrachte chemische Enthalpie des Brenngases.The invention aims to provide a process for the gasification of organic substances, in particular water and ballast, to propose that the inorganic Share of these substances as a glazed, elution-resistant product and the organic Substance of these substances to tar-free fuel gas, which also converts to synthesis gas can be converted, compared to the prior art Entrained-flow gasification lower consumption of oxygen-containing gasifying agent as well as compared to the fluidized bed process and entrained-flow gasification higher gasification efficiency, based on the applied chemical Enthalpy of the fuel gas.

Die zu lösende technische Aufgabe der Erfindung besteht darin, einen Anteil der physikalischen Enthalpie, die für das Erreichen des Temperaturniveaus oberhalb des Schmelzpunktes des anorganischen Anteiles der zu vergasenden Stoffe erforderlich ist, im Fortgang der Prozeßführung wieder in chemische Enthalpie umzuwandeln.The technical problem to be solved by the invention is to provide a portion of the physical enthalpy required for reaching the temperature level above the melting point of the inorganic portion of the substances to be gasified is required to return to chemical enthalpy as the process continues convert.

Erfindungsgemäß wird das erreicht, indem unter Drücken von 1 bis 50 bar in einer

  • ersten Prozeßstufe die ballastreichen organischen Stoffe mit ihren organischen und Wasseranteilen durch direkte oder indirekte Zuführung von physikalischer Enthalpie des Vergasungsgases getrocknet und bei 350 bis 500° C geschwelt und damit in Schwelgas, das die flüssigen Kohlenwasserstoffe und den Wasserdampf enthält, und Koks, der neben dem anorganischen Anteil hauptsächlich Kohlenstoff enthält, thermisch zerlegt werden,
  • zweiten Prozeßstufe das Schwelgas bei Temperaturen oberhalb der Schmelztemperatur des anorganischen Anteiles der organischen Stoffe mit Luft und/oder Sauerstoff, sauerstoffhaltigen Abgasen, z.B. aus Gasturbinen oder Verbrennungsmotoren, vorzugsweise bei 1200 bis 2000° C, unter Abscheidung von schmelzflüssigem anorganischem Anteil mit einer Luftzahl von 0,8 bis 1,3 bezogen auf den theoretischen Luftbedarf für die vollständige Verbrennung zu Verbrennungsgas verbrannt wird,
  • in einer dritten Prozeßstufe das Verbrennungsgas aus der zweiten Prozeßstufe in Vergasungsgas umgewandelt und die Gastemperatur auf 800 bis 900° C abgesenkt wird, indem Schwelkoks aus der ersten Prozeßstufe, ggf. aufgemahlen zu Brennstaub, in das 1200 bis 2000° C heiße Verbrennungsgas eingeblasen wird, der das Kohlendioxid teilweise zu Kohlenmonoxid und den Wasserdampf teilweise zu Wasserstoff wärmeverbrauchend reduziert,
  • vierten Prozeßstufe das Vergasungsgas aus der dritten Prozeßstufe, ggf. nach indirekter und/oder direkter Kühlung, zu Brenngas aufbereitet wird, in dem es entstaubt und chemisch gereinigt und der dabei anfallende, noch Kohlenstoff enthaltende Staub der Verbrennung des Schwelgases in der zweiten Prozeßstufe zugeführt wird.
According to the invention this is achieved by under a pressure of 1 to 50 bar
  • first stage of the process, the ballast-rich organic substances with their organic and water components by direct or indirect supply of physical enthalpy of the gasification gas and dried at 350 to 500 ° C and thus in carbonization gas, which contains the liquid hydrocarbons and water vapor, and coke, which besides the inorganic content mainly contains carbon, can be thermally decomposed,
  • second process stage the carbonization gas at temperatures above the melting temperature of the inorganic portion of the organic substances with air and / or oxygen, oxygen-containing exhaust gases, e.g. from gas turbines or internal combustion engines, preferably at 1200 to 2000 ° C, with separation of molten inorganic portion with an air ratio of 0 , 8 to 1.3 based on the theoretical air requirement for complete combustion is burned to combustion gas,
  • in a third process stage, the combustion gas from the second process stage is converted into gasification gas and the gas temperature is lowered to 800 to 900 ° C by blowing coke from the first process stage, possibly ground to fuel dust, into which combustion gas with a temperature of 1200 to 2000 ° C is blown, which partially reduces the carbon dioxide to carbon monoxide and the water vapor to hydrogen,
  • fourth process stage, the gasification gas from the third process stage, if necessary after indirect and / or direct cooling, is processed into fuel gas in which it is dedusted and chemically cleaned and the resulting carbon-containing dust is fed to the combustion of the carbonization gas in the second process stage .

Der Nutzeffekt der Erfindung besteht darin, daß die anorganische Substanz ballasthaltiger, organischer Stoffe in einen verglasten, eluierfesten Baustoff überführt wird, bei Absenkung des Bedarfes an sauerstoffhaltigem Vergasungsmittel auf das Niveau der Wirbelschichtvergasung und vollständiger Vergasung der organischen Substanz bei einem Temperaturniveau, das der Winklervergasung entspricht und, gemessen an der chemischen Enthalpie des Brenngases, gegenüber dem Stand der Technik höheren Vergasungswirkungsgrad. The benefit of the invention is that the inorganic substance contains ballast, organic materials into a glazed, elution-resistant building material is reduced when the need for oxygen-containing gasifying agent is reduced the level of fluidized bed gasification and complete gasification of the organic matter at a temperature level that the Winkler gasification corresponds to and, measured by the chemical enthalpy of the fuel gas, higher gasification efficiency compared to the prior art.

AusführungsbeispielEmbodiment

Die Erfindung wird mit Hilfe des in Figur 1 dargestellten technologischen Grobschemas und nachfolgender rechnerischer Abschätzung beschrieben.The invention is achieved with the aid of the rough technical diagram shown in FIG and the following computational estimate.

Als Einsatzgut wird ein wasser- und ballasthaltiger organischer Stoff, eine müllhaltige Biomasse folgender Zusammensetzung (in kg/t) verwendet: Bestandteil Masse Kohlenstoff 250 Wasserstoff 25 Sauerstoff 150 Stickstoff 8 Schwefel 2 Schwermetalle (Pb, Cd, Hg, Cu, Zn) 3 Asche 100 Eisen/Nichteisenmetall 30 Glas/Mineralien 112 Wasser 320. An organic material containing water and ballast, a garbage-containing biomass of the following composition (in kg / t) is used as the input material: component Dimensions carbon 250 hydrogen 25th oxygen 150 nitrogen 8th sulfur 2nd Heavy metals (Pb, Cd, Hg, Cu, Zn) 3rd ash 100 Iron / non-ferrous metal 30th Glass / minerals 112 water 320.

Dieses Einsatzgut wird auf eine Kantenlänge von 20 bis 50 mm in einem Schredder (1) zerkleinert und über ein gasdichtes Schleusensystem (2) in eine indirekt beheizte, unter Normaldruck arbeitende Schwelkammer (3), in der das Einsatzgut erforderlichenfalls mechanisch bewegt wird, eingebracht. Durch die indirekte Wärmezuführung (4) trocknet und schwelt das Einsatzgut, dabei zerfällt es bei einer Endtemperatur von 400 bis 500° C in rd. 405 kg Feststoff, der annähernd zu 40 % aus Kohlenstoff besteht, während der Rest gebildet wird durch Mineralien, Glas, Eisen und Nichteisenmetalle sowie Schwermetalle und Asche, und 595 kg Schwelgas, das zu annähernd zwei Dritteln aus Wasserdampf besteht, und alle anderen bekannten flüssigen und gasförmigen Schwelprodukte enthält. This material is cut to an edge length of 20 to 50 mm in a shredder (1) crushed and indirectly via a gas-tight lock system (2) heated smoldering chamber (3) working under normal pressure, in which the feed material is moved mechanically if necessary. Through the indirect Heat supply (4) dries and smoldered the feed, it disintegrates a final temperature of 400 to 500 ° C in approx. 405 kg of solid, which is approximately too 40% carbon, while the rest is mineral, Glass, iron and non-ferrous metals as well as heavy metals and ashes, and 595 kg Smoldering gas, which consists of almost two thirds of water vapor, and all contains other known liquid and gaseous smoldering products.

Die Feststoffe aus der Schwelung werden unter Schwelgas in einem Sieb (5) in eine hauptsächlich Mineralien, Glas und Metallschrott enthaltende Grobfraktion mit einer Kantenlänge größer 5 mm und einen kleinkörnigen Kohlenstoffträger getrennt. Die Grobfraktion wird über gasdichte Schleusensysteme (6) aus dem Verfahren ausgetragen und ggf. einer Separation zugeführt. Der Kohlenstoffträger verbleibt im System und wird über eine Durchlaufmühle (7) und über ein pneumatisches Fördersystem (8), das rückgeführtes Brenngas als Fördermedium verwendet, einer Reduktionskammer (9) zugeführt. Der anorganische Anteil des Kohlenstoffträgers wird mit dem in der Reduktionskammer (9) nicht verbrauchten Kohlenstoff in einer Gasentstaubung (10) abgeschieden und gemeinsam mit dem in der Schwelkammer (3) erzeugten Schwelgas einer Schmelzkammerfeuerung (11) zugeführt und dort mit Sauerstoff oberhalb der Schmelztemperaturen der anorganischen Substanz des Kohlenstoffträgers verbrannt. Die dabei entstehende Flüssigschlacke wird in ein Wasserbad (12) ausgetragen und von dort als eluierfestes Baustoffgranulat aus dem Prozeß abgeführt. Das 1200 bis 2000° C heiße Verbrennungsgas gelangt aus der Schmelzkammerfeuerung (11) in die Reduktionskammer (9), wo ein Teil seines Kohlendioxides und Wasserdampfes mit dem Kohlenstoffträger endotherm zu Kohlenmonoxid und Wasserstoff chemisch reagiert, wodurch die Gastemperatur auf 800 bis 900° C absinkt. Die Zuführung des in der Gasentstaubung (10) anfallenden kohlenstoffhaltigen Staubes zur Schmelzkammerfeuerung (11) erfolgt ebenfalls mit einem pneumatischen Fördersystem (13), das als Trägermedium rückgeführtes Brenngas verwendet. Das so erzeugte Brenngas entspricht in seiner Zusammensetzung einem Brenngas, das bei 800 bis 900° C bei der Vergasung der organischen Substanz des Einsatzgutes mit Sauerstoff unter Normaldruck entsteht. Es ist vergleichbar mit einem nach dem Wirbelschichtvergasungsverfahren erzeugten Vergasungsgas bei Verwendung eines Sauerstoff-Wasserdampf-Gemisches als Vergasungsmittel.The solids from the carbonization are in carbonization gas in a sieve (5) a coarse fraction mainly containing minerals, glass and scrap metal with an edge length greater than 5 mm and a small-grain carbon carrier Cut. The coarse fraction is extracted from the via gas-tight lock systems (6) Process carried out and possibly passed to a separation. The carbon carrier remains in the system and is passed through a continuous mill (7) and via a pneumatic conveying system (8), the recirculated fuel gas as the conveying medium used, fed to a reduction chamber (9). The inorganic part of Carbon carrier is used with that in the reduction chamber (9) Carbon separated in a gas dedusting (10) and together with the in the smoldering chamber (3) produced smoldering gas from a smelting chamber combustion (11) supplied and there with oxygen above the melting temperature of the inorganic substance of the carbon carrier burned. The resulting one Liquid slag is discharged into a water bath (12) and from there as elution-resistant Building material granules removed from the process. That means 1200 to 2000 ° C Combustion gas enters the reduction chamber from the melting chamber furnace (11) (9), where part of its carbon dioxide and water vapor is associated with the Carbon carrier reacts endothermically to carbon monoxide and hydrogen, whereby the gas temperature drops to 800 to 900 ° C. The feeding of the in the gas dedusting (10) accumulating carbon-containing dust Melting chamber firing (11) is also carried out with a pneumatic conveyor system (13), which uses recycled fuel gas as the carrier medium. That so The fuel gas generated corresponds in its composition to a fuel gas that at 800 to 900 ° C during the gasification of the organic matter of the feed with oxygen under normal pressure. It is comparable to an after the gasification gas generated in the fluidized bed gasification process when used an oxygen-water vapor mixture as a gasifying agent.

Claims (2)

  1. Process for generating burnable gas from organic materials, in particular water- and ballast-containing ones, such as coal, sludges, garbage, wood and other biomasses, using the known process stages of drying, low-temperature carbonization and gasification, characterized in that, under pressures of I to 50 bar, in a first process stage, the ballast-rich organic materials are dried by direct or indirect supply of physical enthalpy and subjected to low-temperature carbonization at 350 to 500°C and are thus thermally decomposed into low-temperature carbonization gas, which contains the liquid hydrocarbons and the steam, and coke, which principally contains carbon, in addition to the inorganic portion, in a second process stage, the low-temperature carbonization gas is burnt with air and/or oxygen, oxygen-containing exhaust gases, e.g. from gas turbines or internal combustion engines, at temperatures above the melting temperature of the inorganic portion of the organic materials, preferably at 1200 to 2000°C, with removal of molten inorganic portion, to form combustion gas, in a third process stage, the combustion gas from the second process stage is converted into gasification gas and the gas temperature is decreased to 800 to 900°C, by blowing low- temperature carbonization coke from the first process stage, if appropriate ground to give pulverized fuel, into the combustion gas at 1200 to 2000°C, which coke partially reduces the carbon dioxide to carbon monoxide and partially reduces the steam to hydrogen, with consumption of heat, in a fourth process stage, the gasification gas from the third process stage, if appropriate after indirect and/or direct cooling, is processed to give burnable gas, by dedusting it and chemically cleaning it, and feeding the still carbon containing dust, produced in the course of this process, to the combustion of the low-temperature carbonization gas in the second process stage.
  2. Process according to Claim 1, characterized in that the heat requirement of the first process stage is covered by some of the enthalpy of the gasification gas from the third process stage or of the burnable gas of the fourth process stage.
EP95908915A 1994-02-15 1995-02-08 Process for generating burnable gas Expired - Lifetime EP0745114B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4404673 1994-02-15
DE4404673A DE4404673C2 (en) 1994-02-15 1994-02-15 Process for the production of fuel gas
PCT/EP1995/000443 WO1995021903A1 (en) 1994-02-15 1995-02-08 Process for generating burnable gas

Publications (2)

Publication Number Publication Date
EP0745114A1 EP0745114A1 (en) 1996-12-04
EP0745114B1 true EP0745114B1 (en) 1999-03-24

Family

ID=6510220

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95908915A Expired - Lifetime EP0745114B1 (en) 1994-02-15 1995-02-08 Process for generating burnable gas

Country Status (13)

Country Link
US (1) US5849050A (en)
EP (1) EP0745114B1 (en)
JP (1) JP4057645B2 (en)
AT (1) ATE178086T1 (en)
AU (1) AU1705995A (en)
BR (1) BR9506803A (en)
CA (1) CA2183326C (en)
DE (2) DE4404673C2 (en)
DK (1) DK0745114T3 (en)
ES (1) ES2132638T3 (en)
GR (1) GR3029982T3 (en)
NO (1) NO315125B1 (en)
WO (1) WO1995021903A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009055976A1 (en) 2009-11-27 2011-06-01 Choren Industries Gmbh Apparatus and method for generating a synthesis gas from biomass by entrainment gasification
DE102010008384A1 (en) * 2010-02-17 2011-08-18 Uhde GmbH, 44141 Method for utilizing enthalpy of synthesis gas during endothermic gasification reaction of biological raw material, involves introducing fuel into gas so that thermal enthalpy of gas is utilized for gasification reaction of material
DE102012013670A1 (en) 2012-07-11 2014-01-16 Linde Aktiengesellschaft Process for the gasification of carbonaceous feedstocks
EP2703716A1 (en) 2012-08-28 2014-03-05 Linde Aktiengesellschaft Heating of a process exhaust gas
DE102013008518A1 (en) 2013-05-16 2014-11-20 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013008519A1 (en) 2013-05-16 2014-11-20 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013009950A1 (en) 2013-06-13 2014-12-18 Linde Aktiengesellschaft Process and plant for the treatment and thermal gasification of hydrous organic feedstock
DE102013012661A1 (en) 2013-07-30 2015-02-05 Linde Aktiengesellschaft Process and installation for enriching a synthesis gas generated by gasification with hydrogen
DE102013014042A1 (en) 2013-08-22 2015-02-26 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013015536A1 (en) 2013-09-18 2015-03-19 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013015539A1 (en) 2013-09-18 2015-03-19 Linde Aktiengesellschaft Plant and process for the at least partial gasification of solid organic feedstock
DE102013017546A1 (en) 2013-10-22 2015-04-23 Linde Aktiengesellschaft Process and plant for the gasification of feedstock
DE102013018332A1 (en) 2013-10-31 2015-04-30 Linde Aktiengesellschaft Device for introducing solid organic feed into a gasification plant
DE102013017945A1 (en) 2013-10-29 2015-04-30 Linde Aktiengesellschaft power plant
DE102013018992A1 (en) 2013-11-13 2015-05-13 Linde Aktiengesellschaft Apparatus for supplying gasification agent into a low-temperature gasifier
DE102013019655A1 (en) 2013-11-23 2015-05-28 Linde Aktiengesellschaft Container for a low temperature carburetor
DE102013020890A1 (en) 2013-12-11 2015-06-11 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013020792A1 (en) 2013-12-11 2015-06-11 Linde Aktiengesellschaft Process and plant for the gasification of solid, organic feedstock
DE102013020889A1 (en) 2013-12-11 2015-06-11 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
US9234148B2 (en) 2009-03-04 2016-01-12 Thyssenkrupp Industrial Solution Ag Process and apparatus for the utilization of the enthalpy of a syngas by additional and post-gasification of renewable fuels
DE102014016401A1 (en) 2014-11-05 2016-05-12 Linde Aktiengesellschaft Process for using CO2 in syngas production
DE102014016407A1 (en) 2014-11-05 2016-05-12 Linde Aktiengesellschaft Process for the production of synthesis gas
CN109539547A (en) * 2018-11-14 2019-03-29 江苏金满穗农业发展有限公司 It is a kind of using cavings as the hot-blast stove of fuel
CN109539548A (en) * 2018-11-14 2019-03-29 江苏金满穗农业发展有限公司 One kind is spurted the husk hot-blast stove that burns

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19618213A1 (en) * 1996-05-07 1997-11-13 Petersen Hugo Verfahrenstech Fuel gas production from e.g. organic waste matter in two stage process
DE19730385C5 (en) * 1997-07-16 2006-06-08 Future Energy Gmbh Process for the production of fuel and synthesis gas from fuels and combustible waste and an apparatus for carrying out the process
DE19747324C2 (en) * 1997-10-28 1999-11-04 Bodo Wolf Device for generating fuel, synthesis and reducing gas from renewable and fossil fuels, biomass, waste or sludge
DE19750327C1 (en) * 1997-11-13 1999-06-02 Umwelttechnik Stefan Bothur Process for the production of synthesis gas from renewable cellulose-containing raw or waste materials
US20020179493A1 (en) * 1999-08-20 2002-12-05 Environmental & Energy Enterprises, Llc Production and use of a premium fuel grade petroleum coke
ES2190689B1 (en) * 2000-03-15 2004-10-16 Luis M. Santi De Azcoitia Y Villanueva PROCEDURE FOR OBTAINING FUEL GAS FROM FUEL MATERIALS.
DE10049887A1 (en) * 2000-10-10 2002-04-18 Erwin Keller Process for energetically utilizing organic raw materials, especially wood, comprises carbonizing the raw material to carbon in a gasifier having a pyrolysis unit and forming a generator gas containing carbon monoxide using a reduction unit
US6883444B2 (en) * 2001-04-23 2005-04-26 N-Viro International Corporation Processes and systems for using biomineral by-products as a fuel and for NOx removal at coal burning power plants
US6405664B1 (en) * 2001-04-23 2002-06-18 N-Viro International Corporation Processes and systems for using biomineral by-products as a fuel and for NOx removal at coal burning power plants
US6752848B2 (en) 2001-08-08 2004-06-22 N-Viro International Corporation Method for disinfecting and stabilizing organic wastes with mineral by-products
US6752849B2 (en) 2001-08-08 2004-06-22 N-Viro International Corporation Method for disinfecting and stabilizing organic wastes with mineral by-products
US7476296B2 (en) 2003-03-28 2009-01-13 Ab-Cwt, Llc Apparatus and process for converting a mixture of organic materials into hydrocarbons and carbon solids
US8877992B2 (en) 2003-03-28 2014-11-04 Ab-Cwt Llc Methods and apparatus for converting waste materials into fuels and other useful products
US7692050B2 (en) 2003-03-28 2010-04-06 Ab-Cwt, Llc Apparatus and process for separation of organic materials from attached insoluble solids, and conversion into useful products
US20060180459A1 (en) * 2005-02-16 2006-08-17 Carl Bielenberg Gasifier
CN100340634C (en) * 2005-07-01 2007-10-03 韩连恩 Method for producing biomass carbonized gas and back fire-biomass carbonated gas generating stove
DE102005035921B4 (en) * 2005-07-28 2008-07-10 Choren Industries Gmbh Process for the endothermic gasification of carbon
DE202006009174U1 (en) 2006-06-08 2007-10-11 Rudolf Hörmann GmbH & Co. KG Apparatus for producing fuel gas from a solid fuel
US8690977B2 (en) 2009-06-25 2014-04-08 Sustainable Waste Power Systems, Inc. Garbage in power out (GIPO) thermal conversion process
UY33038A (en) 2009-11-20 2011-06-30 Rv Lizenz Ag THERMAL AND CHEMICAL USE OF CABONACE SUBSTANCES IN PARTICULAR FOR THE GENERATION OF ENERGY WITHOUT EMISSIONS
US8580152B2 (en) * 2010-04-13 2013-11-12 Ineos Usa Llc Methods for gasification of carbonaceous materials
WO2012011799A2 (en) * 2010-07-19 2012-01-26 Rl Finance B.V. System and method for thermal cracking of a hydrocarbons comprising mass
CA2800606C (en) * 2011-02-14 2018-01-02 Zbb Gmbh Device and method for the thermochemical carbonization and gasification of wet biomass
KR101890952B1 (en) * 2012-12-26 2018-08-22 에스케이이노베이션 주식회사 Integrated Gasification Apparatus for Carbonaceous Fuel Including Flash Dryer
DE102014002842A1 (en) 2014-02-25 2015-08-27 Linde Aktiengesellschaft Method and apparatus for entrained flow gasification of high carbon material
EP3219777A1 (en) 2015-12-09 2017-09-20 Ivan Bordonzotti Process and plant for transforming combustible materials in clean gas without tars

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142867A (en) * 1974-07-04 1979-03-06 Karl Kiener Apparatus for the production of combustible gas
FR2457319A1 (en) * 1979-05-22 1980-12-19 Lambiotte Usines PROCESS FOR COMPLETE GASIFICATION OF CARBONACEOUS MATERIALS
DE2927240C2 (en) * 1979-07-05 1985-10-31 Kiener-Pyrolyse Gesellschaft für thermische Abfallverwertung mbH, 7000 Stuttgart Method and device for gasifying lumpy fuels with pre-carbonization and cracking of the carbonization gases in the gas generator
SE446101B (en) * 1984-12-28 1986-08-11 Skf Steel Eng Ab SET AND DEVICE FOR GENERATING GAS
DE3828534A1 (en) * 1988-08-23 1990-03-08 Gottfried Dipl Ing Roessle METHOD FOR UTILIZING ENERGY-BASED MEASUREMENT, DEVICE FOR IMPLEMENTING THE METHOD AND USE OF A PRODUCT RECEIVED FROM RECYCLING
DE4123406C2 (en) * 1991-07-15 1995-02-02 Engineering Der Voest Alpine I Process for the gasification of inferior solid fuels in a shaft-shaped gasification reactor
DE4139512A1 (en) * 1991-11-29 1993-06-03 Noell Dbi Energie Entsorgung Thermal recycling of household and industrial waste - by pyrolysis in absence of air, comminution, sizing to obtain coke-like enriched fines, degasifying using oxygen-contg. agent and gas purificn.
DE4209549A1 (en) * 1992-03-24 1993-09-30 Vaw Ver Aluminium Werke Ag Processes for the thermal treatment of residues, e.g. for the separation and recycling of metal compounds with organic components, using a combination of pyrolysis and gasification

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234148B2 (en) 2009-03-04 2016-01-12 Thyssenkrupp Industrial Solution Ag Process and apparatus for the utilization of the enthalpy of a syngas by additional and post-gasification of renewable fuels
DE102009055976A1 (en) 2009-11-27 2011-06-01 Choren Industries Gmbh Apparatus and method for generating a synthesis gas from biomass by entrainment gasification
WO2011063971A1 (en) 2009-11-27 2011-06-03 Choren Industries Gmbh Device and method for generating a synthesis gas from processed biomass by entrained-flow gasification
US8603204B2 (en) 2009-11-27 2013-12-10 Linde Ag Device and method for generating a synthesis gas from processed biomass by entrained-flow gasification
DE102010008384A1 (en) * 2010-02-17 2011-08-18 Uhde GmbH, 44141 Method for utilizing enthalpy of synthesis gas during endothermic gasification reaction of biological raw material, involves introducing fuel into gas so that thermal enthalpy of gas is utilized for gasification reaction of material
DE102012013670A1 (en) 2012-07-11 2014-01-16 Linde Aktiengesellschaft Process for the gasification of carbonaceous feedstocks
EP2703716A1 (en) 2012-08-28 2014-03-05 Linde Aktiengesellschaft Heating of a process exhaust gas
DE102012017107A1 (en) 2012-08-28 2014-03-06 Linde Aktiengesellschaft Heating a process exhaust
DE102013008519A1 (en) 2013-05-16 2014-11-20 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013008518A1 (en) 2013-05-16 2014-11-20 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013009950A1 (en) 2013-06-13 2014-12-18 Linde Aktiengesellschaft Process and plant for the treatment and thermal gasification of hydrous organic feedstock
DE102013012661A1 (en) 2013-07-30 2015-02-05 Linde Aktiengesellschaft Process and installation for enriching a synthesis gas generated by gasification with hydrogen
DE102013014042A1 (en) 2013-08-22 2015-02-26 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013015536A1 (en) 2013-09-18 2015-03-19 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013015539A1 (en) 2013-09-18 2015-03-19 Linde Aktiengesellschaft Plant and process for the at least partial gasification of solid organic feedstock
DE102013017546A1 (en) 2013-10-22 2015-04-23 Linde Aktiengesellschaft Process and plant for the gasification of feedstock
DE102013017945A1 (en) 2013-10-29 2015-04-30 Linde Aktiengesellschaft power plant
EP2868739A1 (en) 2013-10-29 2015-05-06 Linde Aktiengesellschaft Power plant
DE102013018332A1 (en) 2013-10-31 2015-04-30 Linde Aktiengesellschaft Device for introducing solid organic feed into a gasification plant
DE102013018992A1 (en) 2013-11-13 2015-05-13 Linde Aktiengesellschaft Apparatus for supplying gasification agent into a low-temperature gasifier
DE102013019655A1 (en) 2013-11-23 2015-05-28 Linde Aktiengesellschaft Container for a low temperature carburetor
DE102013020890A1 (en) 2013-12-11 2015-06-11 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
DE102013020889A1 (en) 2013-12-11 2015-06-11 Linde Aktiengesellschaft Process and plant for the at least partial gasification of solid, organic feedstock
EP2883942A1 (en) 2013-12-11 2015-06-17 Linde Aktiengesellschaft Method and assembly for gasifying solid, organic feed material
WO2015086135A1 (en) 2013-12-11 2015-06-18 Linde Aktiengesellschaft Process and plant for at least partial gasification of solid organic input material
WO2015086134A1 (en) 2013-12-11 2015-06-18 Linde Aktiengesellschaft Method and system for at least partly gasifying solid organic feed material
DE102013020792A1 (en) 2013-12-11 2015-06-11 Linde Aktiengesellschaft Process and plant for the gasification of solid, organic feedstock
DE102014016401A1 (en) 2014-11-05 2016-05-12 Linde Aktiengesellschaft Process for using CO2 in syngas production
DE102014016407A1 (en) 2014-11-05 2016-05-12 Linde Aktiengesellschaft Process for the production of synthesis gas
WO2016070988A1 (en) 2014-11-05 2016-05-12 Linde Aktiengesellschaft Method for using co2 in the production of synthesis gas
CN109539547A (en) * 2018-11-14 2019-03-29 江苏金满穗农业发展有限公司 It is a kind of using cavings as the hot-blast stove of fuel
CN109539548A (en) * 2018-11-14 2019-03-29 江苏金满穗农业发展有限公司 One kind is spurted the husk hot-blast stove that burns

Also Published As

Publication number Publication date
WO1995021903A1 (en) 1995-08-17
AU1705995A (en) 1995-08-29
JP4057645B2 (en) 2008-03-05
EP0745114A1 (en) 1996-12-04
DE4404673C2 (en) 1995-11-23
CA2183326A1 (en) 1995-08-17
GR3029982T3 (en) 1999-07-30
NO963301L (en) 1996-08-08
ATE178086T1 (en) 1999-04-15
DE4404673A1 (en) 1995-08-17
DE59505441D1 (en) 1999-04-29
NO963301D0 (en) 1996-08-08
CA2183326C (en) 2005-12-27
JPH09508663A (en) 1997-09-02
DK0745114T3 (en) 1999-05-25
BR9506803A (en) 1997-09-30
US5849050A (en) 1998-12-15
ES2132638T3 (en) 1999-08-16
NO315125B1 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
EP0745114B1 (en) Process for generating burnable gas
EP1226222B1 (en) Method for gasifying organic materials and mixtures of materials
EP2102453B1 (en) Method and installation for generating electric energy in a gas/steam turbine power plant
EP0441788B1 (en) Device and allothermic process for producing a burnable gas from refuse or from refuse together with coal
DE4446803C2 (en) Process and device for thermal and material recycling of residual and waste materials
EP0545241B1 (en) Process for thermic valorisation of waste materials
EP1053291B1 (en) Method for gasifying organic substances and substance mixtures
DE3310534C2 (en)
DE4342165C1 (en) Process for the utilisation of biomass energy
EP0600923B1 (en) Process for producing synthetic or fuel gasses from solid or pasty residues and waste or low-grade fuels in a gasifying reactor
DE102005006305B4 (en) Process for the production of combustion and synthesis gases with high-pressure steam generation
EP2082013A2 (en) Method for producing a product gas rich in hydrogen
DE102008047201B4 (en) Method and apparatus for the production of synthesis gas and for operating an internal combustion engine with it
AT392079B (en) METHOD FOR THE PRESSURE GASIFICATION OF COAL FOR THE OPERATION OF A POWER PLANT
DE19513832B4 (en) Process for recycling residual and waste materials by combining a fluidized-bed thermolysis with an entrainment gasification
EP1167492A2 (en) Process and apparatus for the production of fuel gas from biomass
EP2148135B1 (en) Method and device for thermal processing of waste material
EP1134272A2 (en) Method and apparatus for gasification of combustible materials
DE4125520C1 (en)
DE4339973C1 (en) Granulated wastes mixed with coal grains and gasified with oxygen and steam
AT404181B (en) METHOD FOR DISASSEMBLY, IN PARTICULAR COMPLETE COMBUSTION
DE4338927A1 (en) Process and plant for thermal recycling of waste materials
DE202022000489U1 (en) Device for the production of synthesis gas from biogenic residues and waste materials
DE102023209789A1 (en) Process and plant for gasifying a solid carbonaceous raw material
DD147549A1 (en) PROCESS FOR GAS PRODUCTION FROM SOLID FUELS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980424

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

REF Corresponds to:

Ref document number: 178086

Country of ref document: AT

Date of ref document: 19990415

Kind code of ref document: T

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CRG KOHLENSTOFFRECYCLING GES.MBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWALTSBUERO FELDMANN AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990329

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59505441

Country of ref document: DE

Date of ref document: 19990429

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: CRG KOHLENSTOFFRECYCLING GES.MBH

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2132638

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19990616

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: Errata: Incorrectly

Country of ref document: IE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: ERRATA: Incorrectly

Country of ref document: IE

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20060217

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20060220

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20060221

Year of fee payment: 12

Ref country code: BE

Payment date: 20060221

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20060223

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CRG KOHLENSTOFFRECYCLING GES.MBH

Free format text: CRG KOHLENSTOFFRECYCLING GES.MBH#FRAUENSTEINER STRASSE 59#09599 FREIBERG (DE) -TRANSFER TO- CRG KOHLENSTOFFRECYCLING GES.MBH#FRAUENSTEINER STRASSE 59#09599 FREIBERG (DE)

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

BERE Be: lapsed

Owner name: *CRG KOHLENSTOFFRECYCLING G.M.B.H.

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59505441

Country of ref document: DE

Representative=s name: R. ZELLENTIN UND KOLLEGEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20121011 AND 20121017

REG Reference to a national code

Ref country code: NL

Ref legal event code: TD

Effective date: 20121107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: LINDE AG, DE

Free format text: FORMER OWNER: CRG KOHLENSTOFFRECYCLING GES.MBH, DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20121128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59505441

Country of ref document: DE

Representative=s name: R. ZELLENTIN UND KOLLEGEN, DE

Effective date: 20121105

Ref country code: DE

Ref legal event code: R081

Ref document number: 59505441

Country of ref document: DE

Owner name: LINDE AG, DE

Free format text: FORMER OWNER: CRG KOHLENSTOFFRECYCLING GES. MBH, 09599 FREIBERG, DE

Effective date: 20121105

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: LINDE AG, DE

Effective date: 20121207

Ref country code: FR

Ref legal event code: CD

Owner name: LINDE AG, DE

Effective date: 20121207

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 178086

Country of ref document: AT

Kind code of ref document: T

Owner name: LINDE AG, DE

Effective date: 20121211

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: LINDE AG, DE

Effective date: 20130124

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: LINDE AG

Effective date: 20130205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140212

Year of fee payment: 20

Ref country code: DK

Payment date: 20140211

Year of fee payment: 20

Ref country code: SE

Payment date: 20140211

Year of fee payment: 20

Ref country code: NL

Payment date: 20140208

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140128

Year of fee payment: 20

Ref country code: IT

Payment date: 20140217

Year of fee payment: 20

Ref country code: ES

Payment date: 20140113

Year of fee payment: 20

Ref country code: FR

Payment date: 20140211

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20140207

Year of fee payment: 20

Ref country code: GB

Payment date: 20140206

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140417

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59505441

Country of ref document: DE

Ref country code: DK

Ref legal event code: EUP

Effective date: 20150208

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: MAXIMUM VALIDITY LIMIT REACHED

Effective date: 20150208

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20150208

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20150207

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 178086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150208

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150207

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20150209