EP0724793B1 - Systeme professionnel de commutation et transmission bidirectionnelle a multiplexage temporel pour des signaux haute-fidelite audio-analogiques et audionumeriques et des signaux de commande et de controle - Google Patents

Systeme professionnel de commutation et transmission bidirectionnelle a multiplexage temporel pour des signaux haute-fidelite audio-analogiques et audionumeriques et des signaux de commande et de controle Download PDF

Info

Publication number
EP0724793B1
EP0724793B1 EP94931072A EP94931072A EP0724793B1 EP 0724793 B1 EP0724793 B1 EP 0724793B1 EP 94931072 A EP94931072 A EP 94931072A EP 94931072 A EP94931072 A EP 94931072A EP 0724793 B1 EP0724793 B1 EP 0724793B1
Authority
EP
European Patent Office
Prior art keywords
signals
transmission
command
fidelity
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94931072A
Other languages
German (de)
English (en)
Other versions
EP0724793A1 (fr
Inventor
Christian Royer
Philippe Royer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innova Son SARL
Original Assignee
Innova Son SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innova Son SARL filed Critical Innova Son SARL
Publication of EP0724793A1 publication Critical patent/EP0724793A1/fr
Application granted granted Critical
Publication of EP0724793B1 publication Critical patent/EP0724793B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/02Arrangements for generating broadcast information; Arrangements for generating broadcast-related information with a direct linking to broadcast information or to broadcast space-time; Arrangements for simultaneous generation of broadcast information and broadcast-related information
    • H04H60/04Studio equipment; Interconnection of studios

Definitions

  • the present invention relates to a professional system for bidirectional multiplex switching and transmission time for high-fidelity audio-analog signals and digital audio and command and control signals.
  • Digital signal transmission devices in particular particular of digital audio signals such as those produced and treated in recording studios, stages and radio, television or concert hall control rooms present, in the case of certain applications, another number of problems.
  • a second group of transmission systems is made up by digital transmission systems.
  • Such an example of system is for example described in patent US-A-5,060,273.
  • This system is based on the principle of signal multiplexing digitized. Sources are generally connected individually on one or more concentration boxes which bring them together in a multipair. This one is connected in a transmitter box which converts each signal by the through pre-amplification circuits. These circuits are remotely controlled from a master receiver by a link specific. Digital signals multiplexed in series are transmitted in light form, in one or more fibers optics, and thus feed several control rooms simultaneously. The digital nature of the signal allows it to be routed by electronic control and memorize different configurations. The transmitter remote control and the signals in the other direction is through a second link in optical fiber.
  • Such a transmission device although solving previous device problems analog, i.e. less bulk and less weight, has other disadvantages, however, such as particular, the cost, the fragility of the transmission linked to the fragility of optical fibers and the impossibility of reconfiguring at leisure the configurations chosen so that the number of sources can be varied and the number of broadcast channels.
  • the aim of the present invention is therefore to propose a professional switching and transmission system bidirectional with time multiplexing for signals high fidelity and command and control signals between a transmitter and receiver, simple to implement and little costly regardless of transmitter and receiver.
  • Another object of the invention is to propose such a device extremely flexible, the transition from a configuration to a other being capable of being carried out in real time without intervention of a team of workers.
  • the invention relates to a professional system for bidirectional switching and transmission with multiplexing at less time for high-fidelity audio-analog signals and digital audio and control signals and controls, such as those produced and processed in studios recording, scenes and control rooms for radio, television or sound systems, or concert halls, including a first two-way transmission support for conveying first frames produced by multiplexing said high fidelity signals and command and control signals between a first switching end device time and signal transmission, said transmitter, and a second time switching end equipment and signal transmission, called master receiver, characterized in what it also includes interface control means human-machine receiving the high-fidelity signals transmitted by input circuits included in the first end equipment and said command and control signals to monitor in real time evolution of different relative parameters to said signals and to control in real time configuration changes and adaptations in said first end equipment by means of said signals command and control.
  • said man-machine interface control means include means for calculating memorized parameters dynamic to calculate high-fidelity signals for each first respective absolute values, means for memorize said absolute values, means for comparing respectively said first absolute values at second absolute values previously stored, and means for detecting and storing further absolute values large magnitudes among the absolute values compared.
  • said man-machine interface control means include related computer processing means to said dynamic storage parameter calculation means and to addressing control means included in said second equipment to process and view in real time different information, control and routing blocks, corresponding respectively to transmission channels allocated in the system respectively to said signals high fidelity and to order in real time configuration changes and adaptations in said first end equipment by means of said signals command and control and this according to orders given by an operator, in particular by means of a pointing device such as mouse.
  • the switching and bi-directional transmission system time multiplexing for audio signals and command and control, object of the invention comprises at minus two units, one called transmitter (E), the other called master receiver (RM), linked together by a bidirectional transmission such as cable.
  • the transmitter (E), which constitutes the first end equipment of time transmission and signal transmission occurs generally, as shown in Figure 1, as a box comprising an electronic bus which can receive n modules.
  • the n modules consist of a module responsible for the power supply of the box, of a control module of the transmission and n-2 modules which control either in input, either output each x analog signals or digital.
  • the receiver (RM) has a configuration similar.
  • the transmitter (E) and the receiver (RM) may have a similar shape to that shown in Figure 1.
  • the input and output, as shown in Figure 2 are made up each of eight lanes, with witnesses for each lane light for clipping signal presence and presence of phantom power.
  • the first module constitutes an input module
  • the other two modules constitute output modules whose connection is tailored to the needs of the user.
  • this type of module, transmitter and receiver having a configuration analogous it is possible to make the modular set of so as to vary infinitely the configurations. So, in a first configuration, it is possible to choose eight input modules for the transmitter and eight input modules output for the receiver. In this case, the configuration will have 64 source inputs and 64 source outputs.
  • the transmitter three input modules, i.e. 24 inputs sources, an output module, i.e. 8 mix outputs and on the receiver, three output modules, i.e. 24 source outputs, one input module, i.e. 8 mixed inputs and two modules effect type input so as to have 16 effect inputs and two output modules to have 16 effect outputs.
  • the realization of the transmitter and the receiver is therefore reveals perfectly simple and reliable while providing a many possibilities.
  • Audio-analog and / or digital audio signals from various sound sources are brought in by appropriate cables on the transmitter input modules and are connected to it.
  • the connection is represented by block 10 called the input circuit.
  • these audio-analog signals are either multiplexed then converted and multiplexed again, either directly converted using a converter analog digital per se known represented in 11 in the Figure 3 then multiplexed by means of digital multiplexing 12 also known.
  • a converter analog digital per se known represented in 11 in the Figure 3 then multiplexed by means of digital multiplexing 12 also known.
  • at maximum can be sent to the addressing controller 16, eight different digital audio signals.
  • Audio-analog input signals are introduced into a device 15 called transmission control device which has two blocks, namely an addressing controller 16 and a transmission synchronizer 18. As shown in the FIG.
  • the receiver (R) comprises, analogously to the transmitter, input circuits shown at 30, conversion circuits shown in 35 and multiplexing represented at 28, a synchronizer of transmission 24 and an addressing controller 25 forming part part of a transmission control device 22.
  • the output circuits corresponding to the output module are as for them connected to the addressing controller by a system of demultiplexing 19 for the transmitter and 27 for the part receiver. These parts of the circuit are intended to receive signals from the transmitter respectively receiver so as to send them to the output circuits to various elements, such as the mixer or devices for the receiver elements.
  • the transmission data frames thus produced by multiplexing the high-fidelity signals between the transmitter (E) and the receiver master (RM) is carried out by means of a transmission medium bidirectional 21 which can be constituted by a cable coaxial of conventional type of the type adapted to the controllers of transmission 15 and 22.
  • command and control signals can be transmitted between the transmitter and the receiver, these signals allowing order changes and adaptations of configuration 17 in transmitter E.
  • control signals and control come from a control device to human-machine interface including a multi-comparator dynamic storage 26 receiving high-fidelity signals transmitted by input circuits 10 included in the first E end equipment, processing means IT 32, 33, 34 of the values calculated in the multi-comparator 26, said computer processing means also being connected to addressing control means 31 included in the receiver.
  • the controller addressing 16 of the transmitter is intended to affect, towards the audio input 10 and output 14 circuits of the transmitter, the control signals 17 of their parameters, to affect the digital audio signals from the input multiplexers 12 to the transmission synchronizer 18 and / or to demultiplexers 19 of the output circuit 14, to affect the digital audio signals from synchronizer 18 to said synchronizers output multiplexers 19.
  • the synchronizer of transmission it concatenates the multiplexing of signals digital audio using a process such as the 2B3Q process, transmits in the transmission member such as a coaxial cable the 2B3Q frame, it deconcatenates and transmits to the controller addressing 16 the digital audio signals and the command from the master receiver by the transmission such as cable 21.
  • the transmission synchronizer 24 of the deconcatene receiver and transmits to the addressing controller 25 of the receiver the signals digital audio from the transmitter by the transmission medium 21; it transmits to the multi-comparator 26 all of the digital audio signals coming from the cable; it concatenates the multiplexing of digital audio signals and remote control from the addressing controller 25 according to a process such as the 2B3Q process; it emits in the organ of transmission medium 21 frame 2B3Q.
  • the controller address 25 of the master receiver affects the signals digital audio from synchronizer 24 to said output multiplexers 27; it affects the signals digital audio input multiplexers 28 to the transmission synchronizer 24 and / or to said multiplexers 27 of the output circuit 29; he receives parallel link 32 control signals 31 parameters input 10 and output 14 audio circuits of the transmitter that it transmits to the transmission synchronizer 24; he receives control signals 31 from parallel link 32 parameters of the input and output circuits 29 and the affects them; it transmits the signals to the multi-comparator 26 digital audio of input circuits 30 and output 29 which would not be transmitted to the transmission synchronizer 24.
  • said E, RM, RE end devices include processors 3 and extractors 13 of type 2B3Q for carrying out operations concatenation and deconcatenation respectively after multiplexing and before demultiplexing of the multiplexed frames, and in that the zero value is assigned to an initial value to be fixed in said processors 3 and extractors 13.
  • the 2B3Q processors perform the combination of different states of the data coming from them in quartets including one is the zero volt value, the value at which the circuits addressing force the output of the transmission multiplexers thus putting the transmission line in reception mode. To obtain such a result, it is possible to set operates circuits according to Figures 6 and 7.
  • control means are in particular constituted by a multi-comparator with dynamic storage 26 which includes means 26a for dynamic storage parameter calculation to calculate for each of the high-fidelity signals of the first values respective absolute means for storing said b 26b absolute values, 26c means to compare respectively said first absolute values to second values previously stored absolute values, and means 26d for detect and store absolute values of larger magnitudes among the absolute values compared.
  • the operator defines the initial reference data R to R ', which are transmitted to the register.
  • the comparator receives data P to P 'from the bus and RAM 3 data Q to Q 'whose respective addresses are defined by the address bus.
  • the register receives simultaneously from the bus the data P to P '.
  • the RAM being in read mode, transmits data to the operator Q to Q so that it performs any processing.
  • the operator in order to refresh the data Q to Q 'in RAM 3 and to find there the initial reference values R to R ', the operator, by a command pulse, forces the register on its third state, puts the RAM in "write” mode and frees data from the registry to RAM; it can, from this done, put predefined data R to R 'in the RAM, and this simultaneously for all addresses.
  • the memorized multi-comparator dynamic 26 receives from synchronizer 24 and controller 25 digital signals and, for each signal, calculates the absolute value, compare this value with the value previously stored and stores the largest value magnitude. These operations take place for each signal and simultaneously for all. Subsequently, it provides the link parallel 32 and at its request the last values stored and periodically receives a reset order from all these values. The parallel link 32 then ensures the exchange with IT equipment 33 with the appropriate software all of the data from multicomparator 26 and all the data coming from the computer 33. The user, next to the data displayed, translates the data from computer 33 in control signals for setting the input 10 and output 14 circuits of the transmitter and the output 29 and input 30 circuits of the master receiver. To do this, it transmits its signals command to controller 25.
  • this processing device for each channel, it is possible from the computer keyboard to modify, by example, gain, phantom power (48 volts of each channel), modify parameters such as phase, channel cut, gain, label, choice of the route of entry, etc. Therefore, it is possible to act on each channel without any physical intervention, transmission of information and the execution of the order being almost done in real time.
  • each channel is displayed in the form of a meter, a label, its track input, its output path, the presence of power ghost and cutting off the track.
  • a pointing device appropriate (mouse, ball, cursor) the path to be modified and the selected parameter is modified.
  • functions known per se such as the functions of saving, loading, etc.
  • the device is made up for each site of a circuit including a part dedicated to the transmission (figure 6), the other on reception of the data (figure 7).
  • One of the two sites is defined as master and, from this fact generates the time reference. This master is by convention called the transmitter, the other being the receiver.
  • the transmitter is preferably consisting of the following: a parallel data bus bidirectional microprocessor type clocked by a bus address 4 allowing the device to access data from each channel to be transmitted, a clock circuit 1 ensuring the timing of the device, one or more circuits of logic multiplexing 6, a synchronization circuit 2 defining the time reference and frequency sampling, a concatenation circuit 3 of data from type 2B3Q and impedance adaptation of cable 9 and a circuit reception detection 7, a deconcatenation circuit 13 2B3Q frame, a data demultiplexing circuit 8, a data and address bus access device.
  • the receiver consists of the same elements as those of the transmitter. However, the clock device ensuring the timing and data addressing is subject to the reference transmitter time transmitted by cable.
  • the system also includes a plurality of second ancillary equipment for time switching and transmission of signals, called RE slave receivers, and a plurality of second transmission media 20, said plurality of second secondary equipment RE being connected to said first equipment E respectively through said plurality second transmission media 20, and said transmission media transmission 20 conveying seconds unidirectionally frames multiplexed in the direction of the first E equipment towards the second additional equipment RE.
  • said means operator interface 26, 32, 33, 34 are included in said second time switching equipment and transmission of RM signals, and said second RM equipment is located in a mixing room and said seconds RE ancillary equipment is located in control rooms recording or broadcasting.
  • slave receivers can have an architecture modular and include different standardized modules (input, output, control, power supply) housed in bays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Television Systems (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)
  • Optical Communication System (AREA)

Description

La présente invention concerne un système professionnel de commutation et transmission bidirectionnelle à multiplexage temporel pour des signaux haute-fidélité audio-analogiques et audionumériques et des'signaux de commande et de contrôle.
Les dispositifs de transmission de signaux numériques, en particulier de signaux audionumériques tels que ceux produits et traités dans des studios d'enregistrement, des scènes et régies de radio, de télévision ou de salles de concert présentent, dans le cas de certaines applications, encore un certain nombre de problèmes.
Aujourd'hui, deux groupes de dispositifs de transmission sont utilisés, les systèmes de transmission analogiques et les systèmes de transmission numériques. Les systèmes de transmission analogiques reposent essentiellement sur le principe du câblage électrique en fil à fil. Dans ce cas, chacune des sources est connectée individuellement à un boítier qui rassemble en un seul toron, appelé multipaire, tous les fils de chaque source. Ce multipaire est connecté à un second boítier qui permet, par un câblage en dérivation, de router et de distribuer les signaux vers les différentes régies de mixage. Enfin, chaque régie possède son propre panneau d'enfichage (dit "patch") qui lui permet d'organiser son routage et l'affectation des signaux. La transmission de retour des signaux mixés ou traités se fait par le même multipaire dont des fils auront été réservés à cet effet. De tels dispositifs présentent des inconvénients en raison d'un poids et d'un volume du câblage très importants. En outre, ils nécessitent une mise en oeuvre difficile et coûteuse en raison du nombre élevé de connecteurs et de connexions et de l'obligation d'intervenir manuellement sur l'ensemble du réseau.
Un deuxième groupe de systèmes de transmission est constitué par les systèmes numériques de transmission. Un tel exemple de système est par exemple décrit dans le brevet US-A-5.060.273. Ce système repose sur le principe du multiplexage de signaux numérisés. Les sources sont généralement connectées individuellement sur un ou plusieurs boítiers de concentration qui les rassemblent dans un multipaire. Celui-ci est connecté dans un boítier émetteur qui convertit chaque signal par le biais de circuits de pré-amplification. Ces circuits sont télécommandés depuis un récepteur maítre par une liaison spécifique. Des signaux numériques multiplexés en série sont transmis sous forme lumineuse, dans une ou plusieurs fibres optiques, et alimentent ainsi plusieurs régies simultanément. La nature numérique du signal autorise de le router par commande électronique et de mémoriser différentes configurations. La télécommande de l'émetteur et le renvoi de signaux dans l'autre sens se fait par une seconde liaison en fibre optique. Un tel dispositif de transmission, bien que résolvant les problèmes antérieurs des dispositifs analogiques, à savoir un encombrement et un poids moindres, présente cependant d'autres inconvénients tels que, en particulier, le coût, la fragilité du dispositif de transmission lié à la fragilité des fibres optiques et l'impossibilité de reconfigurer à loisir les configurations choisies de manière à pouvoir varier le nombre de sources et le nombre de canaux de diffusion.
Un autre dispositif de transmission de signaux audionumériques est décrit dans le brevet US-A-4.922.536. Dans ce dispositif, un support de transmission bidirectionnelle envoie des trames produites par multiplexage des signaux haute-fidélité entre un premier équipement d'extrémité de commutation temporelle et de transmission de signaux, dit émetteur, et un second équipement d'extrémité de commutation temporelle et de transmission de signaux, dit récepteur. Par contre, il n'est décrit aucun dispositif de traitement des signaux en particulier au moyen de signaux de commande et de contrôle des paramètres des signaux haute-fidélité en vue d'agir en temps réel sur les paramètres desdits signaux.
Le but de la présente invention est donc de proposer un système professionnel de commutation et transmission bidirectionnelle à multiplexage temporel pour des signaux haute-fidélité et des signaux de commande et contrôle entre un émetteur et un récepteur, simple à mettre en oeuvre et peu coûteux indépendamment des configurations de l'émetteur et du récepteur.
Un autre but de l'invention est de proposer un tel dispositif extrêmement modulable, le passage d'une configuration à une autre étant susceptible de s'effectuer en temps réel sans intervention d'une équipe d'ouvriers.
L'invention concerne à cet effet un système professionnel de commutation et transmission bidirectionnelle à multiplexage au moins temporel pour des signaux haute-fidélité audio-analogiques et audionumériques et des signaux de commande et contrôle, tels que ceux produits et traités dans des studios d'enregistrement, des scènes et régies de radio, de télévision ou de sonorisation, ou de salles de concert, comprenant un premier support de transmission bidirectionnelle pour convoyer des premières trames produites par multiplexage desdits signaux haute-fidélité et signaux de commande et contrôle entre un premier équipement d'extrémité de commutation temporelle et transmission de signaux, dit émetteur, et un second équipement d'extrémité de commutation temporelle et transmission de signaux, dit récepteur maítre, caractérisé en ce qu'il comprend également des moyens de commande à interface homme-machine recevant les signaux haute-fidélité transmis par des circuits d'entrée inclus dans le premier équipement d'extrémité et lesdits signaux de commande et contrôle pour surveiller en temps réel l'évolution de différents paramètres relatifs auxdits signaux et pour commander en temps réel des modifications et adaptations de configuration dans ledit premier équipement d'extrémité au moyen desdits signaux de commande et contrôle.
Selon une forme de réalisation préférée de l'invention, lesdits moyens de commande à interface homme-machine comprennent des moyens de calcul de paramètre à mémorisation dynamique pour calculer pour chacun des signaux haute-fidélité des premières valeurs absolues respectives, des moyens pour mémoriser lesdites valeurs absolues, des moyens pour comparer respectivement lesdites premières valeurs absolues à des secondes valeurs absolues précédemment mémorisées, et des moyens pour détecter et mémoriser les valeurs absolues de plus grandes magnitudes parmi les valeurs absolues comparées.
En outre, lesdits moyens de commande à interface homme-machine comprennent des moyens de traitement informatique reliés auxdits moyens de calcul de paramètre à mémorisation dynamique et à des moyens de commande d'adressage inclus dans ledit second équipement pour traiter et visualiser en temps réel différents blocs d'information, de commande et routage, correspondant respectivement à des voies de transmission attribuées dans le système respectivement auxdits signaux haute-fidélité et pour commander en temps réel des modifications et adaptations de configuration dans ledit premier équipement d'extrémité au moyen desdits signaux de commande et contrôle et cela en fonction d'ordres donnés par un opérateur notamment au moyen d'un dispositif dé pointage tel que souris.
D'autres caractéristiques et avantages de l'invention apparaítront encore à la lecture de la description d'un exemple de réalisation et des dessins joints dans lesquels :
  • la figure 1 représente une vue en perspective de l'émetteur et du récepteur incluant le dispositif de traitement de données;
  • la figure 2 représente une vue schématique des modules d'entrée et sortie standardisés de l'émetteur et du récepteur;
  • la figure 3 représente un synoptique des circuits de l'émetteur;
  • La figure 4 représente un synoptique des circuits du récepteur;
  • la figure 5 représente une impression de l'écran de l'ordinateur permettant la visualisation de toutes les voies;
  • les figures 6 et 7 représentent respectivement une vue schématique des circuits de l'émetteur et du récepteur permettant de transmettre, à une vitesse élevée de manière bidirectionnelle, les données numériques;
  • la figure 8 représente les chronogrammes de l'émetteur et du récepteur dans le cas de circuits conformes aux figures 6 et 7; et
  • la figure 9 représente un schéma du circuit d'un multi-comparateur de données, à mémorisation dynamique.
  • Le système de commutation et transmission bi-directionnelle à multiplexage temporel pour des signaux audio et des signaux de commande et de contrôle, objet de l'invention, comporte au moins deux unités, l'une appelée émetteur (E), l'autre appelée récepteur maítre (RM), reliées entre elles par un organe de transmission bidirectionnelle tel qu'un câble. L'émetteur (E), qui constitue un premier équipement d'extrémité de transmission temporelle et transmission de signaux se présente généralement, comme le montre le figure 1, sous forme d'un boítier comprenant un bus électronique pouvant recevoir n modules. Les n modules sont constitués d'un module chargé de l'alimentation électrique du boítier, d'un module de contrôle de la transmission et n-2 modules qui contrôlent soit en entrée, soit en sortie chacun x signaux analogiques ou numériques. Le récepteur (RM) présente une configuration analogue. Il peut comporter en outre un système informatique autonome constitué, par exemple, par un micro-ordinateur portable, relié au module de contrôle de la transmission par une liaison parallèle 32. Il est possible également de compléter ce dispositif par un écran déporté afin d'augmenter le confort visuel de l'utilisateur. En pratique, l'émetteur (E) et le récepteur (RM) pourront affecter une forme semblable à celle représentée à la figure 1. Les modules d'entrée et de sortie, tels que représentés à la figure 2, sont constitués chacun de huit voies, avec pour chaque voie des témoins lumineux de présence du signal d'écrêtage et de présence d'une alimentation fantôme. Dans l'exemple de tels modules d'entrée et de sortie représentés à la figure 2, le premier module constitue un module d'entrée, les deux autres modules constituent des modules de sortie dont la connectique est adaptée aux besoins de l'utilisateur. Grâce à ce type de module, l'émetteur et le récepteur, ayant une configuration analogue, il est possible de rendre l'ensemble modulaire de manière à faire varier à l'infini les configurations. Ainsi, dans une première configuration, il est possible de choisir huit modules d'entrée pour l'émetteur et huit modules de sortie pour le récepteur. Dans ce cas, la configuration comportera 64 entrées sources et 64 sorties sources.
    Dans une autre configuration, il est possible d'avoir, au niveau de l'émetteur, cinq modules d'entrée correspondant à 40 entrées sources et trois modules de sortie correspondant à 24 sorties mix. De même, dans le récepteur, on aura cinq modules de sortie correspondant à 40 sorties mix et trois modules correspondant à 24 entrées mix.
    Dans une autre configuration, il sera encore possible d'avoir pour l'émetteur trois modules d'entrée, soit 24 entrées sources, un module de sorties, soit 8 sorties mix et sur le récepteur, trois modules de sortie, soit 24 sorties sources, un module d'entrée, soit 8 entrées mixtes et deux modules d'entrée du type à effet de manière à avoir 16 entrées effet et deux modules de sortie pour avoir 16 sorties effet. Sur le plan physique, la réalisation de l'émetteur et du récepteur se révèle donc parfaitement simple et fiable tout en offrant un grand nombre de possibilités. Bien évidemment, il est à noter qu'il est possible de relier plusieurs récepteurs sur un même émetteur comme le montre la figure 3. Le fonctionnement d'une telle configuration sera décrit ci-après.
    Les signaux entrant dans l'émetteur par les circuits d'entrée représentés à la figure 3 suivent un cheminement décrit ci-après. Les signaux audio-analogiques et/ou audionumériques provenant de sources sonores diverses sont amenés au moyen de câbles appropriés sur les modules d'entrée de l'émetteur et sont connectés à ce dernier. La connexion est représentée par le bloc 10 appelé circuit d'entrée. Ensuite, dans le cas de signaux audio-analogiques, ces signaux audio-analogiques sont soit multiplexés puis convertis et de nouveau multiplexés, soit directement convertis au moyen d'un convertisseur analogique digital en soi connu représenté en 11 dans la figure 3 puis multiplexés au moyen de dispositifs de multiplexage numérique 12 également connus. Pour des raisons de simplification, pour huit circuits d'entrée correspondant à un module d'entrée, correspondra un circuit 12 de multiplexage numérique. Ainsi, dans l'exemple représenté à la figure 4, au maximum pourront être envoyés, au contrôleur d'adressage 16, huit signaux audionumériques différents. Suivant le nombre de circuits d'entrée donc de modules d'entrée qui auront été utilisés, on aura un nombre de circuit de sortie correspondant à huit moins le nombre de modules d'entrée. Ces circuits de sortie ont pour vocation d'acheminer des signaux généralement audio-analogiques vers différents éléments tels que des amplificateurs de haut-parleurs, des magnétophones, etc., et plus généralement vers tout dispositif susceptible de traiter lesdits signaux. Les signaux d'entrée audio-analogiques, une fois convertis et multiplexés, sont introduits dans un dispositif 15 appelé dispositif de contrôle de transmission qui comporte deux blocs, à savoir un contrôleur d'adressage 16 et un synchronisateur de transmission 18. Comme le montre la figure 4, le récepteur (R) comporte, de manière analogue à l'émetteur, des circuits d'entrée représentés en 30, des circuits de conversion représentés en 35 et des circuits de multiplexage représentés en 28, un synchronisateur de transmission 24 et un contrôleur d'adressage 25 faisant partie intégrante d'un dispositif de contrôle de transmission 22. Les circuits de sortie correspondant au module de sortie sont quant à eux reliés au contrôleur d'adressage par un système de démultiplexage 19 pour l'émetteur et 27 pour la partie récepteur. Ces parties du circuit sont destinées à recevoir des signaux provenant de l'émetteur respectivement du récepteur de manière à les envoyer vers les circuits de sortie vers des éléments divers, tels que la table de mixage ou des périphériques pour les éléments du récepteur. La transmission des trames de données ainsi produites par multiplexage des signaux haute-fidélité entre l'émetteur (E) et le récepteur maítre (RM) s'effectue au moyen d'un support de transmission bidirectionnelle 21 qui peut être constitué par un câble coaxial de type classique du type adapté aux contrôleurs de transmission 15 et 22.
    Comme le montre la figure 4, outre les signaux haute-fidélité, des signaux de commande et de contrôle peuvent être transmis entre l'émetteur et le récepteur, ces signaux permettant de commander en temps réel des modifications et adaptations de configuration 17 dans l'émetteur E. Ces signaux de commande et de contrôle proviennent d'un dispositif de commande à interface homme-machine comprenant un multi-comparateur à mémorisation dynamique 26 recevant les signaux haute-fidélité transmis par les circuits d'entrée 10 inclus dans le premier équipement d'extrémité E, des moyens de traitement informatique 32, 33, 34 des valeurs calculées dans le multi-comparateur 26, lesdits moyens de traitement informatique étant également reliés à des moyens de commande d'adressage 31 inclus dans le récepteur. Grâce à un tel dispositif, il devient possible de traiter et visualiser en temps réel différents blocs d'information, de commande et routage, correspondant respectivement à des voies de transmission (voies 1 à 64) attribuées dans le système respectivement auxdits signaux haute-fidélité et pour commander en temps réel des modifications et adaptations de configuration dans ledit premier équipement E d'extrémité au moyen desdits signaux de commande et contrôle et cela en fonction d'ordres donnés par un opérateur notamment au moyen d'un dispositif de pointage tel qu'une souris 34. Pour obtenir un tel cheminement des signaux, il est nécessaire de contrôler de manière synchronisée la transmission bidirectionnelle des signaux entre l'émetteur et le récepteur. Ce sont les contrôleurs d'adressage 16 et 25 et les synchronisateurs de transmission 18 et 24 respectifs de l'émetteur et du récepteur qui contrôlent cette transmission. Ainsi, le contrôleur d'adressage 16 de l'émetteur a pour vocation d'affecter, vers les circuits audio d'entrée 10 et de sortie 14 de l'émetteur, les signaux de commande 17 de leurs paramètres, d'affecter les signaux audionumériques des multiplexeurs 12 d'entrée vers le synchronisateur de transmission 18 et/ou vers les démultiplexeurs 19 du circuit de sortie 14, d'affecter les signaux audionumériques du synchronisateur 18 vers lesdits multiplexeurs 19 de sortie. Quant au synchronisateur de transmission, il concatène le multiplexage des signaux audionumériques selon un procédé tel que le procédé 2B3Q, il émet dans l'organe de transmission tel qu'un câble coaxial la trame 2B3Q, il déconcatène et transmet au contrôleur d'adressage 16 les signaux audionumériques et les signaux de commande provenant du récepteur maítre par l'organe de transmission tel que le câble 21. De la même manière, le synchronisateur de transmission 24 du récepteur déconcatène et transmet au contrôleur d'adressage 25 du récepteur les signaux audionumériques provenant de l'émetteur par l'organe de support de transmission 21 ; il transmet au multicomparateur 26 l'ensemble des signaux audionumériques provenant du câble; il concatène le multiplexage des signaux audionumériques et de télécommande provenant du contrôleur d'adressage 25 selon un procédé tel que le procédé 2B3Q ; il émet dans l'organe de support de transmission 21 la trame 2B3Q. Quant au contrôleur d'adressage 25 du récepteur maítre, il affecte les signaux audionumériques du synchronisateur 24 vers lesdits multiplexeurs 27 de sortie; il affecte les signaux audionumériques des multiplexeurs 28 d'entrée vers le synchronisateur de transmission 24 et/ou vers lesdits multiplexeurs 27 du circuit de sortie 29; il reçoit de la liaison parallèle 32 les signaux de commande 31 des paramètres des circuits audio d'entrée 10 et de sortie 14 de l'émetteur qu'il transmet au synchronisateur de transmission 24; il reçoit de la liaison parallèle 32 les signaux de commande 31 des paramètres des circuit d'entrée et de sortie 29 et les leur affecte; il transmet au multicomparateur 26 les signaux audionumériques des circuits d'entrée 30 et de sortie 29 qui ne seraient pas transmis au synchronisateur de transmission 24. Ainsi, une telle transmission bidirectionnelle d'une telle quantité de données est possible grâce au fait que lesdits équipements d'extrémité E, RM, RE comprennent des processeurs 3 et extracteurs 13 de type 2B3Q pour réaliser des opérations de concaténation et déconcaténation respectivement après multiplexage et avant démultiplexage des trames multiplexées, et en ce que la valeur zéro est affectée à une valeur initiale à fixer dans lesdits processeurs 3 et extracteurs 13. En effet, les processeurs 2B3Q effectuent la combinaison des différents états des données leur provenant en quartets dont l'un est la valeur zéro volt, valeur à laquelle les circuits d'adressage forcent la sortie des multiplexeurs d'émission mettant ainsi la ligne de transmission en mode de réception. Pour obtenir un tel résultat, il est possible de mettre en oeuvre des circuits conformes aux figures 6 et 7. Dans ces circuits, on note qu'il est préférable de prévoir du côté récepteur des moyens optocoupleurs 23 placés à différents niveaux sur le parcours des signaux et trames pour garantir une isolation galvanique correcte entre lesdits équipements d'extrémité et éviter tous les effets de boucle de masse. On notera également que les horloges et les circuits de synchronisation des récepteurs s'asservissent par des boucles à verrouillage de phase sur une seule référence temporelle. Une fois résolu le problème de la transmission bidirectionnelle en temps réel des données, il convient en outre de régler le problème du traitement en temps réel d'une pluralité de signaux. Ce problème est résolu grâce aux moyens de commande à interface homme-machine. Ces moyens de commande sont notamment constitués par un multi-comparateur à mémorisation dynamique 26 qui comprend des moyens 26a de calcul de paramètre à mémorisation dynamique pour calculer pour chacun des signaux haute-fidélité des premières valeurs absolues respectives, des moyens pour mémoriser 26b lesdites valeurs absolues, des moyens 26c pour comparer respectivement lesdites premières valeurs absolues à des secondes valeurs absolues précédemment mémorisées, et des moyens 26d pour détecter et mémoriser les valeurs absolues de plus grandes magnitudes parmi les valeurs absolues comparées.
    Un exemple d'un circuit de ce multi-comparateur est représenté à la figure 9. Dans ce cas, le dispositif est constitué, de préférence, des éléments suivants:
    • un bus de données cadencé par un bus d'adresse permettant au dispositif d'accéder aux données à traiter;
    • un comparateur logique (ex 74HC681), éventuellement associé à un quelconque calculateur;
    • deux registres logiques à trois états (ex 74HC374);
    • une mémoire vive (ex RAM 6264);
    • un opérateur logique quelconque requérant le résultat de la comparaison (ex IBM PC).
    Le fonctionnement d'un tel dispositif représenté à la figure 9 est le suivant.
    L'opérateur définit les données initiales de référence R à R', qui sont transmises au registre.
    Le comparateur reçoit du bus les données P à P' et de la RAM 3 les données Q à Q' dont les adresses respectives sont définies par le bus d'adresse. Le registre reçoit simultanément du bus les données P à P'.
    Le comparateur émet une impulsion de commande qui :
    • place le registre en troisième état et, selon le résultat de la comparaison :
    • soit autorise le registre à libérer les données P à P' et, simultanément, met la RAM en mode "écriture", ce qui a pour effet de remplacer les données Q à Q', jusqu'ici présente en mémoire, par les données P à P' qui deviennent, de ce fait, les nouvelles données Q à Q' ;
    • soit bloque les données P à P' présentes dans le registre, et autorise celui-ci à se mettre à jour. D'autre part, la RAM est placée en mode "lecture" et autorise de ce fait une nouvelle opération de comparaison.
    Tant que la condition du comparateur n'est pas trouvée, la RAM, étant en mode lecture, émet vers l'opérateur les données Q à Q'afin qu'il en effectue l'éventuel traitement. On peut aisément définir la périodicité et la longueur des opérations des saisies des données par l'opérateur.
    Cependant, afin de rafraíchir les données Q à Q' dans la RAM 3 et d'y retrouver les valeurs de références initiales R à R', l'opérateur, par une impulsion de commande, force le registre sur son troisième état, met la RAM en mode "écriture" et libère les données du registre vers la RAM ; il peut, de ce fait, placer dans la RAM des données R à R' prédéfinies, et ce simultanément pour toutes les adresses.
    En d'autres termes, le multicomparateur à mémorisation dynamique 26 reçoit du synchronisateur 24 et du contrôleur 25 les signaux numériques et, pour chaque signal, en calcule la valeur absolue, compare cette valeur avec la valeur précédemment mémorisée et mémorise la valeur de plus grande magnitude. Ces opérations ont lieu pour chaque signal et simultanément pour tous. Par la suite, il fournit à la liaison parallèle 32 et à sa demande les dernières valeurs mémorisées et reçoit périodiquement un ordre de remise à zéro de toutes ces valeurs. La liaison parallèle 32 assure alors l'échange avec l'équipement informatique 33 doté du logiciel idoine de l'ensemble des données issues du multicomparateur 26 et de l'ensemble des données provenant de l'ordinateur 33. L'utilisateur, en regard des données affichées, traduit les données provenant de l'ordinateur 33 en signaux de commande destinés à paramétrer les circuits d'entrée 10 et de sortie 14 de l'émetteur et les circuits de sortie 29 et d'entrée 30 du récepteur maítre. Pour ce faire, elle transmet ses signaux de commande au contrôleur 25.
    Grâce à ce dispositif de traitement, pour chaque voie, il est possible à partir du clavier de l'ordinateur de modifier, par exemple, le gain, l'alimentation fantôme (48 volts de chaque voie), de modifier des paramètres tels que l'inversion de phase, la coupure de la voie, le gain, le label, le choix de la voie d'entrée, etc. De ce fait, il est possible d'agir sur chaque voie sans aucune intervention physique, la transmission d'information et l'exécution de l'ordre se faisant quasiment en temps réel.
    Pour optimiser un tel dispositif de traitement, on pourra, par exemple, choisir de présenter les voies à l'écran sous forme d'un schéma analogue à la figure 5. Dans ce cas, chaque voie est affichée sous forme d'un vumètre, d'un label, de sa voie d'entrée, sa voie de sortie, la présence de l'alimentation fantôme et la coupure de la voie. Pour agir sur l'une des voies, on sélectionne au moyen d'un dispositif de pointage approprié (souris, boule, curseur) la voie devant être modifiée et on modifie le paramètre choisi. Bien évidemment, il est possible au moyen de logiciels appropriés d'intégrer des fonctions en soi connues telles que les fonctions de sauvegarde, de chargement, etc.
    Comme il a été dit précédemment, le dispositif est constitué pour chaque site d'un circuit comprenant une partie dédiée à l'émission (figure 6), l'autre à la réception des données (figure 7). Un des deux sites est défini comme maítre et, de ce fait, génère la référence temporelle. Ce maítre est par convention appelé l'émetteur, l'autre étant le récepteur. Comme il a été dit ci-dessus, l'émetteur est de préférence constitué des éléments suivants : un bus de données parallèle bidirectionnel type micro-processeur cadencé par un bus d'adresse 4 permettant au dispositif d'accéder aux données de chaque voie à transmettre, un circuit d'horloge 1 assurant le cadencement du dispositif, un ou plusieurs circuits de multiplexage logique 6, un circuit de synchronisation 2 définissant la référence temporelle et la fréquence d'échantillonnage, un circuit de concaténation 3 de données de type 2B3Q et d'adaptation d'impédance du câble 9 et un circuit de détection de réception 7, un circuit de déconcaténation 13 de trame 2B3Q, un circuit de démultiplexage 8 des données, un dispositif d'accès au bus de donnée et d'adresse. Le récepteur est constitué des mêmes éléments que ceux de l'émetteur. Cependant, le dispositif d'horloge assurant le cadencement et l'adressage des données est asservi sur la référence temporelle de l'émetteur transmise par le câble.
    Ainsi, en phase d'émission, comme le représente la figure 6, les signaux vont cheminer selon le schéma suivant :
    • le circuit d'horloge 1 émet dans le circuit de synchronisation 2 la référence temporelle qui définit la période d'échantillonnage. Le circuit de synchronisation 2 crée alors une impulsion qu'il transmet au processeur 3;
    • l'horloge 1 cadence, également, le circuit d'adressage 4, qui détermine le cheminement des données à émettre du bus 5 aux multiplexeurs 6;
    • les circuits de multiplexage produisent les données à émettre au processeur 3 en les sérialisant, selon les ordres du circuit d'adressage 4; on a représenté les différents états possibles de ces données sérialisées sur la figure 8 (données 1 et 2);
    • le processeur 3 combine les données selon un procédé 2B3Q qui puisse produire un diagramme d'état tel que celui de la figure 8. Il émet alors, selon le chronogramme de la figure 8, vers l'adaptateur de ligne 9, la référence temporelle du circuit 2 et les données processées;
    • après l'émission de la dernière donnée, le circuit d'adresse force l'état logique des sorties des multiplexeurs sur la valeur du cas 1 de la figure 8, mettant ainsi la ligne de transmission en mode de réception;
    • l'adaptateur 9 fournit l'énergie nécessaire à la transmission et garantit l'adaptation d'impédance.
    Enfin, en phase de réception, comme le représente la figure 6, les signaux vont cheminer selon le schéma suivant :
    • après un délai proportionnel à la longueur du câble, le circuit 7, détectant l'arrivée de signaux de réception, transmet une impulsion au circuit d'horloge 1, qui relance le cadencement du circuit d'adresse 4;
    • le processeur 13 réalise l'extraction des données du codage 2B3Q effectué dans le récepteur et les transmet en série vers les démultiplexeurs 8;
    • les démultiplexeurs 8 convertissent les données série en données parallèles qu'ils transmettent sur le bus 5;
    • le circuit d'adresse 4 détermine le cheminement des données reçues par la transmission dans les démultiplexeurs 8 et le bus 5.
    A l'inverse, le récepteur adopte un comportement conforme à la figure 7. Ainsi, au cours de la phase de réception :
    • le détecteur 7, recevant les données provenant de l'émetteur, transmet, à travers un circuit de couplage optique 54, la référence temporelle au circuit d'horloge 1;
    • l'horloge 1 s'asservit sur la référence temporelle par une boucle à verrouillage de phase et transmet au circuit d'adresse 4 les signaux de synchronisation;
    • le circuit 13 extrait les données du codage 2B3Q transmis par l'émetteur et émet les données en série vers les démultiplexeurs 8 à travers le couplage optique 54;
    • les démultiplexeurs 8 transmettent les données, dans leur format original, au bus selon les adresses du contrôleur 4.
    Enfin, au cours de la phase d'émission :
    • le circuit d'adressage 4 ayant adressé les données reçues de la transmission, adresse, de par le bus 5, vers le multiplexeur 6, les données à transmettre vers l'émetteur ;
    • les circuits de couplage optique 54 assurent la liaison des données en série entre les multiplexeurs 6 et le processeur 3;
    • le processus d'émission des données s'effectue alors de la même façon que dans l'émetteur.
    De ce fait, on obtient un contrôleur de transmission bidirectionnel de données numériques sur un câble coaxial d'au moins 300 mètres à vitesse autorisant l'échange d'au moins 80 méga-bits par seconde. De ce fait, les utilisateurs peuvent réagir à la vitesse du réflexe.
    Selon un mode de réalisation préféré de l'invention représenté à la figure 5, le système comprend également une pluralité de seconds équipements annexes de commutation temporelle et de transmission de signaux, dits récepteurs esclaves RE, et une pluralité de seconds supports de transmission 20, ladite pluralité de seconds équipements annexes RE étant reliée audit premier équipement E respectivement à travers ladite pluralité de seconds supports de transmission 20, et lesdits supports de transmission 20 convoyant unidirectionnellement des secondes trames multiplexées dans le sens du premier équipement E vers les seconds équipements annexes RE. En outre, lesdits moyens de commande à interface homme-machine 26, 32, 33, 34 sont inclus dans ledit second équipement de commutation temporelle et transmission de signaux RM, et ledit second équipement RM est localisé dans une régie de mixage et lesdits seconds équipements annexes RE sont localisés dans des régies d'enregistrement ou de diffusion. Comme le récepteur maítre, les récepteurs esclaves peuvent présenter une architecture modulaire et comprennent différents modules standardisés (entrée, sortie, commande, alim) se logeant dans des baies.

    Claims (9)

    1. Système professionnel de commutation et transmission bidirectionnelle à multiplexage au moins temporel pour des signaux haute-fidélité audio-analogiques et audionumériques et des signaux de commande et contrôle, tels que ceux produits et traités dans des studios d'enregistrement, des scènes et régies de radio, de télévision, ou de salles de concert, comprenant un premier support de transmission bidirectionnelle (21) pour convoyer des premières trames produites par multiplexage desdits signaux haute-fidélité et signaux de commande et contrôle entre un premier équipement d'extrémité de commutation temporelle et transmission de signaux, dit émetteur (E), et un second équipement d'extrémité de commutation temporelle et transmission de signaux, dit récepteur maítre (RM),
      caractérisé en ce qu'il comprend également des moyens de commande à interface homme-machine (26, 32, 33, 34) recevant les signaux haute-fidélité transmis par des circuits d'entrée (10) inclus dans le premier équipement d'extrémité (E) et lesdits signaux de commande et contrôle pour surveiller en temps réel l'évolution de différents paramètres relatifs auxdits signaux et pour commander en temps réel des modifications et adaptations de configuration (17) dans ledit premier équipement d'extrémité (E) au moyen desdits signaux de commande et contrôle.
    2. Système conforme à la revendication 1,
      caractérisé en ce que lesdits moyens de commande à interface homme-machine comprennent des moyens (26a) de calcul de paramètre à mémorisation dynamique pour calculer pour chacun des signaux haute-fidélité des premières valeurs absolues respectives, des moyens pour mémoriser (26b) lesdites valeurs absolues, des moyens (26c) pour comparer respectivement lesdites premières valeurs absolues à des secondes valeurs absolues précédemment mémorisées, et des moyens (26d) pour détecter et mémoriser les valeurs absolues de plus grandes magnitudes parmi les valeurs absolues comparées.
    3. Système conforme à la revendication 1 ou 2,
      caractérisé en ce que lesdits moyens de commande à interface homme-machine comprennent des moyens de traitement informatique (32, 33, 34) reliés auxdits moyens de calcul de paramètre à mémorisation dynamique et à des moyens de commande d'adressage (31) inclus dans ledit second équipement pour traiter et visualiser en temps réel différents blocs d'information, de commande et routage, correspondant respectivement à des voies de transmission attribuées dans le système respectivement auxdits signaux haute-fidélité et pour commander en temps réel des modifications et adaptations de configuration dans au moins ledit premier équipement (E) d'extrémité au moyen desdits signaux de commande et contrôle et cela en fonction d'ordres donnés par un opérateur notamment au moyen d'un dispositif de pointage tel que souris (34).
    4. Système conforme à l'une quelconque des revendications 1 à 3,
      caractérisé en ce que lesdits équipements d'extrémité (E, RM, RE) comprennent des processeurs (3) et extracteurs (13) de type 2B3Q pour réaliser des opérations de concaténation et déconcaténation respectivement après multiplexage et avant démultiplexage des trames multiplexées, et en ce que la valeur zéro est affectée à une valeur initiale à fixer dans lesdits processeurs (3) et extracteurs (13).
    5. Système conforme à l'une quelconque des revendications 1 ou 4,
      caractérisé en ce qu'il comprend également une pluralité de seconds équipements annexes de commutation temporelle et de transmission de signaux, dits récepteurs esclaves (RE), et une pluralité de seconds supports de transmission (20), ladite pluralité de seconds équipements annexes (RE) étant reliée audit premier équipement (E) respectivement à travers ladite pluralité de seconds supports de transmission (20), et lesdits supports de transmission (20) convoyant unidirectionnellement des secondes trames multiplexées dans le sens du premier équipement (E) vers les seconds équipements annexes (RE).
    6. Système conforme à la revendication 5,
      caractérisé en ce que lesdits moyens de commande à interface homme-machine (26, 32, 33, 34) sont inclus dans ledit second équipement de commutation temporelle et transmission de signaux (RM), en ce que ledit second équipement (RM) est localisé dans une régie de mixage et lesdits seconds équipements annexes (RE) sont localisés dans des régies d'enregistrement ou de diffusion.
    7. Système conforme à l'une quelconque des revendications 1 à 6,
      caractérisé en ce que lesdits premier et second supports de transmission (20, 21) sont constitués par du câblage coaxial de type classique.
    8. Système conforme à l'une quelconque des revendications 1 à 7,
      caractérisé en ce que lesdits équipements d'extrémités (E, RM, RE) ont une architecture modulaire et comprennent différents modules standardisés (entrée, sortie, commande, alim) se logeant dans des baies.
    9. Système selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend également des moyens tels qu'optocoupleurs (23, 14) placé à différents niveaux sur le parcours des signaux et trames pour garantir une isolation galvanique correcte entre lesdits équipements d'extrémités.
    EP94931072A 1993-10-18 1994-10-17 Systeme professionnel de commutation et transmission bidirectionnelle a multiplexage temporel pour des signaux haute-fidelite audio-analogiques et audionumeriques et des signaux de commande et de controle Expired - Lifetime EP0724793B1 (fr)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9312364A FR2711460B1 (fr) 1993-10-18 1993-10-18 Système de commutation et transmission bidirectionnelle à multiplexage temporel pour des signaux haute-fidélité audio-analogiques et audionumériques et des signaux de commande et de contrôle.
    FR9312364 1993-10-18
    PCT/FR1994/001199 WO1995011553A1 (fr) 1993-10-18 1994-10-17 Systeme professionnel de commutation et transmission bidirectionnelle a multiplexage temporel pour des signaux haute-fidelite audio-analogiques et audionumeriques et des signaux de commande et de controle

    Publications (2)

    Publication Number Publication Date
    EP0724793A1 EP0724793A1 (fr) 1996-08-07
    EP0724793B1 true EP0724793B1 (fr) 1999-08-04

    Family

    ID=9451921

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94931072A Expired - Lifetime EP0724793B1 (fr) 1993-10-18 1994-10-17 Systeme professionnel de commutation et transmission bidirectionnelle a multiplexage temporel pour des signaux haute-fidelite audio-analogiques et audionumeriques et des signaux de commande et de controle

    Country Status (9)

    Country Link
    US (1) US5764917A (fr)
    EP (1) EP0724793B1 (fr)
    AT (1) ATE183040T1 (fr)
    DE (1) DE69419931T2 (fr)
    DK (1) DK0724793T3 (fr)
    ES (1) ES2138093T3 (fr)
    FR (1) FR2711460B1 (fr)
    GR (1) GR3031773T3 (fr)
    WO (1) WO1995011553A1 (fr)

    Families Citing this family (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8675649B2 (en) 2008-11-18 2014-03-18 Yamaha Corporation Audio network system and method of detecting topology in audio signal transmitting system
    EP2280488A1 (fr) * 2009-06-30 2011-02-02 STMicroelectronics S.r.l. Appareil de transmission et réception pour signaux numériques
    DE102009028645B4 (de) * 2009-08-19 2014-04-03 Raumfeld Gmbh Verfahren und Anordnung zur Synchronisation von Datenströmen in Netzwerken sowie ein entsprechendes Computerprogramm und ein entsprechendes computerlesbares Speichermedium

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3795771A (en) * 1970-05-15 1974-03-05 Hughes Aircraft Co Passenger entertainment/passenger service and self-test system
    FR2552958A1 (fr) * 1983-10-03 1985-04-05 Moulin Andre Console numerique de traitements de signaux
    WO1987006404A1 (fr) * 1986-04-11 1987-10-22 Orion Research, Inc. Systeme de melange audio et circuit de gain pour celui-ci
    DE3615981A1 (de) * 1986-05-13 1987-11-19 Gregor Berg System zur parameterprogrammierbaren bearbeitung von audiosignalen in kombination mit programmierbarer schaltmatrix, zur anwendung im bereich der analogen und digitalen elektronischen aufbereitung von audiosignalen
    US4993073A (en) * 1987-10-01 1991-02-12 Sparkes Kevin J Digital signal mixing apparatus
    US4922536A (en) * 1988-11-14 1990-05-01 Massachusetts Institute Of Technology Digital audio transmission for use in studio, stage or field applications
    US5299266A (en) * 1992-03-20 1994-03-29 Sony Electronics Inc. Multi machine monitor for TV post production

    Also Published As

    Publication number Publication date
    GR3031773T3 (en) 2000-02-29
    ES2138093T3 (es) 2000-01-01
    DE69419931D1 (de) 1999-09-09
    ATE183040T1 (de) 1999-08-15
    FR2711460B1 (fr) 1996-02-02
    EP0724793A1 (fr) 1996-08-07
    US5764917A (en) 1998-06-09
    WO1995011553A1 (fr) 1995-04-27
    DE69419931T2 (de) 2000-05-04
    FR2711460A1 (fr) 1995-04-28
    DK0724793T3 (da) 2000-03-13

    Similar Documents

    Publication Publication Date Title
    EP0082077B1 (fr) Procédé de télédistribution d'informations enrégistrées, notamment d'oeuvres musicales, et système de mise en oeuvre
    CA2201917C (fr) Systeme de distribution audiovisuelle
    CN112911379B (zh) 视频生成方法、装置、电子设备和存储介质
    CA2150172C (fr) Systeme d'acquisition et de transmission sismique avec decentralisation des fonctions
    EP0179001A2 (fr) Procédé et dispositif d'acquisition, de mémorisation et de transmission de données spécialisées, relatives notamment à l'enregistrement des émissions, entre un appareil de type magnétoscope et un centre de traitement
    FR2615060A1 (fr) Systeme audio/video a composants avec controle temporise de plusieurs dispositifs peripheriques
    EP0724793B1 (fr) Systeme professionnel de commutation et transmission bidirectionnelle a multiplexage temporel pour des signaux haute-fidelite audio-analogiques et audionumeriques et des signaux de commande et de controle
    FR2669168A1 (fr) Procede de multiplexage-demultiplexage numerique multidebit.
    EP0389339B1 (fr) Réseau de distribution interactive d'informations vidéo, audio et télématiques
    FR2736482A1 (fr) Dispositif de communication entre une pluralite de modules fonctionnels installes dans une unite locale et un bus externe de type arinc 629
    FR2506045A1 (fr) Procede et dispositif de selection de circuits integres a haute fiabilite
    EP1433322B1 (fr) Procede de transmission d'emissions audiovisuelles proposees par des utilisateurs, terminal et serveur pour la mise en oeuvre du procede
    FR2476952A1 (fr) Generateur de signaux de base et de signaux de test de television et systeme comportant un tel dispositif
    AU6412896A (en) Method of transmitting atm digital programme unit signals, in particular digital data-compressed video distribution signals
    FR2770735A1 (fr) Procede et appareil d'interface graphique d'utilisateur
    WO1997006621A1 (fr) Procede de communication sur un bus optique a cohabitation de debits differents
    EP2658173B1 (fr) Commutateur pour relier sélectivement un récepteur à l'une de deux sources de signaux, et centrale de gestion de communications comportant un tel commutateur
    WO1991001612A1 (fr) Reseau de distribution par commutation de signaux video avec modules individuels d'amplification, de selection et de reception de la telecommande
    FR2526249A1 (fr) Procede et dispositif de calage temporel automatique de stations dans un multiplex temporel pour bus optique et systeme de transmission et de traitement de donnees comprenant un tel dispositif
    WO2003051004A2 (fr) Dispositif pour la surveillance d'un reseau
    WO1987000996A1 (fr) Dispositif de transmission simultanee de plusieurs signaux electriques entre deux enplacements
    EP0552099A1 (fr) Codeur multicomposantes x-paquets et décodeur correspondant
    KR0133948B1 (ko) 레이저디스크플레이어 자동제어시스템
    FR3021150A1 (fr) Procede et systeme de restitution d'un contenu sonore associe a un contenu visuel
    EP0176416A1 (fr) Procédé et dispositif de transmission d'informations entre plusieurs stations reliées en série sur une boucle et application du procédé à la transmission de signaux vocaux numérisés et/ou de données

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19960506

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19981002

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

    REF Corresponds to:

    Ref document number: 183040

    Country of ref document: AT

    Date of ref document: 19990815

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 69419931

    Country of ref document: DE

    Date of ref document: 19990909

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    ITF It: translation for a ep patent filed

    Owner name: DIGIOVANNI SCHMIEDT S.R.L.

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19991105

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: E. BLUM & CO. PATENTANWAELTE

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2138093

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19991104

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IE

    Payment date: 20041005

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: MC

    Payment date: 20041006

    Year of fee payment: 11

    Ref country code: BE

    Payment date: 20041006

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: LU

    Payment date: 20041007

    Year of fee payment: 11

    Ref country code: CH

    Payment date: 20041007

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20041011

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20041013

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20041018

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20041020

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20041021

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DK

    Payment date: 20041025

    Year of fee payment: 11

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051017

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051017

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051017

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051018

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20051018

    Year of fee payment: 12

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051031

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051031

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051031

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051031

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051031

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051031

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20051117

    Year of fee payment: 12

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060417

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060501

    REG Reference to a national code

    Ref country code: DK

    Ref legal event code: EBP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    EUG Se: european patent has lapsed
    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: MM4A

    Effective date: 20060417

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20060501

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070501

    BERE Be: lapsed

    Owner name: *INNOVA SON S.A.R.L.

    Effective date: 20051031

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20061018

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990804

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20061018

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20101021

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20111130

    Year of fee payment: 18

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20121017

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130628

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121017

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121031