EP0721583A1 - Electrochemical gas sensor with reduced cross-sensitivity - Google Patents

Electrochemical gas sensor with reduced cross-sensitivity

Info

Publication number
EP0721583A1
EP0721583A1 EP95924150A EP95924150A EP0721583A1 EP 0721583 A1 EP0721583 A1 EP 0721583A1 EP 95924150 A EP95924150 A EP 95924150A EP 95924150 A EP95924150 A EP 95924150A EP 0721583 A1 EP0721583 A1 EP 0721583A1
Authority
EP
European Patent Office
Prior art keywords
gas sensor
electrode
sensor according
measuring
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95924150A
Other languages
German (de)
French (fr)
Inventor
Cristian Huggenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0721583A1 publication Critical patent/EP0721583A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0014Sample conditioning by eliminating a gas

Definitions

  • the electrode is separated into a reference and a counter electrode 11, 12.

Abstract

With the aid of a selective membrane (5a), a significant and lasting reduction in the cross-sensitivity of electrochemical gas sensors (7) to interfering gases (18) can be achieved be electrocatalytic means. A suitable catalyst (5b) is chosen to eliminate particular interfering gases (18) and applied to a gas-permeable membrane (8) in such a way that these gases are converted to products to which the measurement electrode (11a) reacts to a reduced degree or not at all, while the gas which is to be detected must not, if possible, being to react so that it can react fully at the measurement electrode (11a). Such selective membranes (5a) can advantageously be combined with membrane electrodes. Unlike conventional adsorption and chemical adsorption filters, the catalytically operating membranes (5a) remain permanently active and do not become depleted even with concentrations well above maximum workplace concentrations. Electrochemical gas sensors fitted with selective membranes (5a) of this type work with conventional evaluation electronics (in the simplest case with an ammeter (22) connected to the measurement electrode (11a) and to a counter-electrode (12)) and do not require complex electronic compensation systems.

Description

ELEKTROCHEMISCHER GASSENSOR MIT REDUZIERTER QUEREMPFINDLICHKEIT ELECTROCHEMICAL GAS SENSOR WITH REDUCED CROSS SENSITIVITY
Die Erfindung betrifft einen elektrochemischen Gassensor, insbesondere für Kohlenmonoxid und Wasserstoff, mit reduzierter Querempfindlichkeit gemäss dem Oberbegriff des Patentanspruchs 1.The invention relates to an electrochemical gas sensor, in particular for carbon monoxide and hydrogen, with reduced cross sensitivity according to the preamble of patent claim 1.
Zur Detektion von toxischen bzw. explosiven Gasen haben sich in vielen Anwendungen elektrochemische Gassensoren bewährt, deren Wirkungsweise auf einer direkten elektrochemischen Oxidation oder Reduktion des zu messenden Gases beruht. Der durch Gasdiffusion aufrechterhaltene Zellenstrom ist eine Funktion der Gaskonzentration und erweist sich innerhalb der Messbereichsgrenzen in guter Näherung als linear. Solche Gasmesszellen weisen aber in bezug auf bestimmte Störgase eine Querempfindlichkeit auf, was zu einer Verfälschung des Messwertes führen kann, vgl. z.B. W.Pauli, Chemie - Umwelt- Technik, 1988/89, 62.In many applications, electrochemical gas sensors have proven themselves for the detection of toxic or explosive gases, the mode of operation of which is based on direct electrochemical oxidation or reduction of the gas to be measured. The cell current maintained by gas diffusion is a function of the gas concentration and, to a good approximation, proves to be linear within the measuring range limits. Such gas measuring cells are, however, cross-sensitive to certain interfering gases, which can lead to a falsification of the measured value, cf. e.g. W.Pauli, Chemistry - Environmental Technology, 1988/89, 62.
Dem Stand der Technik entsprechend werden elektrochemische Gassensoren angeboten, die mit einer meist im Sensorgehäuse integrierten Filtereinheit zur Entfernung von Störgasen, wie H2S, S02, NO, N02, ausgerüstet sind. Geeignete Filtermaterialien entfernen unerwünschte Gase durch Adsorption, Absorption oder Chemisorption. Der Nachteil solcher Filtereinheiten besteht darin, dass bei Dauerbelastung und höheren Störgaskonzentrationen deren Kapazität und somit Wirksamkeit mit der Zeit abnimmt, was bei integrierter Filtereinheit direkt die Einsatzspanne des Gassensors begrenzt, vgl. hierzu z.B. City Technology Ltd., London, Großbritannien, Product Data Handbook 1992, insbesondere S. 40, 66 - 68.According to the state of the art, electrochemical gas sensors are offered which are equipped with a filter unit, usually integrated in the sensor housing, for removing interfering gases, such as H 2 S, S0 2 , NO, N0 2 . Suitable filter materials remove unwanted gases by adsorption, absorption or chemisorption. The disadvantage of such filter units is that their capacity and thus their effectiveness decrease over time with continuous exposure and higher concentrations of interfering gases, which directly limits the range of use of the gas sensor when the filter unit is integrated, cf. see for example City Technology Ltd., London, Great Britain, Product Data Handbook 1992, in particular pp. 40, 66 - 68.
Die Filterkapazität hängt von der Art des Störgases ab. Im Falle von H2S erschöpft sich die Kapazität bei Konzentrationen weit über dem MAK-Wert sehr leicht. Zudem können interferierende Gase wie H2 auf diesem Wege nicht ausgefiltert werden.The filter capacity depends on the type of interfering gas. In the case of H 2 S, the capacity is exhausted very easily at concentrations well above the MAK value. moreover interfering gases such as H 2 cannot be filtered out in this way.
In speziellen Anwendungen, insbesondere bei Interferenz von H2, kann das Störsignal durch KompensationsVorrichtungen vermindert oder eliminiert werden, vgl. z.B. EP 126 623 A2 und EP 127 387 A2.In special applications, in particular in the event of interference from H 2 , the interference signal can be reduced or eliminated by means of compensation devices, cf. e.g. EP 126 623 A2 and EP 127 387 A2.
Im einfachsten Fall besteht der elektrochemische Gassensor in einer 2-Elektrodenanordnung, wobei der Gaszutritt auch für die Gegenelektrode gewährleistet ist. Reagiert ein Gas an der Messelektrode unvollständig, kann es über einen partiell gasdurchlässigen Separator zur Gegenelektrode gelangen und dort ebenfalls reagieren. Dadurch erfolgt eine partielle Kompensation des Messstromes. Gase, die vollständig mit der Messelektrode reagieren, ergeben hingegen ein volles Messignal. Auf ähnlichem Prinzip beruht die Wirkungsweise von Mehrelektrodensensoren mit Hilfs- und Referenzelektroden, die i Zusammenhang mit entsprechenden elektronischen Kompensationsschaltungen beschrieben werden. In EP 84935 Bl ist eine ähnliche Vorrichtung beschrieben zum getrennten Nachweis von CO neben H2, wobei die verschiedenen Ansprechzeiten der beiden Gase ausgenützt werden.In the simplest case, the electrochemical gas sensor consists of a 2-electrode arrangement, whereby gas access is also guaranteed for the counter electrode. If a gas reacts incompletely at the measuring electrode, it can reach the counter electrode via a partially gas-permeable separator and can also react there. This results in partial compensation of the measuring current. In contrast, gases that react completely with the measuring electrode give a full measuring signal. The principle of operation of multi-electrode sensors with auxiliary and reference electrodes, which are described in connection with corresponding electronic compensation circuits, is based on a similar principle. EP 84935 B1 describes a similar device for the separate detection of CO in addition to H 2 , the different response times of the two gases being used.
Aufgabe der vorliegenden Erfindung ist es, einen einfach aufgebauten Gassensor auf elektrochemischer Basis mit reduzierter Querempfindlichkeit zu schaffen, der über eine hohe Standzeit verfügen soll.The object of the present invention is to provide a simply constructed electrochemical-based gas sensor with reduced cross-sensitivity, which should have a long service life.
Die Aufgabe wird mit den Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der Unteransprüche.The object is achieved with the features of claim 1. Advantageous further developments are the subject of the subclaims.
Mit der erfindungsge ässen selektiven Membran kann die Querempfindlichkeit elektrochemischer Gassensoren gegenüber störenden Gasen erheblich und dauernd vermindert werden. Die selektive Membran enthält einen mit Elektrolyt benetzten Katalysator, der hinsichtlich des Messgases elektro- katalytisch möglichst inaktiv ist, jedoch hinsichtlich störender Gase elektrokatalytisch möglichst aktiv ist, so dass diese guantitativ in nicht mehr weiter störende oder weniger störende Produkte umgewandelt werden. Die mindestens eine poröse Katalysatorschicht der selektiven Membran besteht vorzugsweise aus mindestens einem feinkörnigen Edelmetall- sowie Polytetrafluorethen(PTFE)-Pulver. Als Edelmetalle kom¬ men Palladium, Gold, Platin, Ruthenium, Iridium, Osmium und/oder Silber in Reinform, Legierung oder Gemisch in Frage. Vorzugsweise wird die poröse Katalysatorschicht auf eine poröse PTFE- Membran aufgebracht und mit dieser durch Pressen bzw. durch Sinterung bei einer Temperatur T > 320"c dauerhaft zur erfindungsgeroässen selektiven Membran verbunden.With the selective membrane according to the invention, the cross-sensitivity of electrochemical gas sensors to interfering gases can be considerably and permanently reduced. The selective membrane contains a catalyst wetted with electrolyte, which is electro- is catalytically inactive as much as possible, but is electrocatalytically as active as possible with regard to disruptive gases, so that these are converted, at a positive level, into products which are no longer disruptive or less disruptive. The at least one porous catalyst layer of the selective membrane preferably consists of at least one fine-grained noble metal and polytetrafluoroethylene (PTFE) powder. Palladium, gold, platinum, ruthenium, iridium, osmium and / or silver in pure form, alloy or mixture are possible as noble metals. The porous catalyst layer is preferably applied to a porous PTFE membrane and permanently connected to it by pressing or by sintering at a temperature T> 320 ° C. to form the selective membrane according to the invention.
In einer besonders bevorzugten Ausführungsform wird auf der selektiven Membran direkt eine poröse, partiell hydro¬ phobe/hydrophile Zwischenschicht mit einer Messelektrode aufgebracht, was einen besonders kompakten Aufbau des Gassensors gestattet, der sich insbesondere zur Bestimmung von C0 und H2 eignet.In a particularly preferred embodiment, a porous, partially hydrophobic / hydrophilic intermediate layer is applied directly to the selective membrane with a measuring electrode, which allows a particularly compact structure of the gas sensor, which is particularly suitable for determining C0 and H 2 .
Die chemischen Reaktionen in der integrierten selektiven Membran können bei Anwesenheit der Störgase H2S, S02 bzw. N02 und in Gegenwart eines in bezug auf diese Gase aktiven Edelmetallkatalysators wie Palladium oder Gold folgen- dermassen formuliert werden:The chemical reactions in the integrated selective membrane can be formulated in the presence of the interfering gases H 2 S, S0 2 or N0 2 and in the presence of a noble metal catalyst, such as palladium or gold, which is active in relation to these gases:
H2S + 4 H20 > H2S04 + 8 H* + 8 e" H 2 S + 4 H 2 0> H 2 S0 4 + 8 H * + 8 e "
2 02 + 8 H* + 8 e" > 4 H202 0 2 + 8 H * + 8 e " > 4 H 2 0
S02 + 2 H20 > H2S04 + 2 H* + 2 e" S0 2 + 2 H 2 0> H 2 S0 4 + 2 H * + 2 e "
1/2 02 + 2 H* + 2 e" > H201/2 0 2 + 2 H * + 2 e " > H 2 0
N02 + 2 H* + 2 e" > NO + H20N0 2 + 2 H * + 2 e " > NO + H 2 0
H20 > 1/2 02 + 2 H* + 2 e" H 2 0> 1/2 0 2 + 2 H * + 2 e "
Die mit dem Elektrolyten benetzte Katalysatorschicht der selektiven Membran kann gewissermassen als inniger Verbund einer gleichartigen Arbeits- und Gegenelektrode ohne elektrische Ableitungen nach aussen aufgefasst werden, wobei die Elektronen der Redox-Reaktionen anstatt über einen externen Leiter, intern in der Katalysatorschicht ausge¬ tauscht werden. Im Falle von H2S und S02 entsteht in der Reaktionsbilanz lediglich H2S04, also beispielsweise der Elektrolyt selber. Im Falle von N02 entsteht NO. Auf dieses ist eine CO-Messelektrode, basierend auf einem Platin¬ katalysator, weniger empfindlich, und es würde theoretisch ein Messstrom erwartet werden, der das Vorzeichen eines reduzierenden Gases aufweist. Gemessen wird ein schwaches Signal manchmal mit umgekehrtem Vorzeichen, was darauf hinweist, dass neben NO noch eine Restkonzentration von N02, das ebenfalls an der Messelektrode reagiert, vorhanden ist.The catalyst layer of the selective membrane wetted with the electrolyte can to a certain extent be an intimate combination of a similar working and counter electrode electrical discharges to the outside are understood, the electrons of the redox reactions being exchanged internally in the catalyst layer instead of via an external conductor. In the case of H 2 S and S0 2 , only H 2 S0 4 is formed in the reaction balance, for example the electrolyte itself. In the case of N0 2 , NO is formed. A CO measuring electrode, based on a platinum catalyst, is less sensitive to this, and theoretically a measuring current would be expected which has the sign of a reducing gas. A weak signal is sometimes measured with the opposite sign, which indicates that in addition to NO there is also a residual concentration of N0 2 , which also reacts at the measuring electrode.
Falls Palladium oder Gold als Katalysator in der selektiven Membran eingesetzt wird, wirkt dieses nicht in bezug auf CO, so dass das Messgas CO, ohne eine chemische Reaktion einzugehen, penetriert und zur Messelektrode gelangt, wo dessen Oxidation stattfindet. Bei niederohmig verbundener Mess- und Referenzelektrode lassen sich die Elektrodenreaktionen wie folgt formulieren:If palladium or gold is used as a catalyst in the selective membrane, this does not act with respect to CO, so that the measurement gas penetrates CO without undergoing a chemical reaction and reaches the measurement electrode, where its oxidation takes place. If the measuring and reference electrodes are connected with low impedance, the electrode reactions can be formulated as follows:
Messelektrode: CO + H20 > C02 + 2 H* + 2 e" Measuring electrode: CO + H 2 0> C0 2 + 2 H * + 2 e "
Referenzelektrode: 1/2 02 + 2 H* + 2 e" > H20Reference electrode: 1/2 0 2 + 2 H * + 2 e " > H 2 0
Der erzeugte elektrische Strom kann mit einem zwischen¬ geschalteten Amperemeter gemessen werden und ist eine Funktion der CO-Konzentration.The electrical current generated can be measured with an intermediate ammeter and is a function of the CO concentration.
Die Erfindung wird anhand der nachfolgenden Zeichnungen näher erläutert.The invention is illustrated by the following drawings.
Es zeigt:It shows:
Fig. 1 einen Längsschnitt eines elektrochemischen Gassen¬ sors mit der erfindungsgemässen elektrokatalytisch selektiven Membran; Fig. 2 einen Längsschnitt einer Kombination der erfin- dungsgemässen selektiven Membran mit einer Messelektrode zu einer selektiven Membrane1ektrode;1 shows a longitudinal section of an electrochemical gas sensor with the electrocatalytically selective membrane according to the invention; 2 shows a longitudinal section of a combination of the selective membrane according to the invention with a measuring electrode to form a selective membrane electrode;
Fig. 3 eine Draufsicht einer kombinierten Referenz- und Gegen-Elektrode;3 is a top view of a combined reference and counter electrode;
Fig. 4 einen Längsschnitt eines Gassensors mit einer er- findungsgemässen selektiven Membranelektrode; und4 shows a longitudinal section of a gas sensor with a selective membrane electrode according to the invention; and
Fig. 5 einen Längsschnitt eines Gassensors mit einer erfindungsgemässen separaten selektiven Membran.5 shows a longitudinal section of a gas sensor with a separate selective membrane according to the invention.
Fig. 1 zeigt schematisch die selektive Membran 5a und deren Anordnung in einer amperometrisch betriebenen elektrochemi¬ schen Messzelle 7, die zur Erläuterung des Prinzips der Einfachheit halber als 2-Elektroden-Zelle dargestellt ist. Die selektive Membran 5a enthält mindestens einen elektrisch leitenden, feinteiligen Katalysator 5b, der vorzugsweise vom Elektrolyt 19a der Messzelle 7 selber benetzt wird. Gasseitig ist die selektive Membran 5a vorzugsweise durch eine gasdurchlässige, poröse Membran 3 abgeschlossen, die eine Sperre für den Elektrolyt 19a der Messzelle 7 dar¬ stellt. Die selektive Membran 5a ist gegen die Messelektrode 11a durch einen dünnen, Elektrolyt 19a enthaltenden Spalt 24 getrennt. Mess- und Gegenelektrode 11a, 12 sind über inerte Kontaktdrähte mit einem Amperemeter 22 verbunden. Der Katalysator 5b der selektiven Membran 5a ist derart beschaffen, dass er hinsichtlich des zu detektierenden Gases (Messgases) elektrokatalytisch inaktiv ist, hingegen hinsichtlich störender anderer Gase 18 möglichst aktiv ist. In diesem Fall kann das Messgas 17 die poröse, selektive Membran 5a, ohne dort eine elektrochemische Reaktion einzugehen, passieren, um über den Spalt 24 zur Messelek¬ trode 11a zu gelangen. Andererseits können andere Gaskom¬ ponenten 18, die in Abwesenheit der selektiven Membran 5a elektrokatalytisch an der Messelektrode 11a reagieren würden und so einen Beitrag zum Messstrom ergeben würden, bereits vollständig in der selektiven Membran 5a abreagieren unter Bildung von Produkten, die von der Messelektrode 11a nicht mehr oder in reduziertem Umfang wahrgenommen werden. Je nachdem, ob ein Gas oxidiert oder reduziert wird, bildet sich in der selben selektiven Membran 5a in Balance die entsprechende Gegenreaktion aus unter internem Austausch von Elektronen. Im Falle einer Oxidation wird gleichzeitig Sauerstoff, der aus der Umgebung nachgeliefert wird, zu Wasser reduziert. Im Falle einer Reduktion eines Störgases 18 wird als Gegenreaktion in der selektiven Membran 5a Sauerstoff gebildet, der an die Umgebung abgegeben wird. Falls die Oxidations- bzw. Reduktionsprodukte der Störgase 18 hinsichtlich des Katalysators der Messelektrode 11a inert sind, wird der zwischen Mess- und Gegenelektrode 11a, 12 gemessene Strom allein durch das Messgas 17 erzeugt.1 schematically shows the selective membrane 5a and its arrangement in an amperometrically operated electrochemical measuring cell 7, which is illustrated as a 2-electrode cell for the sake of simplicity. The selective membrane 5a contains at least one electrically conductive, finely divided catalyst 5b, which is preferably wetted by the electrolyte 19a of the measuring cell 7 itself. On the gas side, the selective membrane 5a is preferably closed off by a gas-permeable, porous membrane 3, which represents a barrier for the electrolyte 19a of the measuring cell 7. The selective membrane 5a is separated from the measuring electrode 11a by a thin gap 24 containing electrolyte 19a. Measuring and counter electrodes 11a, 12 are connected to an ammeter 22 via inert contact wires. The catalyst 5b of the selective membrane 5a is designed in such a way that it is electrocatalytically inactive with regard to the gas to be detected (measurement gas), but is as active as possible with respect to other gases 18 that are interfering with one another. In this case, the measuring gas 17 can pass through the porous, selective membrane 5a without undergoing an electrochemical reaction in order to reach the measuring electrode 11a via the gap 24. On the other hand, other gas components 18, which would react electrocatalytically at the measuring electrode 11a in the absence of the selective membrane 5a and would thus result in a contribution to the measurement current, already react completely in the selective membrane 5a to form products which are no longer or only to a limited extent perceived by the measurement electrode 11a. Depending on whether a gas is oxidized or reduced, the corresponding counter-reaction forms in the same selective membrane 5a with the internal exchange of electrons. In the event of an oxidation, oxygen that is supplied from the environment is reduced to water at the same time. In the event of a reduction of an interfering gas 18, oxygen is formed as a counter-reaction in the selective membrane 5a and is released into the environment. If the oxidation or reduction products of the interfering gases 18 are inert with respect to the catalyst of the measuring electrode 11a, the current measured between the measuring and counter electrodes 11a, 12 is generated solely by the measuring gas 17.
Die elektrokatalytisch selektive Membran 5a kann folgendermassen hergestellt werden: Als Unterlage dient vorzugsweise eine poröse PTFE-(Polytetrafluorethylen)-Membran 3. Auf diese kann eine poröse Katalysatorschicht 5b, die aus einem Gemisch von feinverteiltem Edelmetallkatalysator und PTFE-Pulver besteht, aufgebracht werden. Eine Fixierung kann durch Pressen oder durch Sinterung bei T > 320*C bewirkt werden. Es können auch Gemische von mehreren Edel¬ metallkatalysatoren eingesetzt werden oder die verschiedenen Katalysatoren mehrschichtig aufgebracht werden.The electrocatalytically selective membrane 5a can be produced as follows: A porous PTFE (polytetrafluoroethylene) membrane 3 is preferably used as the base 3. A porous catalyst layer 5b, which consists of a mixture of finely divided noble metal catalyst and PTFE powder, can be applied to this. Fixation can be achieved by pressing or by sintering at T> 320 * C. Mixtures of several noble metal catalysts can also be used or the various catalysts can be applied in multiple layers.
Als Spaltmaterial 24a zur Vermittlung des Elektrolyten 19a und zur räumlichen Abtrennung von der Messelektrode 11a kann ein hydrophiles dünnes Glasfaserfilter 10 verwendet werden. Besser ist es, eine partiell hydrophobe/hydrophile Membran einzusetzen, da hierdurch der Diffusionsfluss des Messgases 17 erhöht wird. Diese kann aus einer dünnen, porösen und ge¬ sinterten Membran aus feinverteiltem PTFE-Pulver einerseits und Quarzfeinst ehl oder amorphem Si02-Pulver andererseits bestehen. Die hydrophile Komponente (z.B. Quarzfeinstmehl) bildet Pfade für den wässrigen Elektrolyt 19a, während die hydrophobe Komponente (PTFE) Pfade für das Messgas 17 bildet.A hydrophilic thin glass fiber filter 10 can be used as the gap material 24a for conveying the electrolyte 19a and for the spatial separation from the measuring electrode 11a. It is better to use a partially hydrophobic / hydrophilic membrane since this increases the diffusion flow of the measurement gas 17. This can consist of a thin, porous and sintered membrane made of finely divided PTFE powder on the one hand and quartz powder or amorphous SiO 2 powder on the other hand. The hydrophilic component (eg fine quartz powder) forms paths for the aqueous electrolyte 19a, while the hydrophobic component (PTFE) forms paths for the sample gas 17.
Für eine Vereinfachung der Sensormontage ist es zweckmässig, gemäss Fig. 2 die elektrokatalytisch selektive Membran 5a mit der Messelektrode zu kombinieren.To simplify the sensor assembly, it is expedient to combine the electrocatalytically selective membrane 5a with the measuring electrode according to FIG.
Eine solche selektive Membranelektrode 5 kann folgendermassen hergestellt werden: Als Unterlage dient eine poröse PTFE Membran 3. Auf diese wird eine poröse Katalysatorschicht 5b, bestehend aus einem Gemisch von feinverteiltem Edelmetall und PTFE-Pulver, aufgebracht. Die Schicht 5b wird mit einer porösen Zwischenschicht 23 bedeckt, die aus einem Gemisch von feinverteiltem PTFE-Pulver und Quarzfeinstmehl oder amorphem Si02-Pulver besteht. Dann wird auf der Zwischenschicht 23 die poröse Messelektrode 11a aufgebracht, die aus einem Gemisch von feinverteiltem Edelmetall- und PTFE-Pulver besteht. Zur Fixierung können die Schichten nacheinander oder gleichzeitig gepresst werden bzw. nacheinander oder gleichzeitig bei T > 320*C gesintert werden.Such a selective membrane electrode 5 can be produced as follows: A porous PTFE membrane 3 serves as a base. A porous catalyst layer 5b, consisting of a mixture of finely divided noble metal and PTFE powder, is applied to this. The layer 5b is covered with a porous intermediate layer 23, which consists of a mixture of finely divided PTFE powder and fine quartz powder or amorphous SiO 2 powder. Then the porous measuring electrode 11a, which consists of a mixture of finely divided noble metal and PTFE powder, is applied to the intermediate layer 23. For fixation, the layers can be pressed successively or simultaneously or sintered successively or simultaneously at T> 320 * C.
Ein erfindungsge ässer Gassensor umfasst weiterhin folgende Einzelteile: Befestigungsschrauben 1, säurebeständige Kunst¬ stoff-O-Ringe 4, ungesinterte PTFE-Bänder 6, einen vorzugs¬ weise aus Polycarbonat-Kunststoff gefertigten Zentralkörper 7a, Kontaktfedern 8, aus einer Folie, vorzugsweise der Stärke 0,025 mm geschnittene Platinbänder 9, Tampons aus Glasfaser- Filter-Material 10, eine teilweise mit einem Elektrolyten 19a gefüllte Elektrolytkammer 19 mit einer Öffnung 13 und einem Docht aus Glasfaserfiltermaterial 10a zur Vermittlung des Elektrolyten zu den Elektroden 11a, 11, 12, einen Deckel 14, vorzugsweise aus Polycarbonat-Kunststoff mit einem ioch für den Druckausgleich 20, Bohrung 15 mit Gewinde für Befestigungsschrauben 1, Druckausgleichsöffnung 20, vor¬ zugsweise mit einem Durchmesser von ca. 0,5 mm und einer Kapillarlänge von ca. 5 mm.A gas sensor according to the invention further comprises the following individual parts: fastening screws 1, acid-resistant plastic O-rings 4, unsintered PTFE strips 6, a central body 7a, preferably made of polycarbonate plastic, contact springs 8, made of a film, preferably of thickness Platinum tapes 9 cut 0.025 mm, tampons made of glass fiber filter material 10, an electrolyte chamber 19 partially filled with an electrolyte 19a with an opening 13 and a wick made of glass fiber filter material 10a for conveying the electrolyte to the electrodes 11a, 11, 12, a cover 14 , preferably made of polycarbonate plastic with a yoke for pressure compensation 20, bore 15 with thread for fastening screws 1, pressure compensation opening 20, preferably with a diameter of approx. 0.5 mm and a capillary length of approx. 5 mm.
Die Anwendungsbreite der erfindungsge ässen selektiven Mem¬ bran 5a wird nachstehend anhand einiger Ausführungsbeispiele demonstriert.The scope of application of the selective membrane 5a according to the invention is illustrated below with the aid of a few exemplary embodiments demonstrated.
1. AUSFÜHRUNGSBEISPIEL: CO-SENSOR1. EXAMPLE: CO-SENSOR
Eine Membranelektrode 5 mit integrierter selektiver Membran 5a gemäss Fig. 2 wird folgendermassen hergestellt: Auf eine poröse PTFE-Membran 3 wird zunächst eine Katalysatorschicht 5b, die ein Gemisch von feinkörnigem Palladiumschwarz und PTFE-Pulver enthält, aufgebracht. Diese Schicht 5b wird voll¬ ständig bedeckt mit einer Zwischenschicht 23 aus Quarzfeinstmehl und PTFE-Pulver. Darüber wird eine weitere Schicht 11a, die eigentliche Mesεelektrode, aufgebracht, die aus einem Gemisch von feinkörnigem Platinschwarz und PTFE- Pulver besteht. Anschliessend wird die selektive Membranelektrode 5a in einem Ofen bei T = 360βC gesintert.A membrane electrode 5 with an integrated selective membrane 5a according to FIG. 2 is produced as follows: A catalyst layer 5b, which contains a mixture of fine-grained palladium black and PTFE powder, is first applied to a porous PTFE membrane 3. This layer 5b is completely covered with an intermediate layer 23 made of fine quartz powder and PTFE powder. A further layer 11a, the actual measuring electrode, is applied over it and consists of a mixture of fine-grained platinum black and PTFE powder. The selective membrane electrode 5a is then sintered in an oven at T = 360 β C.
Eine Referenz- und Gegenelektrode 11, 12 gemäss Fig. 3 wird folgendermassen hergestellt: Auf einen Glasfaserrundfilter 10 wird eine durch einen Spalt 21 getrennte Katalysatorschicht, die eine Gemisch von Platinschwarz und PTFE-Pulver enthält, aufgebracht und anschliessend im Ofen bei T ≥ 360*C gesintert.A reference and counterelectrode 11, 12 according to FIG. 3 is produced as follows: a round glass fiber filter 10 is a catalyst layer separated by a gap 21, which contains a mixture of platinum black and PTFE powder, applied and then in the oven at T ≥ 360 * C sintered.
Durch den Spalt 21 wird die Elektrode in eine Referenz- und eine Gegenelektrode 11, 12 separiert.Through the gap 21, the electrode is separated into a reference and a counter electrode 11, 12.
Der Sensor wird gemäss Fig. 4 montiert, und die GehäuseteileThe sensor is mounted as shown in FIG. 4, and the housing parts
2, 7a werden mit 6 Schrauben 1 fest verschraubt. Rückseitig wird die Elektrolytkammer 19 des Sensors mit 1,5 ml wässriger Schwefelsäure (30 Massen-%) befüllt und mit dem Deckel 14 verschraubt. Ein die Elektrolytkammer 19 auskleidender Docht 10a aus Glasfaserfiltermaterial steht durch- die Öffnung 13 mit der Referenz- und Gegenelektrode 11, 12 in Kontakt zur WeiterVermittlung des Elektrolyten an den Tampon 10 und die Elektroden 11, 12, 5. Die Referenz- und Gegenelektrode 11, 12 stehen in innigem Kontakt mit einer porösen PTFE-Membran 3, die stets für den Nachschub von Luftsauerstoff für die Gegenreaktion sorgt. Für eine Vergleichsmessung der Querempfindlichkeiten wird zusätzlich ein konventioneller co-Sensor hergestellt: Die Messelektrode ist eine konventionelle Membranelektrode 16a. Auf eine poröse PTFE-Membran 3 wird eine Schicht, die ein Gemisch von feinteiligem Platinschwarz und PTFE-Pulver enthält, aufgebracht und anschliessend im Ofen bei T = 360*C gesintert. Alle übrigen Vorgehensschritte sind die gleichen wie oben beschrieben.2, 7a are screwed tight with 6 screws 1. On the back, the electrolyte chamber 19 of the sensor is filled with 1.5 ml of aqueous sulfuric acid (30% by mass) and screwed to the cover 14. A wick 10a made of glass fiber filter material lining the electrolyte chamber 19 is in contact through the opening 13 with the reference and counter electrodes 11, 12 for further transmission of the electrolyte to the tampon 10 and the electrodes 11, 12, 5. The reference and counter electrodes 11, 12 are in intimate contact with a porous PTFE membrane 3, which always ensures the replenishment of atmospheric oxygen for the counter-reaction. A conventional co-sensor is also produced for a comparison measurement of the cross-sensitivities: the measuring electrode is a conventional membrane electrode 16a. A layer containing a mixture of finely divided platinum black and PTFE powder is applied to a porous PTFE membrane 3 and then sintered in the furnace at T = 360 * C. All other steps are the same as described above.
2. AUSFÜHRUNGSBEISPIEL: CO-SENSOREXAMPLE 2: CO SENSOR
Hierfür wird eine Membranelektrode 5 mit integrierter selektiver Membran 5a gemäss Fig. 2 folgendermassen hergestellt: Auf eine poröse PTFE-Membran 3 wird eine Schicht 5b, die ein Gemisch von feinverteiltem Gold-Pulver und PTFE- Pulver enthält, aufgebracht. Zur Fixierung wird die Schicht 5b mit einer Handpresse verpresst. Auf eine poröse hydrophobe/hydrophile Membran 23, die aus einem gesinterten Gemisch von Quarzfeinstmehl und PTFE-Pulver gebildet wird, wird eine Schicht 11a, die eigentliche Messelektrode, aufgebracht, die aus einem Gemisch von feinverteiltem Platinschwarz und PTFE-Pulver besteht, und anschliessend bei T = 360*C gesintert. Darauf wird die Membran 11a mit einer Handpresse auf die oben beschriebene poröse PTFE-Membran 3 mit Schicht 5b verpresst.A membrane electrode 5 with an integrated selective membrane 5a according to FIG. 2 is produced as follows: A layer 5b, which contains a mixture of finely divided gold powder and PTFE powder, is applied to a porous PTFE membrane 3. For fixation, layer 5b is pressed with a hand press. On a porous hydrophobic / hydrophilic membrane 23, which is formed from a sintered mixture of fine quartz powder and PTFE powder, a layer 11a, the actual measuring electrode, is applied, which consists of a mixture of finely divided platinum black and PTFE powder, and then at T = 360 * C sintered. The membrane 11a is then pressed with a hand press onto the porous PTFE membrane 3 with layer 5b described above.
Der Sensor wird, wie im 1. Beispiel beschrieben, hergestellt. Auch bei diesem Sensor wird gemäss Tab. 1 die Quer¬ empfindlichkeit gegenüber H2S, S02 und N02 drastisch reduziert. Die Ansprechzeit und Ansprechempfindlichkeit gegenüber CO ist vergleichbar mit dem 1. Beispiel. Bei N02 wird im Gegensatz zum 1. Beispiel jedoch ein schwach positives Signal beobachtet.The sensor is manufactured as described in the first example. In this sensor, too, the cross sensitivity to H 2 S, S0 2 and N0 2 is drastically reduced according to Table 1. The response time and sensitivity to CO is comparable to the first example. In contrast to the first example, a weakly positive signal is observed at N0 2 .
3. AUSFÜHRUNGSBEISPIEL: H2-SENSOR3. EMBODIMENT: H 2 SENSOR
Auf eine analoge Weise, wie im 1. Beispiel beschrieben, wird ein selektiver Sensor hergestellt, mit dem einzigen Unter¬ schied, dass die selektive Membran 5a Platinschwarz anstatt Palladiumschwarz enthält. Da Platinschwarz in bezug auf CO elektrokatalytisch wirksam ist, wird CO bereits in der selektiven Membran oxidiert. Hingegen reagiert H2 gemäss Tab. 1 in der selektiven Membran 5a unvollständig, so dass ein relativ grosser Teil von der Messelektrode 11a wahrgenommen wird. Ein Sensor nach Beispiel 3 kann als H2-Sensor eingesetzt werden.In an analogous manner as described in the 1st example a selective sensor is produced, with the only difference that the selective membrane 5a contains platinum black instead of palladium black. Since platinum black has an electrocatalytic effect on CO, CO is already oxidized in the selective membrane. In contrast, according to Table 1, H 2 reacts incompletely in the selective membrane 5a, so that a relatively large part is perceived by the measuring electrode 11a. A sensor according to example 3 can be used as an H 2 sensor.
Durch Anlegen einer entsprechenden Bias-Spannung zwischen Mess- und Referenzelektrode 11a, 11 kann mit einem Sensor nach Beispiel 3 auch ein schwerer oxidierbares Messgas 17 detektiert werden. Die durch die Bias-Spannung normalerweise angehobene Querempfindlichkeit hinsichtlich der Störgase 18 kann bei Vorhandensein der selektiven Membran 5a drastisch reduziert werden.By applying a corresponding bias voltage between the measuring and reference electrodes 11a, 11, a measuring gas 17 which is more difficult to oxidize can also be detected with a sensor according to Example 3. The cross-sensitivity to the interference gases 18, which is normally increased by the bias voltage, can be drastically reduced in the presence of the selective membrane 5a.
4. AUSFÜHRUNGSBEISPIEL: CO-SENSOR4. EXAMPLE OF EXAMPLE: CO SENSOR
Hierfür wird eine separate selektive Membran 5a folgendermassen hergestellt: Auf eine poröse PTFE-Membran 3 wird eine Schicht 5b, die ein Gemisch von feinverteiltem Palladiumschwarz und PTFE-Pulver enthält, aufgebracht und anschliessend in einem Ofen bei T = 360"C gesintert.For this purpose, a separate selective membrane 5a is produced as follows: A layer 5b, which contains a mixture of finely divided palladium black and PTFE powder, is applied to a porous PTFE membrane 3 and then sintered in an oven at T = 360 ° C.
Die Messelektrode 16a wird folgendermassen hergestellt: Auf eine poröse PTFE-Membran 3 wird eine Schicht 5b, die ein Gemisch von feinverteiltem Platinschwarz und PTFE-Pulver enhält, aufgebracht und anschliessend im Ofen bei T = 360*C gesintert. Die Gegenelektrode 12 wird folgendermassen herge¬ stellt: Auf einen Glasfaserrundfilter 10 wird eine Schicht 5b, die ein Gemisch von feinverteiltem Platinschwarz und PTFE-Pulver enthält, aufgebracht und anschliessend im Ofen bei T = 360*C gesintert.The measuring electrode 16a is produced as follows: a layer 5b, which contains a mixture of finely divided platinum black and PTFE powder, is applied to a porous PTFE membrane 3 and then sintered in the furnace at T = 360 * C. The counter electrode 12 is as follows herge¬ provides: an optical fiber rotary filter 10 is a layer 5b containing a mixture of finely divided platinum black and PTFE powders, and subsequently applied in a furnace at T = 360 * C sintered.
Mit der separaten selektiven Membran 5a und der Mess- und Gegenelektrode 16a, 12 wird gemäss Fig. 5 ein 2-Elektro- densensor hergestellt. Als Separator zwischen der selektiven Membran 5a und der Messelektrode 16a wird ein dünner Glasfaserrundfilter 10 eingesetzt. Als Elektrolyt 19a wird 1,5 ml Schwefelsäure (30 Massen-%) eingefüllt.With the separate selective membrane 5a and the measuring and 5, a 2-electrode sensor is produced according to FIG. 5. A thin glass fiber round filter 10 is used as a separator between the selective membrane 5a and the measuring electrode 16a. 1.5 ml of sulfuric acid (30% by mass) are introduced as electrolyte 19a.
Die Messung von CO und der Querempfindlichkeiten werden analog zum 1. Beispiel durchgeführt. Das Amperemeter 22 ist mit der Mess- und Gegenelektrode 11a, 12 verbunden. Wie Tab. 1 zu entnehmen ist, wird auch in diesem Ausführungsbeispiel die Querempfindlichkeit drastisch reduziert. Gegenüber dem 1. und 2. Beispiel ist aber hier die Ansprechzeit bezüglich CO deutlich langsamer.The measurement of CO and cross-sensitivities are carried out analogously to the 1st example. The ammeter 22 is connected to the measuring and counter electrodes 11a, 12. As can be seen in Table 1, the cross sensitivity is drastically reduced in this embodiment. Compared to the 1st and 2nd example, the response time with regard to CO is significantly slower here.
Tab. 1: QUEREMPFINDLICHKEIT DER ERFINDUNGSGEMASSENTab. 1: CROSS SENSITIVITY OF THE INVENTIONS
GASSENSORENGAS SENSORS
GASSENSOREN MESS- bZW. STÖRGAS [Konzentration]GAS SENSORS MEASURED or INTERFERENCE GAS [concentration]
Messstrom CO H2S S02 N02 H2 [MA] 200 ppm 200 pp 200 ppm =70 ppm 200 ppm konventione1- 1er CO-Sensor 5,1 8,2 2,1 -0,8 2,2 (nach 1. Bei¬ spiel)Measuring current CO H 2 S S0 2 N0 2 H 2 [MA] 200 ppm 200 pp 200 ppm = 70 ppm 200 ppm conventional 1- 1 CO sensor 5.1 8.2 2.1 -0.8 2.2 (after 1 . Example)
CO-Sensor 3,9 0,1 0,3 -0,1 1,3 (1.Beispiel)CO sensor 3.9 0.1 0.3 -0.1 1.3 (1st example)
CO-Sensor 3,9 0,1 0,0 0,1 3,7 (2.Beispiel)CO sensor 3.9 0.1 0.0 0.1 3.7 (2nd example)
H2-Sensor 0,4 0,0 0,0 0,0 0,8 (3.Beispiel)H 2 sensor 0.4 0.0 0.0 0.0 0.8 (3rd example)
CO-Sensor 3,7 0,0 0,3 0,1 3,4 (4.Beispiel) Gemäss Tab. 1 wird die Querempfindlichkeit der erfindungsgemässen Gassensoren mit integrierter selektiver Membran 5a gegenüber H2S, S02 und N02 im Vergleich zum konventionellen CO-Sensor erheblich reduziert. Auch nach stundenlangem Begasen bleiben die Werte unverändert. Die An¬ sprechzeit und Ansprechempfindlichkeit gegenüber CO sind im übrigen vergleichbar mit denjenigen eines gebräuchlichen CO- Sensors. CO sensor 3.7 0.0 0.3 0.1 3.4 (4th example) According to Table 1, the cross sensitivity of the gas sensors according to the invention with an integrated selective membrane 5a compared to H 2 S, S0 2 and N0 2 is considerably reduced in comparison to the conventional CO sensor. The values remain unchanged even after hours of gassing. The response time and sensitivity to CO are otherwise comparable to that of a conventional CO sensor.

Claims

Patentansprüche claims
1. Gassensor auf elektrochemischer Basis mit reduzierter Querempfindlichkeit, der mindestens eine Mess- (11a) und eine Gegenelektrode (12) in einer mit einem Elektrolyten (19a) gefüllten Messzelle (7), die zur Messprobe hin mit einer für das Messgas (17) permeablen Membran (3) abge¬ schlossen ist, sowie zwischen der Membran (3) und der Messelektrode (11a) mindestens eine für das Messgas (17) permeable selektive Membran (5a) u fasst, die mit dem Elektrolyten (19a) in Kontakt steht und gegenüber dem Messgas (17) elektrokatalytisch möglichst inaktiv, ge¬ genüber etwaigen Störgasen (18) jedoch elektrokata¬ lytisch möglichst aktiv ist, dadurch gekennzeichnet, dass die selektive Membran (5a) mindestens eine poröse Kataly¬ satorschicht (5b), worin mindestens ein feinverteiltes, vom Elektrolyten (19a) benetztes Edelmetall enthalten ist, umfasst.1. Gas sensor on an electrochemical basis with reduced cross sensitivity, the at least one measuring (11a) and one counterelectrode (12) in a measuring cell (7) filled with an electrolyte (19a), which is connected to the measuring sample with a measuring gas (17) permeable membrane (3) is closed, and between the membrane (3) and the measuring electrode (11a) at least one permeable to the measuring gas (17) selective membrane (5a) u, which is in contact with the electrolyte (19a) and is as inactive as possible to the measurement gas (17), but is as active as possible to any interfering gases (18), characterized in that the selective membrane (5a) has at least one porous catalyst layer (5b), in which at least one contains finely divided noble metal wetted by the electrolyte (19a).
2. Gassensor nach Anspruch 1, dadurch gekennzeichnet, dass die Katalysatorschicht (5b) aus einem Gemisch mindestens eines feinteiligen, pulverförmigen Edelmetalls mit Polytetrafluor-ethylen-(PTFE)-Pulver besteht.2. Gas sensor according to claim 1, characterized in that the catalyst layer (5b) consists of a mixture of at least one finely divided, powdery noble metal with polytetrafluoroethylene (PTFE) powder.
3. Gassensor nach einem der Ansprüche 1 - 2, dadurch gekennzeichnet, dass für die Katalysatorschicht (5b) Palladium, Gold, Platin, Ruthenium, Iridium, Osmium und/oder Silber in Reinform, Legierung oder Gemisch verwendet wird.3. Gas sensor according to one of claims 1-2, characterized in that palladium, gold, platinum, ruthenium, iridium, osmium and / or silver in pure form, alloy or mixture is used for the catalyst layer (5b).
4. Gassensor nach Anspruch 2 und 3, dadurch gekennzeichnet, dass die mindestens eine Katalysatorschicht (5b) auf eine poröse Polytetrafluorethylen-Membran (3) aufgebracht und mit dieser durch Pressen bzw. durch Sinterung bei T > 320°C dauerhaft zur selektiven Membran (5a) verbunden wird.4. Gas sensor according to claim 2 and 3, characterized in that the at least one catalyst layer (5b) is applied to a porous polytetrafluoroethylene membrane (3) and this is permanently connected to the selective membrane (5a) by pressing or by sintering at T> 320 ° C.
5. Gassensor nach einem der Ansprüche 1 - 4, dadurch gekenn¬ zeichnet, dass die Messelektrode (11a) und/oder die Gegenelektrode (12) und/oder eine zusätzliche Referenz¬ elektrode (11) mindestens eine poröse, durch Pressung oder Sinterung verfestigte Katalysatorschicht, bestehend aus mindestens einem feinteiligem Edelmetall- sowie PTFE- Pulver, umfasst.5. Gas sensor according to one of claims 1-4, characterized gekenn¬ characterized in that the measuring electrode (11a) and / or the counter electrode (12) and / or an additional reference electrode (11) solidified at least one porous, by pressing or sintering Catalyst layer, consisting of at least one fine-particle precious metal and PTFE powder.
6. Gassensor nach Anspruch 5, dadurch gekennzeichnet, dass als Edelmetall-Pulver Platinschwarz eingesetzt wird.6. Gas sensor according to claim 5, characterized in that platinum black is used as the noble metal powder.
7. Gassensor nach einem der Ansprüche 1 - 6, dadurch gekenn¬ zeichnet, dass als Spaltmaterial (24a) im Spalt (24) zwi¬ schen der selektiven Membran (5a) und der Messelektrode (11a) ein hydrophiler Glasfaserfilter (10) zur Vermitt¬ lung des Elektrolyten (19a) verwendet wird.7. Gas sensor according to one of claims 1-6, characterized gekenn¬ characterized in that as a gap material (24a) in the gap (24) between the selective membrane (5a) and the measuring electrode (11a) a hydrophilic glass fiber filter (10) for mediation ¬ treatment of the electrolyte (19a) is used.
8. Gassensor nach einem der Ansprüche 1 - 6, dadurch gekenn¬ zeichnet, dass als Spaltmaterial (24a) eine poröse, par¬ tiell hydrophobe/hydrophile Zwischenschicht (23) einge¬ setzt wird.8. Gas sensor according to one of claims 1-6, characterized in that a porous, partially hydrophobic / hydrophilic intermediate layer (23) is used as the gap material (24a).
9. Gassensor nach Anspruch 8, dadurch gekennzeichnet, dass die partiell hydrophobe/hydrophile Zwischenschicht (23) aus feinteiligem PTFE-Pulver und Quarzfeinstmehl oder amorphem Siθ2-Pulver besteht.9. Gas sensor according to claim 8, characterized in that the partially hydrophobic / hydrophilic intermediate layer (23) consists of finely divided PTFE powder and quartz powder or amorphous SiO 2 powder.
10. Gassensor nach einem der Ansprüche 1 - 9, dadurch gekenn¬ zeichnet, dass die selektive Membran (5a) direkt mit der Zwischenschicht (23) bedeckt ist, wobei diese mit einer porösen Messelektrode (11a), die aus einem Gemisch von feinteiligem Edelmetall- und PTFE-Pulver besteht, zwecks Ausbildung einer selektiven Membranelektrode (5) versehen ist.10. Gas sensor according to one of claims 1-9, characterized gekenn¬ characterized in that the selective membrane (5a) is covered directly with the intermediate layer (23), this with a Porous measuring electrode (11a), which consists of a mixture of fine-particle precious metal and PTFE powder, is provided for the purpose of forming a selective membrane electrode (5).
11. Gassensor nach Anspruch 10, dadurch gekennzeichnet, dass die Schichten (5a, 23, 11a) der selektiven Membran¬ elektrode (5) zwecks Fixierung gleichzeitig oder nach¬ einander gepresst bzw. gleichzeitig oder nacheinander bei T > 320"C gesintert werden.11. Gas sensor according to claim 10, characterized in that the layers (5a, 23, 11a) of the selective membrane electrode (5) are pressed simultaneously or successively for fixation or are sintered simultaneously or successively at T> 320 ° C.
12. Gassensor nach einem der Ansprüche 1 - 11, dadurch ge¬ kennzeichnet, dass eine kombinierte Referenz- und Gegen¬ elektrode (11, 12) vorgesehen ist, die durch Aufbringen eines durch einen Spalt (21) getrennten Gemisches aus feinkörnigem Platinschwarz und PTFE-Pulver auf ein Glas¬ faserfilter (10) und anschliessendes Sintern bei T > 320°C hergestellt wird.12. Gas sensor according to one of claims 1-11, characterized ge indicates that a combined reference and counter electrode (11, 12) is provided by applying a mixture of fine-grained platinum black and PTFE separated by a gap (21) Powder is produced on a glass fiber filter (10) and then sintered at T> 320 ° C.
13. Gassensor nach einem der Ansprüche 1 - 12, dadurch ge¬ kennzeichnet, dass er als 2-Elektrodensensor ausgebildet ist, der eine separate selektive Membran (5a), sowie eine Mess- und Gegenelektrode (11a, 12) umfasst, wobei die se¬ lektive Membran (5a) durch Aufbringen eines Gemisches aus feinverteiltem Palladiumschwarz sowie PTFE-Pulver auf eine poröse PTFE-Membran (3) und anschliessendes Sintern in einem Ofen bei T > 320°C hergestellt wird; wobei die Messelektrode (11a) durch Aufbringen.eines Gemisches aus feinverteiltem Platinschwarz und PTFE-Pulver auf eine po¬ röse PTFE-Membran (3) und anschliessendes Sintern in einem Ofen bei T > 320βC verfertigt wird; und wobei die Gegen¬ elektrode (12) durch Aufbringen einer ein Gemisch von feinverteiltem Platinschwarz und PTFE-Pulver enthaltenden Schicht (5b) auf ein Glasfaserrundfilter (10) und an¬ schliessendes Sintern bei T > 320°C hergestellt wird. 13. Gas sensor according to one of claims 1-12, characterized ge indicates that it is designed as a 2-electrode sensor, which comprises a separate selective membrane (5a), and a measuring and counter electrode (11a, 12), the se ¬ selective membrane (5a) by applying a mixture of finely divided palladium black and PTFE powder to a porous PTFE membrane (3) and then sintering in an oven at T> 320 ° C; the measuring electrode (11a) being produced by applying a mixture of finely divided platinum black and PTFE powder to a porous PTFE membrane (3) and subsequent sintering in an oven at T> 320 β C; and the counter electrode (12) is produced by applying a layer (5b) containing a mixture of finely divided platinum black and PTFE powder to a round glass fiber filter (10) and then sintering at T> 320 ° C.
14. Gassensor nach einem der Ansprüche 1 - 13, dadurch ge¬ kennzeichnet, dass die Messzelle (7) gasseitig von einem Deckel (2) mit einer durchlässigen Membran (3), radial von einem zylindrischen Zentralkörper (7a) sowie rücksei¬ tig von einem mit einer Druckausgleichsöffnung (20) ver¬ sehenen Deckel (14) begrenzt ist; dass Kontaktfedern (8), Platinbänder (9) und mit Elektrolyt (19a) getränkte Tam¬ pons aus Glasfaserfilter (10) sowie Dochte aus Glasfaser¬ material (10a) in der Öffnung (13) der Elektrolytkammer (19) zwecks Kontaktierung der Elektroden (5, 16a, 11, 11a, 12) und dass O-Ringe (4) und Schrauben (1) für entspre-chende Gewindebohrungen (15) zwecks Verschliesεung der Messzelle (7) sowie Abschnitte aus ungesintertem PTFE-Band (6) zwecks Abdichtung der Messzelle (7) vorgesehen sind.14. Gas sensor according to one of claims 1-13, characterized ge indicates that the measuring cell (7) on the gas side of a cover (2) with a permeable membrane (3), radially from a cylindrical central body (7a) and on the rear side a cover (14) provided with a pressure compensation opening (20) is limited; that contact springs (8), platinum strips (9) and tampons made of glass fiber filter (10) soaked with electrolyte (19a) and wicks made of glass fiber material (10a) in the opening (13) of the electrolyte chamber (19) for the purpose of contacting the electrodes ( 5, 16a, 11, 11a, 12) and that O-rings (4) and screws (1) for corresponding threaded bores (15) for closing the measuring cell (7) and sections made of unsintered PTFE tape (6) for sealing the measuring cell (7) are provided.
15. Gassensor nach einem der Ansprüche 1 - 14, dadurch ge¬ kennzeichnet, dass als Elektrolyt (19a) Schwefelsäure verwendet wird.15. Gas sensor according to one of claims 1-14, characterized ge indicates that sulfuric acid is used as the electrolyte (19a).
16. Gassensor nach einem der Ansprüche 1 - 15, dadurch ge¬ kennzeichnet, dass als Elektrolyt (19a) 30 massen-%ige Schwefelsäure eingesetzt wird. 16. Gas sensor according to one of claims 1-15, characterized ge indicates that 30% by mass sulfuric acid is used as the electrolyte (19a).
EP95924150A 1994-08-02 1995-07-19 Electrochemical gas sensor with reduced cross-sensitivity Withdrawn EP0721583A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH2416/94 1994-08-02
CH241694 1994-08-02
PCT/CH1995/000166 WO1996004550A1 (en) 1994-08-02 1995-07-19 Electrochemical gas sensor with reduced cross-sensitivity

Publications (1)

Publication Number Publication Date
EP0721583A1 true EP0721583A1 (en) 1996-07-17

Family

ID=4233301

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95924150A Withdrawn EP0721583A1 (en) 1994-08-02 1995-07-19 Electrochemical gas sensor with reduced cross-sensitivity

Country Status (2)

Country Link
EP (1) EP0721583A1 (en)
WO (1) WO1996004550A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073177A2 (en) * 2001-03-09 2002-09-19 Zellweger Analytics Ltd. Electrochemical gas sensor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2235021C (en) * 1998-04-14 2007-06-26 Jean-Pierre Gibeault A method and apparatus for monitoring gas(es) in a dielectric fluid
GB0203860D0 (en) 2002-02-19 2002-04-03 Alphasense Ltd Electrochemical cell
TW200538723A (en) * 2004-03-03 2005-12-01 Zellweger Analytics Agch Electrochemical gas sensor
CN102621205B (en) * 2012-03-28 2016-05-04 华瑞科学仪器(上海)有限公司 Hydrogen sulfide sensor
US11378569B2 (en) 2020-08-31 2022-07-05 Simple Labs, Inc. Smoke taint sensing device
CN113324896B (en) * 2021-05-27 2023-05-09 国网陕西省电力公司西安供电公司 Experimental device for be used for high tension cable buffer layer electrochemical corrosion research that blocks water
CN113933357A (en) * 2021-11-18 2022-01-14 北京化工大学 Application of polytetrafluoroethylene film in gas sensor, metal pipe cap for gas sensor and nitrogen dioxide sensor
CN115950922A (en) * 2023-01-17 2023-04-11 湖南元芯传感科技有限责任公司 Active filter, semiconductor gas sensor and preparation method of active filter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3470071A (en) * 1966-07-11 1969-09-30 Leesona Corp Method and apparatus for detecting gas
EP0064337B1 (en) * 1981-04-30 1986-02-12 National Research Development Corporation Carbon dioxide measurement
GB8313846D0 (en) * 1983-05-19 1983-06-22 City Tech Gas sensor
DE3519435A1 (en) * 1985-05-30 1986-12-11 Siemens AG, 1000 Berlin und 8000 München Sensor for gas analysis
US4812221A (en) * 1987-07-15 1989-03-14 Sri International Fast response time microsensors for gaseous and vaporous species
JP2876793B2 (en) * 1991-02-04 1999-03-31 トヨタ自動車株式会社 Semiconductor type hydrocarbon sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9604550A1 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002073177A2 (en) * 2001-03-09 2002-09-19 Zellweger Analytics Ltd. Electrochemical gas sensor
WO2002073177A3 (en) * 2001-03-09 2003-06-05 Zellweger Analytics Ltd Electrochemical gas sensor
AU2002236061B2 (en) * 2001-03-09 2006-09-28 Honeywell Analytics Limited Electrochemical gas sensor

Also Published As

Publication number Publication date
WO1996004550A1 (en) 1996-02-15

Similar Documents

Publication Publication Date Title
EP0823049B1 (en) Process and device for continuously detecting at least one substance in a gaseous or liquid mixture by means of a sensor electrode
DE2906459C2 (en) Device for measuring the oxygen concentration in a fluid
DE19939011C1 (en) Electrochemical gas sensor for determining oxidized gas has an electrolyte and gas permeable membrane
DE69829129T2 (en) gas sensor
DE60130288T2 (en) NOx sensor
EP0946867B1 (en) Electrochemical sensor
DE19827927C2 (en) gas sensor
DE10359173B4 (en) Measuring device with a plurality of potentiometric electrode pairs arranged on a substrate
DE10247144A1 (en) Gas detector element used for directly measuring the concentration of nitrogen oxides in vehicle exhaust gases, comprises a solid electrolyte substrate, a measuring electrode
EP1600768B1 (en) Ammonia sensor
DE19882506B4 (en) Electrochemical sensor for detecting hydrogen cyanide and method for using the electrochemical sensor
DE60301801T2 (en) Electrochemical sensor for the detection of carbon monoxide
DE60026703T2 (en) Apparatus for measuring and detecting acetylene dissolved in a fluid
EP1738159B1 (en) Fet-based gas sensor
DE4021929C2 (en) sensor
EP0721583A1 (en) Electrochemical gas sensor with reduced cross-sensitivity
DE102004008233B4 (en) Method for controlling the operation of a gas sensor element
DE19681487B3 (en) Electrochemical sensor for detecting nitrogen dioxide
EP0395927B1 (en) Electrochemical sensor for measuring ammonia or hydrazine
EP0282441B1 (en) Method for determining the chemical oxygen demand of water
DE2851447A1 (en) ELECTROANALYTIC CELL AND AMPEROMETRIC MEASURING METHOD
DE19847706A1 (en) Electrochemical gas sensor
EP0693180B1 (en) Ammonia sensor
DE10240918A1 (en) Gas sensor and method for determining a gas concentration
DE19515162C2 (en) Polarographic ppb oxygen gas sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19960523

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19980817