EP0700738B1 - Method of producing a hollow turbine blade - Google Patents

Method of producing a hollow turbine blade Download PDF

Info

Publication number
EP0700738B1
EP0700738B1 EP95402012A EP95402012A EP0700738B1 EP 0700738 B1 EP0700738 B1 EP 0700738B1 EP 95402012 A EP95402012 A EP 95402012A EP 95402012 A EP95402012 A EP 95402012A EP 0700738 B1 EP0700738 B1 EP 0700738B1
Authority
EP
European Patent Office
Prior art keywords
manufacturing
stage
blade
blade according
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95402012A
Other languages
German (de)
French (fr)
Other versions
EP0700738A1 (en
Inventor
Matthieu Bichon
Yvon Marie Joseph Louesdon
Charles Jean Pierre Douguet
Florence Anne Nathalie Renou
Alain Georges Henri Lorieux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, SNECMA SAS filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0700738A1 publication Critical patent/EP0700738A1/en
Application granted granted Critical
Publication of EP0700738B1 publication Critical patent/EP0700738B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/053Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure characterised by the material of the blanks
    • B21D26/055Blanks having super-plastic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/78Making other particular articles propeller blades; turbine blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade

Definitions

  • the present invention relates to a manufacturing process of a hollow turbomachine blade according to claim 1.
  • EP-A-0.500.458 describes a process for manufacturing a blade hollow for a turbomachine, in particular a rotor blade of large rope blower.
  • the primary parts used in this manufacturing include two outer sheets and at least one central plate.
  • the method described comprises a hot forming operation by bending and twisting the parts, a welding-diffusion operation in areas localized and a gas pressure inflation operation inducing a superplastic forming bringing the surfaces outside of dawn with the desired profile.
  • Tools suitable, in particular shape dies, are used for carrying out these operations.
  • the object of the invention is to provide the numerous methods known for making hollow blades, illustrated in particular by the example cited above, improvements notably aiming to obtain blades having improved mechanical characteristics and optimized in the conditions of use, guaranteeing repetitive quality while facilitating the conditions for manufacturing at the lowest cost.
  • the size of grain obtained is less than 10 ⁇ m, for a temperature forging the part between 880 ° C and 950 ° C and a tool temperature between 600 ° C and 850 ° C.
  • the bending / twisting of the blades placed after the welding-diffusion operation allows a more great ease of application of diffusion barriers on a preset pattern on a flat piece.
  • the production of a fan blade at very high compression ratio assumes very strong camber of the pale base and an accentuated twist and not continued. This requires a specific operation lengthening of the fibers preceding the twisting operation.
  • the twisting operation in this case can be integrated into the inflation operation under pressure gas and superplastic forming.
  • the cambering / twisting operation of the blades can be placed after the forging operation in the case of exploratory development requiring low parts series, or after the parts machining operation primary in the case of simple aerodynamic forms.
  • the cambering / twisting operation is carried out on a press, in an isothermal manner.
  • this temperature will be between 700 and 940 ° C.
  • This operation requires blocking the ends in order to guarantee effective fiber elongation in the areas chosen, this without tearing.
  • the length of the fiber central remains unchanged and the fiber elongation rate varies according to their distance to this central fiber.
  • the first step (a) of the process for manufacturing a hollow turbomachine fan blade according to the invention comprises a so-called flattening operation, from the definition of the finished part.
  • the flattening operation consists of deflation followed by defreezing / descaling.
  • the principles of construction and control of a fan blade are based on the use of defining sections distributed along the motor axis. Each section is worked so that all of the other constituent parts of the blade such as 11, 12 are pressed against the underside skin 13 unchanged. The thickness of the upper skin 11 is adjusted as a function of its subsequent elongation during the forming operation.
  • a digital simulation of the inflation is carried out confirming the intermediate result.
  • the final geometry twisted is transformed into the flat one.
  • the defreezing / descaling is a delicate operation for which the manufacturing process according to the invention provides a remarkable, automated method, respecting the conservation of the volume by the distribution of matter in function of the strain rate related to the position of each section.
  • the second step (b) consists in forging the parts on press constitutive primaries of dawn such as 11, 12, 13 visible in Figure 9, by stamping. According to the techniques known in the past, this type of part is made from of rolled sheets because it is considered that the dimension and the size does not allow to ensure by forging a blank sufficiently precise and fine.
  • the starting blank consists, as shown in Figure 2, of a bar 3, of a titanium alloy for example TA6V, of dimension adequate (diameter between 80 and 120mm) to achieve the draft of the primary parts.
  • a bar 3 of a titanium alloy for example TA6V of dimension adequate (diameter between 80 and 120mm) to achieve the draft of the primary parts.
  • one or more upsetting operations allow placement of the material in high volume areas type 4 foot or blade tip.
  • the bars are heated to a temperature between 880 ° C and 950 ° C, while the tool is heated to a temperature between 200 and 250 ° C.
  • One of the difficulties and therefore a remarkable stage in process according to the invention resides in the ability to produce forged blanks 5 as shown in the figure 5 of dimension and especially thickness capable of producing economically long-rope blades.
  • the inventors have developed a method of forging blanks allowing to guarantee blanks on a high power press precise and calibrated.
  • the inventors have developed a process comprising a judicious combination of a form trapezoidal 6 of the blank 5 as shown in the Figure 4, lubrication and heating of tools.
  • the forging operation on a press or forging making it possible to obtain the parts such as 5 of FIG. 4 is done by heating the room to a temperature between 880 ° C and 950 ° C and the tooling at a temperature between 700 ° C and 900 ° C.
  • Figure 7 shows a graph temperature evolution at each stamping.
  • the curve a corresponds to the temperatures of the contact surfaces of matrix
  • curve b the internal temperature of the tool
  • curve c the temperature of the tool holder.
  • the structure of the start bars 3 is rough by compared to conventional specifications applied to bars smaller dimensions (diameter 50 mm) used for the Forging of conventional turbojet blades: forging and matrixing make it possible to refine the structure in a way significant since the grain size is reduced by 10 ⁇ m on average at 7 ⁇ m. This operation thus saves 30 MPa on average on the fatigue strength of the final product and this despite the thermal cycles of welding-diffusion and inflation following the forging operation.
  • the precision forging makes it possible to make the surface 8 left external finished forging: the final surface condition being obtained by selective polishing, with numerical control, performed on a 5-axis polishing machine.
  • the finish of the internal surface 9 of the primary parts is produced by machining by any machining process known per se, these machining operations constituting step (C) of the process in accordance with the invention.
  • stages (f) of inflation under gas pressure and superplastic forming and (g) final machining are then carried out under production conditions known per se, parameters, including temperature and pressures applied being determined according to the material of the rooms. Furthermore and depending on the application of the process according to the invention, in particular for obtaining fan blades, a shaping of the parts by camber / twist is required. In this case the bending / twisting is a delicate operation which requires a a number of precautions to avoid the occurrence undulations due to the lengthening of the different parts of the part during this operation.
  • the operation consists of isothermal shaping of the primary part or of the welded assembly, in a press at a temperature between 700 and 940 ° C. allowing, with a tool 21, to obtain the elongations of the different fibers of the Exhibit 19.
  • This operation is carried out at controlled pressure between two metal or ceramic tools at the same temperature as the part is 700 ° C to 940 ° C.
  • the geometric definition of tool 21 produced in CAD / CAM integrates the shape of the part massive foot 22 and laterally the progressive elongations fibers in particular by one or more waves 23, 24, 25, 26 whose amplitude varies with the rate of elongation necessary, as shown diagrammatically in Figures 13 and 14.
  • This operation can include the arching of the foot 22.
  • the addition of extra thicknesses 28, 29, 30 judiciously placed provides support from the first contact workpiece / tool, as shown in figure 15.
  • the welded assembly 31 is maintained at each end by two jaws 32, 33 at least one of which is movable in rotation.
  • the twisting operation is carried out in an oven or heating chamber, at a creep temperature included between 880 ° C and 920 ° C depending on the alloy of the assembly welded.
  • another method is to provide the rotational movement of at least one jaw by a system mechanical acting on the lever arm 37, this is then made by two fingers fixed on the movable part of a press to which a local heating chamber is added 38.
  • Added local footprints 36 provide the accentuated aerodynamic shape of the trailing edge.
  • one of the jaws can be equipped with a helical coupling in order to apply a tensile stress during twisting, allowing avoid the appearance of a ripple phenomenon, so remarkable, in accordance with the invention.
  • the super plastic forming operation is carried out between 850 and 940 ° C under a pressure of 20 to 40x10 5 MPa of argon.
  • the blade 31 at from the geometry obtained after elongation of the fibers in the same operation as the inflation.
  • the decrease in number of heaters promotes the conservation of high mechanical properties obtained by forging constituent parts of dawn.

Abstract

The method esp. for a ducted fan turbine rotor, involves simulating the assembly of the blade's components by computer aided design, forging and machining the primary components, depositing diffusion barriers in a predetermined sequence, assembling the primary components by diffusion welding under isostatic pressure, and inflating the blade with gas pressure to achieve super-plastic moulding, followed by final machining. The forging process is carried out in a hot matrix at a temperature of 0.7 to 0.8 of the melting point of the material involved, with the pressing tools heated to 80 per cent of the workpiece temperature. The blade is made from a titanium alloy, e.g. TA6V, with a workpiece matrix temperature of between 880 and 950 deg.C and a tool temperature of 600 - 850 deg.C, designed to produce a microstructure with a grain size of under 10 mcm.

Description

La présente invention concerne un procédé de fabrication d'une aube creuse de turbomachine selon la revendication 1.The present invention relates to a manufacturing process of a hollow turbomachine blade according to claim 1.

Les avantages découlant de l'utilisation d'aubes à grande corde pour les turbomachines sont apparus notamment dans le cas des aubes de rotor de soufflante des turboréacteurs à double flux. Ces aubes doivent répondre à des conditions sévères d'utilisation et posséder notamment des caractéristiques mécaniques suffisantes associées à des propriétés antivibratoires et de résistance aux impacts de corps étrangers. L'objectif de vitesses suffisantes en bout d'aube a en outre amené à rechercher une réduction des masses. Ce but est notamment atteint par l'utilisation d'aubes creuses.The benefits of using large blades rope for turbomachinery appeared especially in the case of the fan rotor blades of turbojet engines double flow. These blades must meet conditions severe use and in particular have sufficient mechanical characteristics associated with anti-vibration and impact resistance properties of foreign bodies. The objective of sufficient speeds at the end dawn has also led to the search for a reduction in masses. This goal is notably achieved by the use hollow blades.

EP-A-0.500.458 décrit un procédé de fabrication d'une aube creuse pour turbomachine, notamment une aube de rotor de soufflante à grande corde. Les pièces primaires utilisées dans cette fabrication comprennent deux tôles extérieures et au moins une tôle centrale. Le procédé décrit comporte une opération de formage à chaud par cambrage et vrillage des pièces, une opération de soudage-diffusion dans des zones localisées et une opération de gonflage sous pression de gaz induisant un formage superplastique amenant les surfaces extérieures de l'aube au profil recherché. Des outillages appropriés, notamment des matrices de forme, sont utilisés pour la réalisation de ces opérations.EP-A-0.500.458 describes a process for manufacturing a blade hollow for a turbomachine, in particular a rotor blade of large rope blower. The primary parts used in this manufacturing include two outer sheets and at least one central plate. The method described comprises a hot forming operation by bending and twisting the parts, a welding-diffusion operation in areas localized and a gas pressure inflation operation inducing a superplastic forming bringing the surfaces outside of dawn with the desired profile. Tools suitable, in particular shape dies, are used for carrying out these operations.

Le but de l'invention est d'apporter aux nombreux procédés connus de fabrication d'aubes creuses, illustrés notamment par l'exemple cité ci-dessus, des améliorations substantielles visant notamment à obtenir des aubes présentant des caractéristiques mécaniques améliorées et optimisées dans les conditions d'utilisation, en garantissant une qualité répétitive tout en facilitant les conditions de fabrication au moindre coût. The object of the invention is to provide the numerous methods known for making hollow blades, illustrated in particular by the example cited above, improvements notably aiming to obtain blades having improved mechanical characteristics and optimized in the conditions of use, guaranteeing repetitive quality while facilitating the conditions for manufacturing at the lowest cost.

Ces buts sont atteints par un procédé de fabrication d'une aube creuse de turbomachine, notamment une aube de rotor de soufflante à grande corde, selon la revendication 1. These aims are achieved by a method of manufacturing a turbomachine hollow blade, in particular a fan rotor blade long cord according to claim 1.

Dans le cas d'un alliage de titane, du type TA6V, la taille de grain obtenue est inférieure à 10 µm, pour une température de matriçage de la pièce comprise entre 880°C et 950°C et une température d'outillage comprise entre 600°C et 850°C.In the case of a titanium alloy, of the TA6V type, the size of grain obtained is less than 10 µm, for a temperature forging the part between 880 ° C and 950 ° C and a tool temperature between 600 ° C and 850 ° C.

De manière avantageuse, le cambrage / vrillage des aubes placé après l'opération de soudage-diffusion permet une plus grande facilité de l'application des barrières de diffusion sur un motif préétabli sur pièce à plat.Advantageously, the bending / twisting of the blades placed after the welding-diffusion operation allows a more great ease of application of diffusion barriers on a preset pattern on a flat piece.

De manière avantageuse, la réalisation d'aube de soufflante à très fort taux de compression, suppose une très forte cambrure de la base pale et un vrillage accentué et non continu. Ceci nécessite une opération spécifique d'allongement des fibres précédant l'opération de vrillage.Advantageously, the production of a fan blade at very high compression ratio, assumes very strong camber of the pale base and an accentuated twist and not continued. This requires a specific operation lengthening of the fibers preceding the twisting operation.

De manière avantageuse, l'opération de vrillage dans ce cas peut être intégrée à l'opération de gonflage sous pression gazeuse et formage superplastique.Advantageously, the twisting operation in this case can be integrated into the inflation operation under pressure gas and superplastic forming.

De manière avantageuse, l'opération de cambrage/vrillage des aubes peut être placée après l'opération de forgeage dans le cas de développement exploratoire nécessitant de faibles séries de pièces, ou après l'opération d'usinage des pièces primaires dans le cas de formes aérodynamiques simples.Advantageously, the cambering / twisting operation of the blades can be placed after the forging operation in the case of exploratory development requiring low parts series, or after the parts machining operation primary in the case of simple aerodynamic forms.

De manière avantageuse, l'opération de cambrage/vrillage s'effectue sur une presse, de manière isotherme. Dans le cas d'alliage de titane type TA6V, cette température sera comprise entre 700 et 940°C. Advantageously, the cambering / twisting operation is carried out on a press, in an isothermal manner. In the case of titanium alloy type TA6V, this temperature will be between 700 and 940 ° C.

Cette opération nécessite un blocage des extrémités afin de garantir un allongement effectif des fibres dans les zones choisies, ceci sans déchirure. La longueur de la fibre centrale reste inchangée et le taux d'allongement des fibres varie suivant leur distance à cette fibre centrale.This operation requires blocking the ends in order to guarantee effective fiber elongation in the areas chosen, this without tearing. The length of the fiber central remains unchanged and the fiber elongation rate varies according to their distance to this central fiber.

D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description qui va suivre des modes de réalisation de l'invention, en référence aux dessins annexés sur lesquels :

  • la figure 1 représente une vue schématique de la première étape de simulation de la mise à plat d'une aube creuse dans le procédé de fabrication conforme à l'invention ;
  • la figure 2 représente une vue en perspective d'une pièce brute de départ dans le procédé de fabrication d'une aube creuse conforme à l'invention ;
  • la figure 3 représente la pièce de la figure 2 à un premier stade de mise en forme ;
  • la figure 4 représente la pièce des figures 2 et 3 au stade suivant de mise en forme ;
  • la figure 5 représente selon une vue en perspective un exemple de pièce obtenue à l'issue des étapes de forgeage et usinage du procédé de fabrication d'une aube creuse selon l'invention ;
  • la figure 6 représente selon une vue en coupe par un plan passant par l'axe longitudinal de la pièce suivant la ligne VI VI de la figure 5 la pièce obtenue à ce stade de fabrication selon la figure 5 ;
  • la figure 7 représente un graphique reproduisant un cycle d'évolution des températures de pièce lors du forgeage par matricage sous presse des pièces primaires constitutives de l'aube ;
  • la figure 8 représente une vue en perspective d'une pièce primaire constitutive de l'aube creuse obtenue par le procédé conforme à l'invention après la réalisation de l'étape de préparation par dépôt de barrières anti-diffusion ;
  • les figures 9 et 10 représentent une vue en perspective des pièces primaires de l'aube creuse lors de l'étape d'assemblage suivi du soudage-diffusion du procédé conforme à l'invention ;
  • les figures 11 et 12 représentent schématiquement les résultats d'une simulation numérique d'une opération de mise à longueur des fibres à effectuer sur les pièces constitutives de l'aube creuse assemblée obtenue par le procédé conforme à l'invention ;
  • la figure 13 représente une vue en perspective de l'aube obtenue par ledit procédé après une opération de mise en forme conduisant à un allongement des fibres ;
  • la figure 14 représente une vue schématique en perspective d'un exemple d'outil de presse utilisé pour obtenir la pièce de la figure 13 ;
  • la figure 15 représente une vue en bout de l'aube de la figure 13 montrant le résultat de l'opération de cambrage du pied d'aube ;
  • la figure 16 représente une vue schématique de la réalisation de l'opération de vrillage de l'aube des figures 13 et 15 ;
  • la figure 17 représente selon une vue en coupe par un plan passant par l'axe longitudinal de pièce suivant une ligne XVII-XVII de la figure 16 la réalisation de l'opération de vrillage de la figure 16 ;
  • la figure 18 représente selon une vue schématique en perspective une variante de réalisation de l'opération de vrillage de l'aube des figures 13 et 15 ;
  • la figure 19 représente une vue en perspective de l'aube obtenue après l'opération de vrillage dudit procédé ;
  • la figure 20 représente selon une vue schématique en perspective un exemple d'une partie de l'outillage utilisé lors de l'étape de formage superplastique de l'aube de la figure 19 ;
  • la figure 21 représente selon une vue schématique en coupe par un plan transversal un exemple de profil d'aube avant gonflage et en tiretés, après gonflage.
Other characteristics and advantages of the invention will be better understood on reading the description which follows of embodiments of the invention, with reference to the appended drawings in which:
  • FIG. 1 represents a schematic view of the first step of simulating the flattening of a hollow blade in the manufacturing process according to the invention;
  • FIG. 2 represents a perspective view of a raw starting part in the method of manufacturing a hollow blade according to the invention;
  • Figure 3 shows the part of Figure 2 at a first stage of shaping;
  • Figure 4 shows the part of Figures 2 and 3 in the next stage of shaping;
  • FIG. 5 represents a perspective view of an example of a part obtained at the end of the forging and machining steps of the method of manufacturing a hollow blade according to the invention;
  • Figure 6 shows in a sectional view through a plane passing through the longitudinal axis of the part along the line VI VI of Figure 5 the part obtained at this stage of manufacture according to Figure 5;
  • FIG. 7 represents a graph reproducing a cycle of evolution of the part temperatures during the forging by stamping in press of the primary parts constituting the blade;
  • FIG. 8 represents a perspective view of a primary part constituting the hollow vane obtained by the method according to the invention after the completion of the preparation step by depositing anti-diffusion barriers;
  • Figures 9 and 10 show a perspective view of the primary parts of the hollow blade during the assembly step followed by the diffusion welding of the process according to the invention;
  • FIGS. 11 and 12 schematically represent the results of a numerical simulation of an operation of lengthening the fibers to be carried out on the constituent parts of the assembled hollow vane obtained by the method according to the invention;
  • FIG. 13 represents a perspective view of the blade obtained by said method after a shaping operation leading to an elongation of the fibers;
  • Figure 14 shows a schematic perspective view of an example of a press tool used to obtain the part of Figure 13;
  • Figure 15 shows an end view of the blade of Figure 13 showing the result of the cambering operation of the blade root;
  • FIG. 16 represents a schematic view of carrying out the twisting operation of the blade of FIGS. 13 and 15;
  • Figure 17 shows in a sectional view through a plane passing through the longitudinal axis of the part along a line XVII-XVII of Figure 16 the execution of the twisting operation of Figure 16;
  • Figure 18 shows in a schematic perspective view an alternative embodiment of the twisting operation of the blade of Figures 13 and 15;
  • FIG. 19 represents a perspective view of the blade obtained after the twisting operation of said method;
  • Figure 20 shows in a schematic perspective view an example of part of the tool used during the superplastic forming step of the blade of Figure 19;
  • FIG. 21 shows in a schematic sectional view through a transverse plane an example of a blade profile before inflation and in dashed lines, after inflation.

La première étape (a) du procédé de fabrication d'une aube creuse de soufflante de turbomachine conforme à l'invention comporte une opération dite de mise à plat, à partir de la définition de la pièce finie.
L'opération de mise à plat est constituée du dégonflage suivie du dévrillage/décambrage.
Comme représenté sur la figure 1, les principes de construction et de contrôle d'une aube de soufflante sont basés sur l'utilisation de sections de définition réparties le long de l'axe moteur. Chaque section est travaillée afin que l'ensemble des autres pièces constitutives de l'aube telles que 11, 12 soient plaquées sur la peau d'intrados 13 inchangée. L'épaisseur de la peau extrados 11 est ajustée en fonction de son allongement ultérieur lors de l'opération de formage.
A ce stade, on réalise une simulation numérique du gonflage confirmant le résultat intermédiaire.
The first step (a) of the process for manufacturing a hollow turbomachine fan blade according to the invention comprises a so-called flattening operation, from the definition of the finished part.
The flattening operation consists of deflation followed by defreezing / descaling.
As shown in Figure 1, the principles of construction and control of a fan blade are based on the use of defining sections distributed along the motor axis. Each section is worked so that all of the other constituent parts of the blade such as 11, 12 are pressed against the underside skin 13 unchanged. The thickness of the upper skin 11 is adjusted as a function of its subsequent elongation during the forming operation.
At this stage, a digital simulation of the inflation is carried out confirming the intermediate result.

Comme représentée sur la figure 1, la géométrie finale vrillée est transformée en celle à plat. Le dévrillage/décambrage est une opération délicate pour laquelle le procédé de fabrication conforme à l'invention prévoit une méthode remarquable, automatisée, respectant la conservation du volume par la répartition de matière en fonction du taux de déformation lié à la position de chaque section.As shown in Figure 1, the final geometry twisted is transformed into the flat one. The defreezing / descaling is a delicate operation for which the manufacturing process according to the invention provides a remarkable, automated method, respecting the conservation of the volume by the distribution of matter in function of the strain rate related to the position of each section.

A ce stade, on réalise une nouvelle simulation numérique du vrillage confirmant le résultat final.At this stage, a new numerical simulation of the twist confirming the final result.

De façon avantageuse, il est possible de réaliser la mise à plat en une seule opération, sans l'étape de dégonflage.Advantageously, it is possible to carry out the updating. flat in a single operation, without the deflation step.

La seconde étape (b) consiste à forger sur presse les pièces primaires constitutives de l'aube telles que 11, 12, 13 visibles sur la figure 9, par matriçage. Selon les techniques connues antérieures, ce type de pièce est fabriqué à partir de tôles laminées car on considère que la dimension et la taille ne permettent pas d'assurer par forgeage une ébauche suffisamment précise et fine.The second step (b) consists in forging the parts on press constitutive primaries of dawn such as 11, 12, 13 visible in Figure 9, by stamping. According to the techniques known in the past, this type of part is made from of rolled sheets because it is considered that the dimension and the size does not allow to ensure by forging a blank sufficiently precise and fine.

Selon l'invention et comme il est connu en soi dans le procédé de forgeage de précision, la pièce brute de départ est constituée, comme représenté sur la figure 2, d'une barre 3, d'un alliage de titane par exemple TA6V, de dimension adéquate (diamètre compris entre 80 et 120mm) pour réaliser l'ébauche des pièces primaires. Comme représenté sur la figure 3 une ou plusieurs opérations de refoulage permettent la mise en place de la matière dans les zones de fort volume de type pied 4 ou bout de pale. A ce stade, les barres sont chauffées à une température comprise entre 880°C et 950°C, alors que l'outillage est chauffé à une température comprise entre 200 et 250°C.According to the invention and as it is known per se in the precision forging process, the starting blank consists, as shown in Figure 2, of a bar 3, of a titanium alloy for example TA6V, of dimension adequate (diameter between 80 and 120mm) to achieve the draft of the primary parts. As shown in the Figure 3 one or more upsetting operations allow placement of the material in high volume areas type 4 foot or blade tip. At this point, the bars are heated to a temperature between 880 ° C and 950 ° C, while the tool is heated to a temperature between 200 and 250 ° C.

L'une des difficultés et donc une étape remarquable du procédé selon l'invention réside dans la capacité à produire des ébauches forgées 5 telles que représentées sur la figure 5 de dimension et surtout d'épaisseur capables de produire économiquement des aubes à grande corde. Les inventeurs ont mis au point une méthode de forgeage des ébauches permettant de garantir sur une presse de grande puissance des ébauches précises et calibrées. One of the difficulties and therefore a remarkable stage in process according to the invention resides in the ability to produce forged blanks 5 as shown in the figure 5 of dimension and especially thickness capable of producing economically long-rope blades. The inventors have developed a method of forging blanks allowing to guarantee blanks on a high power press precise and calibrated.

En effet la réalisation d'aubes de soufflante de turboréacteur à grande corde nécessite des ébauches de grande taille. A titre d'exemple un turboréacteur de la classe 270KN de poussée nécessite des aubes d'une largeur de 500 mm environ. Cette largeur est encore augmentée par d'éventuelles sur largeurs pouvant atteindre 50 mm environ sur chaque bord pour assurer des fonctions de types assemblage, maintien, etc... du produit.Indeed the realization of fan blades of large rope turbojet requires large blanks cut. For example, a 270KN class turbojet engine thrust requires 500 mm wide blades about. This width is further increased by possible on widths up to approx. 50 mm on each edge to perform assembly, maintenance, etc ... of the product.

Afin d'obtenir un produit suffisamment fin et afin de limiter les coûts de matière première et d'usinage, tout en limitant la pression de forgeage, les inventeurs ont mis au point un procédé comprenant une combinaison judicieuse d'une forme trapézoïdale 6 de l'ébauche 5 telle que représentée sur la figure 4, de la lubrification et du chauffage des outillages. Notamment, l'opération de forgeage sur presse ou matriçage permettant d'obtenir les pièces telles que 5 de la figure 4 est effectuée en chauffant la pièce à une température comprise entre 880°C et 950°C et l'outillage à une température comprise entre 700°C et 900°C.In order to obtain a sufficiently fine product and in order to limit raw material and machining costs, while limiting the forging pressure, the inventors have developed a process comprising a judicious combination of a form trapezoidal 6 of the blank 5 as shown in the Figure 4, lubrication and heating of tools. In particular, the forging operation on a press or forging making it possible to obtain the parts such as 5 of FIG. 4 is done by heating the room to a temperature between 880 ° C and 950 ° C and the tooling at a temperature between 700 ° C and 900 ° C.

Il est alors possible de réaliser un produit avec un rapport de finesse défini par le rapport épaisseur/largeur de l'aube de l'ordre de 0,02. La figure 7 montre un graphique d'évolution de température à chaque matriçage. La courbe a correspond aux températures des surfaces de contact de matrice, la courbe b la température interne de l'outillage et la courbe c la température du porte-outil. On constate que grâce à un cycle de matriçage parfaitement maítrisé, le cycle de température varie entre 720°C et 840°C.It is then possible to produce a product with a report fineness defined by the thickness / width ratio of the blade of the order of 0.02. Figure 7 shows a graph temperature evolution at each stamping. The curve a corresponds to the temperatures of the contact surfaces of matrix, curve b the internal temperature of the tool and curve c the temperature of the tool holder. We observe that thanks to a perfectly mastered mastering cycle, the cycle temperature varies between 720 ° C and 840 ° C.

La structure des barres de départs 3 est grossière par rapport aux spécifications classiques appliquées à des barres de plus petites dimensions (diamètre 50 mm) utilisées pour le matriçage d'aubes classiques de turboréacteur : le forgeage et matriçage permettent d'affiner la structure d'une manière significative puisque la taille de grain est ramenée de 10 µm en moyenne à 7 µm. Cette opération permet ainsi de gagner 30 MPa en moyenne sur la tenue en fatigue du produit final et ceci malgré les cycles thermiques du soudage-diffusion et du gonflage qui suivent l'opération de forgeage.The structure of the start bars 3 is rough by compared to conventional specifications applied to bars smaller dimensions (diameter 50 mm) used for the Forging of conventional turbojet blades: forging and matrixing make it possible to refine the structure in a way significant since the grain size is reduced by 10 µm on average at 7 µm. This operation thus saves 30 MPa on average on the fatigue strength of the final product and this despite the thermal cycles of welding-diffusion and inflation following the forging operation.

Dans l'exemple représenté sur les figures 5 et 6, la précision du forgeage permet de réaliser la surface 8 gauche externe finie de forgeage : l'état de surface final étant obtenu par un polissage sélectif, à commande numérique, effectué sur une machine à polir 5 axes.In the example shown in Figures 5 and 6, the precision forging makes it possible to make the surface 8 left external finished forging: the final surface condition being obtained by selective polishing, with numerical control, performed on a 5-axis polishing machine.

La finition de la surface interne 9 des pièces primaires est réalisée par usinage par tout procédé d'usinage connu en soi, ces usinages constituant l'étape (C) du procédé conforme à l'invention.The finish of the internal surface 9 of the primary parts is produced by machining by any machining process known per se, these machining operations constituting step (C) of the process in accordance with the invention.

Les opérations de préparation du sandwich jusqu'à l'obtention d'un ensemble soudé-diffusé font appel à des procédés déja connus comprenant les opérations de l'étape suivante (d) du procédé :

  • nettoyage parfait des surfaces, internes particulièrement ;
  • application d'un produit anti-diffusant sur au moins deux des faces internes avec des motifs prédéfinis 10, par exemple par un procédé de sérigraphie classique, comme schématisé sur la figure 8 ;
  • cuisson du produit anti-diffusant entre 250°C et 280°C pour dégrader tout ou partie du liant ;
    puis de l'étape suivante (e) du procédé :
  • assemblage des pièces primaires 11, 12, 13 afin d'obtenir l'ensemble 14 en utilisant au moins deux pions de centrage 15, 16, comme représenté sur les figures 9 et 10 ;
  • soudage TIG ou par faisceau d'électrons de la périphérie puis éventuellement de deux tubes 17, 18 de mise au vide ;
  • tirage du vide dans une enceinte à vide et fermeture des tubes 17, 18 dans le cas de leur utilisation ;
  • soudure-diffusion à une température de 875°C à 940°C, et sous une pression de 30 à 40 x 105 MPa pendant 1 H mini.
The operations of preparing the sandwich until a welded-diffused assembly is obtained call on already known methods comprising the operations of the following step (d) of the method:
  • perfect cleaning of surfaces, particularly internal;
  • application of an anti-diffusing product on at least two of the internal faces with predefined patterns 10, for example by a conventional screen printing process, as shown diagrammatically in FIG. 8;
  • cooking of the anti-diffusing product between 250 ° C and 280 ° C to degrade all or part of the binder;
    then the next step (e) of the process:
  • assembly of the primary parts 11, 12, 13 in order to obtain the assembly 14 using at least two centering pins 15, 16, as shown in FIGS. 9 and 10;
  • TIG or electron beam welding of the periphery then optionally of two vacuum tubes 17, 18;
  • vacuum drawing in a vacuum enclosure and closing of the tubes 17, 18 in the case of their use;
  • welding-diffusion at a temperature of 875 ° C to 940 ° C, and under a pressure of 30 to 40 x 10 5 MPa for 1 H min.

Les étapes suivantes (f) de gonflage sous pression de gaz et formage superplastique et (g) d'usinage final sont ensuite effectuées dans des conditions de réalisation connues en soi, les paramètres, notamment la température et les pressions appliquées étant déterminées en fonction du matériau des pièces. Par ailleurs et suivant l'application du procédé conforme à l'invention notamment à l'obtention d'aubes de soufflante, une mise en forme des pièces par cambrage/vrillage est nécessaire. Dans ce cas le cambrage/vrillage est une opération délicate qui nécessite un certain nombre de précautions pour éviter l'apparition d'ondulations dues aux allongements des différentes parties de la pièce lors de cette opération.The following stages (f) of inflation under gas pressure and superplastic forming and (g) final machining are then carried out under production conditions known per se, parameters, including temperature and pressures applied being determined according to the material of the rooms. Furthermore and depending on the application of the process according to the invention, in particular for obtaining fan blades, a shaping of the parts by camber / twist is required. In this case the bending / twisting is a delicate operation which requires a a number of precautions to avoid the occurrence undulations due to the lengthening of the different parts of the part during this operation.

Préalablement on réalise une opération géométrique sur un système CFAO de manière à conserver de part et d'autre de la fibre neutre, les longueurs des fibres en fonction de leur position par rapport à l'axe 20 de la pièce 19, comme représenté sur les figures 11 et 12.Beforehand we carry out a geometric operation on a CAD / CAM system so as to keep on both sides of the neutral fiber, the lengths of the fibers according to their position relative to the axis 20 of the part 19, as shown in Figures 11 and 12.

A ce stade, on réalise une simulation numérique du vrillage confirmant le résultat final.
L'opération consiste en une mise en forme isotherme de la pièce primaire ou de l'ensemble soudé, sous presse à une température comprise entre 700 et 940°C permettant, avec un outillage 21, d'obtenir les allongements des différentes fibres de la pièce 19.
At this stage, a digital simulation of the twist is carried out confirming the final result.
The operation consists of isothermal shaping of the primary part or of the welded assembly, in a press at a temperature between 700 and 940 ° C. allowing, with a tool 21, to obtain the elongations of the different fibers of the Exhibit 19.

Cette opération s'effectue à pression contrôlée entre deux outillages métalliques ou céramique à la même température que la pièce soit 700°C à 940°C. La définition géométrique de l'outil 21 réalisée en CFAO intègre la forme de la partie massive du pied 22 et latéralement les allongements évolutifs des fibres notamment par une ou plusieurs ondes 23, 24, 25, 26 dont l'amplitude varie avec le taux d'allongement nécessaire, comme schématisé sur les figures 13 et 14.This operation is carried out at controlled pressure between two metal or ceramic tools at the same temperature as the part is 700 ° C to 940 ° C. The geometric definition of tool 21 produced in CAD / CAM integrates the shape of the part massive foot 22 and laterally the progressive elongations fibers in particular by one or more waves 23, 24, 25, 26 whose amplitude varies with the rate of elongation necessary, as shown diagrammatically in Figures 13 and 14.

Ces allongements vont générer des contraintes de compression longitudinales généralement situées sur l'axe 20 de la pièce. These elongations will generate compression stresses longitudinal generally located on the axis 20 of the part.

Celles-ci seront contenues par une immobilisation à chaque extrémité, pied 22 et bout de pale 27.These will be contained by a fixed asset each end, foot 22 and blade tip 27.

Cette opération peut comprendre le cambrage du pied 22. L'ajout de surépaisseurs 28, 29, 30 judicieusement placées permet d'assurer un maintien dès le premier contact pièce/outil, comme représenté sur la figure 15.This operation can include the arching of the foot 22. The addition of extra thicknesses 28, 29, 30 judiciously placed provides support from the first contact workpiece / tool, as shown in figure 15.

Pour l'opération de vrillage et comme schématisé sur les figures 16 et 17, l'ensemble soudé 31 est maintenu à chaque extrémité par deux mors 32, 33 dont l'un au moins est mobile en rotation.For the twisting operation and as shown schematically on the Figures 16 and 17, the welded assembly 31 is maintained at each end by two jaws 32, 33 at least one of which is movable in rotation.

L'opération de vrillage est effectuée dans un four ou une enceinte chauffante, à une température de fluage comprise entre 880°C et 920°C en fonction de l'alliage de l'ensemble soudé.The twisting operation is carried out in an oven or heating chamber, at a creep temperature included between 880 ° C and 920 ° C depending on the alloy of the assembly welded.

Des masselottes 34,35 imposent à la pièce un vrillage parfaitement contrôlé par des butées de fin de course.34.35 weights impose a twist on the part perfectly controlled by limit stops.

De manière avantageuse, une autre méthode est de fournir le mouvement de rotation d'un au moins des mors par un système mécanique agissant sur le bras de levier 37, ceci est alors réalisé par deux doigts fixés sur la partie mobile d'une presse à laquelle est ajouté une enceinte chauffante locale 38. Des empreintes locales ajoutées 36 permettent d'obtenir la forme aérodynamique accentuée du bord de fuite.Advantageously, another method is to provide the rotational movement of at least one jaw by a system mechanical acting on the lever arm 37, this is then made by two fingers fixed on the movable part of a press to which a local heating chamber is added 38. Added local footprints 36 provide the accentuated aerodynamic shape of the trailing edge.

Dans ces deux cas, l'un des mors peut être équipé d'un accouplement hélicoïdal afin d'appliquer à la pièce une contrainte de traction au cours du vrillage, permettant d'éviter l'apparition d'un phénomène d'ondulation, de manière remarquable, conforme à l'invention.In these two cases, one of the jaws can be equipped with a helical coupling in order to apply a tensile stress during twisting, allowing avoid the appearance of a ripple phenomenon, so remarkable, in accordance with the invention.

De manière avantageuse, il est possible de réaliser le mouvement de rotation d'un au moins des mors par un moteur électrique ou hydraulique, protégé thermiquement dans la zone de travail. Advantageously, it is possible to carry out the rotational movement of at least one of the jaws by a motor electric or hydraulic, thermally protected in the area of work.

L'aube vrillée 39 ainsi obtenue et telle que représentée sur la figure 19 est maintenue par ces tourillons 40, 41 durant la fermeture du moule de formage super plastique 44. Ceux-ci sont guidés verticalement par encoches 42, 43, comme représenté sur la figure 20.The twisted vane 39 thus obtained and as shown in Figure 19 is held by these pins 40, 41 during closing the super plastic forming mold 44. These are guided vertically by notches 42, 43, as shown in Figure 20.

L'opération de formage super plastique est réalisée entre 850 et 940°C sous une pression de 20 à 40x105MPa d'argon.The super plastic forming operation is carried out between 850 and 940 ° C under a pressure of 20 to 40x10 5 MPa of argon.

De manière avantageuse, il est possible de former l'aube 31 à partir de la géométrie obtenue après allongement des fibres dans la même opération que le gonflage. La diminution du nombre de chauffes favorise la conservation des caractéristiques mécaniques élevées obtenues par forgeage des pièces constitutives de l'aube.Advantageously, it is possible to form the blade 31 at from the geometry obtained after elongation of the fibers in the same operation as the inflation. The decrease in number of heaters promotes the conservation of high mechanical properties obtained by forging constituent parts of dawn.

Claims (15)

  1. Method of manufacturing a hollow turbine-machine blade, particularly a wide-chord fan rotor blade, including the following stages:
    (a) on the basis of the definition of a blade to be obtained, design using Computer-Assisted Design and Manufacturing/CADCAM means, and carrying out a digital simulation of the flattening of the components constituting the blade;
    (b) forging of the primary components on a press by die stamping;
    (c) machining of the primary components;
    (d) deposition of diffusion barriers according to a predefined pattern;
    (e) assembly of the primary components followed by diffusion welding at isostatic pressure;
    (f) inflation under gas pressure and superplastic forming;
    (g) final machining, in which, at stage (b), the die stamping operation is carried out in a hot die, at a temperature lying in a bracket between 0.7 and 0.8 Tf, Tf being the material melting temperature, the temperature of the tooling being taken to 80% of the component temperature, the component blank used exhibits a specific trapezoidal shape so as to obtain a final product with fineness equivalent to 0.02 times the width of the blade and a working of the metal making it possible to guarantee a grain size appropriate for ensuring, at stage (e), good diffusion welding conditions and the mechanical characteristics sought for the finished blade including good fatigue resistance, the method including an additional stage of cambering and twisting causing an elongation of the fibres of the material of the components allowing the neutral fibre to be set to final length on either side of the axis (20) of the component when the thickness of the components, associated with the degree of deformation, is less than the buckling limit.
  2. Method of manufacturing a hollow blade according to Claim 1, in which stage (a) includes a digital simulation of deflation, by applying the other components (11, 12) constituting the blade onto the unchanged under-surface skin (13).
  3. Method of manufacturing a hollow blade according to Claim 2, in which the digital simulation is followed by untwisting/de-cambering so as to obtain a flat product (2).
  4. Method of manufacturing a hollow blade according to Claim 1, in which stage (a) includes a digital simulation of complete flattening (2) in a single operation, on the basis of the final twisted geometry of the blade (1).
  5. Method of manufacturing a hollow blade according to any one of Claims 1 to 4, in which the said blade is made of titanium alloy, of the TA6V type, the temperature of die stamping of the components lies between 880°C and 950°C, the tooling temperature lies between 600°C and 850 °C, and the die stamping operation makes it possible to obtain a component metallurgical microstructure with a grain size of less than 10 µm.
  6. Method of manufacturing a hollow blade according to any one of Claims 1 to 5, in which the additional cambering and twisting stage (e1) is placed after the diffusion welding operation.
  7. Method of manufacturing a hollow blade according to any one of Claims 1 to 5, in which an operation of elongating the fibres is carried out after the diffusion welding stage (e) and at stage (f), the twisting operation being incorporated into the operation of inflation under gas pressure and superplastic forming.
  8. Method of manufacturing a hollow blade according to any one of Claims 1 to 5, in which the additional cambering and twisting stage is placed after the stage (b) of forging of the primary components.
  9. Method of manufacturing a hollow blade according to any one of Claims 1 to 5, in which an additional cambering and twisting stage is placed after the stage (c) of machining of the primary components.
  10. Method of manufacturing a hollow blade according to any one of Claims 1 to 6, in which the cambering and twisting operation is carried out on a press, isothermally.
  11. Method of manufacturing a hollow blade according to Claim 10, in which the said blade is made of titanium alloy, of the TA6V type, and the isothermal forging temperature lies between 700°C and 940°C during the cambering and twisting operation.
  12. Method of manufacturing a hollow blade according to one of Claims 10 and 11, in which, during the cambering and twisting operation, at least one of the two ends of the component is held fast so as to guarantee effective elongation of the fibres in the chosen regions, the degree of elongation of the fibres varying depending on their distance from an axial fibre of the component the length of which remains unchanged.
  13. Method of manufacturing a hollow blade according to Claim 12, in which, during the twisting operation, local tooling imprint moulds (36) reposition the previously elongated fibres so as to obtain an accentuated aerodynamic shape in a chosen region.
  14. Method of manufacturing a hollow blade according to one of Claims 12 and 13, in which, during the twisting operation, the system for holding at least one of the component ends fast includes a device making it possible to exert a rotation and a traction on the component along the component axis.
  15. Method of manufacturing a hollow blade according to Claim 1, in which an additional stage (b1), including an operation of shaping on a press, is carried out after stage (b).
EP95402012A 1994-09-07 1995-09-06 Method of producing a hollow turbine blade Expired - Lifetime EP0700738B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9410690A FR2724127B1 (en) 1994-09-07 1994-09-07 PROCESS FOR MANUFACTURING A HOLLOW BLADE OF A TURBOMACHINE
FR9410690 1994-09-07

Publications (2)

Publication Number Publication Date
EP0700738A1 EP0700738A1 (en) 1996-03-13
EP0700738B1 true EP0700738B1 (en) 1999-12-08

Family

ID=9466749

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95402012A Expired - Lifetime EP0700738B1 (en) 1994-09-07 1995-09-06 Method of producing a hollow turbine blade

Country Status (9)

Country Link
US (1) US5636440A (en)
EP (1) EP0700738B1 (en)
JP (1) JP3305927B2 (en)
AT (1) ATE187370T1 (en)
CA (1) CA2157643C (en)
DE (1) DE69513754T2 (en)
ES (1) ES2139860T3 (en)
FR (1) FR2724127B1 (en)
IL (1) IL115123A (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739045B1 (en) * 1995-09-27 1997-10-31 Snecma PROCESS FOR MANUFACTURING A HOLLOW BLADE OF A TURBOMACHINE
FR2749784B1 (en) * 1996-06-13 1998-07-31 Snecma PROCESS FOR MANUFACTURING A HOLLOW BLADE OF TURBOMACHINE AND MULTI-EFFECT PRESS OVEN USED FOR THEIR IMPLEMENTATION
FR2752388B1 (en) * 1996-08-14 1998-09-18 Snecma PROCESS FOR THE MANUFACTURE OF A HOLLOW BLADE OF A TURBOMACHINE COMPRISING A TAKE-OFF AFTER WELDING
FR2752539B1 (en) * 1996-08-22 1998-09-18 Snecma PROCESS FOR MANUFACTURING A HOLLOW BLADE OF A TURBOMACHINE AND HOT-SCALABLE TURNING EQUIPMENT
US6129261A (en) 1996-09-26 2000-10-10 The Boeing Company Diffusion bonding of metals
FR2754478B1 (en) * 1996-10-16 1998-11-20 Snecma PROCESS FOR MANUFACTURING A HOLLOW BLADE OF A TURBOMACHINE
JP3647612B2 (en) * 1997-07-24 2005-05-18 富士重工業株式会社 Aircraft leading edge structure and manufacturing method thereof
US6264880B1 (en) 1998-07-22 2001-07-24 The Regents Of The University Of California Manifold free multiple sheet superplastic forming
US6223573B1 (en) * 1999-06-25 2001-05-01 General Electric Company Method for precision temperature controlled hot forming
GB2360236B (en) * 2000-03-18 2003-05-14 Rolls Royce Plc A method of manufacturing an article by diffusion bonding and superplastic forming
US6792655B2 (en) * 2001-11-09 2004-09-21 General Electric Company Apparatus for correcting airfoil twist
GB0203955D0 (en) 2002-02-20 2002-04-03 Rolls Royce Plc A method of manufacturing an article by diffusion bonding and super[lastic forming
US6705011B1 (en) 2003-02-10 2004-03-16 United Technologies Corporation Turbine element manufacture
FR2855439B1 (en) * 2003-05-27 2006-07-14 Snecma Moteurs METHOD FOR MANUFACTURING A HOLLOW DAWN FOR TURBOMACHINE
FR2857889B1 (en) * 2003-07-23 2005-09-23 Snecma Moteurs PROCESS FOR PRODUCING PARTS BY PRECISION FORGING
FR2867095B1 (en) * 2004-03-03 2007-04-20 Snecma Moteurs METHOD FOR MANUFACTURING A HOLLOW DAWN FOR TURBOMACHINE
FR2867096B1 (en) * 2004-03-08 2007-04-20 Snecma Moteurs METHOD FOR MANUFACTURING A REINFORCING LEAK OR RELEASING EDGE FOR A BLOWER BLADE
FR2871397B1 (en) 2004-06-11 2006-09-22 Snecma Moteurs Sa INSTALLATION OF CONFORMATION OF A HOLLOW AUBE
FR2872721B1 (en) * 2004-07-09 2006-09-22 Snecma Moteurs Sa METHOD FOR THE GEOMETRIC CONSTRUCTION OF A CORRELATION CORD OF FORGING A COMPLEX PIECE
FR2873940B1 (en) * 2004-08-03 2008-01-04 Snecma Moteurs Sa METHOD FOR MANUFACTURING CONSTITUENT PIECES OF A HOLLOW DRAW BY ROLLING
FR2874339B1 (en) 2004-08-23 2008-12-05 Snecma Moteurs Sa METHOD FOR MANUFACTURING CONSTITUENT PIECES OF A HOLLOW DRAW BY DRILLING ON PRESS
DE102004062174A1 (en) * 2004-12-17 2006-06-22 Rolls-Royce Deutschland Ltd & Co Kg Process for producing high strength components by precision forging
JP5297047B2 (en) * 2008-01-18 2013-09-25 三菱重工業株式会社 Method for setting performance characteristics of pump and method for manufacturing diffuser vane
EA016027B1 (en) * 2008-10-13 2012-01-30 Государственное Научное Учреждение "Физико-Технический Институт Национальной Академии Наук Беларуси" Method for shaping forged pin of hip endoprosthesis
GB0820424D0 (en) * 2008-11-10 2008-12-17 Rolls Royce Plc Forming apparatus
RU2412017C2 (en) * 2008-12-24 2011-02-20 ОАО "Авиадвигатель" Method of producing hollow fan vane
CN101658895B (en) * 2009-03-19 2011-06-22 无锡透平叶片有限公司 Local loading forming method of thick plate of TA19 titanium alloy engine case of aero-engine
GB0915949D0 (en) * 2009-09-11 2009-10-28 Rolls Royce Plc A die former
CN101773972A (en) * 2010-02-25 2010-07-14 无锡透平叶片有限公司 Pre-forming technology of high-strength aluminum alloy stock
US20120096915A1 (en) * 2010-10-25 2012-04-26 General Electric Company System and method for near net shape forging
FR2978926B1 (en) * 2011-08-11 2014-05-09 Snecma DEVICE FOR SHAPING A SHEET BY MATRIXING
DE102011082850A1 (en) * 2011-09-16 2013-03-21 Siemens Aktiengesellschaft Compressor blade and method for its production
JP5702710B2 (en) * 2011-12-21 2015-04-15 株式会社日立製作所 Free forging method and forging apparatus
ITCO20120059A1 (en) * 2012-12-13 2014-06-14 Nuovo Pignone Srl METHODS FOR MANUFACTURING SHAPED SHAPED LOAFERS IN 3D OF TURBOMACCHINE BY ADDITIVE PRODUCTION, TURBOMACCHINA CAVE BLOCK AND TURBOMACCHINE
RU2525010C1 (en) * 2012-12-20 2014-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Billet for making turbomachine hollow blade by superplastic forming
CN103530452B (en) * 2013-09-30 2016-05-18 南京航空航天大学 A kind of hollow blade near-net-shape flattens Billet Calculation method
JP6206739B2 (en) * 2013-10-01 2017-10-04 日立金属株式会社 Turbine blade manufacturing method
RU2548834C1 (en) * 2013-10-03 2015-04-20 Федеральное государственное бюджетное учреждение науки Институт проблем сверхпластичности металлов Российской академии наук (ИПСМ РАН) Method of making hollow blower blade
CN105290380B (en) * 2015-11-12 2017-07-04 沈阳黎明航空发动机(集团)有限责任公司 A kind of method for designing of directional solidification blade running gate system internal baffle
CN105404759A (en) * 2015-12-25 2016-03-16 鼎奇(天津)主轴科技有限公司 Three-dimensional or two-dimensional design method for welding structural parts
CN106734820B (en) * 2016-12-29 2019-05-03 无锡透平叶片有限公司 A kind of positioning device of turbine blade blank
CN109210001B (en) * 2017-07-13 2019-07-09 中国航空制造技术研究院 A kind of design method of superplastic forming hollow twist blade
CN107838642B (en) * 2017-12-18 2019-03-05 中国航发贵州黎阳航空动力有限公司 A kind of processing method of bipode thin wall vane part
CN108372391A (en) * 2018-03-05 2018-08-07 广汉天空动力机械有限责任公司 A kind of manufacturing method of turbine rotor hollow blade
US11148221B2 (en) * 2019-08-29 2021-10-19 Raytheon Technologies Corporation Method of forming gas turbine engine components
CN115570105B (en) * 2022-11-21 2023-05-05 中国航发四川燃气涡轮研究院 Manufacturing method of double-wall turbine blade

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588980A (en) * 1969-07-17 1971-06-29 Gen Electric Method for making a contoured article
US4642863A (en) * 1985-04-15 1987-02-17 Ontario Technologies Corporation Manufacturing method for hollow metal airfoil type structure
US4882823A (en) * 1988-01-27 1989-11-28 Ontario Technologies Corp. Superplastic forming diffusion bonding process
US5063662A (en) * 1990-03-22 1991-11-12 United Technologies Corporation Method of forming a hollow blade
US5099573A (en) * 1990-06-27 1992-03-31 Compressor Components Textron Inc. Method of making hollow articles
US5083371A (en) * 1990-09-14 1992-01-28 United Technologies Corporation Hollow metal article fabrication
FR2672826B1 (en) * 1991-02-20 1995-04-21 Snecma PROCESS FOR MANUFACTURING A HOLLOW BLADE FOR A TURBOMACHINE.
US5285573A (en) * 1991-12-09 1994-02-15 General Electric Company Method for manufacturing hollow airfoils (four-piece concept)
GB9209464D0 (en) * 1992-05-01 1992-06-17 Rolls Royce Plc A method of manufacturing an article by superplastic forming and diffusion bonding

Also Published As

Publication number Publication date
FR2724127B1 (en) 1996-12-20
JPH08189303A (en) 1996-07-23
CA2157643C (en) 2004-11-23
ATE187370T1 (en) 1999-12-15
FR2724127A1 (en) 1996-03-08
DE69513754T2 (en) 2000-06-29
IL115123A (en) 1999-11-30
JP3305927B2 (en) 2002-07-24
EP0700738A1 (en) 1996-03-13
ES2139860T3 (en) 2000-02-16
DE69513754D1 (en) 2000-01-13
US5636440A (en) 1997-06-10
CA2157643A1 (en) 1996-03-08
IL115123A0 (en) 1995-12-31

Similar Documents

Publication Publication Date Title
EP0700738B1 (en) Method of producing a hollow turbine blade
EP0812649B1 (en) Method of producing a hollow turbine blade and multiple effect furnace-press for carrying out the method
US6467168B2 (en) Method of manufacturing an article by diffusion bonding and superplastic forming
JP2918722B2 (en) Manufacturing method of hollow metal products
US4882823A (en) Superplastic forming diffusion bonding process
JP3281551B2 (en) Method for manufacturing hollow blade of turbine engine
EP1508400B1 (en) A method of manufacturing an article by diffusion bonding and superplastic forming
JP2978579B2 (en) Method of forming hollow blade
EP1652599B1 (en) Process of upsetting a billet by hot working, method for preparing a billet to a forging operation according to said process and apparatus for carrying out said process
EP1338353B1 (en) A method of manufacturing an article by diffusion bonding and superplastic forming
EP1629906A1 (en) Process for manufacturing constituant parts of a hollow turbine blade by press forging
FR2970192A1 (en) TOOLING AND METHOD FOR HOT FORGING SHEETS
US5694683A (en) Hot forming process
EP0824981B1 (en) Process for manufacturing a hollow turbine blade and device used for on-going hot twisting
EP0780187B1 (en) Manufacturing process of a blade comprising alpha-beta titanium with an insert at metastable beta titanium and a blade manufactured by such a process
CA1246330A (en) Blade twisting apparatus
JP2002035884A (en) Gear die for warm or hot forging and manufacturing method thereof
JP6206739B2 (en) Turbine blade manufacturing method
JP2016196026A (en) Hot forging mold and hot forging method
MXPA06014621A (en) Compressor blade flow form technique for repair .
JP6108259B2 (en) Die for hot forging and hot forging method
WO2023186795A1 (en) Method and unit for manufacturing an elongate intermediate part by hot forging
CN116833355A (en) Double-oil-duct hot forging die and hot forging method thereof
JPH0557388A (en) Method for forming engine valve
JP2002035883A (en) Manufacturing method of forging die by hobbing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19970902

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 187370

Country of ref document: AT

Date of ref document: 19991215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991210

REF Corresponds to:

Ref document number: 69513754

Country of ref document: DE

Date of ref document: 20000113

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2139860

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: LEXVALL

Free format text: SOCIETE NATIONALE D'ETUDE ET DE CONSTRUCTION DE MOTEURS D'AVIATION, "S.N.E.C.M.A."#2, BOULEVARD DU GENERAL MARTIAL VALIN#75015 PARIS (FR) -TRANSFER TO- LEXVALL#2, BOULEVARD DU GENERAL MARTIAL VALIN#75015 PARIS (FR)

Ref country code: CH

Ref legal event code: PFA

Owner name: SNECMA MOTEURS

Free format text: LEXVALL#2, BOULEVARD DU GENERAL MARTIAL VALIN#75015 PARIS (FR) -TRANSFER TO- SNECMA MOTEURS#2, BOULEVARD DU GENERAL MARTIAL VALIN#75015 PARIS (FR)

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SNECMA

Free format text: SNECMA MOTEURS#2, BOULEVARD DU GENERAL MARTIAL VALIN#75015 PARIS (FR) -TRANSFER TO- SNECMA#2, BOULEVARD DU GENERAL MARTIAL VALIN#75015 PARIS (FR)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120517 AND 20120523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120910

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130823

Year of fee payment: 19

Ref country code: CH

Payment date: 20130823

Year of fee payment: 19

Ref country code: AT

Payment date: 20130821

Year of fee payment: 19

Ref country code: DE

Payment date: 20130820

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130823

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130826

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130821

Year of fee payment: 19

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20141007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140905

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69513754

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 187370

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140906

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69513754

Country of ref document: DE

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140906

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140906