EP0692625A1 - Nozzle for a fuel injection valve and method of fuel injection in an internal combustion engine - Google Patents

Nozzle for a fuel injection valve and method of fuel injection in an internal combustion engine Download PDF

Info

Publication number
EP0692625A1
EP0692625A1 EP94810420A EP94810420A EP0692625A1 EP 0692625 A1 EP0692625 A1 EP 0692625A1 EP 94810420 A EP94810420 A EP 94810420A EP 94810420 A EP94810420 A EP 94810420A EP 0692625 A1 EP0692625 A1 EP 0692625A1
Authority
EP
European Patent Office
Prior art keywords
nozzle head
fuel
opening
nozzle
interfering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94810420A
Other languages
German (de)
French (fr)
Other versions
EP0692625B1 (en
Inventor
Dr. Jakob Vollerweider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wartsila NSD Schweiz AG
Original Assignee
Winterthur Gas and Diesel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winterthur Gas and Diesel AG filed Critical Winterthur Gas and Diesel AG
Priority to EP19940810420 priority Critical patent/EP0692625B1/en
Priority to DK94810420T priority patent/DK0692625T3/en
Priority to DE59409040T priority patent/DE59409040D1/en
Priority to JP15648695A priority patent/JP3738053B2/en
Priority to KR1019950019718A priority patent/KR100386183B1/en
Priority to FI953430A priority patent/FI106740B/en
Priority to CN95108417A priority patent/CN1066802C/en
Publication of EP0692625A1 publication Critical patent/EP0692625A1/en
Application granted granted Critical
Publication of EP0692625B1 publication Critical patent/EP0692625B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/162Means to impart a whirling motion to fuel upstream or near discharging orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F2007/0097Casings, e.g. crankcases or frames for large diesel engines

Definitions

  • the invention relates to a nozzle head for a fuel injection nozzle according to the preamble of claim 1.
  • the invention further relates to a method for injecting fuel into an internal combustion engine according to the preamble of claim 12.
  • the invention further relates to a fuel injection nozzle and an internal combustion engine with a nozzle head according to the invention.
  • Fuel injection nozzles are usually used in combination with injection valves in order to inject a fuel, possibly also together with compressed air or other gases, into the combustion chamber of a reciprocating piston internal combustion engine.
  • the fuel jet formation in the combustion chamber that occurs during injection is usually determined by the geometric properties of the fuel injection nozzle.
  • a nozzle for a fuel injection valve which has fixedly arranged, swirl-generating surfaces within the nozzle head, so that a fuel jet emerges from the nozzle head with swirl, and thereby atomizes easily.
  • a disadvantage of this known embodiment of a nozzle is that the fuel jet emerges uniformly.
  • the nozzle head according to the invention has, in its interior, movable interfering bodies which are set in motion due to the fuel flowing through the nozzle head, so that the flow against the nozzle holes is constantly changed, which greatly increases the degree of turbulence of the outflowing fuel.
  • the movement of the interfering body modulates, among other things, the amount of fuel escaping, the exit velocity and the direction of flow as a function of time.
  • the design of a disruptive body can be divided into two fundamentally different embodiments.
  • a disruptive body consists of a body that is partially firmly connected to the nozzle head, the body comprising a part that projects into the interior of the nozzle head and is free is mobile.
  • An exemplary embodiment of such a disruptive body is, for example, a rod clamped on one side, which on the one hand is firmly anchored in the nozzle head and on the other hand can vibrate in the interior of the nozzle head.
  • Such an interference body is arranged in the interior of the nozzle head in such a way that the fuel flowing through excites the interference body to vibrate.
  • a clamped, for example rod-shaped, disturbing body is designed such that one end projects into a nozzle hole and is freely movable within the nozzle hole.
  • the rod-shaped interfering body is set into high-frequency vibration by the flowing fuel.
  • the annular gap geometry of the nozzle hole is constantly changed over time, and thus also the speed vectors over the annular gap formed between the nozzle hole and the rod-shaped interfering body.
  • the asymmetry of the speed distribution designed in this way leads to a high degree of turbulence when the fuel escapes.
  • a disturbing body consists of a body which is freely movable, for example rotatably arranged in the interior of the nozzle head. Such a disturbing body is set in motion, for example in rotation, by the flowing fuel. As a result of this movement, the inlet openings of the nozzle holes are constantly partially or completely closed and opened again by the disturbing body, which causes the fuel to emerge from the nozzle hole in a pulsating, turbulent manner.
  • the interfering body is designed such that the flowing fuel sets the interfering body in motion, for example in that the interfering body is designed as a helical gear, the fuel flowing through the toothing causing the interfering body to rotate.
  • a freely movable interfering body for example also spherical or elliptically shaped interfering bodies.
  • One advantage of the invention is that the combustion process in the combustion chamber takes place with a reduced emission of nitrogen oxides (NOx) due to the turbulent fuel jet pattern.
  • the vortices formed at the edge of the fuel jet have the effect that some flue gas is also drawn into the combustion zone, which is referred to as "internal flue gas recirculation".
  • the inert flue gas lowers the partial pressure of oxygen and thus the temperature in the flame, which leads to a reduction in nitrogen oxide emissions even at low recirculation rates.
  • a further advantage of the nozzle head according to the invention can be seen in the fact that the interfering bodies can be integrated into nozzle heads of known embodiments, so that a nozzle head according to the invention can be constructed in the same way as already known embodiments, so that existing nozzle heads can be easily replaced by nozzle heads according to the invention.
  • Another advantage is that the interfering bodies are set in motion by the flowing fuel, so that no additional and complex drive is required to move the interfering bodies.
  • Fig. 1 shows a longitudinal section of a fuel injector 20, as used for example in large diesel engines.
  • the nozzle head 2 is connected to a nozzle body 1 and has a cavity 9, an opening 5 or inlet 5 for supplying fuel, and at least one opening 6 for dispensing fuel.
  • the cavity 9 is cylindrical and has an axis B.
  • the nozzle hole 6 has an inlet opening 6a and an outlet opening 6b.
  • the pressurized Fuel is supplied to the opening 5 through a bore 4, the inflow amount being controllable by a spring-loaded needle 3.
  • the nozzle holes 6 are arranged depending on the position of the nozzles in the combustion chamber. In the case of peripheral injection, as is customary in 2-stroke engines, the nozzle holes are bundled and pointing in one direction. In 4-stroke engines, injection is usually carried out through a central nozzle, which is why the nozzle holes 6 are arranged uniformly over the circumference of the nozzle head 2. For the sake of clarity, the interfering bodies are not shown in FIG. 1.
  • Fig. 2 the lower region of a nozzle head 2 is shown, with nozzle holes 6 and a cavity 9.
  • rod-shaped interfering bodies 7 are arranged, which are fastened on one side of the cavity 9 with an anchor 8 in the nozzle head 2, and which protrude into a nozzle hole 6 on the other side of the cavity 9.
  • the diameter of the nozzle hole 6 is chosen to be larger than the diameter of the disturbing body 7, the disturbing body 7 having no contact with the nozzle hole 6 in its rest position.
  • the rod-shaped interfering bodies 7 can be inserted into the nozzle head 2 via the nozzle hole 6 during manufacture.
  • a bore 8 can be made in the rear extension of the axes of the nozzle hole 6, into which the rod-shaped interfering body can be inserted and can be fixed by brazing.
  • the rod-shaped interfering bodies 7 are preferably dimensioned and arranged in the cavity 9 in such a way that they are set into high-frequency vibration by the fuel flow in the cavity 9 forming a blind hole, which has the effect that the annular gap geometry of the cross section available for the outflowing fuel in the nozzle hole 6 is changed or modulated accordingly in time, which also includes Velocity vectors of the outflowing fuel influenced over the annular gap.
  • the vibrating interfering body 7 causes an asymmetry in the speed distribution of the outflowing fuel, which leads to a turbulence structure outside the nozzle head 2, as shown in FIG. 2a.
  • 2a shows from top to bottom the development of an emerging fuel jet 22 as a function of time, with a front 22a penetrating into the combustion chamber. It can be seen that the resulting vortices open up fjord-like passages into which flue gas is drawn, which leads to an inhibition of nitrogen oxide formation during combustion. In order to obtain the flow pattern shown, even the smallest vibration amplitudes of the rod-shaped interfering bodies 7 are sufficient.
  • FIGS. 2d and 2e it can prove to be advantageous to arrange the webs 10 in a helical manner on the disturbing body 7, so that the fuel flowing out through the nozzle hole 6 is forced into a swirling movement, which for example means an enlargement outside the nozzle hole 6 of the beam opening angle.
  • a further embodiment of a nozzle hole 6 is shown in FIGS. 2f and 2g.
  • the movable interfering body 7 is designed conically within the nozzle hole 6, so that the annular gap 6c formed between the nozzle hole 6 and the interfering body 7 extends from the inlet opening 6a to Outlet opening 6b has a conical widening.
  • An annular gap 6c designed in this way can have the advantage that the formation of coagulating fuel drops near the nozzle hole axis 6d can be prevented.
  • 2h shows an advantageous embodiment of the inlet opening 6a of the nozzle hole 6.
  • the inlet opening 6a has a rounded opening, which can be produced, for example, by electrochemical deburring. Such a rounded opening ensures that the flow conditions in the nozzle hole 6 remain constant over a long period of operation.
  • a helical spur gear 12 is inserted into the cavity 9, which is designed as a blind hole 11 with an axis of symmetry B, which is set in rotation during the injection phase by the fuel flow, so that the inlet openings 6a of the nozzle holes 6 are covered periodically.
  • the spur gear 12 is thus designed as a rotating interference body 12.
  • the spur gear 12 is cylindrical and has an axis of rotation A, which in the present exemplary embodiment is arranged congruent to the axis of symmetry B.
  • the helical spur gear 12 has recesses 12a which run over the entire width of the spur gear 12 and whose direction is inclined to the axis of rotation A such that the inflowing fuel causes the spur gear 12 to rotate.
  • a ball 14 which serves as a bearing for the rotating disturbing body 12 in order to keep the friction low.
  • the gap width 15 between the nozzle head 2 and the rotating interfering body 12 is preferably dimensioned such that low friction results.
  • the rotating interfering body 12 periodically covers the inlet opening 6a of the nozzle hole 6, so that, as shown in FIG. 3a, an emerging fuel jet 21 is created which has pulsating fronts 21a, 21b, 21c that propagate turbulently into the combustion chamber.
  • the fuel outlet is thus periodically severely disturbed, which results in multiple jet fronts 21a, 21b, 21c, so that combustion products are drawn into the fuel jet because of the turbulence intensity there, which leads to the desired inhibition of nitrogen oxide formation.
  • the nozzle hole 6 can be cylindrical, with a flat inner wall, or, as shown in FIGS. 3b and 3c, can be designed to induce swirl by the nozzle hole 6 having a groove 16 running spirally in the inner wall.
  • the nozzle hole 6 and its inner wall can be designed in any desired form, since the pulsating behavior of the fuel flow is generated at the inlet opening 6a.

Abstract

The nozzle comprises a movable interference body (7) which is located in the nozzle head (2), and is moved by the fuel flowing through it. The body movement influences the fuel flow towards the fuel ejection passage (6), to apply a turbulence to the ejected fuel. The hollow head chamber (9) has a cylindrical section near the passage. The interference body has a cylindrical surface with a full-width aperture. The body is contained inside the chamber, so that their rotary/symmetrical axis (B) coincide, and the cylindrical surface is located in front of the aperture of the passage. <IMAGE>

Description

Die Erfindung betrifft einen Düsenkopf für eine Brennstoffeinspritzdüse gemäss dem Oberbegriff von Anspruch 1. Die Erfindung betrifft weiter ein verfahren zum Einspritzen von Brennstoff in einen Verbrennungsmotor gemäss dem Oberbegriff von Anspruch 12. Die Erfindung betrifft weiter eine Brennstoffeinspritzdüse sowie eine verbrennungskraftmaschine mit einem erfindungsgemässen Düsenkopf.The invention relates to a nozzle head for a fuel injection nozzle according to the preamble of claim 1. The invention further relates to a method for injecting fuel into an internal combustion engine according to the preamble of claim 12. The invention further relates to a fuel injection nozzle and an internal combustion engine with a nozzle head according to the invention.

Brennstoffeinspritzdüsen werden üblicherweise in Kombination mit Einspritzventilen verwendet, um einen Brennstoff, unter Umständen auch zusammen mit komprimierter Luft oder weiteren Gasen, in die Verbrennungskammer einer Hubkolbenbrennkraftmaschine einzuspritzen. Die beim Einspritzen entstehende Brennstoffstrahlbildung im Verbrennungsraum ist üblicherweise bestimmt durch die geometrischen Eigenschaften der Brennstoffeinspritzdüse.Fuel injection nozzles are usually used in combination with injection valves in order to inject a fuel, possibly also together with compressed air or other gases, into the combustion chamber of a reciprocating piston internal combustion engine. The fuel jet formation in the combustion chamber that occurs during injection is usually determined by the geometric properties of the fuel injection nozzle.

Aus der Patentschrift CH 645 699 ist eine Düse für ein Brennstoffeinspritzventil bekannt, die innerhalb des Düsenkopfs fest angeordnete, drallerzeugende Flächen aufweist, sodass ein Brennstoffstrahl drallbehaftet aus dem Düsenkopf austritt, und dadurch leicht zerstäubt.From the patent specification CH 645 699 a nozzle for a fuel injection valve is known, which has fixedly arranged, swirl-generating surfaces within the nozzle head, so that a fuel jet emerges from the nozzle head with swirl, and thereby atomizes easily.

Ein Nachteil dieser bekannten Ausführungsform einer Düse ist darin zu sehen, dass der Brennstoffstrahl gleichförmig austritt.A disadvantage of this known embodiment of a nozzle is that the fuel jet emerges uniformly.

Es ist Aufgabe der vorliegenden Erfindung, einen Düsenkopf für eine Brennstoffeinspritzdüse derart zu verbessern, dass das Strahlmuster des aus dem Düsenkopf austretenden Brennstoffes ein turbulentes Strömungsverhalten aufweist.It is an object of the present invention to improve a nozzle head for a fuel injection nozzle in such a way that the jet pattern of the fuel emerging from the nozzle head has a turbulent flow behavior.

Diese Aufgabe wird erfindungsgemäss gelöst durch den Gegenstand mit den in Anspruch 1 definierten Merkmalen. Die Unteransprüche 2 bis 11 beziehen sich auf weitere, vorteilhafte Ausgestaltungen der Erfindung. Die Aufgabe wird weiter gelöst durch ein Verfahren zur Abgabe von Brennstoff aus einem Düsenkopf gemäss den in Anspruch 12 und 13 definierten Merkmalen.This object is achieved according to the invention by the object with the features defined in claim 1. The sub-claims 2 to 11 relate to further advantageous embodiments of the invention. The object is further achieved by a method for dispensing fuel from a nozzle head according to the features defined in claims 12 and 13.

Der erfindungsgemässe Düsenkopf weist in seinem Inneren angeordnete, bewegliche Störkörper auf, die auf Grund des durch den Düsenkopf strömenden Brennstoffs in Bewegung versetzt werden, sodass die Anströmung der Düsenlöcher ständig verändert wird, was den Turbulenzgrad des ausströmenden Brennstoffs stark erhöht. Die Bewegung des Störkörpers moduliert unter anderem die austretende Brennstoffmenge, die Austrittsgeschwindigkeit und die Strömungsrichtung in Funktion der Zeit.The nozzle head according to the invention has, in its interior, movable interfering bodies which are set in motion due to the fuel flowing through the nozzle head, so that the flow against the nozzle holes is constantly changed, which greatly increases the degree of turbulence of the outflowing fuel. The movement of the interfering body modulates, among other things, the amount of fuel escaping, the exit velocity and the direction of flow as a function of time.

Die Ausgestaltung eines Störkörpers ist in zwei grundsätzlich unterschiedliche Ausführungsformen unterteilbar.The design of a disruptive body can be divided into two fundamentally different embodiments.

1. Eingespannter Störkörper1. Clamped interfering body

Die eine Ausführungsform eines Störkörpers besteht aus einem Körper, der teilweise fest mit dem Düsenkopf verbunden ist, wobei der Körper ein Teil umfasst, der in den Innenraum des Düsenkopfs hineinragt und frei beweglich ist. Ein Ausführungsbeispiel eines solchen Störkörpers ist zum Beispiel ein einseitig eingespanntes Stäbchen, das einerseits fest im Düsenkopf verankert ist und andererseits sich im Innenraum des Düsenkopfs vibrierend bewegen kann. Ein solcher Störkörper wird derart im Innenraum des Düsenkopfs angeordnet, dass der durchströmende Brennstoff den Störkörper zur Vibration anregt. In einer besonders vorteilhaften Ausführungsform wird ein eingespannter, zum Beispiel stabförmiger Störkörper derart ausgeführt, dass das eine Ende in ein Düsenloch hineinragt und innerhalb des Düsenloches frei beweglich ist. Durch den strömenden Brennstoff wird der stabförmige Störkörper in eine hochfrequente Schwingung versetzt. Dadurch wird die Ringspaltgeometrie des Düsenlochs zeitlich ständig verändert und damit auch die Geschwindigkeitsvektoren über dem zwischen dem Düsenloch und dem stabförmigen Störkörper ausgebildeten Ringspalt. Die derart ausgebildete Asymmetrie der Geschwindigkeitsverteilung führt beim austretenden Brennstoff zu einer hohen Turbulenzgrad.One embodiment of a disruptive body consists of a body that is partially firmly connected to the nozzle head, the body comprising a part that projects into the interior of the nozzle head and is free is mobile. An exemplary embodiment of such a disruptive body is, for example, a rod clamped on one side, which on the one hand is firmly anchored in the nozzle head and on the other hand can vibrate in the interior of the nozzle head. Such an interference body is arranged in the interior of the nozzle head in such a way that the fuel flowing through excites the interference body to vibrate. In a particularly advantageous embodiment, a clamped, for example rod-shaped, disturbing body is designed such that one end projects into a nozzle hole and is freely movable within the nozzle hole. The rod-shaped interfering body is set into high-frequency vibration by the flowing fuel. As a result, the annular gap geometry of the nozzle hole is constantly changed over time, and thus also the speed vectors over the annular gap formed between the nozzle hole and the rod-shaped interfering body. The asymmetry of the speed distribution designed in this way leads to a high degree of turbulence when the fuel escapes.

2. Frei beweglicher Störkörper2. Free moving interfering body

Eine weitere Ausführungsform eines Störkörpers besteht aus einem Körper, der frei beweglich, zum Beispiel rotierbar im Innenraum des Düsenkopfs angeordnet ist. Ein solcher Störkörper wird durch den strömenden Brennstoff in Bewegung, zum Beispiel in eine Rotation versetzt. Durch diese Bewegung werden die Eintrittsöffnungen der Düsenlöcher durch den Störkörper ständig teilweise oder vollständig geschlossen und wieder geöffnet, was den Brennstoff in einer pulsierenden, turbulenten Weise aus dem Düsenloch austreten lässt. Der Störkörper ist derart ausgestaltet, dass der strömende Brennstoff den Störkörper in Bewegung setzt, zum Beispiel dadurch, dass der Störkörper als schrägverzahntes Stirnrad ausgebildet ist, wobei der durch die Verzahnung strömende Brennstoff eine Rotation des Störkörpers bewirkt. Es gibt eine Vielzahl von Möglichkeiten, um einen frei beweglichen Störkörper auszubilden, so zum Beispiel auch kugelförmige oder elliptisch geformte Störkörper.Another embodiment of a disturbing body consists of a body which is freely movable, for example rotatably arranged in the interior of the nozzle head. Such a disturbing body is set in motion, for example in rotation, by the flowing fuel. As a result of this movement, the inlet openings of the nozzle holes are constantly partially or completely closed and opened again by the disturbing body, which causes the fuel to emerge from the nozzle hole in a pulsating, turbulent manner. The interfering body is designed such that the flowing fuel sets the interfering body in motion, for example in that the interfering body is designed as a helical gear, the fuel flowing through the toothing causing the interfering body to rotate. There is a Numerous possibilities to form a freely movable interfering body, for example also spherical or elliptically shaped interfering bodies.

Ein Vorteil der Erfindung ist darin zu sehen, dass der Verbrennungsprozess im Brennraum auf Grund des turbulenten Brennstoffstrahlbildes mit einer reduzierten Emission von Stickoxiden (NOx) abläuft. Die am Rand des Brennstoffstrahls ausgebildeten Wirbel bewirken, dass teilweise auch Rauchgas in die Brennzone hineingezogen wird, was als "interne Rauchgas-Rezirkulation" bezeichnet wird. Das inerte Rauchgas senkt den Sauerstoff-Partialdruck und somit die Temperatur in der Flamme ab, was selbst bei kleinen Rezirkulationsraten bereits zu einer Minderung der Stickoxidemission führt.One advantage of the invention is that the combustion process in the combustion chamber takes place with a reduced emission of nitrogen oxides (NOx) due to the turbulent fuel jet pattern. The vortices formed at the edge of the fuel jet have the effect that some flue gas is also drawn into the combustion zone, which is referred to as "internal flue gas recirculation". The inert flue gas lowers the partial pressure of oxygen and thus the temperature in the flame, which leads to a reduction in nitrogen oxide emissions even at low recirculation rates.

Ein weiterer Vorteil des erfindungsgemässen Düsenkopfs ist darin zu sehen, dass sich die Störkorper in Düsenköpfe bekannter Ausführungsformen integrieren lassen, sodass ein erfindungsgemässer Düsenkopf äusserlich baugleich zu bereits bekannten Ausführungsformen herstellbar ist, sodass bestehende Düsenköpfe problemlos durch erfindungsgemässe Düsenköpfe austauschbar sind.A further advantage of the nozzle head according to the invention can be seen in the fact that the interfering bodies can be integrated into nozzle heads of known embodiments, so that a nozzle head according to the invention can be constructed in the same way as already known embodiments, so that existing nozzle heads can be easily replaced by nozzle heads according to the invention.

Ein weiterer Vorteil ist darin zu sehen, dass die Störkörper durch den strömenden Brennstoff in Bewegung versetzt werden, sodass kein zusätzlicher und aufwendiger Antrieb zur Bewegung der Störkörper notwendig ist.Another advantage is that the interfering bodies are set in motion by the flowing fuel, so that no additional and complex drive is required to move the interfering bodies.

Im folgenden wird die Erfindung anhand der Figuren im einzelnen beschrieben. Es zeigen:

Fig. 1
ein Längsschnitt einer Brennstoffeinspritzdüse, der Übersichtlichkeit halber ohne Störkörper;
Fig. 2
ein Längsschnitt eines Düsenkopfs mit Störkörpern;
Fig. 2a
eine Entwicklung eines Brennstoffstrahlbildes in Funktion der Zeit;
Fig. 2b, 2d, 2f
ein Längsschnitt durch ein Düsenloch mit einem innenliegenden Störkörper;
Fig. 2c, 2e, 2g
eine Ansicht eines Düsenlochs von ausserhalb des Düsenkopfs, mit einem innenliegenden Störkörper;
Fig. 2h
ein Längsschnitt durch den Eintrittsbereich eines Düsenlochs;
Fig. 3
ein Längsschnitt eines Düsenkopfs mit einem rotierenden Störkörper;
Fig. 3a
eine Entwicklung eines Brennstoffstrahlbildes in Funktion der Zeit;
Fig. 3b
eine Ansicht eines Düsenlochs von ausserhalb des Düsenkopfs;
Fig. 3c
ein Längsschnitt durch ein Düsenloch.
The invention is described in detail below with reference to the figures. Show it:
Fig. 1
a longitudinal section of a fuel injector, for the sake of clarity without interfering body;
Fig. 2
a longitudinal section of a nozzle head with disruptive bodies;
Fig. 2a
a development of a fuel jet image as a function of time;
2b, 2d, 2f
a longitudinal section through a nozzle hole with an internal interference body;
2c, 2e, 2g
a view of a nozzle hole from outside the nozzle head, with an internal interference body;
Fig. 2h
a longitudinal section through the inlet region of a nozzle hole;
Fig. 3
a longitudinal section of a nozzle head with a rotating interfering body;
Fig. 3a
a development of a fuel jet image as a function of time;
Fig. 3b
a view of a nozzle hole from outside the nozzle head;
Fig. 3c
a longitudinal section through a nozzle hole.

Fig. 1 zeigt einen Längsschnitt einer Brennstoffeinspritzdüse 20, wie sie zum Beispiel bei Grossdieselmotoren Verwendung findet. Der Düsenkopf 2 ist mit einem Düsenkörper 1 verbunden und weist einen Hohlraum 9 auf, eine Öffnung 5 beziehungsweise Einlass 5 zum Zuführen von Brennstoff, und mindestens eine Durchbrechung 6 zur Abgabe von Brennstoff. Der Hohlraum 9 ist zylinderförmig ausgebildet und weist eine Achse B auf. Das Düsenloch 6 weist eine Eintrittsöffnung 6a sowie eine Austrittsöffnung 6b auf. Der unter Druck stehende Brennstoff wird über eine Bohrung 4 der Öffnung 5 zugeführt, wobei die Zuflussmenge durch eine federbelastete Nadel 3 steuerbar ist. Die Düsenlöcher 6 sind abhängig von der Position der Düsen im Brennraum angeordnet. Bei einer peripheren Einspritzung, wie sie bei 2-Taktmotoren üblich ist, sind die Düsenlöcher gebündelt, in eine Richtung weisend, angeordnet. Bei 4-Taktmotoren wird meistens durch eine zentrale Düse eingespritzt, weshalb die Düsenlöcher 6 gleichmässig über den Umfang des Düsenkopfs 2 angeordnet sind. Der Übersichtlichkeit halber sind die Störkörper in Fig. 1 nicht dargestellt.Fig. 1 shows a longitudinal section of a fuel injector 20, as used for example in large diesel engines. The nozzle head 2 is connected to a nozzle body 1 and has a cavity 9, an opening 5 or inlet 5 for supplying fuel, and at least one opening 6 for dispensing fuel. The cavity 9 is cylindrical and has an axis B. The nozzle hole 6 has an inlet opening 6a and an outlet opening 6b. The pressurized Fuel is supplied to the opening 5 through a bore 4, the inflow amount being controllable by a spring-loaded needle 3. The nozzle holes 6 are arranged depending on the position of the nozzles in the combustion chamber. In the case of peripheral injection, as is customary in 2-stroke engines, the nozzle holes are bundled and pointing in one direction. In 4-stroke engines, injection is usually carried out through a central nozzle, which is why the nozzle holes 6 are arranged uniformly over the circumference of the nozzle head 2. For the sake of clarity, the interfering bodies are not shown in FIG. 1.

In Fig. 2 ist der untere Bereich eines Düsenkopfs 2 dargestellt, mit Düsenlöchern 6 und einem Hohlraum 9. Innerhalb des Hohlraumes 9 sind stabförmige Störkörper 7 angeordnet, die auf der einen Seite des Hohlraumes 9 mit einer Verankerung 8 im Düsenkopf 2 befestigt sind, und die auf der anderen Seite des Hohlraumes 9 in ein Düsenloch 6 hineinragen. Der Durchmesser des Düsenloches 6 ist grosser gewählt als der Durchmesser des Störkörpers 7, wobei der Störkörper 7 in seiner Ruhelage keinen Kontakt zum Düsenloch 6 aufweist. Die stabförmigen Störkörper 7 sind bei der Herstellung über das Düsenloch 6 in den Düsenkopf 2 einführbar. Zur Befestigung der Störkörper 7 lässt sich in der rückseitigen Verlängerung der Achsen des Düsenlochs 6 eine Bohrungen 8 anbringen, in welche der stabförmige Störkörper einsteckbar ist und durch eine Hartlötung fixierbar ist. Die stabförmigen Störkörper 7 werden vorzugsweise derart dimensioniert und im Hohlraum 9 angeordnet, dass sie durch die Brennstoffströmung in dem ein Sackloch bildenden Hohlraum 9 in eine hochfrequente Schwingung versetzt werden, was bewirkt, dass die Ringspaltgeometrie des für den ausfliessenden Brennstoff zur Verfügung stehenden Querschnittes im Düsenloch 6 entsprechend zeitlich verändert beziehungsweise moduliert wird, was auch die Geschwindigkeitsvektoren des ausfliessenden Brennstoffes über dem Ringspalt beeinflusst. Der schwingende Störkörper 7 bewirkt eine Asymmetrie in der Geschwindigkeitsverteilung des ausströmenden Brennstoffes, was ausserhalb des Düsenkopfs 2 zu einer Turbulenzstruktur führt, wie dies in Figur 2a dargestellt ist. Fig. 2a zeigt von oben nach unten die Entwicklung eines austretenden Brennstoffstrahls 22 in Funktion der Zeit, mit einer in den Brennraum eindringenden Front 22a. Es ist zu erkennen, dass durch entstehende Randwirbel fjordähnliche Passagen aufgerissen werden, in welche Rauchgas hineingezogen wird, was bei der Verbrennung zu einer Hemmung der Stickoxidbildung führt. Um das dargestellte Strömungsbild zu erhalten genügen bereits kleinste Schwingungsamplituden der stabförmigen Störkörper 7. Grosse Schwingungsamplitutden können sich innerhalb des Düsenloches 6 unter Umständen auf das Strömungsbild als nachteilig erweisen, sodass es sich als vorteilhaft erweisen kann, die Schwingungsamplitude der Störkörper 7, wie in Fig. 2b und Fig. 2c dargestellt, durch am Störkörper 7 angeordnete Stege 10 zu begrenzen. Im dargestellten Ausführungsbeispiel sind drei Stege 10 über den Umfang des Störkörpers 7 verteilt, und verlaufen parallel zur Achse des Störkörpers 7.In Fig. 2 the lower region of a nozzle head 2 is shown, with nozzle holes 6 and a cavity 9. Inside the cavity 9, rod-shaped interfering bodies 7 are arranged, which are fastened on one side of the cavity 9 with an anchor 8 in the nozzle head 2, and which protrude into a nozzle hole 6 on the other side of the cavity 9. The diameter of the nozzle hole 6 is chosen to be larger than the diameter of the disturbing body 7, the disturbing body 7 having no contact with the nozzle hole 6 in its rest position. The rod-shaped interfering bodies 7 can be inserted into the nozzle head 2 via the nozzle hole 6 during manufacture. For fastening the interfering bodies 7, a bore 8 can be made in the rear extension of the axes of the nozzle hole 6, into which the rod-shaped interfering body can be inserted and can be fixed by brazing. The rod-shaped interfering bodies 7 are preferably dimensioned and arranged in the cavity 9 in such a way that they are set into high-frequency vibration by the fuel flow in the cavity 9 forming a blind hole, which has the effect that the annular gap geometry of the cross section available for the outflowing fuel in the nozzle hole 6 is changed or modulated accordingly in time, which also includes Velocity vectors of the outflowing fuel influenced over the annular gap. The vibrating interfering body 7 causes an asymmetry in the speed distribution of the outflowing fuel, which leads to a turbulence structure outside the nozzle head 2, as shown in FIG. 2a. 2a shows from top to bottom the development of an emerging fuel jet 22 as a function of time, with a front 22a penetrating into the combustion chamber. It can be seen that the resulting vortices open up fjord-like passages into which flue gas is drawn, which leads to an inhibition of nitrogen oxide formation during combustion. In order to obtain the flow pattern shown, even the smallest vibration amplitudes of the rod-shaped interfering bodies 7 are sufficient. Large vibration amplitudes within the nozzle hole 6 may prove disadvantageous to the flow pattern, so that it may prove advantageous to determine the oscillation amplitude of the interfering bodies 7, as shown in FIG. 2b and 2c, to be limited by webs 10 arranged on the disturbing body 7. In the exemplary embodiment shown, three webs 10 are distributed over the circumference of the interfering body 7 and run parallel to the axis of the interfering body 7.

Wie in Fig. 2d und Fig 2e dargestellt, kann es sich als vorteilhaft erweisen, die Stege 10 schraubenförmig auf dem Störkörper 7 verlaufend anzuordnen, sodass dem durch das Düsenloch 6 ausströmenden Brennstoff eine Drallbewegung aufgezwungen wird, was ausserhalb des Düsenlochs 6 zum Beispiel eine Vergrösserung des Strahlöffnungswinkels bewirkt. Eine weitere Ausbildung eines Düsenloches 6 ist in den Figuren 2f und 2g dargestellt. Der bewegliche Störkörper 7 ist innerhalb des Düsenloches 6 konisch ausgebildet, sodass der zwischen dem Düsenloch 6 und dem Störkörper 7 gebildete Ringspalt 6c von der Eintrittsöffnung 6a zur Austrittsöffnung 6b hin eine konische Erweiterung aufweist. Ein derart ausgebildeter Ringspalt 6c kann den Vorteil aufweisen, dass eine Ausbildung von koagulierenden Brennstofftropfen nahe der Düsenlochachse 6d verhindert werden kann. In Fig. 2h ist eine vorteilhafte Ausgestaltung der Eintrittsöffnung 6a des Düsenloches 6 dargestellt. Die Eintrittsöffnung 6a weist eine abgerundete Öffnung auf, die zum Beispiel durch elektrochemisches Entgraten herstellbar ist. Eine solche, abgerundete Öffnung gewährleistet, dass die Strömungsverhältnisse im Düsenloch 6 über eine lange Betriebsdauer konstant bleiben.As shown in FIGS. 2d and 2e, it can prove to be advantageous to arrange the webs 10 in a helical manner on the disturbing body 7, so that the fuel flowing out through the nozzle hole 6 is forced into a swirling movement, which for example means an enlargement outside the nozzle hole 6 of the beam opening angle. A further embodiment of a nozzle hole 6 is shown in FIGS. 2f and 2g. The movable interfering body 7 is designed conically within the nozzle hole 6, so that the annular gap 6c formed between the nozzle hole 6 and the interfering body 7 extends from the inlet opening 6a to Outlet opening 6b has a conical widening. An annular gap 6c designed in this way can have the advantage that the formation of coagulating fuel drops near the nozzle hole axis 6d can be prevented. 2h shows an advantageous embodiment of the inlet opening 6a of the nozzle hole 6. The inlet opening 6a has a rounded opening, which can be produced, for example, by electrochemical deburring. Such a rounded opening ensures that the flow conditions in the nozzle hole 6 remain constant over a long period of operation.

In einem weiteren Ausführungsbeispiel der Erfindung, das in Fig. 3 dargestellt ist, wird in den Hohlraum 9, der als Sackloch 11 mit einer Symmetrieachse B ausgeführt ist, ein schrägverzahntes Stirnrad 12 eingeführt, das während der Einspritzphase durch die Brennstoffströmung in Rotation versetzt wird, so dass die Eintrittöffnungen 6a der Düsenlöcher 6 periodisch abgedeckt werden. Das stirnrad 12 ist somit als ein rotierender Störkörper 12 ausgebildet. Das Stirnrad 12 ist zylinderförmig ausgebildet und weist eine Rotationsachse A auf, die im vorliegenden Ausführungsbeispiel deckungsgleich zur Symmetrieachse B angeordnet ist. Das schrägverzahnte Stirnrad 12 weist Ausnehmungen 12a auf, die über die gesamte Breite des Stirnrades 12 verlaufen, und deren Richtung zur Rotationsachse A geneigt ist, derart, dass der einströmende Brennstoff eine rotierende Bewegung des Stirnrades 12 bewirkt. Am Ende 9a des Sackloches 11 ist eine Kugel 14 angeordnet, die als Lager für den rotierenden Störkörper 12 dient, um die Reibung gering zu halten.In a further embodiment of the invention, which is shown in FIG. 3, a helical spur gear 12 is inserted into the cavity 9, which is designed as a blind hole 11 with an axis of symmetry B, which is set in rotation during the injection phase by the fuel flow, so that the inlet openings 6a of the nozzle holes 6 are covered periodically. The spur gear 12 is thus designed as a rotating interference body 12. The spur gear 12 is cylindrical and has an axis of rotation A, which in the present exemplary embodiment is arranged congruent to the axis of symmetry B. The helical spur gear 12 has recesses 12a which run over the entire width of the spur gear 12 and whose direction is inclined to the axis of rotation A such that the inflowing fuel causes the spur gear 12 to rotate. At the end 9a of the blind hole 11 there is a ball 14 which serves as a bearing for the rotating disturbing body 12 in order to keep the friction low.

Die Spaltbreite 15 zwischen dem Düsenkopf 2 und dem rotierendem Störkörper 12 wird vorzugsweise derart dimensioniert, dass eine geringe Reibung resultiert.The gap width 15 between the nozzle head 2 and the rotating interfering body 12 is preferably dimensioned such that low friction results.

Der rotierende Störkörper 12 deckt die Eintrittsöffnung 6a des Düsenloches 6 periodisch ab, sodass, wie in Fig. 3a dargestellt, ein austretender Brennstoffstrahl 21 entsteht, der pulsierende und turbulent in den Brennraum sich fortpflanzende Fronten 21a, 21b, 21c aufweist. Der Brennstoffaustritt wird somit periodisch stark gestört, woraus mehrere Strahlfronten 21a, 21b, 21c resultieren, sodass wegen der dort herrschenden Turbulenzintensität Verbrennungsprodukte in den Brennstoffstrahl hineingezogen werden, was zur gewünschten Hemmung der Stickoxidbildung führt.The rotating interfering body 12 periodically covers the inlet opening 6a of the nozzle hole 6, so that, as shown in FIG. 3a, an emerging fuel jet 21 is created which has pulsating fronts 21a, 21b, 21c that propagate turbulently into the combustion chamber. The fuel outlet is thus periodically severely disturbed, which results in multiple jet fronts 21a, 21b, 21c, so that combustion products are drawn into the fuel jet because of the turbulence intensity there, which leads to the desired inhibition of nitrogen oxide formation.

In Kombination mit dem rotierenden Störkörper 12 kann das Düsenloch 6 zylinderförmig ausgestaltet sein, mit einer ebenen Innenwand, oder wie in Fig. 3b und 3c dargestellt, drallinduzierend ausgestaltet, indem das Düsenloch 6 ein spiralförmig in der Innenwand verlaufende Nut 16 aufweist. Das Düsenloch 6 und dessen Innenwand kann in beliebieger Form ausgestaltet sein, da das pulsierende Verhalten des Brennstoffdurchflusses an der Eintrittsöffnung 6a erzeugt wird.In combination with the rotating interfering body 12, the nozzle hole 6 can be cylindrical, with a flat inner wall, or, as shown in FIGS. 3b and 3c, can be designed to induce swirl by the nozzle hole 6 having a groove 16 running spirally in the inner wall. The nozzle hole 6 and its inner wall can be designed in any desired form, since the pulsating behavior of the fuel flow is generated at the inlet opening 6a.

Claims (15)

Düsenkopf (2) für eine Brennstoffeinspritzdüse (20), welcher Düsenkopf (2) mit einem Hohlraum (9) und mit einem Einlass (5) für die Zufuhr von Brennstoff und mit mindestens einer kanalförmigen Durchbrechung (6) zur Abgabe von Brennstoff versehen ist, dadurch gekennzeichnet, dass ein beweglicher Störkörper (7;12) im Düsenkopf (2) angeordnet ist, der vom durchströmenden Brennstoff in Bewegung versetzt werden kann, wobei seine Bewegung die Anströmung der Durchbrechung (6) beeinflusst, um dadurch auf den austretenden Brennstoff ein turbulentes strömungsverhalten zu bewirken.Nozzle head (2) for a fuel injection nozzle (20), which nozzle head (2) is provided with a cavity (9) and with an inlet (5) for supplying fuel and with at least one channel-shaped opening (6) for dispensing fuel, characterized in that a movable interfering body (7; 12) is arranged in the nozzle head (2), which can be set in motion by the fuel flowing through, its movement influencing the inflow of the opening (6), thereby creating a turbulent effect on the fuel emerging to cause flow behavior. Düsenkopf (2) nach Anspruch 1, dadurch gekennzeichnet, dass der Hohlraum (9) mindestens im Bereich der Durchbrechung (6) einen zylinderförmigen Abschnitt mit einer Symmetrieachse (B) aufweist, dass der Störkörper (12) eine zylinderförmig Oberfläche (12b) aufweist sowie einer Rotationsachse (A), dass die zylinderförmige Oberfläche (12b) mindestens eine, bezüglich der Rotationsachse (A) über die ganze Breite verlaufende Ausnehmung (12a) aufweist, wobei die Ausnehmung (12a) bezüglich der Rotationsachse (A) geneigt ist, und dass der Störkörper (12) derart im Hohlraum (9) angeordnet ist, dass die Symmetrieachse (B) und die Rotationsachse (A) zusammenfallen, und dass die zylinderförmige Oberfläche (12b) vor der Öffnung (6a) der Durchbrechung (6) liegt.Nozzle head (2) according to claim 1, characterized in that the cavity (9) at least in the area of the opening (6) has a cylindrical section with an axis of symmetry (B), that the interfering body (12) has a cylindrical surface (12b) and an axis of rotation (A) that the cylindrical surface (12b) has at least one recess (12a) which extends over the entire width with respect to the axis of rotation (A), the recess (12a) being inclined with respect to the axis of rotation (A), and that the interference body (12) is arranged in the cavity (9) such that the axis of symmetry (B) and the axis of rotation (A) coincide and that the cylindrical surface (12b) lies in front of the opening (6a) of the opening (6). Düsenkopf (2) nach Anspruch 2, dadurch gekennzeichnet, dass der Störkörper (12) als schrägverzahntes Stirnrad ausgebildet ist.Nozzle head (2) according to claim 2, characterized in that the interference body (12) is designed as a helical spur gear. Düsenkopf (2) nach einem der Ansprüche 2 oder 3, gekennzeichnet durch ein Sackloch (11), an dessen Ende (9a) eine Kugel (14) aufliegt, auf welcher der Störkörper (12) aufliegt.Nozzle head (2) according to one of claims 2 or 3, characterized by a blind hole (11), on the latter End (9a) a ball (14) rests on which the interfering body (12) rests. Düsenkopf (2) nach Anspruch 1, dadurch gekennzeichnet, dass ein Störkörper (7) mit dem Düsenkopf (2) verbunden ist, dass der Störkörper (7) mindestens teilweise in die Durchbrechung (6) hineinragt, und dass der Störkörper (7) bezüglich der Durchbrechung (6) beweglich ist.Nozzle head (2) according to claim 1, characterized in that a disturbing body (7) is connected to the nozzle head (2), that the disturbing body (7) at least partially protrudes into the opening (6), and that the disturbing body (7) with respect the opening (6) is movable. Düsenkopf (2) nach Anspruch 5, dadurch gekennzeichnet, dass der Störkörper (7) sowie die Durchbrechung (6) zylinderförmig ausgestaltet ist, wobei die Durchbrechung (6) einen grösseren Querschnitt als der Störkörper (7) aufweist.Nozzle head (2) according to claim 5, characterized in that the interfering body (7) and the opening (6) is cylindrical, the opening (6) having a larger cross section than the interfering body (7). Düsenkopf (2) nach Anspruch 5, dadurch gekennzeichnet, dass der Störkörper (7) und/oder die Durchbrechung (6) kegelstumpfförmig ausgebildet ist, wobei der Störkörper (7) bezüglich der Durchbrechung (6) beweglich ist.Nozzle head (2) according to claim 5, characterized in that the disturbing body (7) and / or the opening (6) is frustoconical, the disturbing body (7) being movable with respect to the opening (6). Düsenkopf (2) nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der Störkörper (7) mindestens einen vorstehenden Steg (10) aufweist.Nozzle head (2) according to one of claims 5 to 7, characterized in that the interfering body (7) has at least one projecting web (10). Düsenkopf (2) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Durchbrechung (6) mindestens eine in ihrer Längsrichtung verlaufende Nut (16) aufweist.Nozzle head (2) according to one of claims 1 to 8, characterized in that the opening (6) has at least one groove (16) running in its longitudinal direction. Düsenkopf (2) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Nut (16) und/oder der Steg (10) spiralförmig verlaufen.Nozzle head (2) according to one of claims 1 to 9, characterized in that the groove (16) and / or the web (10) extend in a spiral. Düsenkopf (2) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Störkörper (7) stäbchenförmig ausgebildet ist, und dass das Stäbchen an der einer Durchbrechung (6) gegenüberliegenden Seitenwand des Hohlraumes (9) im Düsenkopf (2) verankert ist.Nozzle head (2) according to one of claims 1 to 10, characterized in that the interfering body (7) is rod-shaped and that the rod is anchored on the side wall of the cavity (9) opposite an opening (6) in the nozzle head (2). Verfahren zur Abgabe von Brennstoff aus einem Düsenkopf (2) einer Brennstoffeinspritzdüse (20), dadurch gekennzeichnet,
dass der in den Düsenkopf (2) eingeleitete Brennstoff unter dem Einfluss eines durch den Brennstoff bewegten Störkörpers (7;12) mit einem turbulenten Strömungsverhalten abgegeben wird.
Method for dispensing fuel from a nozzle head (2) of a fuel injection nozzle (20), characterized in that
that the fuel introduced into the nozzle head (2) is released with a turbulent flow behavior under the influence of an interference body (7; 12) moved by the fuel.
Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass Brennstoff in den Düsenkopf (2) eingeleitet wird; und dass mindestens die Menge des aus dem Düsenkopf (2) austretenden Brennstoffes durch den Störkörper (7;12) ständig verändert wird.A method according to claim 12, characterized in that fuel is introduced into the nozzle head (2); and that at least the amount of fuel emerging from the nozzle head (2) is constantly changed by the disturbing body (7; 12). Brennstoffeinspritzdüse mit einem Düsenkopf (2) nach einem der Ansprüche 1 bis 11 oder betrieben mit einem Verfahren nach Anspruch 12 oder 13.Fuel injection nozzle with a nozzle head (2) according to one of Claims 1 to 11 or operated with a method according to Claim 12 or 13. Verbrennungskraftmaschine, insbesondere Dieselmotor mit einer Brennstoffeinspritzdüse nach Anspruch 14.Internal combustion engine, in particular a diesel engine with a fuel injection nozzle according to claim 14.
EP19940810420 1994-07-15 1994-07-15 Nozzle for a fuel injection valve Expired - Lifetime EP0692625B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP19940810420 EP0692625B1 (en) 1994-07-15 1994-07-15 Nozzle for a fuel injection valve
DK94810420T DK0692625T3 (en) 1994-07-15 1994-07-15 Nozzle head for a fuel injection nozzle
DE59409040T DE59409040D1 (en) 1994-07-15 1994-07-15 Nozzle head for a fuel injector
JP15648695A JP3738053B2 (en) 1994-07-15 1995-06-22 Nozzle head for fuel injection nozzle
KR1019950019718A KR100386183B1 (en) 1994-07-15 1995-07-06 Fuel injection method for nozzle head and internal combustion engine for fuel injection nozzle
FI953430A FI106740B (en) 1994-07-15 1995-07-13 Nozzle head for fuel injection nozzle
CN95108417A CN1066802C (en) 1994-07-15 1995-07-14 Jet nozzle and fuel jetting method to internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19940810420 EP0692625B1 (en) 1994-07-15 1994-07-15 Nozzle for a fuel injection valve

Publications (2)

Publication Number Publication Date
EP0692625A1 true EP0692625A1 (en) 1996-01-17
EP0692625B1 EP0692625B1 (en) 1999-12-29

Family

ID=8218285

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940810420 Expired - Lifetime EP0692625B1 (en) 1994-07-15 1994-07-15 Nozzle for a fuel injection valve

Country Status (7)

Country Link
EP (1) EP0692625B1 (en)
JP (1) JP3738053B2 (en)
KR (1) KR100386183B1 (en)
CN (1) CN1066802C (en)
DE (1) DE59409040D1 (en)
DK (1) DK0692625T3 (en)
FI (1) FI106740B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042968A1 (en) * 2003-10-29 2005-05-12 Robert Bosch Gmbh Fuel injection valve
FR2888618A1 (en) 2005-07-13 2007-01-19 Renault Sas Fuel e.g. diesel oil, injection nozzle for diesel engine, has ring shaped toric sections with openings disposed on external side, where sections are placed internal to injection bowl and are connected by supply conduits to fuel system
DE10046599B4 (en) * 1999-05-13 2007-12-06 Mitsubishi Denki K.K. Fuel injection valve
US10151235B2 (en) 2017-03-07 2018-12-11 Caterpillar Inc. Ducted combustion system for an internal combustion engine

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50309291D1 (en) * 2002-04-11 2008-04-17 Waertsilae Nsd Schweiz Ag Nozzle head for a fuel injector
JP5257456B2 (en) * 2008-09-24 2013-08-07 トヨタ自動車株式会社 Fuel injection valve for internal combustion engine and method for manufacturing the same
CN104265530B (en) * 2014-07-31 2016-08-31 中国第一汽车股份有限公司无锡油泵油嘴研究所 Automatically controlled internal combustion engine injector control valve
CN105275698B (en) * 2015-11-13 2017-11-10 吉林大学 A kind of engine variable-frequency fuel-injection mouth
CN105715438A (en) * 2016-03-30 2016-06-29 无锡美羊动力科技有限公司 Efficient diesel engine oil nozzle internally provided with triangular rotary tooth
CN105715439A (en) * 2016-03-30 2016-06-29 无锡美羊动力科技有限公司 Anti-clogging diesel nozzle internally provided with double grinding teeth
CN105715440A (en) * 2016-03-30 2016-06-29 无锡美羊动力科技有限公司 Oil-removal diesel nozzle
CN106150820A (en) * 2016-07-12 2016-11-23 江西汇尔油泵油嘴有限公司 The method of disturbance diesel oil and atomizer
CN108533377A (en) * 2018-04-16 2018-09-14 浙江创格科技有限公司 A kind of injector assembly of high cooling efficiency
DK180103B1 (en) * 2018-12-11 2020-05-04 MAN Energy Solutions Internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1028215A (en) * 1950-11-21 1953-05-20 Augustin Chantiers Et Ateliers Fuel sprayer improvements
CH340093A (en) * 1956-05-12 1959-07-31 Sulzer Ag Fuel injector and method for making the same
US4796816A (en) * 1987-09-21 1989-01-10 Gregory Khinchuk Impinging-jet fuel injection nozzle
EP0551633A1 (en) * 1992-01-14 1993-07-21 Robert Bosch Gmbh Fuel injection nozzle for an internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1028215A (en) * 1950-11-21 1953-05-20 Augustin Chantiers Et Ateliers Fuel sprayer improvements
CH340093A (en) * 1956-05-12 1959-07-31 Sulzer Ag Fuel injector and method for making the same
US4796816A (en) * 1987-09-21 1989-01-10 Gregory Khinchuk Impinging-jet fuel injection nozzle
EP0551633A1 (en) * 1992-01-14 1993-07-21 Robert Bosch Gmbh Fuel injection nozzle for an internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10046599B4 (en) * 1999-05-13 2007-12-06 Mitsubishi Denki K.K. Fuel injection valve
WO2005042968A1 (en) * 2003-10-29 2005-05-12 Robert Bosch Gmbh Fuel injection valve
FR2888618A1 (en) 2005-07-13 2007-01-19 Renault Sas Fuel e.g. diesel oil, injection nozzle for diesel engine, has ring shaped toric sections with openings disposed on external side, where sections are placed internal to injection bowl and are connected by supply conduits to fuel system
US10151235B2 (en) 2017-03-07 2018-12-11 Caterpillar Inc. Ducted combustion system for an internal combustion engine

Also Published As

Publication number Publication date
FI953430A0 (en) 1995-07-13
DE59409040D1 (en) 2000-02-03
CN1066802C (en) 2001-06-06
FI106740B (en) 2001-03-30
JP3738053B2 (en) 2006-01-25
CN1133394A (en) 1996-10-16
JPH0849634A (en) 1996-02-20
EP0692625B1 (en) 1999-12-29
FI953430A (en) 1996-01-16
DK0692625T3 (en) 2000-04-17
KR100386183B1 (en) 2003-08-06

Similar Documents

Publication Publication Date Title
DE4039520B4 (en) Fuel injection valve
DE10303859B4 (en) Nozzle assembly for injection and turbulence of fuel
EP1046426B1 (en) High pressure spray nozzle
EP1051235B1 (en) Device for introducing a reducing agent into a section of the exhaust pipe of an internal combustion engine
EP1538317A2 (en) Direct injected spark ignited internal combustion engine
DE10201272A1 (en) Nozzles suitable for use with fluid injectors
EP0692625A1 (en) Nozzle for a fuel injection valve and method of fuel injection in an internal combustion engine
DE3432663A1 (en) INTERMITTENT SWIRL INJECTION VALVE
EP0661447B1 (en) Diesel engine with direct fuel injection
EP0268702B1 (en) Compressed-air atomizer nozzle
DE19812092A1 (en) Fuel injection unit for IC engine with nozzle body
DE3716402A1 (en) FUEL INJECTION NOZZLE
DE3628645A1 (en) METHOD FOR INJECTING FUEL INTO THE COMBUSTION CHAMBER OF AN INTERNAL COMBUSTION ENGINE
DE10334347B4 (en) Fuel injection valve and internal combustion engine with fuel injection valve
DE10109345A1 (en) Fuel injection nozzle head offers seating face for needle valve seat where downstream shutter stabilizes fuel flow section upstream of port at all needle lift values.
DE3918887A1 (en) FUEL INJECTION NOZZLE FOR A CYLINDER OF AN INTERNAL COMBUSTION ENGINE
DE2902417C2 (en)
DE102004005526A1 (en) Fuel injection valve has valve element to stop fuel injection through orifices of orifice plate if valve element is resting on valve seat, and to allow fine spray of fuel through orifices if valve element is away from valve seat
DE19914719C2 (en) Device for hydroerosive rounding of inlet edges of the spray hole channels in a nozzle body
DE19958126B4 (en) fuel Injector
DE2850879A1 (en) MULTI-HOLE INJECTION NOZZLE FOR AIR COMPRESSING ENGINES
DE4041921A1 (en) FUEL INJECTION DEVICE FOR AN INTERNAL COMBUSTION ENGINE
DE2746010C2 (en) Fuel injector for internal combustion engines
DE3600154A1 (en) AIR-SPRAYING THROTTLE BODY
DE972387C (en) Fuel injection nozzle with swirl effect

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK FR IT NL

AX Request for extension of the european patent

Free format text: SI

RAX Requested extension states of the european patent have changed

Free format text: SI

RBV Designated contracting states (corrected)

Designated state(s): DE DK FR IT NL

17P Request for examination filed

Effective date: 19960618

17Q First examination report despatched

Effective date: 19960802

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WAERTSILAE NSD SCHWEIZ AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR IT NL

REF Corresponds to:

Ref document number: 59409040

Country of ref document: DE

Date of ref document: 20000203

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

ET Fr: translation filed
REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050712

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050714

Year of fee payment: 12

Ref country code: DK

Payment date: 20050714

Year of fee payment: 12

Ref country code: DE

Payment date: 20050714

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060731

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070715