EP0674764A1 - Determination des caracteristiques de moteurs a combustion interne par mesure optique de plusieurs grandeurs dans la chambre de combustion - Google Patents

Determination des caracteristiques de moteurs a combustion interne par mesure optique de plusieurs grandeurs dans la chambre de combustion

Info

Publication number
EP0674764A1
EP0674764A1 EP94918283A EP94918283A EP0674764A1 EP 0674764 A1 EP0674764 A1 EP 0674764A1 EP 94918283 A EP94918283 A EP 94918283A EP 94918283 A EP94918283 A EP 94918283A EP 0674764 A1 EP0674764 A1 EP 0674764A1
Authority
EP
European Patent Office
Prior art keywords
raman
quantities
measured
laser
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94918283A
Other languages
German (de)
English (en)
Inventor
Peter Andresen
Gerd GRÜNEFELD
Volker Beushausen
Werner Hentschel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0674764A1 publication Critical patent/EP0674764A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/08Safety, indicating, or supervising devices
    • F02B77/085Safety, indicating, or supervising devices with sensors measuring combustion processes, e.g. knocking, pressure, ionization, combustion flame
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • F02F2007/0092Transparent materials

Definitions

  • the measurements can also be averaged over different cycles. In this case - without knowing the individual fluctuations - it can be determined at which average values of stoichiometry and exhaust gas content the engine works.
  • the influence for example, of the influence of different injection variants, the load or the ignition timing on the gas mixture before ignition and the power output can be determined.
  • the measurement of the amounts of air, fuel and the amount of the remaining exhaust gas fraction is carried out according to the patented method using optical measurement technology.
  • Raman scattering One of the methods is Raman scattering. It is well known that Raman scattering can be used to measure the density of majority species (Eckbreth: Laser Diagnostics for Combustion: Temperature and Species. AEGupta, DG Liley eds. Vol. 7 of Energy and Engineering Sciences, Abacus Press Cambridge, MA 1988). However, due to the relatively weak intensity of the Raman scattering and the simultaneous occurrence of other light phenomena caused by the laser, it is difficult (I) to obtain enough signal to distinguish the small cyclical fluctuations and (II) to distinguish the Raman emission from the other emissions. It is well known that the use of Raman scattering - e.g. in the combustion of hydrocarbons - is significantly restricted in accuracy by these other emissions (see Eckbreth).
  • the background can be determined in an analogous manner - without rotating the electrical vector of the laser light - by analyzing the emission in the direction of observation for polarization components (for example using polarization filters). Again the one delivers
  • the analysis of polarized emissions is important and patent-relevant, since it allows the differentiation of the emissions and thus a selective measurement of the individual gas components in gas mixtures with a complex composition.
  • the high intensity of the Raman scattering is important and relevant to the patent because it makes the measuring precision so high that the cyclical fluctuations in the gas composition that actually occur can be measured.
  • the density of the particles - integrated over locations along the absorption light path - in the combustion chamber is determined by the decrease in the incident light.
  • the "direct" absorption by the naturally present molecules or the absorption by tracer can be used.
  • the water density (for determining the residual gas content) and the fuel density e.g. can be determined via IR absorption.
  • the oxygen content can e.g. can be determined via the absorption in the deep UV (e.g. Schumann Runge bands).
  • Another absorption technique results from the selective addition of substances ("tracers").
  • a tracer e.g. acetone
  • the density of the tracer e.g. the acetone density
  • the fuel density can be determined.
  • other absorbent molecules can be added to the air to measure the air density.
  • the residual gas content in the fresh charge can also be determined by injecting a tracer into the combustion chamber at the time of gas discharge (e.g. in the area of top dead center). The stoichiometry and the residual gas content can in turn be determined from the data on fuel, air and residual gas by forming the ratio.
  • the particle densities can also be determined by adding tracers that can be excited to glow with lasers (laser-induced emissions). So you can add different tracers to the fuel, air and residual gas and select the excitation wavelength of the laser and the emission wavelengths so that one
  • REPLACEMENT LEAF spectral separation of the emissions is possible and thus the components are detected simultaneously.
  • the density of fuel, air and residual gas can then be determined from the intensity of the laser-induced emissions, and the stoichiometry and the residual gas content can be determined by forming the ratio.
  • Pollutants can be determined under which conditions the engine works and whether
  • Power output on the Z-axis shows the dependence of the power output on stoichiometry and the proportion of exhaust gas. This comparison of cause and effect gives a direct one
  • the amount of exhaust gas in the engine combustion chamber from the previous cycle can be determined from the ratio of H2O / N2 (since the amount of water in the air supplied is negligible) or from the ratio O2 N2.
  • the simultaneous, precise acquisition of various measured variables makes it possible to determine causal relationships in individual combustion cycles and thereby characterize the operating conditions of the engine and use the knowledge as a basis for optimization.
  • the simultaneous measurement of the stoichiometry and the proportion of exhaust gas in a certain measurement volume before the ignition simultaneously with the recording of the pressure curve for the current combustion cycle may be mentioned as an example.
  • REPLACEMENT LEAF Measurement makes it possible to link the cause (mixture composition before ignition) with the effect (power output). By simultaneously measuring other variables (e.g. NO density via LIF, temperatures, ...) in the same cycle, further statements about cause and effect can be made. It is also essential for the present invention that the small fluctuations in the mixture composition can be detected precisely enough before ignition.
  • 0.2 lies, i.e. e.g. that with an externally set ⁇ number of 1.0, the measured ⁇ number fluctuates between 0.9 and 1.1.
  • Fig. 2 shows the results of measurements which, in addition to stoichiometry, also show the additional influence of the exhaust gas content. The picture shows the maximum pressure reached as a function of the stoichiometry and the proportion of exhaust gas and is referred to here as a map. Obviously, larger proportions of exhaust gas lead to lower pressures and thus less power output.
  • the map which is here for the way the Mc> works, depends on the way the engine works. It can be used to differentiate between different ways of working.
  • the pressure curve of the previous cycle also provides important information e.g. about the history of gas exchange in the combustion chamber. If e.g. the pressure in the previous cycle was high, you can find it in the following cycle - for a certain operating condition -
  • the measurements can also be averaged over different cycles if the signal in the single shot does not provide enough intensity.
  • the small fluctuations in the stoichiometry and in the exhaust gas are eliminated, so that in a representation as in Fig. 3 the fluctuations become much smaller and reproducible characteristic data are obtained.
  • S is the sensitivity of the measuring system for the detection of particles i. S is in principle to be determined separately for each particle type and each location,
  • REPLACEMENT LEAF is assumed to be constant here for the sake of simplicity. The following applies to the relative measurement of the densities of the particles i, j:
  • FIG. 4 A specific arrangement for measuring is shown in Fig. 4 as one example from many.
  • the intense pulsed UV laser beam (1) is shot through the combustion chamber of an engine.
  • UV-transmitting windows (2) are used in the upper part.
  • part of the intake manifold with the injection valve (5) is also shown in cross section. From a section
  • the scattered Raman light is directed via a window in the bulb (6) and a deflecting mirror (7) to the spatially resolving optical multi-channel analyzer (8).
  • An imaging optical system (9) images the laser beam axis (16) on the slit (10) of a spectrograph. This usually consists of several mirrors (11) and a dispersion grating (12). In the spectrograph, the different emissions are separated by wavelength (along the axis (14)) and detected with an intensified, short-opening CCD camera (13).
  • the structure also enables a local assignment of the Raman emission along the section from the combustion chamber along the axis (15).
  • the Rochon prism can be used for separation to determine the polarization of the different emissions. Except for the polarization analysis, the arrangement described is usually referred to with the keyword "locally resolved optical multi-channel analyzer".
  • Fig.6 shows another realization of the measuring technique, the backscattering.
  • the optical access to the motor is only realized through small windows (17) on the side.
  • One of the windows (17) through which the laser exits the combustion chamber in Fig. 6 can optionally be dispensed with.
  • the laser (1) is coupled into the combustion chamber via a dichroic mirror (18).
  • the Raman emission - and also other emissions - are coupled out via one of the windows on the side (17) and in turn detected using an optical multi-channel analyzer (see Fig. 5) - and a polarization analyzer (8). In this case, (somewhat) local resolution may also be obtained in the medium if the window is extended in one direction.
  • the measurement can also be carried out with other spectral filters and other polarization analyzers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Le fonctionnement de moteurs à combustion interne dépend dans une large mesure de grandeurs que l'on ne peut régler suffisamment précisément depuis l'extérieur, ainsi, par exemple, la st÷chiométrie du mélange carburant-air avant l'allumage, la proportion de gaz d'échappement contenus dans ce mélange gazeux et sa température. A cet égard, la mesure la plus simultanée et la plus précise possible de plusieurs de ces grandeurs dans la chambre de combustion est très utile pour comprendre les problèmes relatifs au fonctionnement du moteur. Le nouveau procédé de diffusion de lumière laser avec effet Raman permet par exemple de résoudre ce problème. Le procédé est sans contact et offre une résolution élevée dans le temps (c'est-à-dire par rapport à l'angle de vilebrequin) et en fonction de la position. On utilise comme source lumineuse d'excitation pour la diffusion par effet Raman et Rayleigh, des lasers à U.V. pulsés intensifs. La lumière laser (1) parvient dans la partie supérieure de la chambre de combustion, notamment pour analyser le gaz de queue avant l'allumage, en passant par une fenêtre (17) pratiquée dans la paroi du cylindre où s'effectue la mesure. Les émissions induites par laser (notamment diffusion par effet Raman et Rayleigh) peuvent être conduites à l'extérieur de la chambre de combustion de différentes manières, par exemple par l'intermédiaire de la même fenêtre (17) et d'un miroir (18) dichroïque. La mesure quantitative simultanée des différentes émissions, notamment des émissions par effet Raman de carburant, d'oxygène, d'azote, d'eau, etc., s'effectue par le biais des caméras ultra-rapides (CCD) à fonctionnement intensifié, en combinaison avec un système de séparation de longueur d'ondes (spectromètre) (8) monté en amont, ce qui permet d'obtenir également une résolution locale le long d'un axe de la chambre de combustion. La longueur d'ondes d'excitation dans les U.V. permet de procéder à des mesures extrêmement précises par impulsions individuelles de manière à pouvoir résoudre les légères variations cycliques intervenant dans la formation du mélange (et la combustion) dans le moteur. De plus, dans de nombreux cas, il est nécessaire de séparer les émissions par effet Raman des émissions (fluorescentes) qui interfèrent. Les propriétés de polarisation permettent d'y parvenir. Les grandeurs significatives en matière de combustion, comme la st÷chiométrie et la proportion de gaz d'échappement sont obtenues par calcul du rapport des intensités Raman, ce qui permet d'obtenir une précision de mesure particulièrement élevée.
EP94918283A 1993-06-24 1994-06-22 Determination des caracteristiques de moteurs a combustion interne par mesure optique de plusieurs grandeurs dans la chambre de combustion Withdrawn EP0674764A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19934320943 DE4320943C2 (de) 1993-06-24 1993-06-24 Verfahren zur Charakterisierung der Arbeitsweise von Verbrennungsmotoren durch Messen der Gaszusammensetzung im Brennraum durch Raman-Spektroskopie
DE4320943 1993-06-24
PCT/DE1994/000696 WO1995000833A1 (fr) 1993-06-24 1994-06-22 Determination des caracteristiques de moteurs a combustion interne par mesure optique de plusieurs grandeurs dans la chambre de combustion

Publications (1)

Publication Number Publication Date
EP0674764A1 true EP0674764A1 (fr) 1995-10-04

Family

ID=6491083

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94918283A Withdrawn EP0674764A1 (fr) 1993-06-24 1994-06-22 Determination des caracteristiques de moteurs a combustion interne par mesure optique de plusieurs grandeurs dans la chambre de combustion

Country Status (3)

Country Link
EP (1) EP0674764A1 (fr)
DE (1) DE4320943C2 (fr)
WO (1) WO1995000833A1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19809792C2 (de) * 1998-03-09 2000-03-30 Fraunhofer Ges Forschung Vorrichtung zur Messung der Emission und/oder Absorption eines heißen Gases oder Plasmas
DE19924284B4 (de) * 1998-05-30 2004-12-09 Christoph Nailis Verfahren zur Messung eines Luft-Brennstoff-Verhältnisses in einem Brennraum
DE19827533C2 (de) * 1998-06-20 2001-09-06 Alfred Leipertz Verfahren zur Bestimmung der Dampfphasenzusammensetzung und der Temperatur mittels linearer Raman-Streuung in Gegenwart von Phasengrenzflächen, insbesondere von Tröpfchen, insbesondere bei motorischen Einspritzprozessen
DE19925583C2 (de) 1999-06-04 2002-06-13 Lavision Gmbh Verfahren zur Bestimmung der räumlichen Konzentration der einzelnen Komponenten eines Gemisches, insbes. eines Gasgemisches in einem Brennraum, insbes. eines Motors sowie eine Anordnung zur Durchführung des Verfahrens
FR2816056B1 (fr) * 2000-11-02 2003-05-16 Centre Nat Rech Scient Dispositif de mesure de richesse d'une combustion et procede afferent de reglage
DE10124235B4 (de) * 2001-05-18 2004-08-12 Esytec Energie- Und Systemtechnik Gmbh Verfahren und Vorrichtung zur umfassenden Charakterisierung und Kontrolle des Abgases und der Regelung von Motoren, speziell von Verbrennungsmotoren, und von Komponenten der Abgasnachbehandlung
US6803563B2 (en) 2002-08-02 2004-10-12 Flender Service Gmbh Method and apparatus for monitoring the quality of lubricant
DE10235612B4 (de) * 2002-08-02 2012-06-21 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Überwachung der Qualität von Schmieröl
DE102004057718B4 (de) * 2004-11-26 2006-08-03 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Vorrichtung zur Analyse von Strömungsvorgängen in der Kolbenmulde einer Brennkraftmaschine
DE102004057609B4 (de) * 2004-11-29 2006-10-19 Lavision Gmbh Vorrichtung zur Ermittlung von laserinduzierter Emission elektromagnetischer Strahlung von in einem Hohlkörper befindlichen Gasen, Fluiden und Gemischen hieraus
DE102005012776B4 (de) * 2005-03-19 2020-07-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zur Identfikation von gasdynamischen Effekten
DE102006043700A1 (de) * 2006-09-18 2008-03-27 Siemens Ag Abtastung von Brennraumsignalen
DE102006057783B3 (de) * 2006-12-06 2008-05-08 Technische Universität München Anordnung und Verfahren zur optischen Überwachung eines Druckraums bzw. einer Brennkammer
DE102006058285B4 (de) * 2006-12-08 2009-04-16 Technische Universität München Druckkammer und Verfahren zu deren optischer Überwachung
DE102007060905B4 (de) * 2007-12-14 2010-05-27 Smetec Gmbh Verfahren zur Ermittlung des lokalen Luftverhältnisses
SE535798C2 (sv) 2011-03-08 2012-12-27 Vattenfall Ab Förfarande och system för gasmätning i förbränningskammare
WO2014071016A1 (fr) * 2012-10-31 2014-05-08 The Regents Of The University Of Michigan Spectroscopie à métaux alcalins pour imagerie de paramètres dans une chambre de combustion d'un moteur à combustion interne
CN104236917B (zh) * 2014-09-05 2017-02-08 北京动力机械研究所 全环微小尺寸回流燃烧室试验器
DE102014221862A1 (de) 2014-10-27 2016-04-28 Robert Bosch Gmbh Einrichtung zur optischen Überwachung eines Druckraumes oder einer Brennkammer, insbesondere eines Verbrennungsmotors
DE102022208770A1 (de) 2022-08-24 2024-02-29 Hochschule Reutlingen, Körperschaft des öffentlichen Rechts Vorrichtung zum Erfassen von mindestens einer gasförmigen Komponente in einem Gas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882039A (ja) * 1981-11-11 1983-05-17 Hitachi Ltd 内燃機関用空気燃料比制御装置
DE4127712C2 (de) * 1991-08-22 1993-10-07 Kernforschungsz Karlsruhe Laser-Raman-Meßzelle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9500833A1 *

Also Published As

Publication number Publication date
DE4320943C2 (de) 2001-02-15
WO1995000833A1 (fr) 1995-01-05
DE4320943A1 (de) 1995-01-05

Similar Documents

Publication Publication Date Title
DE4320943C2 (de) Verfahren zur Charakterisierung der Arbeitsweise von Verbrennungsmotoren durch Messen der Gaszusammensetzung im Brennraum durch Raman-Spektroskopie
DE69131048T2 (de) Apparat zur distanzanalyse von fahrzeugemissionen
EP0343143B1 (fr) Procédé et appareil pour mesurer le lambda et/ou le rapport air/carburant
DE69715822T2 (de) Zündsystem mit ionisationsdetektor
EP1193488B1 (fr) Procede et dispositif pour determiner la nature de gaz naturel
DE4032491A1 (de) Massenspektroskopische vorrichtung und massenspektroskopisches verfahren
DE2508900A1 (de) Vorrichtung zum nachweis der chemolumineszenz-reaktion
EP0283047A2 (fr) Procédé et dispositif pour l'obtention sans contact de données pour déterminer la résolution spatiale de la densité et de la température dans un volume de mesure
DE102020116255A1 (de) Analysator, Analyseverfahren und ein mit einem Programm für den Analysator aufgezeichnetes Programmaufzeichnungsmedium
AT1103U1 (de) Optoelektrische messeinrichtung zur erfassung von verbrennungsvorgängen im brennraum
WO2009130255A1 (fr) Procédé pour déterminer l'inflammabilité d'un carburant
Wagner et al. Extending exhaust gas recirculation limits in diesel engines
Richter et al. Real-time calibration of planar laser-induced fluorescence air-fuel ratio measurements in combustion environments using in situ Raman scattering
DE4324154A1 (de) Vorrichtung und Verfahren zur räumlich hochauflösenden Analyse mindestens einer Gaskomponente in einem Gasgemisch
DE112021003737T5 (de) Analysevorrichtung, analyseverfahren, programm für eine ana-lysevorrichtung, lernvorrichtung für eine analyse, lernverfahren für eine analyse und programm für eine lernvorrichtung für eine analyse
EP0474709A1 (fr) Procede de detection et d'evaluation cylindre par cylindre de signaux de cognement de moteurs a combustion interne.
EP0523822A2 (fr) Procédé d'observation de la combustion d'un moteur à combustion
DE10043864B4 (de) Verfahren zur Bewertung der Verbrennung bei geschichteter Ladung in Otto-Motoren, vorzugsweise mit Direkteinspritzung
Fields et al. Single-shot temporally and spatially resolved chemiluminescence spectra from an optically accessible SI engine
Knapp et al. In-cylinder mixture formation analysis with spontaneous Raman scattering applied to a mass-production SI engine
Sawerysyn et al. A study of spatial distribution of molecular species in an engine by pulsed multichannel Raman spectroscopy
WO2018095719A1 (fr) Dispositif de mesure de particules et procédé pour déterminer une grandeur de particules
Schütte et al. Fuel/air-ratio measurements in direct injection gasoline sprays using 1D Raman scattering
Brüggemann et al. CARS spectroscopy for temperature and concentration measurements in a spark ignition engine
EP0313884A2 (fr) Procédé de détection et d'utilisation d'un signal de cliquetis pendant le fonctionnement d'un moteur à allumage externe et à combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IE IT NL SE

17Q First examination report despatched

Effective date: 19980317

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980728