EP0646187B1 - Non-chromated oxide coating for aluminum substrates - Google Patents
Non-chromated oxide coating for aluminum substrates Download PDFInfo
- Publication number
- EP0646187B1 EP0646187B1 EP93914728A EP93914728A EP0646187B1 EP 0646187 B1 EP0646187 B1 EP 0646187B1 EP 93914728 A EP93914728 A EP 93914728A EP 93914728 A EP93914728 A EP 93914728A EP 0646187 B1 EP0646187 B1 EP 0646187B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cobalt
- solution
- salt
- substrate
- per liter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 47
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 30
- 238000000576 coating method Methods 0.000 title description 52
- 239000011248 coating agent Substances 0.000 title description 35
- 238000007739 conversion coating Methods 0.000 claims abstract description 71
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 58
- 239000010941 cobalt Substances 0.000 claims abstract description 58
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 54
- 230000008569 process Effects 0.000 claims abstract description 48
- 238000006243 chemical reaction Methods 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 37
- 239000000126 substance Substances 0.000 claims abstract description 21
- 150000007942 carboxylates Chemical group 0.000 claims abstract description 20
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 9
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 9
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 9
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 8
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 8
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 7
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 6
- 229910007567 Zn-Ni Inorganic materials 0.000 claims abstract description 5
- 229910007614 Zn—Ni Inorganic materials 0.000 claims abstract description 5
- 150000003839 salts Chemical class 0.000 claims description 35
- 239000000080 wetting agent Substances 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 229910001868 water Inorganic materials 0.000 claims description 20
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical group CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 14
- 150000001349 alkyl fluorides Chemical class 0.000 claims description 14
- -1 carboxylate salt Chemical class 0.000 claims description 12
- 229940011182 cobalt acetate Drugs 0.000 claims description 10
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical group [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 10
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 10
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 8
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 8
- 239000011777 magnesium Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 229910000861 Mg alloy Inorganic materials 0.000 claims 2
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims 1
- 239000000243 solution Substances 0.000 abstract description 62
- 238000005260 corrosion Methods 0.000 abstract description 45
- 230000007797 corrosion Effects 0.000 abstract description 45
- 239000003973 paint Substances 0.000 abstract description 26
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 abstract description 12
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 abstract description 12
- UPWOEMHINGJHOB-UHFFFAOYSA-N oxo(oxocobaltiooxy)cobalt Chemical compound O=[Co]O[Co]=O UPWOEMHINGJHOB-UHFFFAOYSA-N 0.000 abstract description 6
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical class [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 abstract description 5
- 239000007864 aqueous solution Substances 0.000 abstract description 4
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 abstract description 4
- 229910000831 Steel Inorganic materials 0.000 abstract description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052593 corundum Inorganic materials 0.000 abstract description 3
- 239000010959 steel Substances 0.000 abstract description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 abstract description 2
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000007654 immersion Methods 0.000 description 25
- 238000012360 testing method Methods 0.000 description 20
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 18
- 239000011734 sodium Substances 0.000 description 15
- 150000001868 cobalt Chemical class 0.000 description 13
- 125000000350 glycoloyl group Chemical group O=C([*])C([H])([H])O[H] 0.000 description 13
- 239000011654 magnesium acetate Substances 0.000 description 13
- 238000009472 formulation Methods 0.000 description 12
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 11
- 239000007921 spray Substances 0.000 description 11
- 229910001512 metal fluoride Inorganic materials 0.000 description 10
- 239000000376 reactant Substances 0.000 description 8
- 239000001632 sodium acetate Substances 0.000 description 8
- 235000017281 sodium acetate Nutrition 0.000 description 8
- 229910002651 NO3 Inorganic materials 0.000 description 7
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 5
- 229910021529 ammonia Inorganic materials 0.000 description 5
- 229940069446 magnesium acetate Drugs 0.000 description 5
- 235000011285 magnesium acetate Nutrition 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 4
- 239000005695 Ammonium acetate Substances 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 235000019257 ammonium acetate Nutrition 0.000 description 4
- 229940043376 ammonium acetate Drugs 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 4
- 150000002826 nitrites Chemical class 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 150000001242 acetic acid derivatives Chemical class 0.000 description 3
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 3
- 239000001639 calcium acetate Substances 0.000 description 3
- 235000011092 calcium acetate Nutrition 0.000 description 3
- 229960005147 calcium acetate Drugs 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 150000004700 cobalt complex Chemical class 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 150000004696 coordination complex Chemical class 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 150000002222 fluorine compounds Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910021580 Cobalt(II) chloride Inorganic materials 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 159000000021 acetate salts Chemical class 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 2
- 230000000536 complexating effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 101100493820 Caenorhabditis elegans best-1 gene Proteins 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910017717 NH4X Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003788 bath preparation Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- ZJRWDIJRKKXMNW-UHFFFAOYSA-N carbonic acid;cobalt Chemical compound [Co].OC(O)=O ZJRWDIJRKKXMNW-UHFFFAOYSA-N 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001869 cobalt compounds Chemical class 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229910000001 cobalt(II) carbonate Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000013551 empirical research Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Inorganic materials [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229940083542 sodium Drugs 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Inorganic materials [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- JXKPEJDQGNYQSM-UHFFFAOYSA-M sodium propionate Chemical compound [Na+].CCC([O-])=O JXKPEJDQGNYQSM-UHFFFAOYSA-M 0.000 description 1
- 239000004324 sodium propionate Substances 0.000 description 1
- 235000010334 sodium propionate Nutrition 0.000 description 1
- 229960003212 sodium propionate Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- ZEBNDJQGEZXBCR-UHFFFAOYSA-H trisodium;cobalt(3+);hexanitrite Chemical compound [Na+].[Na+].[Na+].[Co+3].[O-]N=O.[O-]N=O.[O-]N=O.[O-]N=O.[O-]N=O.[O-]N=O ZEBNDJQGEZXBCR-UHFFFAOYSA-H 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical class [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/56—Treatment of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/60—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
- C23C22/66—Treatment of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/68—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
Definitions
- This environmental-quality invention is in the field of chemical conversion coatings formed on metal substrates, for example, on aluminum substrates. More particularly, one aspect of the invention is a new type of oxide coating (which I refer to as a "cobalt conversion coating") which is chemically formed on metal substrates.
- the invention enhances the quality of the environment of mankind by contributing to the maintenance of air and water quality.
- chemical conversion coatings are formed chemically by causing the surface of the metal to be "converted" into a tightly adherent coating, all or part of which consists of an oxidized form of the substrate metal.
- Chemical conversion coatings can provide high corrosion resistance as well as strong bonding affinity for paint.
- the industrial application of paint (organic finishes) to metals generally requires the use of a chemical conversion coating, particularly when the performance demands are high.
- aluminum protects itself against corrosion by forming a natural oxide coating, the protection is not complete.
- aluminum alloys particularly of the high-copper 2000-series aluminum alloys, such as alloy 2024-T3, corrode much more rapidly than pure aluminum.
- the first is by anodic oxidation (anodization) in which the aluminum component is immersed in a chemical bath, such as a chromic or sulfuric acid bath, and an electric current is passed through the aluminum component and the chemical bath.
- a chemical bath such as a chromic or sulfuric acid bath
- an electric current is passed through the aluminum component and the chemical bath.
- the resulting conversion coating on the surface of the aluminum component offers resistance to corrosion and a bonding surface for organic finishes.
- the second type of process is by chemically producing a conversion coating, which is commonly referred to as a chemical conversion coating, by subjecting the aluminum component to a chemical solution, such as a chromic acid solution, but without using an electric current in the process.
- a chemical solution such as a chromic acid solution
- the chemical solution may be applied by immersion application, by manual application, or by spray application.
- the resulting conversion coating on the surface of the aluminum component offers resistance to corrosion and a bonding surface for organic finishes.
- the present invention relates to this second type of process for producing chemical conversion coatings.
- the chemical solution may be applied by immersion application, by various types of manual application, or by spray application.
- chromic acid process for forming chemical conversion coatings on aluminum substrates is described in various embodiments in Ostrader et al. U.S. Patent 2,796,370 and Ostrader et al. U.S. Patent 2,796,371, in military process specification MIL-C-5541, and in Boeing Process Specification BAC 5719.
- These chromic acid chemical conversion baths contain hexavalent chromium, fluorides, and cyanides, all of which present significant environmental as well as health and safety problems.
- the constituents of a typical chromic acid conversion bath are as follows: CrO 3 - "chromic acid” (hexavalent, chromium); NaF-sodium fluoride; KBF 4 -potassium tetrafluoroborate; K 2 ZrF 6 -potassium hexafluorozirconate; K 3 Fe(CN) 6 potassium ferricyanide; and, HNO 3 -nitric acid (for pH control).
- Chromic acid conversion films as formed on aluminum substrates, meet a 168 hours corrosion resistance criterion, but they primarily serve as a surface substrate for paint adhesion. Because of their relative thinness and low coating weights 3.72-13.84 milligrams/m 2 (40-150 milligrams/ft 2 ), chromic acid conversion coatings do not cause a fatigue life reduction in the aluminum structure.
- the invention is a process for forming a cobalt conversion coating on a metal substrate, thereby imparting corrosion resistance and paint adhesion properties.
- the invention was developed as a replacement for the prior art chromic acid process.
- the process includes the steps of: (a) providing a cobalt conversion solution comprising an aqueous solution containing a soluble cobalt-III hexavalent complex, the concentration to the cobalt-III hexavalent complex being from about 0.01 mole per liter of solution to the saturation limit of the cobalt-III hexavalent complex; and (b) contacting the substrate with the solution for a sufficient amount of time, whereby the cobalt conversion coating is formed.
- the substrate may be aluminum, aluminum alloy, as well as Cd plated, Zn plated, Zn-Ni plated, and steel.
- the cobalt-III hexavalent complex is preferably present in the form of Me m [Co(R) 6 ] n' wherein Me is Na, Li, K, Ca, Zn, Mg, or Mn, and wherein m is 2 or 3, n is 1 or 2, and R is a carboxylate having 1 to 6 C atoms.
- the invention is a chemical conversion coating solution for producing a cobalt conversion coating on a metal substrate, the solution including an aqueous solution containing a soluble cobalt-III hexacarboxylate complex, the concentration of the cobalt-III hexacarboxylate complex being from about 0.01 mole per liter of solution to the saturation limit of the cobalt-III hexavalent complex.
- the cobalt conversion solution may be prepared by a bath makeup sequence including the steps of: (a) dissolving a soluble cobalt-II salt, preferably cobalt acetate, and (b) dissolving a metal acetate salt such as sodium, magnesium or calcium acetate to form a conversion coating solution.
- wetting agents such as alkyl fluorides, fluorocarbons, and metal fluorides can be added to the conversion coating solutions. Addition of these wetting agents eliminate the need for a costly sealing step following formation of the conversion coating.
- FIGURES 1 through 4 are photomicrographs (scanning electron microscope operated at 20 KV) of alloy 2024-T3 test panels with cobalt conversion coatings made by the invention.
- FIGURES 1 through 4 show a cobalt conversion coatings 410 formed by a 15 minute immersion in a typical cobalt conversion coating solution at 60°C (140°F).
- FIGURE 1 is a photomicrograph at X10,000 magnification of a test panel showing a cobalt conversation coating 410 of the invention.
- the photomicrograph is a top view of the upper surface of oxide coating 410.
- the top of oxide coating 410 is porous and looks like a sponge. This test panel was immersed in the cobalt conversion coating solution for 15 minutes.
- the white bar is a length of 1 micron.
- FIGURE 2 is a photomicrograph at X70,000 magnification of the test panel of FIGURE 1.
- the photomicrograph is a top view of the upper surface of oxide coating 410.
- FIGURE 2 is a close-up, at higher magnification, of a small area of the test panel.
- the white bar is a length of 1 micron.
- FIGURE 3 is a photomicron at X10,000 magnification of another test panel showing a side view, from an elevated angle, of a fractured cross section of a cobalt conversion coating 420 of the invention.
- the fractured cross section of the aluminum substrate of the test panel is indicated by reference numeral 422.
- This test panel was immersed in the coating bath for 15 minutes. To make the photomicrograph, the test panel was bent and broken off to expose a cross section of oxide coating 420.
- the white bar is a length of 1 micron.
- FIGURE 4 is a photomicrograph at X70,000 magnification of the test panel of FIGURE 3 showing a side view, from an elevated angle, of a fractured cross section of cobalt conversion coating 420 of the invention.
- FIGURE 4 is a close-up, at higher magnification, of a small area of the test panel.
- the aluminum substrate of the test panel is indicated by reference numeral 422.
- the white bar is a length of 1 ⁇ m.
- FIGURE 5 is a graph showing the tradeoff between paint adhesion and corrosion resistance as a function of immersion time.
- the present invention relates to a new cobalt conversion coating.
- the cobalt conversion coating can be made so resistant to corrosion that the conventional sealing step is no longer required. This result is achieved by adding metal fluorides and wetting agents such as alkyl fluorides and fluorocarbons to the conversion coating solution. It is believed that the combination of the wetting agents and the metal fluorides impart a small etch effect on the aluminum substrate surface which is believed to aid in the coating formation.
- Cobalt ammine complexes were thus produced with a number of reactants, i.e., Co(NO 3 )• 6H 2 O, CoCl 2 • 6H 2 O, NH 4 NO 3 , NH 4 Cl and NH 4 OH.
- the resultant coatings formed on aluminum substrates were found to have substantially improved corrosion resistant over the simple salt immersion described earlier.
- a review of cobalt complexing chemistry yielded the following information:
- reaction (4) An examination of reaction (4) revealed however, that while well defined iridescent coatings could be formed on aluminum substrates, an excess of ammonia, i.e., NH 4 OH was required to drive this reaction. As a consequence, it is difficult to control the pH of the bath due to the high evaporation rates of ammonia from the solution. Furthermore, the amount of excess ammonia in the bath had a pronounced effect on the paint adhesion and corrosion resistance characteristics of coatings formed by this method. Paint adhesion and corrosion performance ranged from superb to complete failure, depending on the amount of ammonia in the bath.
- the typical reactions are 2Co(C 2 H 3 O 2 ) 2 • 4H 2 O + 3 Mg(C 2 H 3 O 2 ) 2 • 4H 2 O +2HC 2 H 3 O 2 ⁇ Mg 3 [Co(C 2 H 3 O 2 ) 6 ] 2 + 21H 2 O Co(C 2 H 3 O 2 ) 2 • 4H 2 O + 3Ca(C 2 H 3 O 2 ) 2 • H 2 O +1/2 O 2 + 2HC 2 H 3 O 2 ⁇ Ca 3 [Co(C 2 H 3 O 2 ) 6 ] 2 + 21H 2 O Co(C 2 H 3 O 2 ) 2 • 4H 2 O + 3Na(C 2 H 3 O 2 ) • 3H 2 O + 1/4O 2 + HC 2 H 3 O 2 ⁇ Na 3 [Co(C 2 H 3 O 2 ) 6 ] + 13 1/2H 2 O
- a cobalt conversion coating having superior performance characteristics can be produced by reacting a soluble cobalt salt with a metal carboxylate in accordance with the following general formula Soluble Cobalt Salt + Me(R) x ⁇ Me m [Co(R) 6 ] n , wherein x can be 1 or 2, m is 3, n is 1 or 2, Me is selected from the group consisting of Na, Li, K, Ca, Zn, Mg, and Mn, and wherein R is a carboxylate having from 1 to 5 carbon (C) atoms, provided the carboxylates are soluble in the reaction solution.
- Metal fluorides such as MgF 2 and CaF 2 and wetting agents such as water soluble alkyl-fluorides and fluorocarbons can also be added in very small quantities to these solutions (Tables III and IV) to improve corrosion protection and manufacturing ease.
- alkyl fluoride wetting agents such as MSP-ST alkyl fluoride by M&T Harshaw, Cleveland, Ohio, and fluorocarbons FC99 or FC95 wetting agents by 3M Company, St. Paul, Minnesota, have been successfully used.
- the presence of the fluorinated wetting agents, metal fluorides, or mixtures thereof raise the corrosion performance level of resultant coatings to such a degree that sealing of these conversion coatings in a secondary seal step is no longer required.
- any water soluble fluorinated wetting agent capable of lowering liquid surface tension into the range of 0.03 N/m to 0.04 N/m (30 to 40 dynes per centimeter) at 20°C is usable.
- Solutions operated as detailed below yield coatings that pass a 168 hours salt spray corrosion resistance criteria in accordance with Boeing Process Specification BAC 5719, "Chromated Conversion Coatings.”
- the single step conversion coating has 'yielded in excess of 240 hours of salt spray resistance before showing any sign of corrosion pitting.
- Cobalt acetate is the most preferred soluble cobalt-II salt.
- Other water soluble cobalt salts such as Co(NO 3 ) 2 , CoSO 4 , CoCl 2, CoPO 4 , CoCO 3 , may be substituted for cobalt acetate, but are not preferred for the reasons illustrated in Table I.
- These cobalt salts are preferably reacted with soluble metal carboxylates having from 1 to 5 carbon atoms, although metal salts of acetic acid are most preferred.
- the carboxylate salts of Ca, Mg, and Na are preferred, with the Na carboxylate being most preferred, while Zn, Li, K, and Mn may also be used.
- the limitations on using carboxylates other than the acetates is water solubility.
- carboxylates that will work are for example sodium propionate.
- the minimum solubility needed to produce an effective coating is about 0.01 moles of cobalt-II salt per liter of water at 20°C. (68°F).
- the salts may be used up to their solubility limits.
- fluorinated wetting agents may be added to the bath as discussed above. When these wetting agents are employed, a conversion coating is created that does not need to be subjected to a conventional sealing step in order to exhibit satisfactory corrosion resistance.
- the concentration of dissolved cobalt-II salt used may be from about 0.01 mole per liter of final solution up to the solubility limit of the cobalt-II salt employed at 20°C (68°F).
- the concentration of dissolved cobalt-II salt used may be from about 0 04 mole per liter of final solution up to 0.15 mole per liter of final solution.
- the concentration of the cobalt-III hexcarboxylate coordination complex may be from about 0.01 mole per liter of final solution up to the solubility limit of the cobalt-III hexcarboxylate coordination complex employed.
- the concentration of the cobalt-III hexcarboxylate coordination complex may be from about 0.04 mole per liter of final solution up to 0.15 mole per liter of final solution.
- the concentration of dissolved metal carboxylate may be from about 0.03 to 2.5 moles per liter of final solution.
- concentration of dissolved metal carboxylate used may be from about 0.05 mole per liter of final solution up to 0.2 mole per liter of final solution.
- the concentration of the fluorinated wetting agents is preferably sufficient to hold solution surface tension between 3x10 -6 Nm to 4x10 -6 Nm (30 to 40 dynes) per centimeter at 20°C.
- the metal fluorides, MgF 2 and CaF 2 may be present in a concentration from 0 to solubility limit. It is to be understood that the fluorinated wetting agents, metal fluorides, or mixtures thereof are not required, but are preferred. If the wetting agents and metal fluorides are not used, the conversion coating must be subjected to a sealing step to achieve high corrosion resistance. By using the wetting agents and fluorides, the sealing step can be eliminated, thus making the use of the present invention even more economical.
- the pH of the bath may be from about 5.0 to 9.0 with 6.0 to 7.5 being preferred and 6.5 being most preferred.
- the temperature of the bath may be from about 20°C to 71,1°C (68°F to 160°F). Above 71,1°C (160°F), gradual decomposition of the cobalt-III hexcarboxylate complex may occur. The optimum temperature is 60 ⁇ 2.2°C (140 ⁇ 5°F).
- the immersion time may be from about 3 minutes to 60 minutes, more preferably from 5 to 30 minutes. When sodium acetate is employed, the immersion time can be reduced to 5 to 8 minutes. Use of these parameters will result in coating weights ranging for example from 215 mg/m 2 to 2583 mg/m 2 (20 to 240 mg/ft 2 ).
- the cobalt conversion coating should be applied after all trimming and fabrication have been completed. Parts, where solution entrapment is possible, should not be subjected to immersion alkaline cleaning or immersion deoxidizing; manual cleaning and manual deoxidizing procedures should be used to obtain water break-free surfaces before applying cobalt conversion treatment.
- a water break-free surface is a surface which maintains a continuous water film for a period of at least 30 seconds after having been sprayed or immersion rinsed in clean water at a temperature below 37.7°C (100°F).
- Vapor degrease may be performed in accordance with Boeing Process Specification BAC 5408.
- Emulsion clean in accordance with Boeing Process Specification BAC 5763, or solvent clean in accordance with Boeing Process Specification BAC 5750 if parts are greasy or oily. Parts with open faying surfaces or spot-welded joints where solution entrapment is possible should be immersed in cold water (or in hot and cold water) for 2 minutes after precleaning.
- Alkaline clean and rinse may be performed in accordance with Boeing Process Specification BAC 5749, except for parts with open faying surfaces or spot welded joints, in which case, rinsing should be for at least 10 minutes using agitation with multiple immersions (a minimum of four times) followed by manual spray rinsing as required to prevent solution entrapment.
- Deoxidize and rinse may be performed in accordance with Boeing Process Specification BAC 5765 except for parts where solution entrapment is possible, which parts may be rinsed using the method described above under "Alkaline Cleaning". Castings may be deoxidized by either of the following methods:
- FIGURE 5 depicts the general behavior of cobalt conversion coatings with respect to corrosion performance vs. paint adhesion.
- the intercept point of the corrosion and adhesion curve represents the bath parameters where the two divergent properties (corrosion and adhesion) are at optimum with respect to each other.
- the pH be maintained between pH 6.0 and 7.5, although coatings have been produced between pH 5.0 and 9.0. Adjustments to the pH may be required after the solutions have been used for extended periods.
- ESCA electron spectroscopy for chemical analysis (also known as XPS or X-ray photoelectron spectroscopy).) These analyses show that the cobalt conversion coating consists of a mixture of oxides, namely, aluminum oxide AL 2 O 3 as the largest volume percent, and cobalt oxides CoO, Co 2 O 3 , and Co 3 O 4 Al 2 O 3 .
- large volume percent means that the volume of this oxide exceeds the volume of any other oxide which is present, but the term “largest volume percent” means that the volume of this oxide exceeds the volume of any other oxide which is present, but the term “largest volume present” does not necessarily imply that the volume of this oxide is more than 50 volume percent.
- the data further shows that in the lower portion of the oxide coating (that is, next to the aluminum substrate), the largest volume percent is AL 2 O 3 .
- the middle portion of the oxide coating is a mixture of CoO, Co 2 O 3 , Co 3 O 4 , and Al 2 O 3 .
- the data shows that in the top portion of the oxide coating, the largest volume percent is a mixture of co 2 O 3 and Co 3 O 4 .
- FIGS. 1 through 4 show a cobalt conversion coating 410 and 420 formed by a 15 minute immersion in a typical cobalt conversion coating solution.
- the top surface of the cobalt conversion coating, as shown in FIGS. 1 through 4 bears a resemblance to a sponge, thus providing substantial surface area and porosity for good paint adhesion. Below the top surface, the coating becomes more dense and solid (nonporous).
Landscapes
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Paints Or Removers (AREA)
- Chemically Coating (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Insulated Metal Substrates For Printed Circuits (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/903,853 US5411606A (en) | 1990-05-17 | 1992-06-25 | Non-chromated oxide coating for aluminum substrates |
CNB931017378A CN1138873C (zh) | 1992-06-25 | 1993-01-18 | 在金属基体上形成钴转化膜层的方法,钴转化镀膜液及其用途 |
PCT/EP1993/001630 WO1994000619A1 (en) | 1992-06-25 | 1993-06-23 | Non-chromated oxide coating for aluminum substrates |
US903853 | 2007-09-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0646187A1 EP0646187A1 (en) | 1995-04-05 |
EP0646187B1 true EP0646187B1 (en) | 2001-01-10 |
Family
ID=36793885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93914728A Expired - Lifetime EP0646187B1 (en) | 1992-06-25 | 1993-06-23 | Non-chromated oxide coating for aluminum substrates |
Country Status (18)
Country | Link |
---|---|
EP (1) | EP0646187B1 (zh) |
JP (1) | JP3345010B2 (zh) |
CN (2) | CN1138873C (zh) |
AT (1) | ATE198631T1 (zh) |
AU (1) | AU687740B2 (zh) |
BR (1) | BR9306602A (zh) |
CA (1) | CA2138790C (zh) |
DE (1) | DE69329853T2 (zh) |
DK (1) | DK0646187T3 (zh) |
ES (1) | ES2152950T3 (zh) |
GR (1) | GR3035554T3 (zh) |
MX (1) | MX9303745A (zh) |
NO (1) | NO315522B1 (zh) |
NZ (1) | NZ253699A (zh) |
RU (1) | RU2135637C1 (zh) |
SG (1) | SG43169A1 (zh) |
WO (1) | WO1994000619A1 (zh) |
ZA (1) | ZA934544B (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5551994A (en) * | 1990-05-17 | 1996-09-03 | The Boeing Company | Non-chromated oxide coating for aluminum substrates |
DK0523288T3 (da) * | 1991-07-19 | 1999-08-02 | Boeing Co | Ikke-chromaterede oxidovertræk til aluminiumsubstrater |
WO1996021753A1 (en) * | 1995-01-13 | 1996-07-18 | Henkel Corporation | Composition and process for forming a solid adherent protective coating on metal surfaces |
US5948178A (en) * | 1995-01-13 | 1999-09-07 | Henkel Corporation | Composition and process for forming a solid adherent protective coating on metal surfaces |
AR001268A1 (es) * | 1995-03-22 | 1997-10-08 | Henkel Corp | Procedimiento para formar un recubrimiento protector adherente solido sobre superficies metalicas. |
FR2752851B1 (fr) * | 1996-09-02 | 1998-11-13 | Cfpi Ind | Bain et procede de phosphatation de substrats metalliques, concentre pour la preparation de ce bain et substrats metalliques traites a l'aide de ces bain et procede |
US5873953A (en) * | 1996-12-26 | 1999-02-23 | The Boeing Company | Non-chromated oxide coating for aluminum substrates |
US6315823B1 (en) | 1998-05-15 | 2001-11-13 | Henkel Corporation | Lithium and vanadium containing sealing composition and process therewith |
WO2003060019A1 (en) | 2002-01-04 | 2003-07-24 | University Of Dayton | Non-toxic corrosion protection pigments based on cobalt |
US7294211B2 (en) | 2002-01-04 | 2007-11-13 | University Of Dayton | Non-toxic corrosion-protection conversion coats based on cobalt |
US7235142B2 (en) | 2002-01-04 | 2007-06-26 | University Of Dayton | Non-toxic corrosion-protection rinses and seals based on cobalt |
FR2856079B1 (fr) * | 2003-06-11 | 2006-07-14 | Pechiney Rhenalu | Procede de traitement de surface pour toles et bandes en alliage d'aluminium |
CN1309864C (zh) * | 2004-09-29 | 2007-04-11 | 广州擎天油漆化工实业有限公司 | 一种在铝及其合金表面上形成转化膜的工艺 |
CN100372972C (zh) * | 2005-11-03 | 2008-03-05 | 复旦大学 | 在固体表面生长金属有机配合物的方法 |
CN103184445A (zh) * | 2011-12-28 | 2013-07-03 | 上海航天精密机械研究所 | 一种铝合金表面化学氧化溶液组合物及工艺 |
CN103266315B (zh) * | 2013-05-31 | 2015-05-13 | 海安县申菱电器制造有限公司 | 一种铝合金钴盐化学转化膜处理液的配制 |
CN103266314B (zh) * | 2013-05-31 | 2015-05-13 | 海安县申菱电器制造有限公司 | 一种铝合金钴盐化学转化膜处理方法 |
CN104846309A (zh) * | 2015-05-09 | 2015-08-19 | 安徽鼎恒再制造产业技术研究院有限公司 | 一种高强度Co3O4-SiC涂层材料及其制备方法 |
CN106868495B (zh) * | 2017-01-23 | 2019-06-11 | 江苏理工学院 | 一种钴盐化学氧化废液的回收再利用方法 |
WO2020006365A1 (en) * | 2018-06-28 | 2020-01-02 | Nelumbo Inc. | Coincident surface modifications and methods of preparation thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4381203A (en) * | 1981-11-27 | 1983-04-26 | Amchem Products, Inc. | Coating solutions for zinc surfaces |
US5298092A (en) * | 1990-05-17 | 1994-03-29 | The Boeing Company | Non-chromated oxide coating for aluminum substrates |
DE69126507T2 (de) * | 1990-11-30 | 1997-09-25 | Boeing Co | Chromatfreier Kobalt-Konversionsüberzug |
DK0523288T3 (da) * | 1991-07-19 | 1999-08-02 | Boeing Co | Ikke-chromaterede oxidovertræk til aluminiumsubstrater |
-
1993
- 1993-01-18 CN CNB931017378A patent/CN1138873C/zh not_active Expired - Fee Related
- 1993-06-22 MX MX9303745A patent/MX9303745A/es unknown
- 1993-06-23 BR BR9306602A patent/BR9306602A/pt not_active IP Right Cessation
- 1993-06-23 AU AU45008/93A patent/AU687740B2/en not_active Expired
- 1993-06-23 NZ NZ253699A patent/NZ253699A/en not_active IP Right Cessation
- 1993-06-23 JP JP50204994A patent/JP3345010B2/ja not_active Expired - Lifetime
- 1993-06-23 SG SG1996004772A patent/SG43169A1/en unknown
- 1993-06-23 RU RU94046218A patent/RU2135637C1/ru not_active IP Right Cessation
- 1993-06-23 AT AT93914728T patent/ATE198631T1/de not_active IP Right Cessation
- 1993-06-23 DE DE69329853T patent/DE69329853T2/de not_active Expired - Fee Related
- 1993-06-23 ES ES93914728T patent/ES2152950T3/es not_active Expired - Lifetime
- 1993-06-23 EP EP93914728A patent/EP0646187B1/en not_active Expired - Lifetime
- 1993-06-23 DK DK93914728T patent/DK0646187T3/da active
- 1993-06-23 WO PCT/EP1993/001630 patent/WO1994000619A1/en active IP Right Grant
- 1993-06-23 CA CA002138790A patent/CA2138790C/en not_active Expired - Fee Related
- 1993-06-24 ZA ZA934544A patent/ZA934544B/xx unknown
- 1993-06-25 CN CNB931075831A patent/CN1195893C/zh not_active Expired - Fee Related
-
1994
- 1994-12-23 NO NO19945026A patent/NO315522B1/no unknown
-
2001
- 2001-03-09 GR GR20010400395T patent/GR3035554T3/el not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE69329853D1 (de) | 2001-02-15 |
GR3035554T3 (en) | 2001-06-29 |
NZ253699A (en) | 1997-05-26 |
AU687740B2 (en) | 1998-03-05 |
AU4500893A (en) | 1994-01-24 |
CN1080963A (zh) | 1994-01-19 |
JPH07508311A (ja) | 1995-09-14 |
CN1138873C (zh) | 2004-02-18 |
JP3345010B2 (ja) | 2002-11-18 |
DK0646187T3 (da) | 2001-04-30 |
RU94046218A (ru) | 1996-10-20 |
NO945026D0 (no) | 1994-12-23 |
SG43169A1 (en) | 1997-10-17 |
MX9303745A (es) | 1994-02-28 |
BR9306602A (pt) | 1998-12-08 |
EP0646187A1 (en) | 1995-04-05 |
CN1195893C (zh) | 2005-04-06 |
NO945026L (no) | 1995-02-24 |
DE69329853T2 (de) | 2001-04-26 |
CA2138790A1 (en) | 1994-01-06 |
ZA934544B (en) | 1994-03-18 |
ES2152950T3 (es) | 2001-02-16 |
WO1994000619A1 (en) | 1994-01-06 |
CN1090338A (zh) | 1994-08-03 |
NO315522B1 (no) | 2003-09-15 |
ATE198631T1 (de) | 2001-01-15 |
CA2138790C (en) | 2004-10-19 |
RU2135637C1 (ru) | 1999-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0646187B1 (en) | Non-chromated oxide coating for aluminum substrates | |
JP3194607B2 (ja) | コバルト化成皮膜の形成方法 | |
US5411606A (en) | Non-chromated oxide coating for aluminum substrates | |
EP0776384B1 (en) | Improved non-chromated oxide coating for aluminium substrates | |
EP0458020B1 (en) | Non-chromated oxide coating for aluminum substrates | |
US5472524A (en) | Non-chromated cobalt conversion coating method and coated articles | |
EP0523288B1 (en) | Non-chromated oxide coating for aluminum substrates | |
US5873953A (en) | Non-chromated oxide coating for aluminum substrates | |
US5378293A (en) | Non-chromated oxide coating for aluminum substrates | |
EP1230424B1 (en) | Non-chromated oxide coating for aluminum substrates | |
US5468307A (en) | Non-chromated oxide coating for aluminum substrates | |
KR100327142B1 (ko) | 금속기재상에코발트전환코팅을형성하기위한방법및화학전환코팅용액및상기방법으로제조한물품 | |
RU2130977C1 (ru) | Способ формирования оксидного кобальтового конверсионного покрытия и водный химический раствор для получения оксидного кобальтового конверсионного покрытия | |
KR100305009B1 (ko) | 알루미늄기판을위한비-크롬산염산화물코팅을형성하는방법 | |
NZ245684A (en) | Solution and process for producing a cobalt conversion coating on a metal substrate | |
NO310154B1 (no) | Fremgangsmåte ved fremstilling av et korrosjonsresistent og adhesjonsfremmende belegg på et substrat, samt vandig kjemisk badfor anvendelse i fremgangsmåten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950125 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19951211 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 198631 Country of ref document: AT Date of ref document: 20010115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ARNOLD & SIEDSMA AG Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69329853 Country of ref document: DE Date of ref document: 20010215 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2152950 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080626 Year of fee payment: 16 Ref country code: CH Payment date: 20080630 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20080603 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080624 Year of fee payment: 16 Ref country code: LU Payment date: 20080702 Year of fee payment: 16 Ref country code: DK Payment date: 20080626 Year of fee payment: 16 Ref country code: DE Payment date: 20080731 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080627 Year of fee payment: 16 Ref country code: FR Payment date: 20080617 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080627 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20080627 Year of fee payment: 16 Ref country code: BE Payment date: 20080730 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20080627 Year of fee payment: 16 |
|
BERE | Be: lapsed |
Owner name: THE *BOEING CY Effective date: 20090630 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090623 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20100101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100226 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100101 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100101 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100107 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090624 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090623 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090624 |