EP0585312A4 - Soil resistant fibers - Google Patents

Soil resistant fibers

Info

Publication number
EP0585312A4
EP0585312A4 EP9292910817A EP92910817A EP0585312A4 EP 0585312 A4 EP0585312 A4 EP 0585312A4 EP 9292910817 A EP9292910817 A EP 9292910817A EP 92910817 A EP92910817 A EP 92910817A EP 0585312 A4 EP0585312 A4 EP 0585312A4
Authority
EP
European Patent Office
Prior art keywords
fluorochemical
core
inner core
polypropylene
outer core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP9292910817A
Other languages
French (fr)
Other versions
EP0585312A1 (en
Inventor
Ralph R Sargent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peach State Labs Inc
Original Assignee
Peach State Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peach State Labs Inc filed Critical Peach State Labs Inc
Publication of EP0585312A1 publication Critical patent/EP0585312A1/en
Publication of EP0585312A4 publication Critical patent/EP0585312A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties

Definitions

  • This invention is in the area of fiber technology, and in particular relates to carpet and textile fibrous compositions prepared by melt extrusion of a polymer with a fluorochemical. Also described are polymeric articles, including thin film and molded objects prepared from polymeric compositions that have a fluorochemical dispersed throughout a polymer.
  • carpet and textile fibers are easily soiled and stained in everyday use.
  • the problem of fiber soiling has become more difficult with the advent of synthetic fibers such as polypropylene, polyamide, polyethylene, and polyester, that are substantially more oleophilic (oil-loving) than traditional natural fibers such as cotton and wool.
  • Soil found on fibers can include a variety of solid particles, such as fly ash or other inorganic particulates; liquids, such as oils and greases; mixtures of solids and liquids, such as soot (that contain particles mixed with oily components); and biological matter such as skin cells and sebum.
  • solid particles such as fly ash or other inorganic particulates
  • liquids such as oils and greases
  • soot that contain particles mixed with oily components
  • biological matter such as skin cells and sebum.
  • Soil typically adheres to the fiber surface by Van der Waals forces, that are effective only over very short distances.
  • the strength of the bond depends on the forces of interaction per unit interfacial area, the area of contact, and whether a liquid is present on the fiber surface. Oily films on the fiber increase soiling. In general, the higher the viscosity of the liquid, the greater the adhesion of the liquid to the fiber. Soil particles can even adhere to initially smooth surfaces, such as polyester and polyethylene film. Soil is not commonly mechanically entrapped in the fiber.
  • Staining of a fiber can occur in a wide variety of ways, including through the ionic or covalent binding of an exogenous colored substance to the fiber.
  • nylon fibers are polya ides with terminal amino and carboxyl end groups.
  • Nylon is commonly stained by acid dyes, which are colored, negatively charged molecules that ionically bind to the protonated terminal amine.
  • staining acid dyes include liquids containing FD&C Red Dye No. 4, wine, and mustard.
  • soil (as opposed to stain) resistance has been imparted to carpet and textile fibers by applying a finish that repels oil and water. Perhaps the first soil resist agent for fibers was starch, that was removed along with the soil when the fiber was washed.
  • Vinyl polymers including acrylics, methacrylics and polymers of maleic acid have also been used as soil release agents.
  • One of the first patents in this area was U.S. Patent No. 3,377,249, issued in 1969 and assigned to Deering Mil ⁇ ken, disclosing and claiming emulsions of copolymers of ethyl acrylate with at least 20% acrylic, methacrylic, or itaconic acid in combination with N-methylol acrylamide.
  • fluorochemical soil release agents have become very popular.
  • the fluorochemical agents are coated onto the fiber to prevent wetting of the surface by minimizing chemical contact between the surface and substances that can soil the carpet, making the substance easier to remove.
  • the first fluorochemical finishes focused on reducing the surface energy of the fiber to prevent the spreading of oily soils. More recently developed fluorochemical finishes have attempted to combine reduction in surface energy with hydrophilicity, as described in U.S. Patent No. 3,728,151. Increased hydrophilicity facilitates the removal of the soil or staining material during washing. Hydrophilic moieties in soil resist finishes include a number of hydrogen bonding groups, including polyalkylene glycols.
  • a number of patents describe fluorinated polymers for use as soil resist coatings for fibers, including U.S. Patent No. 3,759,874 (describing polyurethanes that consist of a combination of an oleophilic fluorine- containing block and a hydrophilic polyethyleneoxide block) and U.S. Patent No. 4,046,944 (describing a fluorinated condensation block copolymer, that include oleophilic fluorinated blocks and hydrophilic polyethyleneoxide blocks connected by urea linkages).
  • Fluorochemical coatings have been used extensively on carpet fibers, either alone (Antron PlusTM carpet manufactured by E. I. DuPont Nemours and Company), or in combination with an acid dye stain resistant polymeric formulation that includes a sulfonated aromatic formaldehyde condensation polymer.
  • Examples of commercially available fluorochemical coatings for carpet fibers include ScotchgardTM 358 and 352 (Minnesota Mining & Mfg. Co.), ZonylTM 5180 Fluorochemical dispersion, and Teflon Tuft Coat Anionic (E.I. Du Pont de Nemours and Company, Inc.).
  • ZonylTM 5180 is an aqueous fluorochemical dispersion containing a 1-10% polyfunctional perfluoroalkyl ester mixture, 10-20% polymethylmethacrylate, and 70-75% water.
  • Teflon Tuftcoat Anionic contains 5-10% perfluoroalkyl substituted urethanes, 1-5 % polyfunctional perfluoroalkyl esters, and 85-90% water.
  • fluorinated finishing coats on fibers do impart an amount of soil resistance to the fiber, they all suffer from the distinct disadvantage that they are removed by routine maintenance of the fiber. None of the fluorochemical finishes available to date provides permanent protection from soiling and staining. This is a particular problem for polypropylene, that is very oleophilic, and that has begun to compete with nylon as a fiber for use in residential carpets.
  • Permanently soil resistant polymeric compositions are prepared by extruding an appropriate polymer, copolymer, or polymer mixture, in combination with a fluorochemical, to produce a fiber that has the fluorochemical dispersed throughout the filament. Fibers produced in this manner have a decreased surface energy and thus decreased tendency to adhere to soiling agents. The fluorochemical is intricately bound with the polymer, imparting to it permanent soil resisting properties.
  • Any polymer, copolymer, or polymer mixture that can be extruded with the desired fluorochemical can be used to prepare the soil resistant fiber.
  • Preferred polymers for melt extrusion are polypropylene, nylon 6, polyester, and polyethylene, or mixtures of these.
  • a preferred fluorochemical is Zonyl FTS Fluorotelomer 5822APP marketed by E. I. Du Pont Nemours and Company.
  • the polymer chip and fluorochemical are blended in a rotary drum dry blender.
  • the blended chips are then poured into a feed hopper, and extruded through a heated temperature chamber and spinneret to form monofilament that is chipped or flaked to an appropriate size.
  • the chips or flakes are then shaped as desired, or extruded into fiber.
  • the polymer fluorochemical chips are blended with other polymer chips that do not contain fluorochemical, and the blend is then extruded to form objects or fibers of a desired size.
  • the polymer in the chip or flake can be the same as or different than the polymer that is later mixed with the chip or flake.
  • the polymer/fluorochemical chips can also be used to coat a polymer fiber to improve its properties.
  • nylon 6 such as polycaprolactam
  • nylon 6 can be coated with a polyester or polypropylene that has a fluorochemical dispersed in it to impart soil resisting properties to the nylon.
  • Thin films of polymer with fluorochemical dispersed in the film can also be prepared that have superior antiwetting properties. These films can be coated with an adhesive shortly after preparation without the need to extensively dry the film.
  • Polypropylene fibers prepared as described herein can be used in residential or commercial carpet to provide a long lasting, durable carpet with permanent soil resistance and low flammability.
  • Polymeric compositions that are permanently soil resistant are prepared that have fluorochemical dispersed throughout the polymer.
  • Caipet and textile fibers prepared in this way have reduced surface energy and low static properties relative to the fiber without the fluorochemical.
  • the fibers represent a significant advance in fiber and textile technology, in that the fluorochemical is dispersed throughout the polymer instead of coated onto the fiber, and is not removed from the fiber on washing.
  • the dispersion of the fluorochemical in the polymer improves characteristics of the polymer other than soil resistance.
  • polypropylene fibers that are extruded without a fluorochemical are highly static.
  • Antistatic agents must be applied to the fiber after extrusion to keep the fiber from breaking or static clinging during later processing steps.
  • the antistatic agents must be removed from the fiber by scouring after the fiber is tufted because they can increase the tendency of the fiber to soil on use. This process is cumbersome and increases the cost of the fiber.
  • Polymers, and in particular polypropylene fibers, extruded with a fluorochemical do not require antistatic agents to facilitate handling, because they have inherently low static energy.
  • Fluorochemicals also impart antiwetting characteristics to polymers that are useful for a number of applications.
  • the fluorochemical can be extruded with a polymer into a thin film that repels water. This is particularly useful for certain manufacturing procedures that require a dry film for the application, for example, addition of an adhesive to a recently extruded film. Dispersion of the fluorochemical into the polymer also decreases the flammabihty and alters the combustion characteristics of the polymer.
  • copolymer as used herein includes polymers formed by the polymerization of at least two different monomers; a monomer and a polymer; or two or more polymers or oligomers.
  • polymer as used herein includes copolymers and mixtures of polymers.
  • Any polymer, copolymer, or mixture of polymers is suitable for use in the soil resistant fiber that can be melt extruded and that is compatible with the desired fluorochemical.
  • Common polymers that are typically melt extruded include nylon 6, polyester, polypropylene, and polyethylene.
  • a polymer should be selected that, when combined with the fluorochemical, has an appropriate viscosity and shear rate on extrusion. It should solidify within a reasonable time to a filament with appropriate characteristics for the desired function, including tensile strength (strain), elongation (stress), modulus, crystallinity, glass transition temperature, and melt temperature. These characteristics can be measured by known methods.
  • fluorochemical refers to an organic nonpolymeric compound in which more than two of the hydrogens atoms attached directly to carbon have been replaced with fluorine, or an organic polymeric compound in which at least one hydrogen attached to a carbon in a monomer used to prepare the polymer or copolymer is replaced with fluorine.
  • Fluorochemicals are sometimes also called fluorocarbons or fluorocarbon polymers. Fluorochemicals can include other halogen atoms bound to carbon, notably chlorine.
  • Fluorochemicals are typically more dense and more volatile than the corresponding hydrocarbons and have lower refractive indices, lower dielectric constants, lower solubilities, and lower surface tensions than the corresponding nonfluorinated compound or polymer.
  • the fluorochemical selected for extrusion with the polymer can be perfluorinated, wherein all of the hydrogens are replaced with fluorine atoms, or semifluorinated, wherein two or more, but not all, of the hydrogens are replaced with fluorine.
  • Suitable fluorochemicals for use in preparation of the soil resistant fibers are small molecules, oligomers, or polymers, or mixtures of these.
  • the fluorochemical can be added to the mechanical blender in a solid or liquid form.
  • the fluorochemical or mixture of fluorochemicals that is selected should not include any moiety that reacts adversely or degrades on extrusion.
  • the fluorochemical must also be compatible with, and not adversely react with, functional or functionalized moieties in the polymer extruded with the fluorochemical.
  • the fluorochemical extruded with the polymer can be homogeneous or can include a mixture of semifluorinated compounds, perfluorinated compounds, or both semifluorinated and perfluorinated compounds.
  • the types of functional groups that can be included in the fluorochemical will depend on the temperature of extrusion, length of time that the material is heated in the extruder, and presence of other components in the extruded material.
  • Nonlimiting examples of functional or functionalized moieties that may be included in the fluorochemical for use under the proper conditions include alcohols, glycols, ketones, aldehydes, ethers, esters, amides, acids, acrylates, urethanes, ureas, alkanes, alkenes, alkynes, aromatics, heteroaromatics, and nitriles.
  • fluorocarbon hydrocarbon polymers including polytetrafluoroethylene, polymers of chlorotrifluoroethylene, fluorinated ethylene-propylene polymers, polyvinylidene fluoride, and poly(hexafluoropropylene).
  • fluorochemicals are available commercially, many from E.I. Du Pont Nemours and Company, Wilmington, Delaware.
  • Zonyl FTS Fluorotelomer 5823 APP A preferred fluorochemical marketed by Du Pont is Zonyl FTS Fluorotelomer 5823 APP, that includes 85-90% perfluoroalkylstearate ((a-fluoro-w-[2-[(l -oxooctadecyl)oxy]ethyl]- poly(difluoromethylene) CAS 65530-65-6); 1-5% fluorinated alcohol mixture (CAS 112-61-8), and 5-10% methyl stearate.
  • Zonyl FTS is a waxy, light brown solid with a melting point between 30 and 45 °C.
  • fluorochemicals that can be used include those that are now used commercially in fluorochemicals coatings, including ScotchgardTM 358 and 352 (Minnesota Mining & Mfg. Co.), ZonylTM 5180 Fluorochemical dispersion, and Teflon Tuft Coat Anionic (E.I. Du Pont de Nemours and Company, Inc.).
  • ZonylTM 5180 is an aqueous fluorochemical dispersion containing a 1-10% polyfunctional perfluoroalkyl ester mixture, 10-20% polymethylmethacrylate, and 70-75% water.
  • Teflon Tuftcoat Anionic contains 5-10% perfluoroalkyl substituted urethanes, 1-5% polyfunctional perfluoroalkyl esters, and 85-90% water.
  • the fluorochemical is obtained as a water based emulsion
  • the emulsifiers and water should be removed before the fluorochemical is added to the blender with the polymer.
  • Extrusion is a process for making continuous-filament synthetic polymeric forms by forcing a polymer through minute holes of a spinneret with a rotating screw.
  • the polymeric composition can be extruded in a thick form and cut into chips or flakes, or extruded in a thin form for use as carpet or textile fiber. Fiber extrusion is often referred to as "spinning" in the industry.
  • the fiber is prepared in a melt spin process, wherein the fiber-forming substance is melted and then extruded through the spinneret into a gas (such as air), or a liquid, to cool and solidify the fiber.
  • a gas such as air
  • Polypropylene, polyethylene, polyamide (nylon), and polyester (for example, Dacron, Terylene, and Vycron) fibers are prepared in this way.
  • the fluorochemical can be extruded neat with the melted polymer. It is important in using this process to choose a polymer that has a melting temperature below that at which the fluorochemical that is extruded with it degrades or reacts.
  • Polypropylene used for continuous filament fiber typically melts at approximately 300 °F.
  • Nylon is typically extruded at a temperature of approximately 490 °F.
  • the melt or degradation temperature of the fluorochemical to be used can be determined easily by known methods.
  • chips or flakes of a desired polymer and fluorochemical are initially prepared by known methods, typically in a dual screw (such as a Farrell) or single screw (such as a Mackie, Barmag, Filtecho, Plantex, Hills Reacher, or Neumag) device.
  • the chips can be used as an additive in a manufacture of wide variety of polymeric articles, including thin film, and thermoplastic or thermoset objects. Alternatively, the chips can be extruded into fiber.
  • the polymer/ fluorochemical chip should be prepared in appropriate size to be used in the desired extrusion, molding, or other equipment.
  • the polymer fluorochemical chips are used in a polymer extrusion feedstock along with chips or flakes of the same or a different polymer to produce a soil resistant fiber.
  • chips can be prepared from nylon and a fluorochemical, and then extruded in combination with polypropylene chips.
  • Soil resistant fibers can also be prepared by thin core coextrusion, that involves the extrusion of an inner core of a polymer with an outer core of a polymer that has fluorochemical embedded in it. Machinery appropriate for thin-core coextrusion is available from Hills Research Corporation in Florida. For durability, an inner polymer core should be chosen that adheres sufficiently to the outer soil resistant polymeric composition. Thin core coextrusion can be used to prepare a wide variety of fibers for varying applications at varying costs. For example, a less expensive polymer can be used as an inner core of the fiber, and the desired polymer with fluorochemical soil protection as the outer core. Alternatively, a soil resistant fiber can be strengthened with a strong inner polymer core.
  • Nonlimiting examples include fibers prepared by coextruding a polypropylene inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polypropylene/fluorochemical outer core, a polyethylene inner core with a polypropylene/fluorochemical outer core, a polypropylene inner core with a polyethylene/fluorochemical outer core, a polyethylene inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polyethylene/fluorochemical outer core, a polyester inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polyester/fluorochemical outer core, a polyethylene inner core and a polyester/fluorochemical outer core, a polypropylene inner core and a polyester/fluorochemical outer core, a polyester inner core and a polyethylene/fluorochemical outer core, a polyester inner core and a polypropylene/fluorochemical outer core, a polyester inner core and a
  • the ratio of polymer to fluorochemical in the chip will vary based on the end use of the chip. In general, if the chip is to be extruded into fiber or made into an article without addition of other polymer chip in the final feedstock, less fluorochemical will be used than if the fluorochemical chip is later diluted with other polymer in the fiber or article formation.
  • a ratio of fluorochemical to polymer should be used that produces a chip with the desired characteristics of melting temperature, strength, processability, soil resistance, and antistatic properties. These characteristics can be measured easily by one skilled in the art of polymer technology.
  • the ratio of polymer to fluorochemical in the chip ranges from 1 :1 to 1000:1 , and more preferably from 20:1 to 1 :1 , for melt extrusion.
  • a feeder chip is prepared with approximately 1 part by weight of fluorochemical to 9 parts by weight of polymer.
  • the 9:1 polymer/fluorochemical chip is then coextruded with polymer chip in a 1 : 1 weightrweight ratio to form a final product with the desired characteristics.
  • the temperature of extrusion will vary depending on the polymer and fluorochemical used in the process. Typical extrusion temperatures vary from 100 °F to 800 °F, however, extrusion temperatures outside this range may be required in certain processes.
  • the fiber denier will also vary depending on the product being prepared, and are typically within the range of 1 to 50,000. Carpet fibers typically range from 900 denier to 8000 denier.
  • a wide variety of textile treatment chemicals can be added to the extrusion process to improve the properties of the product.
  • examples include antioxidants, flame retardants, ultra-violet absorbers, dyes or coloring agents, and microbiocidal agents, including antibacterial agents, antifungals, and antialgals.
  • Any commercially available textile treatment chemical that does not degrade or adversely react in the extrusion process is appropriate.
  • Commercially available flame retardants include alumina trihydrate, calcium carbonate, magnesium carbonate, barium carbonate, metal oxides, borates, sulfonates, and phosphates.
  • Example 1 The procedure of Example 1 is repeated using nylon 6 in place of polypropylene.
  • Polypropylene Zonyl FTS chips prepared as in Example 1 are fed into a single screw extrusion apparatus, passed through a cooling chamber and around heated rollers. The fiber is then passed through forced air and wound onto a cone.
  • Example 3 The procedure of Example 3 is followed with the exception that nylon chips and polypropylene Zonyl FTS chips are used as the feed stock in a 1:1 by weight ratio.
  • Polypropylene chips are fed into a single screw extrusion apparatus manufactured by Hills Research Corporation, and then passed through a solution chamber that includes nylon 6 and Zonyl FTS.
  • the coated fiber is then quenched in a cooling chamber and pulled around heated rollers.
  • the fiber is then passed through forced air and wound onto a cone.

Abstract

Permanently soil resistant polymeric compositions that have fluorochemical dispersed throughout the polymer are prepared by melt extrusion of the fluorochemical with the desired polymer. Preferred polymers for extrusion with the fluorochemical are polyester, polypropylene, polyethylene, and polyamide.

Description

SOIL RESISTANT FIBERS
This invention is in the area of fiber technology, and in particular relates to carpet and textile fibrous compositions prepared by melt extrusion of a polymer with a fluorochemical. Also described are polymeric articles, including thin film and molded objects prepared from polymeric compositions that have a fluorochemical dispersed throughout a polymer.
Background of the Invention
Carpet and textile fibers are easily soiled and stained in everyday use. The problem of fiber soiling has become more difficult with the advent of synthetic fibers such as polypropylene, polyamide, polyethylene, and polyester, that are substantially more oleophilic (oil-loving) than traditional natural fibers such as cotton and wool.
A wide variety of materials are known to cause soiling. Soil found on fibers can include a variety of solid particles, such as fly ash or other inorganic particulates; liquids, such as oils and greases; mixtures of solids and liquids, such as soot (that contain particles mixed with oily components); and biological matter such as skin cells and sebum.
Soil typically adheres to the fiber surface by Van der Waals forces, that are effective only over very short distances. The strength of the bond depends on the forces of interaction per unit interfacial area, the area of contact, and whether a liquid is present on the fiber surface. Oily films on the fiber increase soiling. In general, the higher the viscosity of the liquid, the greater the adhesion of the liquid to the fiber. Soil particles can even adhere to initially smooth surfaces, such as polyester and polyethylene film. Soil is not commonly mechanically entrapped in the fiber.
Staining of a fiber can occur in a wide variety of ways, including through the ionic or covalent binding of an exogenous colored substance to the fiber. For example, nylon fibers are polya ides with terminal amino and carboxyl end groups. Nylon is commonly stained by acid dyes, which are colored, negatively charged molecules that ionically bind to the protonated terminal amine. Examples of staining acid dyes include liquids containing FD&C Red Dye No. 4, wine, and mustard. For many years, soil (as opposed to stain) resistance has been imparted to carpet and textile fibers by applying a finish that repels oil and water. Perhaps the first soil resist agent for fibers was starch, that was removed along with the soil when the fiber was washed. Other water soluble polymeric stain resist finishes have included methylcellulose, hydroxypropyl starch, polyvinyl alcohol, alginic acid, hydroxyethyl cellulose and sodium carboxymethyl cellulose. As with starch, the strong disadvantage of these protective finishes is that their mechanism of action is sacrificial; they contain the soil but are removed along with it when the fiber is cleaned.
Vinyl polymers including acrylics, methacrylics and polymers of maleic acid have also been used as soil release agents. One of the first patents in this area was U.S. Patent No. 3,377,249, issued in 1969 and assigned to Deering Milϋken, disclosing and claiming emulsions of copolymers of ethyl acrylate with at least 20% acrylic, methacrylic, or itaconic acid in combination with N-methylol acrylamide.
More recently, fluorochemical soil release agents have become very popular. The fluorochemical agents are coated onto the fiber to prevent wetting of the surface by minimizing chemical contact between the surface and substances that can soil the carpet, making the substance easier to remove.
The first fluorochemical finishes focused on reducing the surface energy of the fiber to prevent the spreading of oily soils. More recently developed fluorochemical finishes have attempted to combine reduction in surface energy with hydrophilicity, as described in U.S. Patent No. 3,728,151. Increased hydrophilicity facilitates the removal of the soil or staining material during washing. Hydrophilic moieties in soil resist finishes include a number of hydrogen bonding groups, including polyalkylene glycols.
A number of patents describe fluorinated polymers for use as soil resist coatings for fibers, including U.S. Patent No. 3,759,874 (describing polyurethanes that consist of a combination of an oleophilic fluorine- containing block and a hydrophilic polyethyleneoxide block) and U.S. Patent No. 4,046,944 (describing a fluorinated condensation block copolymer, that include oleophilic fluorinated blocks and hydrophilic polyethyleneoxide blocks connected by urea linkages).
Fluorochemical coatings have been used extensively on carpet fibers, either alone (Antron Plus™ carpet manufactured by E. I. DuPont Nemours and Company), or in combination with an acid dye stain resistant polymeric formulation that includes a sulfonated aromatic formaldehyde condensation polymer. Examples of commercially available fluorochemical coatings for carpet fibers include Scotchgard™ 358 and 352 (Minnesota Mining & Mfg. Co.), Zonyl™ 5180 Fluorochemical dispersion, and Teflon Tuft Coat Anionic (E.I. Du Pont de Nemours and Company, Inc.). Zonyl™ 5180 is an aqueous fluorochemical dispersion containing a 1-10% polyfunctional perfluoroalkyl ester mixture, 10-20% polymethylmethacrylate, and 70-75% water. Teflon Tuftcoat Anionic contains 5-10% perfluoroalkyl substituted urethanes, 1-5 % polyfunctional perfluoroalkyl esters, and 85-90% water.
Although fluorinated finishing coats on fibers do impart an amount of soil resistance to the fiber, they all suffer from the distinct disadvantage that they are removed by routine maintenance of the fiber. None of the fluorochemical finishes available to date provides permanent protection from soiling and staining. This is a particular problem for polypropylene, that is very oleophilic, and that has begun to compete with nylon as a fiber for use in residential carpets.
Therefore, it is an object of the present invention to provide carpet and textile fiber that has permanent soil resistance.
It is another object of the present invention to provide a method of manufacture of permanently soil resistant fibers.
It is a further object of the present invention to provide a polypropylene fiber that has superior soil resistance.
Summary of the Invention
Permanently soil resistant polymeric compositions are prepared by extruding an appropriate polymer, copolymer, or polymer mixture, in combination with a fluorochemical, to produce a fiber that has the fluorochemical dispersed throughout the filament. Fibers produced in this manner have a decreased surface energy and thus decreased tendency to adhere to soiling agents. The fluorochemical is intricately bound with the polymer, imparting to it permanent soil resisting properties.
Any polymer, copolymer, or polymer mixture that can be extruded with the desired fluorochemical can be used to prepare the soil resistant fiber. Preferred polymers for melt extrusion are polypropylene, nylon 6, polyester, and polyethylene, or mixtures of these. A preferred fluorochemical is Zonyl FTS Fluorotelomer 5822APP marketed by E. I. Du Pont Nemours and Company.
In one embodiment, in a first step of manufacture, the polymer chip and fluorochemical are blended in a rotary drum dry blender. The blended chips are then poured into a feed hopper, and extruded through a heated temperature chamber and spinneret to form monofilament that is chipped or flaked to an appropriate size. The chips or flakes are then shaped as desired, or extruded into fiber. In an optional second step, the polymer fluorochemical chips are blended with other polymer chips that do not contain fluorochemical, and the blend is then extruded to form objects or fibers of a desired size. The polymer in the chip or flake can be the same as or different than the polymer that is later mixed with the chip or flake.
The polymer/fluorochemical chips can also be used to coat a polymer fiber to improve its properties. For example, nylon 6 (such as polycaprolactam) can be coated with a polyester or polypropylene that has a fluorochemical dispersed in it to impart soil resisting properties to the nylon.
Thin films of polymer with fluorochemical dispersed in the film can also be prepared that have superior antiwetting properties. These films can be coated with an adhesive shortly after preparation without the need to extensively dry the film. Polypropylene fibers prepared as described herein can be used in residential or commercial carpet to provide a long lasting, durable carpet with permanent soil resistance and low flammability.
Detailed Description of the Invention
Polymeric compositions that are permanently soil resistant are prepared that have fluorochemical dispersed throughout the polymer. Caipet and textile fibers prepared in this way have reduced surface energy and low static properties relative to the fiber without the fluorochemical. The fibers represent a significant advance in fiber and textile technology, in that the fluorochemical is dispersed throughout the polymer instead of coated onto the fiber, and is not removed from the fiber on washing.
The dispersion of the fluorochemical in the polymer improves characteristics of the polymer other than soil resistance. For example, polypropylene fibers that are extruded without a fluorochemical are highly static. Antistatic agents must be applied to the fiber after extrusion to keep the fiber from breaking or static clinging during later processing steps. However, the antistatic agents must be removed from the fiber by scouring after the fiber is tufted because they can increase the tendency of the fiber to soil on use. This process is cumbersome and increases the cost of the fiber. Polymers, and in particular polypropylene fibers, extruded with a fluorochemical do not require antistatic agents to facilitate handling, because they have inherently low static energy.
Fluorochemicals also impart antiwetting characteristics to polymers that are useful for a number of applications. For example, the fluorochemical can be extruded with a polymer into a thin film that repels water. This is particularly useful for certain manufacturing procedures that require a dry film for the application, for example, addition of an adhesive to a recently extruded film. Dispersion of the fluorochemical into the polymer also decreases the flammabihty and alters the combustion characteristics of the polymer.
I. Polymers Suitable for the Preparation of Soil and Stain Resistant Compositions
The term "copolymer" as used herein includes polymers formed by the polymerization of at least two different monomers; a monomer and a polymer; or two or more polymers or oligomers. For simplicity, the term polymer as used herein includes copolymers and mixtures of polymers.
Any polymer, copolymer, or mixture of polymers is suitable for use in the soil resistant fiber that can be melt extruded and that is compatible with the desired fluorochemical. Common polymers that are typically melt extruded include nylon 6, polyester, polypropylene, and polyethylene. A polymer should be selected that, when combined with the fluorochemical, has an appropriate viscosity and shear rate on extrusion. It should solidify within a reasonable time to a filament with appropriate characteristics for the desired function, including tensile strength (strain), elongation (stress), modulus, crystallinity, glass transition temperature, and melt temperature. These characteristics can be measured by known methods.
π. Fluorochemicals
The term fluorochemical, as used herein, refers to an organic nonpolymeric compound in which more than two of the hydrogens atoms attached directly to carbon have been replaced with fluorine, or an organic polymeric compound in which at least one hydrogen attached to a carbon in a monomer used to prepare the polymer or copolymer is replaced with fluorine. Fluorochemicals are sometimes also called fluorocarbons or fluorocarbon polymers. Fluorochemicals can include other halogen atoms bound to carbon, notably chlorine.
The presence of the fluorine atoms impart stability, inertness, nonflammability, and oleophobic characteristics to the molecule. Fluorochemicals are typically more dense and more volatile than the corresponding hydrocarbons and have lower refractive indices, lower dielectric constants, lower solubilities, and lower surface tensions than the corresponding nonfluorinated compound or polymer.
The fluorochemical selected for extrusion with the polymer can be perfluorinated, wherein all of the hydrogens are replaced with fluorine atoms, or semifluorinated, wherein two or more, but not all, of the hydrogens are replaced with fluorine. Suitable fluorochemicals for use in preparation of the soil resistant fibers are small molecules, oligomers, or polymers, or mixtures of these. The fluorochemical can be added to the mechanical blender in a solid or liquid form.
The fluorochemical or mixture of fluorochemicals that is selected should not include any moiety that reacts adversely or degrades on extrusion. The fluorochemical must also be compatible with, and not adversely react with, functional or functionalized moieties in the polymer extruded with the fluorochemical. The fluorochemical extruded with the polymer can be homogeneous or can include a mixture of semifluorinated compounds, perfluorinated compounds, or both semifluorinated and perfluorinated compounds. The types of functional groups that can be included in the fluorochemical will depend on the temperature of extrusion, length of time that the material is heated in the extruder, and presence of other components in the extruded material. Nonlimiting examples of functional or functionalized moieties that may be included in the fluorochemical for use under the proper conditions include alcohols, glycols, ketones, aldehydes, ethers, esters, amides, acids, acrylates, urethanes, ureas, alkanes, alkenes, alkynes, aromatics, heteroaromatics, and nitriles.
A wide range of fluorocarbon hydrocarbon polymers are known, including polytetrafluoroethylene, polymers of chlorotrifluoroethylene, fluorinated ethylene-propylene polymers, polyvinylidene fluoride, and poly(hexafluoropropylene). A variety of suitable fluorochemicals are available commercially, many from E.I. Du Pont Nemours and Company, Wilmington, Delaware. A preferred fluorochemical marketed by Du Pont is Zonyl FTS Fluorotelomer 5823 APP, that includes 85-90% perfluoroalkylstearate ((a-fluoro-w-[2-[(l -oxooctadecyl)oxy]ethyl]- poly(difluoromethylene) CAS 65530-65-6); 1-5% fluorinated alcohol mixture (CAS 112-61-8), and 5-10% methyl stearate. Zonyl FTS is a waxy, light brown solid with a melting point between 30 and 45 °C. Other fluorochemicals that can be used include those that are now used commercially in fluorochemicals coatings, including Scotchgard™ 358 and 352 (Minnesota Mining & Mfg. Co.), Zonyl™ 5180 Fluorochemical dispersion, and Teflon Tuft Coat Anionic (E.I. Du Pont de Nemours and Company, Inc.). Zonyl™ 5180 is an aqueous fluorochemical dispersion containing a 1-10% polyfunctional perfluoroalkyl ester mixture, 10-20% polymethylmethacrylate, and 70-75% water. Teflon Tuftcoat Anionic contains 5-10% perfluoroalkyl substituted urethanes, 1-5% polyfunctional perfluoroalkyl esters, and 85-90% water.
If the fluorochemical is obtained as a water based emulsion, the emulsifiers and water should be removed before the fluorochemical is added to the blender with the polymer.
m. Extrusion of the Desired Polymer with the Fluorochemical
Extrusion is a process for making continuous-filament synthetic polymeric forms by forcing a polymer through minute holes of a spinneret with a rotating screw. The polymeric composition can be extruded in a thick form and cut into chips or flakes, or extruded in a thin form for use as carpet or textile fiber. Fiber extrusion is often referred to as "spinning" in the industry.
Li a preferred embodiment, the fiber is prepared in a melt spin process, wherein the fiber-forming substance is melted and then extruded through the spinneret into a gas (such as air), or a liquid, to cool and solidify the fiber. Polypropylene, polyethylene, polyamide (nylon), and polyester (for example, Dacron, Terylene, and Vycron) fibers are prepared in this way. In this process, the fluorochemical can be extruded neat with the melted polymer. It is important in using this process to choose a polymer that has a melting temperature below that at which the fluorochemical that is extruded with it degrades or reacts. Polypropylene used for continuous filament fiber typically melts at approximately 300 °F. Nylon is typically extruded at a temperature of approximately 490 °F. The melt or degradation temperature of the fluorochemical to be used can be determined easily by known methods.
In one embodiment, in a first step of manufacture using melt extrusion, chips or flakes of a desired polymer and fluorochemical are initially prepared by known methods, typically in a dual screw (such as a Farrell) or single screw (such as a Mackie, Barmag, Filtecho, Plantex, Hills Reacher, or Neumag) device. The chips can be used as an additive in a manufacture of wide variety of polymeric articles, including thin film, and thermoplastic or thermoset objects. Alternatively, the chips can be extruded into fiber. The polymer/ fluorochemical chip should be prepared in appropriate size to be used in the desired extrusion, molding, or other equipment.
In a second optional step, the polymer fluorochemical chips are used in a polymer extrusion feedstock along with chips or flakes of the same or a different polymer to produce a soil resistant fiber. For example, chips can be prepared from nylon and a fluorochemical, and then extruded in combination with polypropylene chips.
Soil resistant fibers can also be prepared by thin core coextrusion, that involves the extrusion of an inner core of a polymer with an outer core of a polymer that has fluorochemical embedded in it. Machinery appropriate for thin-core coextrusion is available from Hills Research Corporation in Florida. For durability, an inner polymer core should be chosen that adheres sufficiently to the outer soil resistant polymeric composition. Thin core coextrusion can be used to prepare a wide variety of fibers for varying applications at varying costs. For example, a less expensive polymer can be used as an inner core of the fiber, and the desired polymer with fluorochemical soil protection as the outer core. Alternatively, a soil resistant fiber can be strengthened with a strong inner polymer core. Nonlimiting examples include fibers prepared by coextruding a polypropylene inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polypropylene/fluorochemical outer core, a polyethylene inner core with a polypropylene/fluorochemical outer core, a polypropylene inner core with a polyethylene/fluorochemical outer core, a polyethylene inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polyethylene/fluorochemical outer core, a polyester inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polyester/fluorochemical outer core, a polyethylene inner core and a polyester/fluorochemical outer core, a polypropylene inner core and a polyester/fluorochemical outer core, a polyester inner core and a polyethylene/fluorochemical outer core, a polyester inner core and a polypropylene/fluorochemical outer core, and variations of these.
The ratio of polymer to fluorochemical in the chip will vary based on the end use of the chip. In general, if the chip is to be extruded into fiber or made into an article without addition of other polymer chip in the final feedstock, less fluorochemical will be used than if the fluorochemical chip is later diluted with other polymer in the fiber or article formation. A ratio of fluorochemical to polymer should be used that produces a chip with the desired characteristics of melting temperature, strength, processability, soil resistance, and antistatic properties. These characteristics can be measured easily by one skilled in the art of polymer technology. In a preferred embodiment, the ratio of polymer to fluorochemical in the chip ranges from 1 :1 to 1000:1 , and more preferably from 20:1 to 1 :1 , for melt extrusion. As an example of one embodiment of this invention, a feeder chip is prepared with approximately 1 part by weight of fluorochemical to 9 parts by weight of polymer. The 9:1 polymer/fluorochemical chip is then coextruded with polymer chip in a 1 : 1 weightrweight ratio to form a final product with the desired characteristics.
The temperature of extrusion will vary depending on the polymer and fluorochemical used in the process. Typical extrusion temperatures vary from 100 °F to 800 °F, however, extrusion temperatures outside this range may be required in certain processes. The fiber denier will also vary depending on the product being prepared, and are typically within the range of 1 to 50,000. Carpet fibers typically range from 900 denier to 8000 denier.
A wide variety of textile treatment chemicals can be added to the extrusion process to improve the properties of the product. Examples include antioxidants, flame retardants, ultra-violet absorbers, dyes or coloring agents, and microbiocidal agents, including antibacterial agents, antifungals, and antialgals. Any commercially available textile treatment chemical that does not degrade or adversely react in the extrusion process is appropriate. Commercially available flame retardants include alumina trihydrate, calcium carbonate, magnesium carbonate, barium carbonate, metal oxides, borates, sulfonates, and phosphates.
Example 1 Preparation of Polypropylene Zonyl FTS Chip
12 Melt flow polypropylene (FINA 3661) provided by Fina Oil and Chemical Corporation, Dear Park, Texas, was mechanically blended with Zonyl FTS Telomer Stearate 2967 (E.I. Du Pont Nemours and Company) in a weight ratio of 9 parts by weight of polypropylene to 1 part by weight of Zonyl FTS. The blended material was poured into a feed hopper, and forced through a single screw extrusion apparatus with temperature chambers of 490 °F, 505 °F, 510°F, 520 °F, and 500 °F. The extruded monofϊlament was cooled in a cold water quenching bath, and then passed through a chipper to provide soil resistant polypropylene chips. These chips can be used as a polymer additive or remelted and extruded into fiber.
Example 2 Preparation of Nylon Zonyl FTS Chip
The procedure of Example 1 is repeated using nylon 6 in place of polypropylene.
Example 3 Preparation of Polypropylene Zonyl FTS Fiber
Polypropylene Zonyl FTS chips prepared as in Example 1 are fed into a single screw extrusion apparatus, passed through a cooling chamber and around heated rollers. The fiber is then passed through forced air and wound onto a cone.
Example 4 Preparation of Nylon Polypropylene Zonyl FTS Fiber
The procedure of Example 3 is followed with the exception that nylon chips and polypropylene Zonyl FTS chips are used as the feed stock in a 1:1 by weight ratio.
Example 5 Preparation of Fiber by Coextrusion of Nylon/Zonyl FTS with chips of polypropylene.
Polypropylene chips are fed into a single screw extrusion apparatus manufactured by Hills Research Corporation, and then passed through a solution chamber that includes nylon 6 and Zonyl FTS. The coated fiber is then quenched in a cooling chamber and pulled around heated rollers. The fiber is then passed through forced air and wound onto a cone.
This invention has been described with reference to its preferred embodiments. Variations and modifications of the process for the preparation of soil resistant materials will be obvious to those skilled in the art from the foregoing detailed description of the invention. It is intended that all of these variations and modifications be included within the scope of the appended claims.

Claims

I claim.
1. A polymeric composition that comprises a material prepared by melt extrusion of a polymer with a fluorochemical.
2. The polymeric composition of claim 1 wherein the polymer is selected from the group consisting of polypropylene, polyethylene, polyamide, and polyester.
3. The polymeric composition of claim 1 wherein the fluorochemical comprises Zonyl FTS.
4. The polymeric composition of claim 1 that is a fiber.
5. The polymeric composition of claim 1 that is a chip.
6. The polymeric composition of claim 1 that is a film.
7. The polymeric composition of claim 1 that is a molded article.
8. The polymeric composition of claim 1 that is prepared by thin core coextrusion.
9. The polymeric composition of claim 8 wherein the composition comprises a material selected from the group consisting of a polypropylene inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polypropylene/fluorochemical outer core, a polyethylene inner core with a polypropylene/fluorochemical outer core, a polypropylene inner core with a polyethylene/fluorochemical outer core, a polyethylene inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polyethylene/fluorochemical outer core, a polyester inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polyester/fluorochemical outer core, a polyethylene inner core and a polyester/fluorochemical outer core, a polypropylene inner core and a polyester/fluorochemical outer core, a polyester inner core and a polyethylene/fluorochemical outer core, and a polyester inner core and a polypropylene/fluorochemical outer core. 10. The polymeric composition of claim 1 wherein the ratio of polymer to fluorochemical in the material ranges from 1:1 to 1000:1.
11. The polymeric composition of claim 1 wherein the ratio of polymer to fluorochemical in the material ranges from 20:1 to 1:1.
12. The polymeric composition of claim 1 that includes a compound selected from the group consisting of an antioxidant, an ultraviolet light absorbing agent, a flame retardant, a dye or coloring agent, an antibacterial agent, an antifiingal agent, and an antialgal agent.
13. A method for preparing a polymeric composition comprising melt extruding a polymer with a fluorochemical.
14. The method of claim 13, further comprising selecting the polymer from the group consisting of polyethylene, polypropylene, polyester, and polyamide.
15. The method of claim 13, wherein the fluorochemical is Zonyl FTS.
16. The method of claim 13, wherein the composition is a fiber.
17. The method of claim 13, wherein the composition is a chip.
18. The method of claim 13, wherein the composition is a film.
19. The method of claim 13, wherein the composition is a molded article.
20. The method of claim 13, further comprising extruding the composition by thin core coextrusion. 21. The method of claim 20 wherein the composition extruded is selected from the group consisting of a polypropylene inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polypropylene/fluorochemical outer core, a polyethylene inner core with a polypropylene/fluorochemical outer core, a polypropylene inner core with a polyethylene/fluorochemical outer core, a polyethylene inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polyethylene/fluorochemical outer core, a polyester inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polyester/fluorochemical outer core, a polyethylene inner core and a polyester/fluorochemical outer core, a polypropylene inner core and a polyester/fluorochemical outer core, a polyester inner core and a polyethylene/fluorochemical outer core, and a polyester inner core and a polypropylene/fluorochemical outer core.
22. The method of claim 13, wherein the ratio of polymer to fluorochemical in the composition ranges from 1:1 to 1000:1.
23. The method of claim 13 wherein the ratio of polymer to fluorochemical in the material ranges from 20:1 to 1:1.
24. The method of claim 13 -further comprising extruding the composition with a compound selected from the group consisting of an antioxidant, an ultraviolet light absorbing agent, a flame retardant, a dye or coloring agent, an antibacterial agent, antifiingal agent, and antialgal agent. _
AMENDED CLAIMS [received by the International Bureau on 09 September 1992 (09.09-92) ; original claims 2 and 14 cancelled; original claim 1 amended; other claims unchanged but renumbered accordingly (3 pages)]
1. A polymeric composition that comprises a material prepared by melt extrusion of a polymer selected from the group consisting of polypropylene, polyethylene, polyamide, and polyester with a nonpolymeric fluorochemical.
2. The polymeric composition of claim 1 wherein the fluorochemical comprises a perfiuoroalkylstearate.
3. The polymeric composition of claim 1 that is a fiber.
4. The polymeric composition of claim 1 that is a chip.
5. The polymeric composition of claim 1 that is a film.
6. The polymeric composition of claim 1 that is a molded article.
7. The polymeric composition of claim 1 that is prepared by thin core coextrusion.
8. The polymeric composition of claim 7 wherein the composition comprises a material selected from the group consisting of a polypropylene inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polypropylene/fluorochemical outer core, a polyethylene inner core with a polypropylene/fluorochemical outer core, a polypropylene inner core with a polyethylene/fluorochemical outer core, a polyethylene inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polyethylene/fluorochemical outer core, a polyester inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polyester/fluorochemical outer core, a polyethylene inner core and a polyester/fluorochemical outer core, a polypropylene inner core and a polyester/fluorochemical outer core, a polyester inner core and a polyethylene/fluorochemical outer core, and a polyester inner core and a polypropylene/fluorochemical outer core.
9. The polymeric composition of claim 1 wherein the ratio of polymer to fluorochemical in the material ranges from 1:1 to 1000:1.
10. The polymeric composition of claim 1 wherein the ratio of polymer to fluorochemical in the material ranges from 20:1 to 1:1.
11. The polymeric composition of claim 1 that includes a compound selected from the group consisting of an antioxidant, an ultraviolet light absorbing agent, a flame retardant, a dye or coloring agent, an antibacterial agent, an antifiingal agent, and an antialgal agent.
12. A method for preparing a polymeric composition comprising melt extruding a polymer selected from the group consisting of polypropylene, polyethylene, polyamide and polyester with a nonpolymeric fluorochemical.
13. The method of claim 12, wherein the fluorochemical is perfluoroalky lstearate .
14. The method of claim 12, wherein the composition is a fiber.
15. The method of claim 12, wherein the composition is a chip.
16. The method of claim 12, wherein the composition is a film.
17. The method of claim 12, wherein the composition is a molded article.
18. The method of claim 12, further comprising extruding the composition by thin core coextrusion.
19. The method of claim 18 wherein the composition extruded is selected from the group consisting of a polypropylene inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polypropylene/fluorochemical outer core, a polyethylene inner core with a polypropylene/fluorochemical outer core, a polypropylene inner core with a polyethylene/fluorochemical outer core, a polyethylene inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polyethylene/fluorochemical outer core, a polyester inner core with a polyamide/fluorochemical outer core, a polyamide inner core with a polyester/fluorochemical outer core, a polyethylene inner core and a polyester/fluorochemical outer core, a polypropylene inner core and a polyester/fluorochemical outer core, a polyester inner core and a polyethylene/fluorochemical outer core, and a polyester inner core and a polypropylene/fluorochemical outer core.
20. The method of claim 12 wherein the ratio of polymer to fluorochemical in the composition ranges from 1 :1 to 1000:1.
21. The method of claim 12 wherein the ratio of polymer to fluorochemical in the material ranges from 20:1 to 1 :1. 22. The method of claim 12 further comprising extruding the composition with a compound selected from the group consisting of an antioxidant, an ultraviolet light absorbing agent, a flame retardant, a dye or coloring agent, an antibacterial agent, antifiingal agent, and an antialgal agent.
EP9292910817A 1991-04-11 1992-04-07 Soil resistant fibers Withdrawn EP0585312A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US68391591A 1991-04-11 1991-04-11
US683915 1991-04-11

Publications (2)

Publication Number Publication Date
EP0585312A1 EP0585312A1 (en) 1994-03-09
EP0585312A4 true EP0585312A4 (en) 1994-09-28

Family

ID=24745991

Family Applications (1)

Application Number Title Priority Date Filing Date
EP9292910817A Withdrawn EP0585312A4 (en) 1991-04-11 1992-04-07 Soil resistant fibers

Country Status (5)

Country Link
EP (1) EP0585312A4 (en)
JP (1) JPH06506714A (en)
AU (1) AU1771492A (en)
CA (1) CA2107777A1 (en)
WO (1) WO1992018569A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU643386B2 (en) * 1988-08-30 1993-11-11 E.I. Du Pont De Nemours And Company Non-ozone depleting halocarbons for flash-spinning polymeric plexifilaments
US5459188A (en) * 1991-04-11 1995-10-17 Peach State Labs, Inc. Soil resistant fibers
US5451622A (en) * 1992-09-30 1995-09-19 Minnesota Mining And Manufacturing Company Composition comprising thermoplastic polymer and fluorochemical piperazine compound
US5380778A (en) * 1992-09-30 1995-01-10 Minnesota Mining And Manufacturing Company Fluorochemical aminoalcohols
CH689118A5 (en) * 1993-06-11 1998-10-15 Nippon Catalytic Chem Ind Additional means of controlling the flow behavior of cementitious compositions.
US5798402A (en) * 1995-12-21 1998-08-25 E. I. Du Pont De Nemours And Company Fluorinated sulfone melt additives for thermoplastic polymers
TW376397B (en) * 1995-12-21 1999-12-11 Du Pont Fluorinated ester melt additives for thermoplastic fibers
TW426712B (en) 1995-12-21 2001-03-21 Du Pont Fluorinated diester melt additives for thermoplastic polymers and their uses
US5681963A (en) * 1995-12-21 1997-10-28 E. I. Du Pont De Nemours And Company Fluorinated melt additives for thermoplastic polymers
EP1111102B1 (en) * 1996-03-07 2003-05-02 Minnesota Mining And Manufacturing Company Carpet yarn having high soil resistance
US6426025B1 (en) 1997-05-12 2002-07-30 3M Innovative Properties Company Process for extruding fibers
US6476114B2 (en) 1997-11-19 2002-11-05 3M Innovative Properties Company Thermoplastic polymer film comprising a fluorochemical compound
US20060013983A1 (en) 2004-07-15 2006-01-19 3M Innovative Properties Company Adhesive delivery of oil and water repellents
WO2006021529A1 (en) * 2004-08-25 2006-03-02 Ciba Specialty Chemicals Holding Inc. Surface modifiers
US7230043B2 (en) 2004-09-07 2007-06-12 3M Innovative Properties Company Hydrophilic polymer composition
AU2007259036B2 (en) * 2006-06-15 2012-09-13 Croda International Plc UV absorbing composition
MX2008015811A (en) * 2006-06-15 2009-01-12 Croda Int Plc Uv absorbing composition.
AU2010229841B2 (en) 2009-03-27 2013-10-03 3M Innovative Properties Company Hydrophilic polypropylene melt additives
CA2958340A1 (en) * 2014-08-20 2016-02-25 Invista Technologies S.A R.L. Synthetic fibers with enhanced stain resistance and methods of making the same
WO2016179384A1 (en) * 2015-05-05 2016-11-10 Invista Technologies S.Ar.L. Synthetic fibers with enhanced soil resistance and methods for production and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2049642A1 (en) * 1969-10-17 1971-04-29 Allied Chem Oil and dirt repellent synthetic resin
US4209610A (en) * 1975-06-30 1980-06-24 Frank Mares Partially fluorinated esters or amide/esters of benzene polycarboxylic acids, and dyeable pet and nylon fibers incorporating the same and process of making such fibers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL233523A (en) * 1957-12-10 1900-01-01
GB1316259A (en) * 1969-07-28 1973-05-09 Ici Ltd Bi-component filaments
EP0011954B1 (en) * 1978-11-30 1982-12-08 Imperial Chemical Industries Plc Apparatus for spinning bicomponent filaments
US4818587A (en) * 1986-10-17 1989-04-04 Chisso Corporation Nonwoven fabrics and method for producing them
JPH0226919A (en) * 1988-07-15 1990-01-29 Toray Ind Inc Fiber excellent in low frictional characteristics and stainproofness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2049642A1 (en) * 1969-10-17 1971-04-29 Allied Chem Oil and dirt repellent synthetic resin
US4209610A (en) * 1975-06-30 1980-06-24 Frank Mares Partially fluorinated esters or amide/esters of benzene polycarboxylic acids, and dyeable pet and nylon fibers incorporating the same and process of making such fibers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9218569A1 *

Also Published As

Publication number Publication date
AU1771492A (en) 1992-11-17
JPH06506714A (en) 1994-07-28
WO1992018569A1 (en) 1992-10-29
EP0585312A1 (en) 1994-03-09
CA2107777A1 (en) 1992-10-29

Similar Documents

Publication Publication Date Title
US5459188A (en) Soil resistant fibers
WO1992018569A1 (en) Soil resistant fibers
EP1838773B1 (en) Fluorochemical diesters as repellent polymer melt additives
US4578414A (en) Wettable olefin polymer fibers
JP3953107B2 (en) Plexifilamentary strands of blended polymers
EP1841818A1 (en) Fluorochemical esters blends as repellent polymer melt additives
EP0904432B1 (en) Carpet yarn having high soil resistance
FR2810988A1 (en) POLYAMIDE COMPOSITIONS WITH IMPROVED ANTISTATICITY AND HYDROPHILY
AU1617599A (en) Process for extruding fibers
JPH09310281A (en) Modified monofilament and its production
AU745316B2 (en) Carpet yarn having high soil resistance
MXPA98007210A (en) Thread for carpet that has high resistance to the ensuciamie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19931111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

A4 Supplementary search report drawn up and despatched

Effective date: 19940805

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

17Q First examination report despatched

Effective date: 19950405

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950817