EP0577869B1 - Refrigeration system with a vacuum-tight collecting conduit for the vapor of the working fluid - Google Patents

Refrigeration system with a vacuum-tight collecting conduit for the vapor of the working fluid Download PDF

Info

Publication number
EP0577869B1
EP0577869B1 EP92111436A EP92111436A EP0577869B1 EP 0577869 B1 EP0577869 B1 EP 0577869B1 EP 92111436 A EP92111436 A EP 92111436A EP 92111436 A EP92111436 A EP 92111436A EP 0577869 B1 EP0577869 B1 EP 0577869B1
Authority
EP
European Patent Office
Prior art keywords
cooling system
vacuum pump
working medium
evaporators
sorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92111436A
Other languages
German (de)
French (fr)
Other versions
EP0577869A1 (en
Inventor
Norbert Dipl.-Ing. Dipl.-Wirtschaftsing. Patzner
Bernd Dipl.-Ing. Klotz
Hubert Kögler
Reiner Engelhardt
Reiner Dipl.-Ing. Wörz
Andreas Becky
Peter K. Dr. Maier-Laxhuber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeo Tech Zeolith Technologie GmbH
Original Assignee
Zeo Tech Zeolith Technologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeo Tech Zeolith Technologie GmbH filed Critical Zeo Tech Zeolith Technologie GmbH
Priority to AT92111436T priority Critical patent/ATE147499T1/en
Priority to EP92111436A priority patent/EP0577869B1/en
Priority to DE59207855T priority patent/DE59207855D1/en
Priority to JP5166759A priority patent/JPH06159854A/en
Publication of EP0577869A1 publication Critical patent/EP0577869A1/en
Priority to US08/286,940 priority patent/US5415012A/en
Application granted granted Critical
Publication of EP0577869B1 publication Critical patent/EP0577869B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • F25B17/083Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt with two or more boiler-sorbers operating alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus

Definitions

  • the invention relates to a cooling system with a working medium vapor manifold, to which at least one evaporator and at least one sorbent container are connected in a vacuum-tight manner.
  • DE-OS 3425419 discloses cooling processes based on the sorption principle, water being evaporated from an aqueous solution and adsorbed as water vapor in a sorbent filling. The amount of steaming water cools down while the sorbent filling is heated. This process takes place in closed systems in which the negative pressure, in order to allow the aqueous solution to evaporate at correspondingly low temperatures, is built up during the manufacture of the system and is maintained for the period of use.
  • These cooling devices are relatively inflexible because the evaporator must always be firmly connected to the entire device.
  • an ice maker based on the sorption principle is known.
  • an aqueous liquid is frozen in an icing vessel using a vacuum-proof sorbent container that contains a solid sorbent and to which a vacuum pump is connected.
  • This ice maker is used, for example, to make ice cubes for cooling beverages.
  • a continuously operating cooling system with zeolite is known from FR-A-2 544 842.
  • a working fluid evaporator and a condenser are connected to at least one zeolite adsorber via a connecting line.
  • Several shut-off valves open the path of the working fluid vapor from the evaporator to the zeolite filling or from the zeolite filling to the condenser.
  • a vacuum pump is used to maintain the negative pressure. It is coupled to the working fluid steam line via a shut-off device.
  • the object of the present invention is to develop a universally applicable cooling system which can also be operated economically.
  • the cooling system thus consists, on the one hand, of a vacuum-tight working medium vapor manifold which contains at least two connection points to which at least one evaporator and at least one sorbent container can be connected in a vacuum-tight manner.
  • a vacuum pump is also required for operation in order to generate sufficient vacuum, for example when using zeolite as sorbent and water as working medium, so that water can evaporate at low temperatures.
  • the vacuum pump should only be put into operation when the System pressure conditions make this necessary and be out of order for the rest of the time.
  • Vacuum pumps suitable for this have long been state of the art. However, vacuum pumps without oil lubrication, so-called dry-running vacuum pumps, are particularly advantageous. With a two-stage, dry-running vacuum pump, final pressures of 8 hPa can be achieved today. A three-stage pump must be provided for lower pressures.
  • Vacuum ejectors have also recently become known. which are powered by compressed air. These usually multi-stage Venturi nozzles reach final pressures of 8 hPa by means of a compressed air supply of 5 to 6 bar. Compressed air supply systems of this type are used in many commercial operations but also in larger trucks. present on the train and in airplanes. Since these vacuum pumps are extremely inexpensive and have low air consumption, a cooling system with these vacuum pumps is particularly economical.
  • cooling systems that are installed in cars can also benefit from the vacuum devices that are common today. Since many vehicle components, such as central locking, braking and steering assistance, require negative pressure, it also makes sense here. to replace the current vacuum pump with a pump with a lower final pressure. The additional effort is low, since neither a new motor nor a more complex control are necessary. The additional weight is also limited. because an additional suction stage can only be integrated in the pump housing.
  • the vacuum pump evacuates the sorbent container, the working fluid vapor manifold and the connected evaporators via a connecting line. It is advantageous to use a device in the connecting line between the sorbent container and the vacuum pump which prevents air from entering the cooling system when the vacuum pump is at a standstill and thus adversely affecting the adsorption in the sorbent. For example, simple check valves come into question, but also mechanically or electrically operated valves.
  • the sorbent container itself can be designed in a variety of ways. However, all constructions must be carried out so that the working fluid vapor flowing into the sorbent container can reach all layers of sorbent. This is imperative. Extract air and non-condensable gases from all areas of the sorbent filling. The incoming working fluid vapor must not prevent the air cushions from being extracted. It is therefore advisable to arrange the inlet opening of the working fluid vapor on one side and the connection line to the vacuum pump on the other side of the sorbent filling.
  • connection points on the sorbent container are also advantageous to carry out the connection points on the sorbent container by means of light or quick-release connections. This ensures easy replacement of the sorbent container when the sorbent is saturated.
  • Sorbent containers with saturated sorbent can generally be regenerated by adding heat at higher temperatures.
  • the working fluid is expelled in vapor form from the sorbent.
  • This regeneration can take place at any time and in any place. It is advantageous, for example.
  • waste heat flows from combustion processes or use low-tariff electricity via an electric heater.
  • the sorbent containers can be adapted to the regeneration process by installing an electrical resistance heater or by designing thermodynamically favorable heat exchanger outer walls.
  • the dissipation of the heat of reaction which is released during the sorption of working fluid vapor in the sorbent filling. is very effectively possible using the latter.
  • the heat of sorption can also be dissipated and used in any other known manner.
  • regeneration of the sorbent filling can also be carried out without prior separation from the working agent vapor manifold.
  • the entry of expelled working fluid vapor into the manifold must be prevented. This is made possible by simple check valves at the connection points, but also mechanically or electrically operated shut-off valves. If it is possible to re-liquefy the escaping working fluid vapor, it can be returned to the evaporator via separate lines.
  • sorbents All absorption and adsorption substances known from refrigeration technology can be considered as sorbents.
  • the use of molecular sieves or zeolites has proven to be particularly advantageous. Zeolites adsorb up to 30 percent by weight of water and release it again in vapor form at temperatures of up to 300 ° C. Accordingly, the ideal working fluid is water, which evaporates in the evaporators and flows in vapor form via the working fluid vapor manifold into the zeolite containers. Since the vapor pressure of water is relatively low, the vacuum pump must reach a minimum pressure of 6.1 hPa, for example, to enable evaporation temperatures of 0 ° C. At this pressure, the water in the evaporator can completely ice up.
  • All vacuum-proof and vacuum-tight lines are suitable as working medium vapor manifolds. Since the working fluid vapor generally has relatively low temperatures, flexible plastic lines can also be used. In principle, all known fittings can be used at the connection points. It is important that all connection points not occupied by an evaporator can be closed, for example by self-closing quick couplings.
  • the working medium vapor manifold can also be installed stationary at the respective place of use. It then connects, for example, all evaporator connection points with a single sorbent container or else only a single evaporator with several sorbent containers.
  • connection points via which only small steam volumes are to be drawn off can also be integrated into a larger cooling system with smaller line cross sections. In this way, a highly branched manifold network can be created, which is designed, for example, for only one sorbent container with only one vacuum pump.
  • the term “evaporator” denotes all devices in which the working fluid evaporates and flows out in vapor form into the working fluid vapor manifold. So everyone comes as an evaporator systems that are common in refrigeration today, in particular the evaporator plate of a refrigerator or freezer, the evaporation line of a beverage cooler or the air cooler of an air conditioning system.
  • the surface, the flow cross-section and the general design of the evaporator are characterized by the work equipment used.
  • the evaporator can, for example, advantageously adopt the evaporator types according to German laid-open publications DE-OS 4003107 and DE-OS 4138114. Since all evaporator types can be permanently connected to one and the same working medium vapor manifold, but the evaporation temperatures should be adjustable to different depths, it is advantageous if a steam throttle is installed either in the evaporator itself or at the connection point to the working medium steam manifold, which controls the steam flow reduced so much that a higher evaporation temperature is possible than the working fluid vapor pressure in the working fluid vapor manifold would allow.
  • the working fluid vapor pressure in the manifold determines the lowest possible evaporation temperature in the connected evaporators.
  • the vacuum pump could be in operation without interruption in order to maintain the negative pressure required for the evaporation of the working fluid. But if the cooling system is sufficiently tight. it is sufficient if the vacuum pump only sucks the penetrated gases or the non-condensable gases released from the sorbent from time to time in order to make the sorbent filling accessible to the working fluid vapor. For energy reasons, however, it makes sense to start the vacuum pump only if possible when new evaporators are connected or when a temporarily lower evaporation temperature is necessary when connecting devices for ice production.
  • Another way to turn on the vacuum pump offer pressure switches. With these, the switch-on pressure can be set in a simple manner, at which the vacuum pump switches on and switches off again after falling below the limit. But it is also advantageous to provide the connection points of the manifold with a contact. which puts the vacuum pump into operation for a predetermined period of time when coupling an evaporator.
  • the cooling system is equipped with a so-called cold surface.
  • This cold surface makes it possible to liquefy working fluid vapor or even freeze it out at temperatures below 0 ° C and the use of water as working fluid.
  • the working fluid vapor that is produced in the evaporator of a refrigerator can condense on the cold surface, which is cooled, for example, by the cold environment. In this way, no sorbent is necessary to sorb the working fluid vapor and consequently no regeneration of the sorbent. It is also particularly advantageous.
  • Aircraft that fly through a very cold environment at great heights offer further applications for a cold surface.
  • the temperatures at these altitudes can well be -50 ° C.
  • Transport containers for food and beverages, so-called trolleys or entire cargo hold areas can be cooled via the cold surfaces during the flight.
  • the working fluid vapor flowing out of the evaporators of the trolleys can condense or freeze out on the cold surfaces.
  • the sorbent filling takes over the sorption of the working fluid vapor. It is also particularly advantageous if the entire cabin is air-conditioned via the cooling system according to the invention.
  • Another application example is the air conditioning of railway wagon compartments.
  • Each wagon compartment can be air-conditioned by means of an evaporator, which in these cases acts as an air heat exchanger, via a single working medium vapor manifold.
  • the provision of further connections means, for example, that cool boxes brought by passengers, which contain a corresponding evaporator. be connected.
  • the advantageous possibilities of direct ice production are also conceivable here.
  • the system according to the invention also opens up new application possibilities in the train restaurant. For example, one could Set up a self-service system in which the passenger cools the beverage he has selected while dispensing via an evaporator according to the invention. There is no need to keep pre-cooled beverage containers ready.
  • Each trolley is advantageously equipped with its own sorbent container and an associated vacuum pump. A connecting line between the individual carriages can thus be omitted.
  • a working medium vapor manifold 1 contains connection points 2 to 11.
  • the connection point 2 is associated with a non-return valve 12 which prevents water vapor from flowing into the refrigerator evaporator 13.
  • a float valve 14 allows water 15 to enter in small quantities from a storage tank 16 when the water level drops.
  • the refrigerator-evaporator 13 is thermally insulated by a housing 16 and is accessible via a door 17.
  • the evaporation temperature in the refrigerator evaporator 13 is determined by the water vapor pressure in the working fluid vapor manifold 1. The lower the working fluid vapor pressure, the lower the evaporation temperature in the refrigerator evaporator 13.
  • connection point 3 is formed, for example, by a ball valve to which a flat sealing surface 18 is flanged. Vessels 19 whose opening cross section is smaller than the diameter of the flat sealing surface 18 can be attached to them. be coupled.
  • the ball valve 3 When the ball valve 3 is opened, the pressure inside the vessel 19 drops and the aqueous liquid 20 can evaporate. This cools down and freezes. After closing the ball valve 3 and opening a ventilation valve 21, the vessel 19 with the frozen liquid can be removed. It is particularly advantageous. if the vessels 19 have thermal insulation (not shown) and are used as an insulation box. The following cooling time depends on the amount of ice produced.
  • connection point 4 is connected to an air cooler 22. through which a fan 23 promotes air to be cooled.
  • a thermostat 24 lets water 25 suck from a storage vessel 26 into the air cooler 22. The water evaporates there and cools the conveyed air flow.
  • connection point 5 is closed by a blind plug and can be opened for any evaporator system if required.
  • connection point 6 also contains a ball valve which, like the connection point 3, is connected to a flat sealing plate 27.
  • the opening of this plate 27 points upwards, so that double-walled vessels 28, which contain an absorbent medium 29 in the interior of their jacket space, can be placed.
  • water evaporates from the absorbent mass 29, cools it down and generates an ice buffer.
  • the connection point 7 consists of a quick coupling that closes on both sides.
  • This is connected to a mobile transport trolley 30 (trolley), which e.g. used for the transportation and storage of food and beverages in aircraft.
  • the trolley evaporator 32 is designed in this type as a supporting side element. At the same time, it has guide rails on which trays 31 or inserts rest.
  • the trolley which is protected on the outside by insulation 33, is connected in aircraft galleys via the quick coupling to the on-board working fluid vapor manifold.
  • the trolley in the catering station was loaded with on-board catering and the water supply in the trolley evaporator 32 was frozen by direct evaporation.
  • the ice buffer built in this way also bridges longer waiting times before the trolley is connected from the catering station to the on-board working fluid steam collecting line.
  • the connection point 8 is connected to a beverage cooling system 34.
  • This consists of an evaporator vessel 35, which contains a water reservoir 36, in which a stainless steel cooling coil 37 is guided.
  • a valve 39 is first opened. so that water vapor can flow into the working fluid vapor collecting line 1 and the remaining amount of water together with the cooling coil 37 cools. After a few seconds, the amount of water 36 has cooled to such an extent that, by completely opening the tap 38, the liquid to be cooled can enter a container 41 through the cooling coil 37 and be cooled in a container 41 which is kept ready.
  • the valve 39 is closed again, so that no standstill losses occur.
  • the container 40 can be stored at room temperature without loss.
  • connection point 9 is connected to a sorbent container 42 which contains zeolite 43.
  • An electrical heater 44 is used to regenerate the zeolite filling 43.
  • a suction line 45 with a coupling point 46 is connected to two vacuum pumps 47, 48 opposite the connection point 9. Both vacuum pumps are connected to the suction line 45 via check valves 49, 50.
  • the vacuum pump 47 is designed as a compressed air ejector. As soon as compressed air flows through the supply line 51, a negative pressure is generated by the Venturi effect, which evacuates the entire cooling system via the suction line 45 and the zeolite filling 43.
  • the alternatively switchable, mechanical vacuum pump 48 is driven by an electric motor 52. which only goes into operation when a pressure sensor 54 reports excessive pressure via a signal line 53.
  • the pressure sensor 54 is coupled to the working fluid vapor manifold 1 via the connection point 10.
  • a condenser 55 is connected to the connection point 11, which liquefies the water vapor from the working medium vapor manifold or condenses it as frost via cold condensation surfaces.
  • the evaporation temperatures in the evaporators must of course be higher than the temperature of the cold surface.
  • the gases which hinder the free flow of water vapor can also be pumped out of the vacuum pumps 47 or 48 via a coupling point 56 and a shut-off valve 57.
  • a non-return valve 58 prevents water vapor from flowing back into the working fluid vapor manifold 1 if the temperatures in the condenser 55 rise too high in the meantime.
  • the liquefied water vapor 60 collects in the bottom of the condenser 55 and can be drawn off via an emptying valve 59 if necessary. It is particularly advantageous if this condensate is fed back into the storage vessels 26 and 16, for example via liquid lines. In aircraft, the cold surfaces can be cooled by the outside air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Furnace Details (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Refrigeration system with a vacuum-tight collecting conduit (1) for the vapour of the working fluid, which contains at least two connection points (2...11), to which any evaporators (13, 19, 22, 28, 32, 34) for working fluid or a sorbent medium container (42) with a sorbent filling (43) which can absorb the working fluid can be connected in a vacuum-tight manner. <IMAGE>

Description

Die Erfindung betrifft ein Kühlsystem mit einer Arbeitsmitteldampf-Sammelleitung, an welche mindestens ein Verdampfer und mindestens ein Sorptionsmittelbehälter vakuumdicht angeschlossen sind.The invention relates to a cooling system with a working medium vapor manifold, to which at least one evaporator and at least one sorbent container are connected in a vacuum-tight manner.

Aus der DE-OS 3425419 sind Kühlverfahren nach dem Sorptionsprinzip bekannt, wobei aus einer wässrigen Lösung Wasser verdampft und als Wasserdampf in einer Sorptionsmittelfüllung adsorbiert wird. Die dampfende Wassermenge kühlt sich dabei ab, während die Sorptionsmittelfüllung erwärmt wird. Dieses Verfahren läuft in geschlossenen Systemen ab, in welchen der Unterdruck, um die wässrige Lösung bei entsprechend tiefen Temperaturen verdampfen zu lassen, bei der Herstellung des Systemes aufgebaut wird und für den Einsatzzeitraum erhalten bleibt. Diese Kühlvorrichtungen sind relativ unflexibel, da der Verdampfer immer fest mit der gesammten Vorrichtung verbunden sein muß.DE-OS 3425419 discloses cooling processes based on the sorption principle, water being evaporated from an aqueous solution and adsorbed as water vapor in a sorbent filling. The amount of steaming water cools down while the sorbent filling is heated. This process takes place in closed systems in which the negative pressure, in order to allow the aqueous solution to evaporate at correspondingly low temperatures, is built up during the manufacture of the system and is maintained for the period of use. These cooling devices are relatively inflexible because the evaporator must always be firmly connected to the entire device.

Aus der DE-OS 4003107 ist ein Eiserzeuger nach dem Sorptionsprinzip bekannt. Hier wird mittels eines vakuumfesten Sorptionsmittelbehälters, der einen festen Sorptionsstoff enthält und an dem eine Vakuumpumpe angeschlossen ist, in einem Vereisungsgefäß eine wässrige Flüssigkeit gefroren. Dieser Eiserzeuger dient beispielsweise zur Eiswürfelherstellung für die Kühlung von Getränken.From DE-OS 4003107 an ice maker based on the sorption principle is known. Here, an aqueous liquid is frozen in an icing vessel using a vacuum-proof sorbent container that contains a solid sorbent and to which a vacuum pump is connected. This ice maker is used, for example, to make ice cubes for cooling beverages.

Aus der FR-A-2 544 842 ist ein kontinuierlich arbeitendes Kühlsystem mit Zeolith bekannt. Ein Arbeitsmittel-Verdampfer und ein Kondensator stehen über eine Verbindungsleitung mit mindestens einem Zeolith-Adsorber in Verbindung. Mehrere Absperr-Ventile öffnen dabei dem Arbeitsmitteldampf den Weg vom Verdampfer zur Zeolith-Füllung bzw. von der Zeolith-Füllung zum Kondensator. Eine Vakuum-Pumpe dient zur Aufrechterhaltung des Unterdrucks. Sie ist über eine Absperreinrichtung an die Arbeitsmitteldampf-Leitung angekoppelt.A continuously operating cooling system with zeolite is known from FR-A-2 544 842. A working fluid evaporator and a condenser are connected to at least one zeolite adsorber via a connecting line. Several shut-off valves open the path of the working fluid vapor from the evaporator to the zeolite filling or from the zeolite filling to the condenser. A vacuum pump is used to maintain the negative pressure. It is coupled to the working fluid steam line via a shut-off device.

Aufgabe der vorliegenden Erfindung ist es, ein universell einsetzbares Kühlsystem zu entwickelun, welches auch ökonomisch betreibbar ist.The object of the present invention is to develop a universally applicable cooling system which can also be operated economically.

Gelöst wird diese Aufgabe durch die Merkmale des Anspruchs 1.This object is achieved by the features of claim 1.

Die Unteransprüche geben weitere, vorteilhafte Verfahren und Ausgestaltungen wieder.The subclaims represent further advantageous methods and configurations.

Das Kühlsystem besteht somit zum einen aus einer vakuumdichten Arbeitsmitteldampf-Sammelleitung, welche mindestens zwei Anschlußstellen enthält, an welche mindestens ein Verdampfer und mindestens ein Sorptionsmittelbehälter vakuumdicht anschließbar sind. Für den Betrieb ist weiterhin eine Vakuum-pumpe notwendig, um beispielsweise bei der Verwendung von Zeolith als Sorptionsmittel und Wasser als Arbeitsmittel ein ausreichendes Vakuum zu erzeugen, damit Wasser bei tiefen Temperaturen verdampfen kann. Die Vakuum-pumpe soll aus wirtschaftlichen Gründen nur dann in Betrieb gehen, wenn die Druckverhältnisse im System dies erforderlich machen, und die übrige Zeit außer Betrieb sein.The cooling system thus consists, on the one hand, of a vacuum-tight working medium vapor manifold which contains at least two connection points to which at least one evaporator and at least one sorbent container can be connected in a vacuum-tight manner. A vacuum pump is also required for operation in order to generate sufficient vacuum, for example when using zeolite as sorbent and water as working medium, so that water can evaporate at low temperatures. For economic reasons, the vacuum pump should only be put into operation when the System pressure conditions make this necessary and be out of order for the rest of the time.

Hierfür geeignete Vakuumpumpen gehören seit langer Zeit zum Stand der Technik. Besonders vorteilhaft sind jedoch Vakuumpumpen ohne Ölschmierung, sog. trockenlaufende Vakuumpumpen. Mit einer zweistufigen, trockenlaufenden Vakuumpumpe sind heute Enddrücke von 8 hPa erreichbar. Für niedrigere Drücke ist eine dreistufige Pumpe vorzusehen.Vacuum pumps suitable for this have long been state of the art. However, vacuum pumps without oil lubrication, so-called dry-running vacuum pumps, are particularly advantageous. With a two-stage, dry-running vacuum pump, final pressures of 8 hPa can be achieved today. A three-stage pump must be provided for lower pressures.

Seit kurzem sind auch Vakuum-Ejektoren bekannt. welche durch Druckluft angetrieben werden. Diese in der Regel mehrstufig arbeitenden Venturi-Düsen erreichen Enddrücke von ebenfalls 8 hPa mittels einer Druckluftversorgung von 5 bis 6 bar. Derartige Druckluftversorgungs-Anlagen sind heute in vielen Gewerbebetrieben aber auch in größeren Lastkraftwagen. bei der Bahn und in Flugzeugen vorhanden. Da diese Vakuumpumpen äußerst preiswert sind und einen geringen Luftverbrauch haben, ist ein Kühlsystem mit diesen Vakuumpumpen besonders ökonomisch.Vacuum ejectors have also recently become known. which are powered by compressed air. These usually multi-stage Venturi nozzles reach final pressures of 8 hPa by means of a compressed air supply of 5 to 6 bar. Compressed air supply systems of this type are used in many commercial operations but also in larger trucks. present on the train and in airplanes. Since these vacuum pumps are extremely inexpensive and have low air consumption, a cooling system with these vacuum pumps is particularly economical.

Da in großen Flughöhen der Umgebungsluftdruck nur zwischen 200 und 300 hPa liegt, können hier druckluftbetriebene Vakuum-Ejektoren noch wirtschaftlicher und effizienter arbeiten.Since at high altitudes the ambient air pressure is only between 200 and 300 hPa, compressed air-powered vacuum ejectors can work even more economically and efficiently.

Aber auch Kühlsysteme, welche in PKW eingebaut werden, können von den heute üblichen Unterdruckvorrichtungen profitieren. Da viele Fahrzeugkomponenten, wie beispielsweise zentrale Verriegelung, Brems- und Lenkhilfe, Unterdruck benötigen, ist es auch hier sinnvoll. die heute übliche Vakuumpumpe durch eine Pumpe mit niedrigerem Enddruck zu ersetzen. Der zusätzliche Aufwand ist gering, da weder ein neuer Motor noch eine aufwendigere Regelung notwendig sind. Auch das zusätzliche Gewicht hält sich in Grenzen. da nur im Pumpengehäuse eine weitere Saugstufe zu integrieren ist.However, cooling systems that are installed in cars can also benefit from the vacuum devices that are common today. Since many vehicle components, such as central locking, braking and steering assistance, require negative pressure, it also makes sense here. to replace the current vacuum pump with a pump with a lower final pressure. The additional effort is low, since neither a new motor nor a more complex control are necessary. The additional weight is also limited. because an additional suction stage can only be integrated in the pump housing.

Die Vakuumpumpe evakuiert über eine Anschlußleitung den Sorptionsmittelbehälter, die Arbeitsmitteldampf-Sammelleitung sowie die angeschlossenen Verdampfer. Vorteilhaft ist es, in die Anschlußleitung zwischen Sorptionsmittelbehälter und Vakuumpumpe eine Vorrichtung einzusetzen, die verhindert, daß bei Stillstand der Vakuumpumpe Luft in das Kühlsystem eindringt und damit die Adsorption im Sorptionsmittel beeinträchtigt. In Frage kommen hier beispielsweise einfache Rückschlagventile, aber auch mechanisch oder elektrisch betätigte Ventile.The vacuum pump evacuates the sorbent container, the working fluid vapor manifold and the connected evaporators via a connecting line. It is advantageous to use a device in the connecting line between the sorbent container and the vacuum pump which prevents air from entering the cooling system when the vacuum pump is at a standstill and thus adversely affecting the adsorption in the sorbent. For example, simple check valves come into question, but also mechanically or electrically operated valves.

Der Sorptionsmittelbehälter selbst läßt sich auf vielfältige Weise gestalten. Alle Konstruktionen müssen jedoch so ausgeführt werden, daß der in den Sorptionsmittelbehälter einströmende Arbeitsmitteldampf alle Sorptionsmittelschichten erreichen kann. Zwingend notwendig ist hierzu. Luft und nicht kondensierbare Gase aus allen Bereichen der Sorptionsmittelfüllung abzusaugen. Der nachströmende Arbeitsmitteldampf darf dabei das Absaugen der Luftpolster nicht verhindern. Es empfiehlt sich deshalb vorteilhafterweise, die Eintrittsöffnung des Arbeitsmitteldampfes auf der einen Seite und die Anschlußleitung zur Vakuumpumpe auf der anderen Seite der Sorptionsmittelfüllung anzuordnen.The sorbent container itself can be designed in a variety of ways. However, all constructions must be carried out so that the working fluid vapor flowing into the sorbent container can reach all layers of sorbent. This is imperative. Extract air and non-condensable gases from all areas of the sorbent filling. The incoming working fluid vapor must not prevent the air cushions from being extracted. It is therefore advisable to arrange the inlet opening of the working fluid vapor on one side and the connection line to the vacuum pump on the other side of the sorbent filling.

Vorteilhaft ist weiterhin, die Anschlußstellen am Sorptionsmittelbehälter mittels leicht- oder schnellösender Verbindungen auszuführen. Damit ist ein einfaches Auswechseln der Sorptionsmittelbehälter bei gesättigtem Sorptionsmittel gewährleistet.It is also advantageous to carry out the connection points on the sorbent container by means of light or quick-release connections. This ensures easy replacement of the sorbent container when the sorbent is saturated.

Sorptionsmittelbehälter mit gesättigtem Sorptionsmittel können in aller Regel durch Zufuhr von Wärme bei höheren Temperaturen regeneriert werden. Dabei wird das Arbeitsmittel dampfförmig aus dem Sorptionsmittel ausgetrieben. Dieses Regenerieren kann zu beliebigen Zeiten und an beliebigen Orten erfolgen. Vorteilhaft ist es beispielsweise. hierzu Abwärmeströme aus Verbrennungsprozessen zu nutzen oder über eine elektrische Heizung Niedertarifstrom einzusetzen. Die Sorptionsmittelbehälter können je nach Regenerationsmethode durch den Einbau einer elektrischen Widerstandsheizung oder durch die Ausgestaltung thermodynamisch günstiger Wärmetauscher-Außenwände dem Regenerationsverfahren angepaßt werden.Sorbent containers with saturated sorbent can generally be regenerated by adding heat at higher temperatures. The working fluid is expelled in vapor form from the sorbent. This regeneration can take place at any time and in any place. It is advantageous, for example. To do this, use waste heat flows from combustion processes or use low-tariff electricity via an electric heater. Depending on the regeneration method, the sorbent containers can be adapted to the regeneration process by installing an electrical resistance heater or by designing thermodynamically favorable heat exchanger outer walls.

Auch die Ableitung der Reaktionswärme, die bei der Sorption von Arbeitsmitteldampf in der Sorptionsmittelfüllung frei wird. ist mittels letzterer sehr effektiv möglich. Selbstverständlich läßt sich die Sorptionswärme auch in jeder anderen bekannten Art und Weise abführen und nutzen.Also the dissipation of the heat of reaction, which is released during the sorption of working fluid vapor in the sorbent filling. is very effectively possible using the latter. Of course, the heat of sorption can also be dissipated and used in any other known manner.

Selbstverständlich läßt sich auch eine Regeneration der Sorptionsmittelfüllung ohne vorherige Trennung von der Arbeitsmitteldampf-Sammelleitung realisieren. Zweckmäßigerweise muß hier allerdings der Zutritt von ausgetriebenem Arbeitsmitteldampf in die Sammelleitung verhindert werden. Möglich machen dies einfache Rückschlagventile an den Anschlußstellen, aber auch mechanisch oder elektrisch betätigte Absperrarmaturen. Sofern es gelingt, den ausgetretenen Arbeitsmitteldampf rückzuverflüssigen, kann dieser über separate Leitungen in die Verdampfer zurückgeführt werden.Of course, regeneration of the sorbent filling can also be carried out without prior separation from the working agent vapor manifold. Appropriately, however, the entry of expelled working fluid vapor into the manifold must be prevented. This is made possible by simple check valves at the connection points, but also mechanically or electrically operated shut-off valves. If it is possible to re-liquefy the escaping working fluid vapor, it can be returned to the evaporator via separate lines.

Als Sorptionsmittel kommen alle aus der Kältetechnik bekannten Ab- und Ad-sorptionsstoffe in Betracht. Besonders vorteilhaft hat sich der Einsatz von Molekularsieben oder Zeolithen erwiesen. Zeolithe adsorbieren bis zu 30 Gewichtsprozent Wasser und geben dieses bei Temperaturen von bis zu 300 °C an die Umgebung wieder dampfförmig ab. Das ideale Arbeitsmittel ist demnach Wasser, das in den Verdampfern verdampft und dampfförmig über die Arbeitsmitteldampf-Sammelleitung in die Zeolith-Behälter strömt. Da der Dampfdruck von Wasser relativ niedrig ist, muß, um beispielsweise Verdampfungstemperaturen von 0 °C zu ermöglichen, die Vakuumpumpe einen Mindestdruck von 6,1 hPa erreichen. Das im Verdampfer befindliche Wasser kann bei diesem Druck komplett vereisen. Damit schafft man die Möglichkeit, durch die Erzeugung eines größeren Eisvorrates die Verdampferanordnung auch nach Abkoppeln von der Arbeitsmitteldampf-Sammelleitung weiter zu kühlen. Nur wenn die Vakuumpumpe den niedrigen Druck erzeugen kann, kann auch der Wasserdampf ungehindert durch die Sammelleitung in den Sorptionsmittelbehälter strömen und von der Zeolithfüllung adsorbiert werden.All absorption and adsorption substances known from refrigeration technology can be considered as sorbents. The use of molecular sieves or zeolites has proven to be particularly advantageous. Zeolites adsorb up to 30 percent by weight of water and release it again in vapor form at temperatures of up to 300 ° C. Accordingly, the ideal working fluid is water, which evaporates in the evaporators and flows in vapor form via the working fluid vapor manifold into the zeolite containers. Since the vapor pressure of water is relatively low, the vacuum pump must reach a minimum pressure of 6.1 hPa, for example, to enable evaporation temperatures of 0 ° C. At this pressure, the water in the evaporator can completely ice up. This creates the possibility of further cooling the evaporator arrangement even after uncoupling from the working fluid vapor manifold by generating a larger ice reserve. Only if the vacuum pump can generate the low pressure can the water vapor flow unhindered through the manifold into the sorbent container and be adsorbed by the zeolite filling.

Als Arbeitsmitteldampf-Sammelleitung eignen sich alle vakuumfesten und vakuumdichten Leitungen. Da der Arbeitsmitteldampf in aller Regel relativ tiefe Temperaturen aufweist, können auch flexible Kunststoffleitungen Verwendung finden. An den Anschlußstellen können prinzipiell alle bekannten Armaturen Verwendung finden. Wichtig ist, daß alle nicht mit einem Verdampfer belegten Anschlußstellen verschließbar sind, beispielsweise durch selbstschließende Schnellkupplungen.All vacuum-proof and vacuum-tight lines are suitable as working medium vapor manifolds. Since the working fluid vapor generally has relatively low temperatures, flexible plastic lines can also be used. In principle, all known fittings can be used at the connection points. It is important that all connection points not occupied by an evaporator can be closed, for example by self-closing quick couplings.

Wenn sowohl die Verdampfer als auch die Sorptionsmittelbehälter leicht ankoppelbar sind, kann die Arbeitsmitteldampf-Sammelleitung auch stationär am jeweiligen Einsatzort verlegt werden. Sie verbindet dann beispielsweise alle Verdampfer-Anschlußstellen mit einem einzigen Sorptionsmittelbehälter oder aber nur einem einzigen Verdampfer mit mehreren Sorptionsmittelbehältern. Selbstverständlich lassen sich auch Anschlußstellen, über welche nur kleine Dampfvolumina abgezogen werden sollen, mit kleineren Leitungsquerschnitten in ein größeres Kühlsystem einbinden. Auf diese Weise kann ein stark verästeltes Sammelleitungsnetz entstehen, welches beispielsweise auf nur einen Sorptionsmittelbehälter mit nur einer Vakuumpumpe ausgelegt ist.If both the evaporator and the sorbent container can be easily connected, the working medium vapor manifold can also be installed stationary at the respective place of use. It then connects, for example, all evaporator connection points with a single sorbent container or else only a single evaporator with several sorbent containers. Of course, connection points via which only small steam volumes are to be drawn off can also be integrated into a larger cooling system with smaller line cross sections. In this way, a highly branched manifold network can be created, which is designed, for example, for only one sorbent container with only one vacuum pump.

Mit dem Ausdruck »Verdampfer« sind in dieser Erfindung alle Vorrichtungen bezeichnet, in welchen das Arbeitsmittel verdampft und dampfförmig in die Arbeitsmitteldampf-Sammelleitung abströmt. Als Verdampfer kommen somit alle heute in der Kältetechnik üblichen Systeme in Betracht, insbesondere die Verdampferplatte eines Kühl- oder Gefrierschrankes, die Verdampfungsleitung eines Getränkekühlers oder der Luft-Kühler einer Klima-Anlage.In this invention, the term “evaporator” denotes all devices in which the working fluid evaporates and flows out in vapor form into the working fluid vapor manifold. So everyone comes as an evaporator systems that are common in refrigeration today, in particular the evaporator plate of a refrigerator or freezer, the evaporation line of a beverage cooler or the air cooler of an air conditioning system.

Die Oberfläche, der Strömungsquerschnitt und die generelle Bauart des Verdampfers sind dabei vom benutzten Arbeitsmittel geprägt. Bei der Verwendung von Wasser als Arbeitsmittel kann der Verdampfer beispielsweise vorteilhaft die Verdampfer-Bauarten nach den deutschen Offenlegungsschriften DE-OS 4003107 und DE-OS 4138114 annehmen. Da alle Verdampferbauarten an ein und dieselbe Arbeitsmitteldampf-Sammelleitung permanent angeschlossen sein können, die Verdampfungstemperaturen jedoch unterschiedlich tief regelbar sein sollen, ist es von Vorteil, wenn entweder im Verdampfer selbst oder an der Anschlußstelle zur Arbeitsmitteldampf-Sammelleitung eine Dampfdrossel eingebaut ist, welche die Dampfströmung so weit reduziert, daß eine höhere Verdampfungstemperatur möglich ist als der Arbeitsmitteldampfdruck in der Arbeitsmitteldampf-Sammelleitung erlauben würde. Der Arbeitsmitteldampfdruck in der Sammelleitung bestimmt die tiefst mögliche Verdampfungstemperatur in den angeschlossenen Verdampfern.The surface, the flow cross-section and the general design of the evaporator are characterized by the work equipment used. When water is used as the working medium, the evaporator can, for example, advantageously adopt the evaporator types according to German laid-open publications DE-OS 4003107 and DE-OS 4138114. Since all evaporator types can be permanently connected to one and the same working medium vapor manifold, but the evaporation temperatures should be adjustable to different depths, it is advantageous if a steam throttle is installed either in the evaporator itself or at the connection point to the working medium steam manifold, which controls the steam flow reduced so much that a higher evaporation temperature is possible than the working fluid vapor pressure in the working fluid vapor manifold would allow. The working fluid vapor pressure in the manifold determines the lowest possible evaporation temperature in the connected evaporators.

Prinzipiell könnte die Vakuumpumpe ohne Unterbrechung in Betrieb sein, um den für die Verdampfung des Arbeitsmittels notwendigen Unterdruck aufrecht zu erhalten. Sofern aber das Kühlsystem ausreichend dicht ist. genügt es, wenn die Vakuumpumpe nur von Zeit zu Zeit die eingedrungenen Gase oder die aus dem Sorptionsmittel freigesetzten, nicht-kondensierbaren Gase absaugt, um die Sorptionsmittelfüllung für den Arbeitsmitteldampf zugänglich zu machen. Aus energetischen Überlegungen ist es jedoch sinnvoll, die Vakuumpumpe möglichst nur dann in Betrieb zu setzen, wenn neue Verdampfer angeschlossen werden oder etwa beim Anschluß von Geräten zur Eiserzeugung eine vorübergehend tiefere Verdampfungstemperatur notwendig wird.In principle, the vacuum pump could be in operation without interruption in order to maintain the negative pressure required for the evaporation of the working fluid. But if the cooling system is sufficiently tight. it is sufficient if the vacuum pump only sucks the penetrated gases or the non-condensable gases released from the sorbent from time to time in order to make the sorbent filling accessible to the working fluid vapor. For energy reasons, however, it makes sense to start the vacuum pump only if possible when new evaporators are connected or when a temporarily lower evaporation temperature is necessary when connecting devices for ice production.

Vorteilhaft sind Verfahren, welche die Vakuumpumpe nur dann in Betrieb setzen, wenn dies zwangsläufig notwendig ist. Damit kann erreicht werden, daß das Kühlsystem beispielsweise pro Tag nur wenige Sekunden evakuiert werden muß. Um die Vakuumpumpe gezielt in Betrieb zu nehmen, stehen mehrere Möglichkeiten zur Verfügung. Zum einen kann eine steigende Verdampfungstemperatur im Verdampfer einen eingebauten Thermostat schließen und damit die Vakuumpumpe in Betrieb nehmen. Da es in aller Regel einige Zeit in Anspruch nehmen wird, bis die Verdampfungstemperatur soweit abgefallen ist, daß der Thermostat wieder schließt, ist es sinnvoll, die Vakuumpumpe mit einem Zeitschaltglied auszurüsten, das die Pumpe nach wenigen Sekunden ausschaltet, obwohl der Thermostat noch geschlossen ist.Processes that only start the vacuum pump when this is absolutely necessary are advantageous. It can thus be achieved that the cooling system only has to be evacuated for a few seconds per day, for example. There are several ways to start up the vacuum pump. On the one hand, a rising evaporation temperature in the evaporator can close a built-in thermostat and thus start the vacuum pump. Since it will usually take some time until the evaporation temperature has dropped so far that the thermostat closes again, it makes sense to equip the vacuum pump with a timer which switches the pump off after a few seconds, although the thermostat is still closed.

Eine weitere Möglichkeit, die Vakuumpumpe einzuschalten. bieten Druckschalter. Mit diesen läßt sich auf einfache Weise der Einschaltdruck einstellen, bei welchem die Vakuumpumpe einschaltet und nach Unterschreiten wieder ausschaltet. Vorteilhaft ist es aber auch, die Anschlußstellen der Sammelleitung mit einem Kontakt zu versehen. welcher beim Ankoppeln eines Verdampfers die Vakuumpumpe für einen vorbestimmten Zeitraum in Betrieb nimmt.Another way to turn on the vacuum pump. offer pressure switches. With these, the switch-on pressure can be set in a simple manner, at which the vacuum pump switches on and switches off again after falling below the limit. But it is also advantageous to provide the connection points of the manifold with a contact. which puts the vacuum pump into operation for a predetermined period of time when coupling an evaporator.

Besonders vorteilhaft ist es. wenn das Kühlsystem mit einer sogenannten kalten Fläche ausgestattet ist. Diese kalte Flache ermöglicht es, Arbeitsmitteldampf zu verflüssigen oder sogar, bei Temperaturen unter 0 °C und der Verwendung von Wasser als Arbeitsmittel, auszugefrieren. Sinnvoll ist dies jedoch nur, wenn sich die kalte Fläche auf tieferem Temperaturniveau befindet als die tiefste Verdampfungstemperatur im Verdampfer. So läßt sich beispielsweise bei der Verwendung des Kühlsystems im Haushalt während der Wintermonate Arbeitsmitteldampf der im Verdampfer eines Kühlschranks entsteht an der kalten Fläche, die beispielsweise von der kalten Umgebung gekühlt wird, auskondensieren. Auf diese Weise ist kein Sorptionsmittel notwendig, um den Arbeitsmitteldampf zu sorbieren und folglich auch keine Regeneration des Sorptionsmittels. Besonders vorteilhaft ist es auch. die kalte Fläche mit dem Sorptionsmittelbehälter zu kombinieren. Dies scheint immer dann sinnvoll, wenn der Sorptionsmittelbehälter zumindest zeitweise tieferen Temperaturen ausgesetzt ist. Auch bei Einsatz einer kalten Fläche muß sichergestellt sein, daß nicht kondensierbare Gase aus dem System über eine Evakuierungsvorrichtung abgesaugt werden können.It is particularly advantageous. if the cooling system is equipped with a so-called cold surface. This cold surface makes it possible to liquefy working fluid vapor or even freeze it out at temperatures below 0 ° C and the use of water as working fluid. However, this only makes sense if the cold surface is at a lower temperature level than the lowest evaporation temperature in the evaporator. For example, when using the cooling system in the household during the winter months, the working fluid vapor that is produced in the evaporator of a refrigerator can condense on the cold surface, which is cooled, for example, by the cold environment. In this way, no sorbent is necessary to sorb the working fluid vapor and consequently no regeneration of the sorbent. It is also particularly advantageous. to combine the cold surface with the sorbent container. This always seems to make sense if the sorbent container is at least temporarily exposed to lower temperatures. Even when using a cold surface, it must be ensured that non-condensable gases can be extracted from the system via an evacuation device.

Weitere Anwendungsfälle für eine kalte Fläche bieten Flugzeuge, die gerade in großen Höhen durch eine sehr kalte Umgebung fliegen. Die Temperaturen in diesen Höhen können durchaus -50 °C betragen. Transportbehälter für Speisen und Getränke, sogenannte Trolleys oder auch ganze Frachtraumbereiche können über die kalten Flächen während des Fluges gekühlt werden. Der aus den Verdampfern der Trolleys abströmende Arbeitsmitteldampf kann an den kalten Flächen auskondensieren bzw. ausgefrieren. Am Boden und während der Startphase übernimmt die Sorptionsmittelfüllung die Sorption des Arbeitsmitteldampfes. Besonders vorteilhaft ist es auch, wenn die Klimatisierung der gesamten Kabine über das erfindungsgemäße Kühlsystem erfolgt. Die abwechselnde Regeneration zweier Sorptionsmittelfüllungen erfolgt dann durch heiße Abgase aus der Turbine oder über die sog, »bleed-air», welche mit über 200 °C an Bord zur Verfügung steht. Die Arbeitsmitteldampf-Sammelleitung konnte in diesem Fall fest in das Flugzeug integriert sein und an entsprechenden Anschlußstellen mit Luftwärmetauschern, Eiserzeugern. Trolleys etc. nach Belieben gekoppelt werden.Aircraft that fly through a very cold environment at great heights offer further applications for a cold surface. The temperatures at these altitudes can well be -50 ° C. Transport containers for food and beverages, so-called trolleys or entire cargo hold areas can be cooled via the cold surfaces during the flight. The working fluid vapor flowing out of the evaporators of the trolleys can condense or freeze out on the cold surfaces. At the bottom and during the start phase, the sorbent filling takes over the sorption of the working fluid vapor. It is also particularly advantageous if the entire cabin is air-conditioned via the cooling system according to the invention. The alternating regeneration of two sorbent fillings then takes place through hot exhaust gases from the turbine or via the so-called "bleed-air", which is on board at over 200 ° C is available. In this case, the working medium steam manifold could be firmly integrated into the aircraft and at appropriate connection points with air heat exchangers and ice makers. Trolleys etc. can be coupled at will.

Ein weiterer, sehr interessanter Anwendungsfall eröffnet sich in Hotels und Gaststätten. Hier können beispielsweise die heute üblichen Absorber-Mini-Bar-Kühlschränke durch einfache Verdampfer-Kühlschränke ersetzt werden, die an eine Arbeitsmitteldampf-Sammelleitung angeschlossen sind, welche in jedem Hotelzimmer eine oder auch mehrere Anschlußstellen aufweist. An einem zentralen Ort. beispielsweise dem Maschinenraum. mündet die Sammelleitung in einen oder mehrere größere Sorptionsmittelbehälter. welche abwechselnd über Abwärmen aus den verschiedensten Quellen und zu unterschiedlichsten Zeiten regenerierbar sind. Selbstverständlich läßt sich diese Erfindung auch in Privathaushalten anwenden, wo dann in beliebig vielen Räumen Kühlschränke und Klima-Verdampfer installierbar sind.Another very interesting application opens up in hotels and restaurants. Here, for example, the usual absorber mini-bar refrigerators can be replaced by simple evaporator refrigerators, which are connected to a working steam collection line, which has one or more connection points in each hotel room. In one central place. for example the engine room. the manifold opens into one or more larger sorbent containers. which can be regenerated alternately via waste heat from a wide variety of sources and at various times. Of course, this invention can also be used in private households, where refrigerators and air conditioning evaporators can be installed in any number of rooms.

Was im Hotel und Haushalt möglich ist. ist selbstverständlich auch in Fahrzeugen anwendbar. In PKW, LKW aber auch Campingfahrzeugen kann durch die stationäre Verlegung einer Arbeitsmitteldampf-Sammelleitung mit verschiedenen Anschlußstellen ein komfortables Kühlsystem installiert werden, welches alle heute denkbaren Kühlaufgaben erfüllt. Für die Klimatisierung von Fahrzeugen ist es besonders vorteilhaft, die Vakuumpumpe und die Arbeitsmitteldampf-Sammelleitung fest im Fahrzeug einzubauen, während der Sorptionsmittelbehälter samt Verdampfer nur bei Bedarf im Fahrzeug mittransportiert wird. Auf diese Weise läßt sich eine Klimaanlage realisieren, welche nur für einen bestimmten Zeitraum. der abhängig von der Sorptionsmittelkapazität ist, ein Fahrzeug kühlt. Selbstverständlich sind auch längere Kühlzeiten ohne Regeneration möglich, wenn mehrere Ersatz-Sorptionsmittelbehälter mitgeführt werden.What is possible in the hotel and household. can of course also be used in vehicles. In cars, trucks as well as camping vehicles, a convenient cooling system can be installed through the stationary laying of a working fluid vapor manifold with various connection points, which fulfills all conceivable cooling tasks today. For the air conditioning of vehicles, it is particularly advantageous to permanently install the vacuum pump and the working fluid vapor manifold in the vehicle, while the sorbent container and evaporator are only transported in the vehicle when needed. In this way, air conditioning can be realized, which is only for a certain period. which depends on the sorbent capacity cools a vehicle. Of course, longer cooling times without regeneration are also possible if several replacement sorbent containers are carried.

Ein weiteres Anwendungsbeispiel ist die Klimatisierung von Eisenbahnwagenabteilen. Über eine einzige Arbeitsmitteldampf-Sammelleitung, kann jedes Wagenabteil mittels eines Verdampfers, der in diesen Fällen als Luftwärmetauscher arbeitet, klimatisiert werden. Auch hier können durch die Bereitstellung weiterer Anschlüsse beispielsweise auch von Fahrgästen mitgebrachte Kühlboxen, die einen entsprechenden Verdampfer enthalten. angeschlossen werden. Gleichfalls sind auch hier die vorteilhaften Möglichkeiten der direkten Eiserzeugung denkbar. Aber auch im Zugrestaurant eröffnen sich dem erfindungsgemäßen System neue Anwendungsmöglichkeiten. So ließe sich beispielsweise ein Self-Service System aufbauen, bei dem der Fahrgast das von ihm gewählte Getränk während des Zapfens über einen erfindungsgemäßen Verdampfer kühlt. Die Bereithaltung vorgekühlter Getränke-Container entfällt damit. Vorteilhafterweise wird jeder Wagen mit einem eigenen Sorptionsmittelbehälter und einer dazugehörigen Vakuumpumpe ausgerüstet. Eine Verbindungsleitung zwischen den einzelnen Wagen kann damit entfallen.Another application example is the air conditioning of railway wagon compartments. Each wagon compartment can be air-conditioned by means of an evaporator, which in these cases acts as an air heat exchanger, via a single working medium vapor manifold. Here too, the provision of further connections means, for example, that cool boxes brought by passengers, which contain a corresponding evaporator. be connected. Likewise, the advantageous possibilities of direct ice production are also conceivable here. But the system according to the invention also opens up new application possibilities in the train restaurant. For example, one could Set up a self-service system in which the passenger cools the beverage he has selected while dispensing via an evaporator according to the invention. There is no need to keep pre-cooled beverage containers ready. Each trolley is advantageously equipped with its own sorbent container and an associated vacuum pump. A connecting line between the individual carriages can thus be omitted.

In der Zeichnung sind mehrere Verdampfer-Bauarten an eine Arbeitsmitteldampf-Sammelleitung mit einem Sorptionsmittelbehälter und einer kalten Fläche angeschlossen.In the drawing, several types of evaporators are connected to a working medium vapor manifold with a sorbent container and a cold surface.

Eine Arbeitsmitteldampf-Sammelleitung 1 enthält Anschlußstellen 2 bis 11. Der Anschlußstelle 2 ist eine Rückschlagklappe 12 beigeordnet, die ein Einströmen von Wasserdampf in den Kühlschrank-Verdampfer 13 verhindert. Ein Schwimmerventil 14 läßt bei sinkendem Wasserstand Wasser 15 aus einem Vorratstank 16 in kleinen Mengen einlaufen. Der Kühlschrank-Verdampfer 13 ist durch ein Gehäuse 16 thermisch isoliert und über eine Tür 17 zugänglich. Die Verdampfungstemperatur im Kühlschrank-Verdampfer 13 wird durch den Wasserdampfdruck in der Arbeitsmitteldampf-Sammelleitung 1 bestimmt. Je niedriger der Arbeitsmitteldampfdruck ist, desto niedriger ist die Verdampfungstemperatur im Kühlschrank-Verdampfer 13.A working medium vapor manifold 1 contains connection points 2 to 11. The connection point 2 is associated with a non-return valve 12 which prevents water vapor from flowing into the refrigerator evaporator 13. A float valve 14 allows water 15 to enter in small quantities from a storage tank 16 when the water level drops. The refrigerator-evaporator 13 is thermally insulated by a housing 16 and is accessible via a door 17. The evaporation temperature in the refrigerator evaporator 13 is determined by the water vapor pressure in the working fluid vapor manifold 1. The lower the working fluid vapor pressure, the lower the evaporation temperature in the refrigerator evaporator 13.

Die Anschlußstelle 3 wird beispielsweise von einem Kugelhahn gebildet, an welchen eine plane Dichtfläche 18 angeflanscht ist. An diese können Gefäße 19, deren Öffnungsquerschnitt kleiner als der Durchmesser der planen Dichtfläche 18 ist. angekoppelt werden. Beim Öffnen des Kugelhahnes 3 sinkt der Druck innerhalb des Gefäßes 19 und die wässrige Flüssigkeit 20 kann verdampfen. Diese kühlt sich dadurch ab und erstarrt. Nach Schließen des Kugelhahnes 3 und Öffnen eines Belüftungsventiles 21 kann das Gefäß 19 mit der gefrorenen Flüssigkeit entnommen werden. Besonders vorteilhaft ist es. wenn die Gefäße 19 über eine thermische Isolierung verfügen (nicht gezeichnet) und als Isolierbox benutzt werden. Die folgende Kühlzeit richtet sich dann nach der erzeugten Eismenge.The connection point 3 is formed, for example, by a ball valve to which a flat sealing surface 18 is flanged. Vessels 19 whose opening cross section is smaller than the diameter of the flat sealing surface 18 can be attached to them. be coupled. When the ball valve 3 is opened, the pressure inside the vessel 19 drops and the aqueous liquid 20 can evaporate. This cools down and freezes. After closing the ball valve 3 and opening a ventilation valve 21, the vessel 19 with the frozen liquid can be removed. It is particularly advantageous. if the vessels 19 have thermal insulation (not shown) and are used as an insulation box. The following cooling time depends on the amount of ice produced.

Die Anschlußstelle 4 ist mit einem Luftkühler 22 verbunden. durch den ein Gebläse 23 zu kühlende Luft fördert. Ein Thermostat 24 läßt Wasser 25 aus einem Vorratsgefäß 26 in den Luftkühler 22 saugen. Das Wasser verdampft dort und kühlt den geförderten Luftstrom.The connection point 4 is connected to an air cooler 22. through which a fan 23 promotes air to be cooled. A thermostat 24 lets water 25 suck from a storage vessel 26 into the air cooler 22. The water evaporates there and cools the conveyed air flow.

Die Anschlußstelle 5 ist durch einen Blindstopfen verschlossen und kann bei Bedarf für beliebige Verdampfersysteme geöffnet werden.The connection point 5 is closed by a blind plug and can be opened for any evaporator system if required.

Die Anschlußstelle 6 enthält ebenfalls einen Kugelhahn, welcher, wie die Anschlußstelle 3, mit einer planen Dichtplatte 27 verbunden ist. Die Öffnung dieser Platte 27 zeigt nach oben, so daß doppelwandige Gefäße 28, die im Inneren ihres Mantelraumes ein saugfähiges Medium 29 enthalten, aufgesetzt werden können. Durch Öffnen des Kugelhahnes 6 verdampft Wasser aus der saugfähigen Masse 29, kühlt diese ab und erzeugt einen Eispuffer. Nach Abnahme des Gefäßes 28 (auch hierzu wird vorher der Kugelhahn 6 geschlossen und das System wie bei der Anschlußstelle 3 belüftet) kann es als Trinkbecher benutzt werden.The connection point 6 also contains a ball valve which, like the connection point 3, is connected to a flat sealing plate 27. The opening of this plate 27 points upwards, so that double-walled vessels 28, which contain an absorbent medium 29 in the interior of their jacket space, can be placed. By opening the ball valve 6, water evaporates from the absorbent mass 29, cools it down and generates an ice buffer. After removing the vessel 28 (the ball valve 6 is also closed beforehand and the system is ventilated as at the connection point 3), it can be used as a drinking cup.

Die Anschlußstelle 7 besteht aus einer beidseitig schließenden Schnellkupplung. Diese ist mit einem fahrbaren Transportwagen 30 (Trolley) verbunden, der z.B. zum Transport und zur Lagerung von Speisen und Getränken in Flugzeugen benutzt wird. Der Trolley-Verdampfer 32 ist in dieser Bauart als tragendes Seitenelement ausgeführt. Gleichzeitig verfügt er über Führungsschienen, auf welchen Tabletts 31 oder Einschübe aufliegen. Der außen über eine Isolierung 33 geschützte Trolley wird in Flugzeug-Galleys über die Schnellkupplung an die bordeigene Arbeitsmitteldampf-Sammelleitung angeschlossen. Zuvor wurde der Trolley in der Catering-Station mit Bordverpflegung beladen und der Wasservorrat im Trolley-Verdampfer 32 durch direkte Verdampfung gefroren. Der dabei aufgebaute Eispuffer überbrückt auch längere Wartezeiten, bis der Trolley von der Catering-Station an die bordeigene Arbeitsmitteldampf-Sammelleitung angeschlossen wird.The connection point 7 consists of a quick coupling that closes on both sides. This is connected to a mobile transport trolley 30 (trolley), which e.g. used for the transportation and storage of food and beverages in aircraft. The trolley evaporator 32 is designed in this type as a supporting side element. At the same time, it has guide rails on which trays 31 or inserts rest. The trolley, which is protected on the outside by insulation 33, is connected in aircraft galleys via the quick coupling to the on-board working fluid vapor manifold. Previously, the trolley in the catering station was loaded with on-board catering and the water supply in the trolley evaporator 32 was frozen by direct evaporation. The ice buffer built in this way also bridges longer waiting times before the trolley is connected from the catering station to the on-board working fluid steam collecting line.

Die Anschlußstelle 8 ist mit einem Getränkekühlsystem 34 verbunden. Dieses besteht aus einem Verdampfer-Gefäß 35, welches einen Wasservorrat 36 enthält, in dem eine Edelstahlkühlschlange 37 geführt ist. Beim vorsichtigen Öffnen des Zapfhahnes 38 wird zunächst ein Ventil 39 geöffnet. so daß Wasserdampf in die Arbeitsmitteldampf-Sammelleitung 1 abströmen kann und die verbleibende Wassermenge samt Kühlschlange 37 kühlt. Nach wenigen Sekunden ist die Wassermenge 36 soweit abgekühlt, daß durch vollständiges Öffnen des Zapfhahnes 38 die zu kühlende Flüssigkeit aus einem Container 40 durch die Kühlschlange 37 in ein bereitgehaltenes Gefäß 41 gekühlt einlaufen kann. Durch Schließen des Zapfhahns 38 wird auch das Ventil 39 wieder geschlossen, so daß keine Stillstandsverluste auftreten. Der Container 40 kann verlustlos bei Raumtemperatur gelagert werden.The connection point 8 is connected to a beverage cooling system 34. This consists of an evaporator vessel 35, which contains a water reservoir 36, in which a stainless steel cooling coil 37 is guided. When the tap 38 is opened carefully, a valve 39 is first opened. so that water vapor can flow into the working fluid vapor collecting line 1 and the remaining amount of water together with the cooling coil 37 cools. After a few seconds, the amount of water 36 has cooled to such an extent that, by completely opening the tap 38, the liquid to be cooled can enter a container 41 through the cooling coil 37 and be cooled in a container 41 which is kept ready. By closing the tap 38, the valve 39 is closed again, so that no standstill losses occur. The container 40 can be stored at room temperature without loss.

Die Anschlußstelle 9 ist mit einem Sorptionsmittelbehälter 42 verbunden, der Zeolith 43 enthält. Eine elektrische Heizung 44 dient zur Regenerierung der Zeolith-Füllung 43. Im unteren Bereich der Zeolith-Füllung 43 ist gegenüber der Anschlußstelle 9 eine Saugleitung 45 mit einer Kupplungsstelle 46 an zwei Vakuumpumpen 47, 48 angeschlossen. Beide Vakuumpumpen sind über Rückschlagventile 49, 50 an die Saugleitung 45 angeschlossen. Die Vakuumpumpe 47 ist als Druckluft-Ejektor ausgebildet. Sobald Druckluft durch die Zuleitung 51 einströmt, wird durch den Venturi-Effekt ein Unterdruck erzeugt, welcher über die Saugleitung 45 und die Zeolith-Füllung 43 das Gesamtkühlsystem evakuiert. Die alternativ zuschaltbare, mechanische Vakuumpumpe 48 wird über einen Elektromotor 52 angetrieben. welcher nur dann in Betrieb geht, wenn über eine Signalleitung 53 ein Drucksensor 54 zu hohen Druck meldet. Der Drucksensor 54 ist über die Anschlußstelle 10 an die Arbeitsmitteldampf-Sammelleitung 1 angekoppelt.The connection point 9 is connected to a sorbent container 42 which contains zeolite 43. An electrical heater 44 is used to regenerate the zeolite filling 43. In the lower region of the zeolite filling 43, a suction line 45 with a coupling point 46 is connected to two vacuum pumps 47, 48 opposite the connection point 9. Both vacuum pumps are connected to the suction line 45 via check valves 49, 50. The vacuum pump 47 is designed as a compressed air ejector. As soon as compressed air flows through the supply line 51, a negative pressure is generated by the Venturi effect, which evacuates the entire cooling system via the suction line 45 and the zeolite filling 43. The alternatively switchable, mechanical vacuum pump 48 is driven by an electric motor 52. which only goes into operation when a pressure sensor 54 reports excessive pressure via a signal line 53. The pressure sensor 54 is coupled to the working fluid vapor manifold 1 via the connection point 10.

An der Anschlußstelle 11 ist schließlich ein Verflüssiger 55 angeschlossen, welcher über kalte Kondensationsflächen den Wasserdampf aus der Arbeitsmitteldampf-Sammelleitung verflüssigt bzw, als Reif niederschlägt. Die Verdampfungstemperaturen in den Verdampfern müssen dabei natürlich höher liegen als die Temperatur der kalten Fläche. Die die freie Wasserdampfströmung behindernden Gase können auch hier über eine Kupplungsstelle 56 und ein Absperrventil 57 von den Vakuumpumpen 47 oder 48 abgepumpt werden. Eine Rückschlagklappe 58 verhindert ein Rückströmen von Wasserdampf in die Arbeitsmitteldampf-Sammelleitung 1, falls die Temperaturen im Verflüssiger 55 zwischendurch zu weit ansteigen. Der verflüssigte Wasserdampf 60 sammelt sich im Boden des Vertlüssigers 55 und kann bei Bedarf über ein Entleerungsventil 59 abgezogen werden. Besonders vorteilhaft ist es, wenn dieses Kondensat beispielsweise über Flüssigkeitsleitungen in die Vorratsgefäße 26 und 16 zurückgeführt wird. Bei Flugzeugen können die kalten Flächen durch die Außenluft gekühlt werden.Finally, a condenser 55 is connected to the connection point 11, which liquefies the water vapor from the working medium vapor manifold or condenses it as frost via cold condensation surfaces. The evaporation temperatures in the evaporators must of course be higher than the temperature of the cold surface. The gases which hinder the free flow of water vapor can also be pumped out of the vacuum pumps 47 or 48 via a coupling point 56 and a shut-off valve 57. A non-return valve 58 prevents water vapor from flowing back into the working fluid vapor manifold 1 if the temperatures in the condenser 55 rise too high in the meantime. The liquefied water vapor 60 collects in the bottom of the condenser 55 and can be drawn off via an emptying valve 59 if necessary. It is particularly advantageous if this condensate is fed back into the storage vessels 26 and 16, for example via liquid lines. In aircraft, the cold surfaces can be cooled by the outside air.

Claims (15)

  1. Cooling system with a vacuum-tight working medium vapour collecting line (1) with at least one connection point (2-8) for connection of an evaporator (13, 19, 22, 28, 30, 34) and with a sorption medium container (42) with a sorption medium filling (43) connectable to a further connection point (9) and to which a vacuum pump (47, 48) is connected, characterised in that a plurality of further connection points (2-8) are provided for interchangeable connection of any number of further evaporators (13, 19, 22, 28, 30, 34), the connection points (5) not connected to an evaporator being closed vacuum-tight.
  2. Cooling system according to claim 1, characterised in that the inlet opening of the working medium vapour in the sorption medium container (42) is disposed on one side of the sorption medium filling (43) and the connecting line to the vacuum pump (47, 48) is disposed on the other side of the sorption medium filling (43), and in that the vacuum pump (47, 48) only comes into operation when infiltrated gases or non-condensable gases released from the sorption medium filling must be sucked out in order to make the sorption medium filling (43) accessible to the working medium vapour.
  3. Cooling system according to one of the preceding claims, characterised in that the connecting points (2-8) to the working medium vapour collecting line (1) or the evaporators themselves are equipped with non-return valves (12) which prevent working medium vapour flowing into the evaporators in question.
  4. Cooling system according to one of the preceding claims, characterised in that the vacuum pump (47) is an ejector vacuum pump operated with compressed air.
  5. Cooling system according to one of the preceding claims, characterised in that the sorption medium (43) contains zeolite and the working medium is water or an acqueous solution.
  6. Cooling system according to one of the preceding claims, characterised in that a working medium condenser (55) is connected to the working medium collecting line (1) and has heat exchanger areas which lie at lower temperatures than the lowest evaporation temperature and in that vacuum pump (47, 48) can suck non-condensable gases out of the working medium condenser (55).
  7. Cooling system according to one of the preceding claims, characterised in that one of the evaporators (13, 22) has means (14, 24) which allow the evaporated working medium to be topped up.
  8. Cooling system according to one of the preceding claims, characterised in that one of the evaporators (19) has a level indicator for the working medium.
  9. Cooling system according to one of the preceding claims, characterised in that the working medium in one of the evaporators (19, 32) is ice.
  10. Cooling system according to one of the preceding claims, characterised in that one of the evaporators has regulating or control elements which set the vacuum pump (47, 48) in operation if need be.
  11. Cooling system according to one of the preceding claims, characterised in that one of the evaporators (13, 34, 19, 32) is designed for cooling of air or liquids and has a thermal insulation.
  12. Cooling system according to one of the preceding claims, characterised in that the sorption medium container (42) comprises easily detachable closures (9, 46) which allow simple replacement of the saturated sorption medium filling (43) with a freshly regenerated sorption medium filling.
  13. Cooling system according to one of the preceding claims, characterised in that a pressure sensor (54), by means of which the operation of the vacuum pump (48) is switched on or off, is connected to the working medium vapour collecting line (1).
  14. Cooling system according to one of the preceding claims, characterised in that one of the evaporators (13, 22, 32) comprises a thermostat which operates the vacuum pump (47, 48) for a short time whenever the evaporation temperature rises above a set temperature.
  15. Cooling system according to one of the preceding claims, characterised in that the sorption medium container (42) has means which allow regeneration of the sorption medium filling (43) by hot air, in particular by "bleed air".
EP92111436A 1992-07-06 1992-07-06 Refrigeration system with a vacuum-tight collecting conduit for the vapor of the working fluid Expired - Lifetime EP0577869B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT92111436T ATE147499T1 (en) 1992-07-06 1992-07-06 COOLING SYSTEM WITH A VACUUM TIGHT FLUID STEAM COLLECTION LINE
EP92111436A EP0577869B1 (en) 1992-07-06 1992-07-06 Refrigeration system with a vacuum-tight collecting conduit for the vapor of the working fluid
DE59207855T DE59207855D1 (en) 1992-07-06 1992-07-06 Cooling system with a vacuum-tight working fluid vapor manifold
JP5166759A JPH06159854A (en) 1992-07-06 1993-07-06 Cooling system, evaporator for said system and sorbent vessel and method of operating said system
US08/286,940 US5415012A (en) 1992-07-06 1994-08-08 Cooling system having a vacuum tight steam operating manifold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP92111436A EP0577869B1 (en) 1992-07-06 1992-07-06 Refrigeration system with a vacuum-tight collecting conduit for the vapor of the working fluid

Publications (2)

Publication Number Publication Date
EP0577869A1 EP0577869A1 (en) 1994-01-12
EP0577869B1 true EP0577869B1 (en) 1997-01-08

Family

ID=8209788

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92111436A Expired - Lifetime EP0577869B1 (en) 1992-07-06 1992-07-06 Refrigeration system with a vacuum-tight collecting conduit for the vapor of the working fluid

Country Status (5)

Country Link
US (1) US5415012A (en)
EP (1) EP0577869B1 (en)
JP (1) JPH06159854A (en)
AT (1) ATE147499T1 (en)
DE (1) DE59207855D1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU694878B2 (en) * 1995-06-05 1998-07-30 Elopak Systems Ag Pouring attachment
EP1154208A1 (en) 2000-05-13 2001-11-14 Firma H + P Technologie Gesellschaft für Kühlsysteme Refrigeration method and device
CN101978228B (en) * 2008-03-25 2013-06-05 皇家飞利浦电子股份有限公司 Docking station system including a skin treatment device and used in a skin treatment device
EP3628941A1 (en) 2018-09-28 2020-04-01 V-Chiller KFT Cooling system using vacuum evaporation

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19504081A1 (en) * 1995-02-08 1996-08-14 Zeolith Tech Cooler
CA2236596A1 (en) * 1995-11-01 1997-05-09 David A. Zornes Balanced adsorbent refrigerator
KR20010012481A (en) * 1997-05-08 2001-02-15 에이. 조아렌스 데이비드 Adsorbent refrigerator with separator
US6035959A (en) 1997-07-25 2000-03-14 Mtd Products Inc Vacuum actuated power steering system
DE19748362A1 (en) * 1997-11-03 1999-05-06 Zeolith Tech Process for cooling and / or freezing water-based products
US6827529B1 (en) * 1998-08-03 2004-12-07 Lancer Ice Link, Llc Vacuum pneumatic system for conveyance of ice
US6196001B1 (en) * 1999-10-12 2001-03-06 Alliedsignal Inc. Environment controlled WIP cart
FR2820196B1 (en) * 2001-01-29 2006-12-29 Claude Antoine Blaizat METHOD FOR THE COLD HOLDING OF TROLLEYS ON BOARD AIRCRAFT ALSO PROVIDING HEATING OR HOT HOLDING AND THE ENTIRE CORRESPONDING DEVICE
GB0217607D0 (en) * 2002-07-30 2002-09-11 Oxford Instr Superconductivity Refrigeration method and system
DE10250510A1 (en) * 2002-10-29 2004-05-19 Zeo-Tech Zeolith-Technologie Gmbh Adsorption cooling device with buffer storage
DE10303292A1 (en) * 2003-01-28 2004-07-29 Zeo-Tech Zeolith-Technologie Gmbh Mobile cooling container has zeolite absorption system connecting to chamber through back pressure valve with fans in absorption and storage chambers
FR2851329B1 (en) * 2003-02-17 2006-02-03 Airbus METHOD OF MAINTAINING COLD FOOD ON AIRCRAFT AND MEANS FOR IMPLEMENTING THE SAME
DE10344455A1 (en) * 2003-09-25 2005-05-12 Zeolith Tech Process and devices for rapid solidification of hydrous substances
US20050263109A1 (en) * 2003-11-16 2005-12-01 Daniels Timothy A Systems and methods for monitoring the status of pressurized systems
DE102005034297A1 (en) * 2005-02-25 2006-08-31 Zeo-Tech Zeolith-Technologie Gmbh Cooling unit for use in food industry, has sorbent material sealed into sorbent-containing pouch having multilayer sheeting material with metallic layer or metallized layer for allowing vacuo to sorb vaporous working medium
DE102006017012B4 (en) 2006-04-11 2011-01-13 Airbus Operations Gmbh Cooling system and freight container
DE102006054560A1 (en) * 2006-11-20 2008-05-21 Airbus Deutschland Gmbh Airplane device cooling system, has adsorbers with adsorption medium for adsorption of fluid that is evaporated in evaporators, and control system that is arranged to make or disconnect fluid connection between evaporators and adsorbers
CA2668663A1 (en) 2006-11-20 2008-05-29 Airbus Deutschland Gmbh Cooling system and method for cooling an aircraft device
EP1967799B1 (en) * 2007-03-05 2012-11-21 ZEO-TECH Zeolith Technologie GmbH Sorption cooling element with regulating organ and additional heat source
DE102007014002B4 (en) 2007-03-23 2012-09-06 Airbus Operations Gmbh Cooling system and freight container
EP2006616A2 (en) * 2007-06-19 2008-12-24 ZEO-TECH Zeolith Technologie GmbH Flexible sorption cooling element
US9657982B2 (en) 2013-03-29 2017-05-23 Tokitae Llc Temperature-controlled medicinal storage devices
US11105556B2 (en) 2013-03-29 2021-08-31 Tokitae, LLC Temperature-controlled portable cooling units
US10941971B2 (en) 2013-03-29 2021-03-09 Tokitae Llc Temperature-controlled portable cooling units
US9170053B2 (en) 2013-03-29 2015-10-27 Tokitae Llc Temperature-controlled portable cooling units
EP3102897B1 (en) * 2014-01-31 2021-09-15 The Coca-Cola Company Systems and methods for vacuum cooling a beverage
DE102014008450B4 (en) * 2014-06-05 2021-01-21 Airbus Defence and Space GmbH Thermal conditioning of components
US11125492B2 (en) 2016-10-27 2021-09-21 The Coca-Cola Company Systems and methods for vacuum cooling a beverage
WO2019236592A1 (en) * 2018-06-05 2019-12-12 Carrier Corporation A system and method for evaporative cooling and heating
EP3841335B1 (en) * 2018-08-23 2024-02-28 Abell, Thomas, U. System and method of controlling temperature of a medium by refrigerant vaporization
JP7448908B2 (en) 2019-05-31 2024-03-13 ゴビ テクノロジーズ インコーポレイテッド thermal regulation system
US20210310711A1 (en) 2019-05-31 2021-10-07 Gobi Technologies Inc. Temperature-controlled sorption system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE216809C (en) *
US236471A (en) * 1881-01-11 Franz windhausen
NL18247C (en) * 1923-11-20
US1729082A (en) * 1925-03-11 1929-09-24 Silica Gel Corp Refrigerating apparatus
DE457681C (en) * 1925-03-11 1928-03-26 Silica Gel Corp Cooling process
FR666528A (en) * 1928-12-29 1929-10-02 Ice machine
US1808056A (en) * 1929-05-09 1931-06-02 Robert J Mitchell Refrigerating system
US2023444A (en) * 1933-02-13 1935-12-10 Ralph C Roe Air conditioning for moving vehicles
US3150497A (en) * 1960-06-08 1964-09-29 Beckmann Hans Method and device for deep freezing of foods, luxuries and medicines
DE2209742A1 (en) * 1972-02-25 1973-08-30 Leonard Greiner Heating and cooling apparatus with absorption chemical - and fluid to be absorbed
SE7706357L (en) * 1977-05-31 1978-12-01 Brunberg Ernst Ake KIT FOR COOLING A SPACE AND DEVICE FOR PERFORMING THE KIT
US4126016A (en) * 1977-07-27 1978-11-21 Leonard Greiner Vacuum interconnect for heating and cooling unit
FR2489488A1 (en) * 1980-08-29 1982-03-05 Blaizat Claude Closed circuit refrigerated container - has closed circuit containing volatile fluid and adsorber to recover gases
FR2544842B1 (en) * 1983-04-19 1988-06-24 Blaizat Claude CONTINUOUS ADSORPTION, DESORPTION AND CONDENSATION HEATING DEVICE
DE8420664U1 (en) * 1984-07-10 1990-03-22 Kaubek, Fritz, Dipl.-Ing., 8035 Gauting Portable, adiabatic heating and cooling device based on the adsorption principle
AU581825B1 (en) * 1987-08-28 1989-03-02 Union Industry Co., Ltd Adsorption refrigeration system
DE4003107A1 (en) * 1990-02-02 1991-08-08 Zeolith Tech ICE PRODUCER ACCORDING TO THE SORPTION PRINCIPLE

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU694878B2 (en) * 1995-06-05 1998-07-30 Elopak Systems Ag Pouring attachment
EP1154208A1 (en) 2000-05-13 2001-11-14 Firma H + P Technologie Gesellschaft für Kühlsysteme Refrigeration method and device
CN101978228B (en) * 2008-03-25 2013-06-05 皇家飞利浦电子股份有限公司 Docking station system including a skin treatment device and used in a skin treatment device
EP3628941A1 (en) 2018-09-28 2020-04-01 V-Chiller KFT Cooling system using vacuum evaporation

Also Published As

Publication number Publication date
JPH06159854A (en) 1994-06-07
US5415012A (en) 1995-05-16
EP0577869A1 (en) 1994-01-12
ATE147499T1 (en) 1997-01-15
DE59207855D1 (en) 1997-02-20

Similar Documents

Publication Publication Date Title
EP0577869B1 (en) Refrigeration system with a vacuum-tight collecting conduit for the vapor of the working fluid
EP0543214B1 (en) Cooling device and method of cooling a fluid in a receptacle
DE4340316C2 (en) Arrangement for cooling food in an aircraft
EP0368111B1 (en) Sorption refrigeration system
EP0439819B1 (en) Device for making ice by sorption
EP1143210B1 (en) Sorption cooler
EP0655593B1 (en) Aircraft with a cooling system for cooling of foodstuffs
DE10229865B4 (en) Low temperature control device and method
DE602004009588T2 (en) SYSTEM, APPARATUS AND METHOD FOR PASSIVE AND ACTIVE COOLING OF AT LEAST ONE CHAMBER
EP0205167A1 (en) Adsorption cooler
EP1054222A2 (en) Device and method for cooling a liquid in a receptacle
DE102004018292A1 (en) Environmentally friendly method and device for cooling a room at a controlled temperature
EP0527466A1 (en) Sorption process for cooling and/or heating
EP1416233B1 (en) Adsorption refrigerator with heat accumulator
WO2012139956A1 (en) Evaporation device for a refrigerator
DE10223161A1 (en) Hybrid temperature control system
DE102019003957B4 (en) Cooling device
EP1443288A2 (en) Refrigerated container with adsorption refrigerating machine
EP1519125A2 (en) Method and apparatus for a fast solidification of water containing substances
DE3837880A1 (en) REFRIGERATED TANK FOR A SORPTION APPARATUS
DE19504081A1 (en) Cooler
EP3430329A1 (en) Refrigerator and/or freezer device
DE19535144A1 (en) Domestic freezer with fast-freeze facility
DE29722052U1 (en) Transport container cooling system
DE102014222928A1 (en) Fuel system with a cooling system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920731

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 19941010

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19970108

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970108

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19970108

Ref country code: DK

Effective date: 19970108

REF Corresponds to:

Ref document number: 147499

Country of ref document: AT

Date of ref document: 19970115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WERNER BRUDERER PATENTANWALT

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59207855

Country of ref document: DE

Date of ref document: 19970220

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Effective date: 19970408

Ref country code: SE

Effective date: 19970408

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: BE

Effective date: 19970731

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

26N No opposition filed
BERE Be: lapsed

Owner name: ZEOLITH TECHNOLOGIE G.M.B.H. ZEO-TECH

Effective date: 19970731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980131

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020415

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020513

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20020927

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20021016

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030706

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST