EP0531807B1 - Process for storing and transporting liquid hydrocarbons - Google Patents

Process for storing and transporting liquid hydrocarbons Download PDF

Info

Publication number
EP0531807B1
EP0531807B1 EP19920114585 EP92114585A EP0531807B1 EP 0531807 B1 EP0531807 B1 EP 0531807B1 EP 19920114585 EP19920114585 EP 19920114585 EP 92114585 A EP92114585 A EP 92114585A EP 0531807 B1 EP0531807 B1 EP 0531807B1
Authority
EP
European Patent Office
Prior art keywords
hydrocarbon
gel
surfactant
rich
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19920114585
Other languages
German (de)
French (fr)
Other versions
EP0531807A1 (en
Inventor
Fritz Dr. Engelhardt
Gerlinde Dr. Ebert
Heinz Prof. Dr. Hoffmann
Gerhard Prof. Dr. Platz
Werner Dr. Ritschel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi Aventis Deutschland GmbH
Cassella Farbwerke Mainkur AG
Original Assignee
Cassella AG
Cassella Farbwerke Mainkur AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cassella AG, Cassella Farbwerke Mainkur AG filed Critical Cassella AG
Publication of EP0531807A1 publication Critical patent/EP0531807A1/en
Application granted granted Critical
Publication of EP0531807B1 publication Critical patent/EP0531807B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L7/00Fuels produced by solidifying fluid fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0329Mixing of plural fluids of diverse characteristics or conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • Y10T137/0329Mixing of plural fluids of diverse characteristics or conditions
    • Y10T137/0335Controlled by consistency of mixture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy

Definitions

  • the present invention relates to a method for the safe storage or transport of liquid hydrocarbons, the hydrocarbon being converted into a hydrocarbon-rich gel which is destroyed again after storage or transport, and a method for destroying a hydrocarbon-rich gel.
  • the object of the present invention is therefore to provide a method for the safe storage or transport of hydrocarbons.
  • hydrocarbons are stored or transported in the form of hydrocarbon-rich gels.
  • a hydrocarbon-rich gel is understood to mean a system consisting of polyhedra formed by surfactant and filled with hydrocarbon, water forming a continuous phase in the narrow spaces between the polyhedra. Systems of this type are known and in Angew. Chem. 100 933 (1988) and Ber. Bunsenges. Phys. Chem. 92 1158 (1988).
  • Hydrocarbon-rich gels are characterized by the appearance of a yield point. This flow limit is reached when the gel no longer withstands the stress (shear, deformation) and begins to flow. Below the yield point, the gel structures have solid properties and obey Hooke's law. Ideally, the system is equivalent to a Newtonian liquid above the yield point. This means that hydrocarbon-rich gels can be pumped in a simple manner, but cannot flow at rest due to their solid-state properties. This means that they cannot escape from defective storage or transport containers, and there is almost no risk to the environment.
  • the present invention relates to a method for the safe storage or transport of liquid hydrocarbons, which is described in claim 1.
  • the present invention further relates to a method described in claim 2 for destroying a hydrocarbon-rich gel.
  • Surfactant and water are preferably added to the hydrocarbon in amounts such that a hydrocarbon-rich gel is formed from 70 to 99.5% by weight of hydrocarbon, 0.01 to 15% by weight of surfactant and 0.49 to 15% by weight of water.
  • Surfactant and water are particularly preferably added to the hydrocarbon in amounts such that a hydrocarbon-rich gel is formed from 80 to 99.5% by weight of hydrocarbon, 0.01 to 5% by weight of surfactant and 0.49 to 15% by weight of water.
  • Hydrocarbons which are particularly suitable for the process according to the invention are n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-dodecane, n-tetradecane, n-hexadecane, cyclohexane, Cyclooctane, benzene, toluene, kerosene, gasoline, unleaded gasoline, heating oil, diesel oil and crude oil.
  • Anionic, cationic, amphoteric or nonionic surfactants can be used to form the hydrocarbon-rich gels.
  • Preferred cationic surfactants are Quaternary ammonium compounds of the formula wherein R1 alkyl with 10 to 22 carbon atoms, R2 alkyl with 1 to 12 carbon atoms or benzyl R3 and R4 independently of one another hydrogen or methyl and X ⁇ Cl ⁇ , Br ⁇ or CH3SO4 ⁇ ; Fatty amines, such as, for example, coconut fatty amines, lauryl fatty amine, oleyl fatty amine, stearyl fatty amine, tallow fatty amine, dimethyl fatty amines or chain-pure primary alkyl amines having 8 to 22 carbon atoms; Ammonium borate betaine based on didecylamine; Stearyl-N-acylamido-N-methyl-imidazolinium chloride of the formula Alkenyl succinic acid derivatives of the formulas where R is iso-C18H35 or polybutenyl.
  • Mechanical waves are understood to mean, in particular, pressure waves of high frequency, for example ultrasound.
  • pressure waves of high frequency for example ultrasound.
  • the preferred range is of course dependent on the boiling point of the hydrocarbon.
  • a vacuum of up to 0.1 torr is usually advantageous.
  • oppositely charged surfactants or polymers or copolymers are preferably used.
  • the above-mentioned anionic surfactants are particularly preferably used.
  • Particularly preferred polymers with anionic groups are, for example
  • Polyacrylates consisting of basic elements of the formula which can also be networked and / or completely or partially neutralized
  • Poly-2-acrylamido-2-methyl-propanesulfonic acids consisting of basic elements of the formula which can also be networked and / or completely or partially neutralized
  • polyvinylphosphonic acids consisting of basic elements of the formula which can also be networked and / or completely or partially neutralized.
  • Cross-linked, partially neutralized polyacrylic acid is very particularly preferred. This also has the advantage that, due to its enormous absorption capacity for water, it can bind the aqueous phase of the gel to be destroyed quantitatively. Because of this absorption capacity for water, crosslinked, partially neutralized polyacrylic acid can not only destroy gel structures based on cationic surfactants, but also those based on anionic, amphoteric or nonionic surfactants.
  • the above-mentioned cationic surfactants are particularly preferably used.
  • Particularly preferred polymers with cationic groups are, for example Poly-diallyl-dimethyl-ammonium chloride, which can also be cross-linked and / or completely or partially neutralized, or poly-methacrylic acid-2-dimethylaminoethyl ester consisting of basic elements of the formula which can also be networked and / or completely or partially neutralized.
  • the destruction of the gel structure is carried out in a simple manner so that the surfactant or polymer as such or in a suitable solvent is added to the gel structure and briefly shaken.
  • the gel disintegrates spontaneously and is faster the higher the counter ion concentration.
  • Suitable solvents in which the surfactant or polymer used for gel destruction can be dissolved are, for example, xylene, water or alcohols.
  • the concentrations of the surfactants in the solvents are not critical, but are preferably from 30% by weight until the solution is saturated. If the hydrocarbon to be stored or transported is a fuel or lubricating oil, it is particularly advantageous if surfactants which can remain as an additive in the hydrocarbon are selected both for gel formation and for gel destruction.
  • surfactants which can remain as an additive in the hydrocarbon are selected both for gel formation and for gel destruction.
  • sulfonates are known as detergent additives
  • alkenylsuccinic acid imidoamines are known as dispersant additives (J. Raddatz, WS Bartz, 5th International Coll. January 14-16, 1986, Esslingen Technical Academy "Additives for Lubricants and Working Fluids").
  • Succinimides are also known as oil and fuel additives (see, for example, EP 198 690, US 4,614,603, EP 119 675, DE 3 814 601 or EP 295 789).
  • the pumping power proves to be independent of the pumping speed due to the viscoelasticity of the gel systems.
  • Example 1a 50 g of the gel prepared according to Example 1a were connected to an oil pump in a 1 liter one-necked flask via vacuum regulator and cold trap. At a vacuum of 0.6 mm Hg, the gel disintegration started within 5 minutes when the flask was heated by means of a thermostat bath to a gel temperature of 30 to 40 ° C. and was over after a short time.
  • a hydrocarbon-rich gel of 1.6 g of sodium dodecyl sulfate, 6.4 g of H2O and 392 g of kerosene was prepared as described in Example 1a, the mixing being carried out using a Vortex Genie mixer.
  • the gel decomposition was carried out analogously to Examples 1d to 1g.
  • a hydrocarbon-rich gel made from 1.6 g of a commercially available nonionic surfactant based on a nonylphenol polyglycol ether, 6.4 g H2O and 392 g kerosene was prepared as described in Example 1a.
  • a hydrocarbon-rich gel of 1.6 g of sodium dodeyl sulfate, 6.4 g of H2O and 392 g of hexane was prepared as described in Example 1a.
  • a hydrocarbon-rich gel from 1.6 g of a commercial cationic surfactant based on a quaternary ammonium compound, 6.4 g H2O and 392 g kerosene was prepared as described in Example 1a.
  • hydrocarbon-rich gels of Examples 6 to 19 below were prepared from ligroin, anionic surfactant and water and 41 g each were destroyed with the stated amount of cationic surfactant.
  • the following cationic surfactants were used:
  • hydrocarbon-rich gels of Examples 20 to 36 below were prepared from ligroin, cationic surfactant and water and 1 g each was destroyed with the stated amount of anionic surfactant.
  • hydrocarbon-rich gels of Examples 37 to 50 below were prepared from ligroin, surfactant and water and 1 g each was destroyed with the stated amount of an oppositely charged polymer.

Abstract

The present invention relates to the use of hydrocarbon-rich gels as a safe storage or transportation form for liquid hydrocarbons and to a process for the safe storage and safe transportion of liquid hydrocarbons, characterised in that a) the hydrocarbon is converted into a hydrocarbon-rich gel by addition of a surfactant and water and b) after storage or transportation has taken place, the hydrocarbon-rich gel is broken down again.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur sicheren Lagerung bzw. zum sicheren Transport von flüssigen Kohlenwasserstoffen, wobei der Kohlenwasserstoff in ein kohlenwasserstoffreiches Gel überführt wird, das nach Lagerung bzw. Transport wieder zerstört wird, sowie ein Verfahren zur Zerstörung eines kohlenwasserstoffreichen Gels.The present invention relates to a method for the safe storage or transport of liquid hydrocarbons, the hydrocarbon being converted into a hydrocarbon-rich gel which is destroyed again after storage or transport, and a method for destroying a hydrocarbon-rich gel.

Die Lagerung bzw. der Transport von flüssigen Kohlenwasserstoffen, beispielsweise Treibstoffen, über Straße, Schiene und auf dem Wasserwege stellt ein erhebliches Gefahrenpotential dar. So hat zum Beispiel die leichte Entzündbarkeit und Explosivität in Gemischen mit Luft in der Vergangenheit zu schweren Unglücksfällen geführt, die erhebliche Schäden verursacht haben. Darüberhinaus entstehen durch aus leckgeschlagenen Lager-oder Transportbehältern auslaufende Treibstoffe immer wieder schwere ökologische Schäden.The storage or transport of liquid hydrocarbons, for example fuels, by road, rail and by water represents a considerable potential hazard. For example, the flammability and explosiveness in mixtures with air in the past have led to serious accidents, which have been considerable Have caused damage. In addition, fuel leaking from leaked storage or transport containers repeatedly causes serious ecological damage.

Aufgabe vorliegender Erfindung ist es deshalb, ein Verfahren zur gefahrlosen Lagerung bzw. zum gefahrlosen Transport von Kohlenwasserstoffen bereitzustellen.The object of the present invention is therefore to provide a method for the safe storage or transport of hydrocarbons.

Diese Aufgabe wird in überraschender Weise dadurch gelöst, daß die Kohlenwasserstoffe in Form von kohlenwasserstoffreichen Gelen gelagert bzw. transportiert werden.This object is surprisingly achieved in that the hydrocarbons are stored or transported in the form of hydrocarbon-rich gels.

Unter einem kohlenwasserstoffreichen Gel versteht man ein System, das aus von Tensid gebildeten Polyedern besteht, die mit Kohlenwasserstoff gefüllt sind, wobei in den schmalen Zwischenräumen zwischen den Polyedern Wasser eine kontinuierliche Phase bildet. Systeme dieser Art sind bekannt und in Angew. Chem. 100 933 (1988) und Ber. Bunsenges. Phys. Chem. 92 1158 (1988) beschrieben.A hydrocarbon-rich gel is understood to mean a system consisting of polyhedra formed by surfactant and filled with hydrocarbon, water forming a continuous phase in the narrow spaces between the polyhedra. Systems of this type are known and in Angew. Chem. 100 933 (1988) and Ber. Bunsenges. Phys. Chem. 92 1158 (1988).

Kohlenwasserstoffreiche Gele zeichnen sich durch das Auftreten einer Fließgrenze aus. Diese Fließgrenze ist erreicht, wenn das Gel einer auferlegten Beanspruchung (Scherung, Deformation) nicht mehr standhält und zu fließen beginnt. Unterhalb der Fließgrenze weisen die Gelstrukturen Festkörpereigenschaften auf und gehorchen dem Hookeschen Gesetz. Oberhalb der Fließgrenze kommt das System im Idealfall einer newtonschen Flüssigkeit gleich. Das bedeutet, daß kohlenwasserstoffreiche Gele zwar in einfacher Weise gepumpt werden können, im Ruhezustand jedoch infolge ihrer Festkörpereigenschaften nicht fließen können. Somit können sie aus defekten Lager- oder Transportbehältern nicht austreten, eine Gefährdung der Umwelt ist nahezu ausgeschlossen.Hydrocarbon-rich gels are characterized by the appearance of a yield point. This flow limit is reached when the gel no longer withstands the stress (shear, deformation) and begins to flow. Below the yield point, the gel structures have solid properties and obey Hooke's law. Ideally, the system is equivalent to a Newtonian liquid above the yield point. This means that hydrocarbon-rich gels can be pumped in a simple manner, but cannot flow at rest due to their solid-state properties. This means that they cannot escape from defective storage or transport containers, and there is almost no risk to the environment.

Die vorliegende Erfindung betrifft ein Verfahren zur sicheren Lagerung bzw. zum sicheren Transport von flüssigen Kohlenwasserstoffen, das im Anspruch 1 beschrieben wird. Die Vorliegende Erfindung betrifft weiterhin ein im Anspruch 2 beschriebenen Verfahren zur Zerstörung eines kohlenwasserstoffreichen Gels.The present invention relates to a method for the safe storage or transport of liquid hydrocarbons, which is described in claim 1. The present invention further relates to a method described in claim 2 for destroying a hydrocarbon-rich gel.

Tensid und Wasser werden zum Kohlenwasserstoff bevorzugt in solchen Mengen gegeben, daß ein kohlenwasserstoffreiches Gel aus 70 bis 99,5 Gew% Kohlenwasserstoff, 0,01 bis 15 Gew% Tensid und 0,49 bis 15 Gew% Wasser entsteht.Surfactant and water are preferably added to the hydrocarbon in amounts such that a hydrocarbon-rich gel is formed from 70 to 99.5% by weight of hydrocarbon, 0.01 to 15% by weight of surfactant and 0.49 to 15% by weight of water.

Besonders bevorzugt werden Tensid und Wasser zum Kohlenwasserstoff in solchen Mengen gegeben, daß ein kohlenwasserstoffreiches Gel aus 80 bis 99,5 Gew% Kohlenwasserstoff, 0,01 bis 5 Gew% Tensid und 0,49 bis 15 Gew% Wasser entsteht.Surfactant and water are particularly preferably added to the hydrocarbon in amounts such that a hydrocarbon-rich gel is formed from 80 to 99.5% by weight of hydrocarbon, 0.01 to 5% by weight of surfactant and 0.49 to 15% by weight of water.

Kohlenwasserstoffe, die für das erfindungsgemäße Verfahren besonders geeignet sind, sind n-Pentan, n-Hexan, n-Heptan, n-Oktan, n-Nonan, n-Dekan, n-Dodekan, n-Tetradekan, n-Hexadekan, Cyclohexan, Cyclooktan, Benzol, Toluol, Kerosin, Benzin, bleifreies Benzin, Heizöl, Dieselöl und Rohöl.Hydrocarbons which are particularly suitable for the process according to the invention are n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-dodecane, n-tetradecane, n-hexadecane, cyclohexane, Cyclooctane, benzene, toluene, kerosene, gasoline, unleaded gasoline, heating oil, diesel oil and crude oil.

Zur Bildung der kohlenwasserstoffreichen Gele können anionische, kationische, amphotere oder nichtionische Tenside eingesetzt werden.Anionic, cationic, amphoteric or nonionic surfactants can be used to form the hydrocarbon-rich gels.

Bevorzugte anionische Tenside sind
Seifen der Formel R-CH₂-COONa
   worin R einen Kohlenwasserstoffrest mit 10 bis 20 C-Atomen bedeutet;
Alkansulfonate der Formel

Figure imgb0001

   worin R und R' Alkylreste mit zusammen 11 bis 17 C-Atomen bedeuten;
Alkylbenzolsulfonate bzw. -sulfate der Formel
Figure imgb0002

   worin n = 0 oder 1 ist
   und R und R' Alkylreste mit zusammen 11 bis 13 C-Atomen bedeuten;
Olefinsulfonate der Formel R-CH₂-CH = CH-CH₂-SO₃Na
   worin R Alkyl mit 10 bis 14 C-Atomen bedeutet;
Fettalkoholsulfate der Formel R-CH₂-O-SO₃Y
   worin R Alkyl mit 11 bis 15 C-Atomen und
   Y Na oder Triethanolamin bedeuten;
Fettalkoholpolyglykolsulfate der Formel



        R-CH₂-O(C₂H₄O)n-SO₃Na



   worin n = 2 bis 7 ist und
   R Alkyl mit 8 bis 15 C-Atomen bedeutet;
Sulfosuccinate der Formel
Figure imgb0003

   worin n 2 bis 6 ist und
   R Alkyl mit 11 bis 13 C-Atomen bedeutet;
Fettalkoholpolyglykolphosphate der Formel



        R-CH₂-O(C₂H₄O)nPO₃HNa



   worin n 2 bis 6 ist und
   R Alkyl mit 15 bis 17 C-Atomen bedeutet;
Alkanphosphonate der Formel



        R-PO₃HNa



   worin R Alkyl mit 12 bis 16 C-Atomen bedeutet;
oder Natriumsalze von Ölsäurederivaten wie Ölsäuresarkosid, Ölsäureisothionat oder Ölsäuremethyltaurid.Preferred anionic surfactants are
Soaps of the formula R-CH₂-COO Na
wherein R represents a hydrocarbon radical having 10 to 20 carbon atoms;
Alkanesulfonates of the formula
Figure imgb0001

wherein R and R 'are alkyl radicals with a total of 11 to 17 carbon atoms;
Alkylbenzenesulfonates or sulfates of the formula
Figure imgb0002

where n = 0 or 1
and R and R 'are alkyl radicals with a total of 11 to 13 carbon atoms;
Olefin sulfonates of the formula R-CH₂-CH = CH-CH₂-SO₃ Na
wherein R is alkyl having 10 to 14 carbon atoms;
Fatty alcohol sulfates of the formula R-CH₂-O-SO₃ Y
wherein R is alkyl with 11 to 15 carbon atoms and
Y Na or triethanolamine;
Fatty alcohol polyglycol sulfates of the formula



R-CH₂-O (C₂H₄O) n -SO₃ Na



where n = 2 to 7 and
R represents alkyl having 8 to 15 carbon atoms;
Sulfosuccinates of the formula
Figure imgb0003

wherein n is 2 to 6 and
R represents alkyl with 11 to 13 carbon atoms;
Fatty alcohol polyglycol phosphates of the formula



R-CH₂-O (C₂H₄O) n PO₃H Na



wherein n is 2 to 6 and
R represents alkyl with 15 to 17 carbon atoms;
Alkane phosphonates of the formula



R-PO₃H Na



wherein R is alkyl with 12 to 16 carbon atoms;
or sodium salts of oleic acid derivatives such as oleic acid sarcoside, oleic acid isothionate or oleic acid methyl tauride.

Bevorzugte kationische Tenside sind
Quartäre Ammoniumverbindungen der Formel

Figure imgb0004

   worin
   R¹ Alkyl mit 10 bis 22 C-Atomen,
   R² Alkyl mit 1 bis 12 C-Atomen oder Benzyl
   R³ und R⁴ unabhängig voneinander Wasserstoff oder Methyl und
   X Cl, Br oder CH₃SO₄ bedeuten;
Fettamine, wie beispielsweise Kokosfettamine, Laurylfettamin, Oleylfettamin, Stearylfettamin, Talgfettamin, Dimethylfettamine oder kettenreine primäre Alkylamine mit 8 bis 22 C-Atomen;
Ammoniumborat-Betain auf Basis Didecylamin;
Stearyl-N-acylamido-N-methyl-imidazolinium-chloride der Formel
Figure imgb0005

Alkenylbernsteinsäurederivate der Formeln
Figure imgb0006
Figure imgb0007

   worin R jeweils iso-C₁₈H₃₅ oder Polybutenyl bedeuten.Preferred cationic surfactants are
Quaternary ammonium compounds of the formula
Figure imgb0004

wherein
R¹ alkyl with 10 to 22 carbon atoms,
R² alkyl with 1 to 12 carbon atoms or benzyl
R³ and R⁴ independently of one another hydrogen or methyl and
X Cl , Br or CH₃SO₄ ;
Fatty amines, such as, for example, coconut fatty amines, lauryl fatty amine, oleyl fatty amine, stearyl fatty amine, tallow fatty amine, dimethyl fatty amines or chain-pure primary alkyl amines having 8 to 22 carbon atoms;
Ammonium borate betaine based on didecylamine;
Stearyl-N-acylamido-N-methyl-imidazolinium chloride of the formula
Figure imgb0005

Alkenyl succinic acid derivatives of the formulas
Figure imgb0006
Figure imgb0007

where R is iso-C₁₈H₃₅ or polybutenyl.

Bevorzugte amphotere Tenside sind beispielsweise
Alkylbetaine der Formel

Figure imgb0008

   worin R Alkyl mit 12 bis 14 C-Atomen bedeutet;
N-Carboxyethyl-N-alkylamido-ethylglycinate der Formel
Figure imgb0009

   worin R Alkyl mit 11 bis 13 C-Atomen bedeutet;
N-Alkylamido-propyl-N-dimethylaminoxide der Formel
Figure imgb0010

   worin R Alkyl mit 11 bis 13 C-Atomen bedeutet;
Bevorzugte nichtionische Tenside sind beispielsweise
1,4-Sorbitanfettsäureester der Formel
Figure imgb0011

   worin R Alkyl mit 11 bis 17 C-Atomen bedeutet;
Fettalkoholpolyglykolether der Formel



        R-O(CH₂-CH₂-O)nH



   worin n = 3 bis 15 ist und R geradkettiges oder verzweigtes Alkyl mit 9 bis 19 C-Atomen bedeutet;
Alkylphenolpolyglykolether der Formel
Figure imgb0012

   worin n = 3 bis 15 ist und R und R' Alkyl mit zusammen 7 bis 11 C-Atomen bedeuten.Preferred amphoteric surfactants are, for example
Alkyl betaines of the formula
Figure imgb0008

wherein R is alkyl having 12 to 14 carbon atoms;
N-carboxyethyl-N-alkylamido-ethylglycinate of the formula
Figure imgb0009

wherein R represents alkyl having 11 to 13 carbon atoms;
N-alkylamido-propyl-N-dimethylamine oxides of the formula
Figure imgb0010

wherein R represents alkyl having 11 to 13 carbon atoms;
Preferred nonionic surfactants are, for example
1,4-sorbitan fatty acid esters of the formula
Figure imgb0011

wherein R is alkyl with 11 to 17 carbon atoms;
Fatty alcohol polyglycol ether of the formula



RO (CH₂-CH₂-O) n H



where n = 3 to 15 and R is straight-chain or branched alkyl having 9 to 19 carbon atoms;
Alkylphenol polyglycol ethers of the formula
Figure imgb0012

where n = 3 to 15 and R and R 'are alkyl with a total of 7 to 11 carbon atoms.

Nach erfolgter Lagerung bzw. Transport muß der flüssige Kohlenwasserstoff wieder zurückgewonnen, das heißt die Gelstruktur zerstört werden.After storage or transport, the liquid hydrocarbon must be recovered, ie the gel structure must be destroyed.

Dies geschieht durch eine Behandlung mit mechanischen Wellen, durch Anlegen eines Unterdrucks bzw. Vakuums oder, falls das kohlenwasserstoffreiche Gel mit Hilfe eines ionischen Tensids gebildet ist, durch Zugabe einer entgegengesetzt geladenen Substanz.This is done by treatment with mechanical waves, by applying a vacuum or vacuum or, if the hydrocarbon-rich gel is formed with the aid of an ionic surfactant, by adding an oppositely charged substance.

Unter mechanischen Wellen werden insbesondere Druckwellen hoher Frequenz, also beispielsweise Ultraschall verstanden. Bei der Zerstörung der Gelstruktur durch Ultraschall beginnt bereits nach wenigen Sekunden die Kohlenwasserstoffphase aus dem Gelverband auszutreten. Die Auftrennung ist beendet, wenn zwei dünnflüssige Phasen nebeneinander vorliegen. Dies ist in der Regel nach etwa 30 Sekunden der Fall.Mechanical waves are understood to mean, in particular, pressure waves of high frequency, for example ultrasound. When the gel structure is destroyed by ultrasound, the hydrocarbon phase begins to emerge from the gel dressing after only a few seconds. The separation is complete when two thin phases coexist. This is usually the case after about 30 seconds.

Bei der Zerstörung der Gelstruktur durch Anlegen eines Unterdrucks bzw. Vakuums ist der bevorzugte Bereich selbstverständlich vom Siedepunkt des Kohlenwasserstoffs abhängig. Üblicherweise ist ein Vakuum bis zu 0,1 Torr vorteilhaft.When the gel structure is destroyed by applying a vacuum or vacuum, the preferred range is of course dependent on the boiling point of the hydrocarbon. A vacuum of up to 0.1 torr is usually advantageous.

Bei der Zerstörung von mit ionischen Tensiden gebildeten Gelstrukturen werden bevorzugt entgegengesetzt geladene Tenside oder Polymere bzw. Copolymere eingesetzt.In the destruction of gel structures formed with ionic surfactants, oppositely charged surfactants or polymers or copolymers are preferably used.

Im Falle der Zerstörung von Gelstrukturen auf Basis kationischer Tenside werden besonders bevorzugt die oben genannten anionischen Tenside eingesetzt.In the event that gel structures based on cationic surfactants are destroyed, the above-mentioned anionic surfactants are particularly preferably used.

Besonders bevorzugte Polymere mit anionischen Gruppen sind beispielsweiseParticularly preferred polymers with anionic groups are, for example

Polyacrylate, bestehend aus Grundelementen der Formel

Figure imgb0013

die auch vernetzt und/oder ganz oder teilweise neutralisiert sein können;
Poly-2-Acrylamido-2-methyl-propansulfonsäuren, bestehend aus Grundelementen der Formel
Figure imgb0014

die auch vernetzt und/oder ganz oder teilweise neutralisiert sein können;
oder Poly-Vinylphosphonsäuren, bestehend aus Grundelementen der Formel
Figure imgb0015

die auch vernetzt und/oder ganz oder teilweise neutralisiert sein können.Polyacrylates, consisting of basic elements of the formula
Figure imgb0013

which can also be networked and / or completely or partially neutralized;
Poly-2-acrylamido-2-methyl-propanesulfonic acids, consisting of basic elements of the formula
Figure imgb0014

which can also be networked and / or completely or partially neutralized;
or polyvinylphosphonic acids, consisting of basic elements of the formula
Figure imgb0015

which can also be networked and / or completely or partially neutralized.

Bevorzugt sind auch Mischungen der genannten Polymeren bzw. Polymere, die mehrere der genannten Grundelemente enthalten. Einsetzbar sind auch Polymere, die beispielsweise aus den oben genannten Grundelementen mit negativer Ladung, sowie solchen mit positiver Ladung bestehen.Mixtures of the polymers mentioned or polymers which contain several of the basic elements mentioned are also preferred. It is also possible to use polymers which consist, for example, of the above-mentioned basic elements with a negative charge and those with a positive charge.

Ganz besonders bevorzugt ist vernetzte, teilneutralisierte Polyacrylsäure. Diese hat überdies den Vorteil, daß sie aufgrund ihrer, enormen Aufnahmekapazität für Wasser die wäßrige Phase des zu zerstörenden Gels quantitativ binden kann. Aufgrund dieser Aufnahmekapazität für Wasser kann vernetzte, teilneutralisierte Polyacrylsäure nicht nur Gelstrukturen auf Basis kationischer Tenside, sonder auch solche auf Basis anionischer, amphoterer oder nichtionischer Tenside zerstören.Cross-linked, partially neutralized polyacrylic acid is very particularly preferred. This also has the advantage that, due to its enormous absorption capacity for water, it can bind the aqueous phase of the gel to be destroyed quantitatively. Because of this absorption capacity for water, crosslinked, partially neutralized polyacrylic acid can not only destroy gel structures based on cationic surfactants, but also those based on anionic, amphoteric or nonionic surfactants.

Im Falle der Zerstörung von Gelstrukturen auf Basis anionischer Tenside werden besonders bevorzugt die oben genannten kationischen Tenside eingesetzt.In the event of the destruction of gel structures based on anionic surfactants, the above-mentioned cationic surfactants are particularly preferably used.

Besonders bevorzugte Polymere mit kationischen Gruppen sind beispielsweise
Poly-Diallyl-dimethyl-ammonium-chlorid, das auch vernetzt und/oder ganz oder teilweise neutralisiert sein kann oder Poly-Methacrylsäure-2-dimethylaminoethylester bestehend aus Grundelementen der Formel

Figure imgb0016

die auch vernetzt und/oder ganz oder teilweise neutralisiert sein können.Particularly preferred polymers with cationic groups are, for example
Poly-diallyl-dimethyl-ammonium chloride, which can also be cross-linked and / or completely or partially neutralized, or poly-methacrylic acid-2-dimethylaminoethyl ester consisting of basic elements of the formula
Figure imgb0016

which can also be networked and / or completely or partially neutralized.

Bevorzugt sind auch Mischungen der genannten Polymeren bzw. Polymere, die beide genannten Grundelemente enthalten. Einsetzbar sind auch Polymere, die beispielsweise aus den oben genannten Grundelementen mit positiver Ladung, sowie solchen mit negativer Ladung bestehen.Mixtures of the polymers mentioned or polymers which contain both of the basic elements mentioned are also preferred. It is also possible to use polymers which consist, for example, of the above-mentioned basic elements with a positive charge and those with a negative charge.

Die Zerstörung der Gelstruktur wird in einfacher Weise so durchgeführt, daß das Tensid oder Polymer als solches oder in einem geeigneten Lösungsmittel gelöst zu der Gelstruktur gegeben und kurz geschüttelt wird. Der Gelzerfall setzt dann spontan ein und ist um so schneller je höher die Gegenionkonzentration ist.The destruction of the gel structure is carried out in a simple manner so that the surfactant or polymer as such or in a suitable solvent is added to the gel structure and briefly shaken. The gel disintegrates spontaneously and is faster the higher the counter ion concentration.

Sinnvolle Gelzerfallsgeschwindigkeiten werden ja nach System dann erreicht, wenn pro g im Gelb enthaltenes Tensid 0,2 bis 25 g, bevorzugt 0,4 bis 5 g an entgegengesetzt geladenem Tensid bzw. Polymer zugesetzt werden.Depending on the system, sensible gel disintegration rates are achieved if 0.2 to 25 g, preferably 0.4 to 5 g, of oppositely charged surfactant or polymer are added per g of surfactant contained in the yellow.

Geeignete Lösungsmittel, in denen das zur Gelzerstörung eingesetzte Tensid oder Polymer gelöst werden kann, sind beispielsweise Xylol, Wasser oder Alkohole.Suitable solvents in which the surfactant or polymer used for gel destruction can be dissolved are, for example, xylene, water or alcohols.

Die Konzentrationen der Tenside in den Lösungsmitteln sind unkritisch, betragen aber bevorzugt von 30 Gew% bis zur Sättigung der Lösung. Falls der zu lagernde bzw. zu transportierende Kohlenwasserstoff ein Treibstoff oder Schmieröl ist, ist es besonders vorteilhaft, wenn sowohl zur Gelbildung als auch zur Gelzerstörung Tenside ausgewählt werden, die als Additiv im Kohlenwasserstoff verbleiben können. Beispielsweise sind Sulfonate als Detergent-Additive und Alkenylbernsteinsäure-imidoamine als Dispersant-Additive bekannt (J. Raddatz, W.S. Bartz, 5. Int. Koll. 14. - 16.1.1986, Technische Akademie Esslingen "Additive für Schmierstoffe und Arbeitsflüssigkeiten"). Auch Succinimide sind als Öl- und Treibstoffadditive bekannt (siehe z. B. EP 198 690, US 4,614,603, EP 119 675, DE 3 814 601 oder EP 295 789).The concentrations of the surfactants in the solvents are not critical, but are preferably from 30% by weight until the solution is saturated. If the hydrocarbon to be stored or transported is a fuel or lubricating oil, it is particularly advantageous if surfactants which can remain as an additive in the hydrocarbon are selected both for gel formation and for gel destruction. For example, sulfonates are known as detergent additives and alkenylsuccinic acid imidoamines are known as dispersant additives (J. Raddatz, WS Bartz, 5th International Coll. January 14-16, 1986, Esslingen Technical Academy "Additives for Lubricants and Working Fluids"). Succinimides are also known as oil and fuel additives (see, for example, EP 198 690, US 4,614,603, EP 119 675, DE 3 814 601 or EP 295 789).

Beispiel 1example 1 a) Herstellunga) Manufacturing

1g Natrium-dodecylsulfat wurden in 9 g Wasser gelöst und in einem Erlenmeyer-Weithalskolben vorgelegt. Bei Raumtemperatur wurden unter kräftigem Rühren mittels eines Magnetrührers 400 g Ligroin zugegeben. Dabei bildete sich ein kohlenwasserstoffreiches Gelsystem.1 g of sodium dodecyl sulfate was dissolved in 9 g of water and placed in an Erlenmeyer wide-necked flask. 400 g of ligroin were added at room temperature with vigorous stirring using a magnetic stirrer. A gel system rich in hydrocarbons was formed.

b)Pumpversucheb) pumping tests

Mit diesem Gelsystem wurden Pumpversuche mit Hilfe einer Ika-Schlauchpumpe durchgeführt. Der Durchmesser des verwendeten Polyethylen-Schlauches betrug 4 mm. Die Pumpbarkeit wurde als Menge Gel festgehalten, das nach einer definierten Zeiteinheit von Gefäß A nach Gefäß B umgepumpt wurde. Die Meßergebnisse aus 5 minütiger Versuchsdauer bei unterschiedlicher Pumpgeschwindigkeit sind nachfolgend zusammengefaßt: Geschwindigkeitsstufe Versuchsdauer gepumpte Gelmenge 10 5 min 3,8 g 10 5 min 3,7 g 20 5 min 4,4 g 20 5 min 4,1 g 20 5 min 2,9 g 20 5 min 3,8 g 20 5 min 3,9 g 20 5 min 3,8 g 30 5 min 4,4 g 30 5 min 4,3 g 30 5 min 4,3 g 30 5 min 4,5 g 40 5 min 4,2 g 40 5 min 4,5 g 40 5 min 3,8 g Pump tests were carried out with this gel system using an Ika peristaltic pump. The diameter of the polyethylene hose used was 4 mm. The pumpability was recorded as an amount of gel which was pumped from vessel A to vessel B after a defined unit of time. The measurement results from a test duration of 5 minutes at different pump speeds are summarized below: Speed level Test duration amount of gel pumped 10th 5 min 3.8 g 10th 5 min 3.7 g 20th 5 min 4.4 g 20th 5 min 4.1 g 20th 5 min 2.9 g 20th 5 min 3.8 g 20th 5 min 3.9 g 20th 5 min 3.8 g 30th 5 min 4.4 g 30th 5 min 4.3 g 30th 5 min 4.3 g 30th 5 min 4.5 g 40 5 min 4.2 g 40 5 min 4.5 g 40 5 min 3.8 g

Zusammenfassend kann man feststellen, daß sich die Pumpleistung aufgrund der Viskoelastizität der Gelsysteme als unabhängig von der Pumpgeschwindigkeit erweist.In summary, it can be said that the pumping power proves to be independent of the pumping speed due to the viscoelasticity of the gel systems.

c) Lagerung und Transportc) Storage and transportation

In einem Beobachtungszeitraum von sechs Monaten konnten keine Veränderungen in der Konsistenz oder im rheologischen Verhalten des Gelsystems festgestellt werden. Eine permanente Scherung bzw. eine kräftige Schüttelbewegung beim Transport auf Schiene und Straße hat keinen Einfluß auf die Gelstabilität.No changes in the consistency or rheological behavior of the gel system could be found in an observation period of six months. Permanent shear or vigorous shaking during transport by rail and road has no effect on gel stability.

d) Gelzerstörung durch Ultraschalld) Gel destruction by ultrasound

In einer Versuchsreihe wurden jeweils 50 g Gel der unter 1a beschriebenen Zusammensetzung mit dem Ultraschallgerät Sonifier Cell Disruptor B-30 unter Einsatz unterschiedlicher Energiestufen zerstört. Festgehalten wurde der Zeitpunkt vollständiger Strukturzerstörung: Energiestufe Dauer bis zur Zerstörung Stufe 10 1 sec Stufe 8 10 sec Stufe 6 35 sec Stufe 4 197 sec Stufe 3 390 sec In a series of experiments, 50 g of gel of the composition described under 1a were destroyed using the Sonifier Cell Disruptor B-30 ultrasound device using different energy levels. The time of complete structural destruction was recorded: Energy level Time to destruction Level 10 1 sec Level 8 10 sec Level 6 35 sec Level 4 197 sec level 3 390 sec

e) Gelzerstörung durch Anlegen eines Vakuumse) Gel destruction by applying a vacuum

50 g des nach Beispiel 1a hergestellten Gels wurden in einem 1 Liter-Einhalskolben über Vakuumregler und Kühlfalle mit einer Ölpumpe verbunden. Bei einem Vakuum von 0.6 mm Hg setzte der Gelzerfall bei Erwärmung des Kolbens mittels eines Thermostatenbades auf eine Geltemperatur von 30 bis 40°C binnen 5 Minuten ein und war nach kurzer Zeit beendet.50 g of the gel prepared according to Example 1a were connected to an oil pump in a 1 liter one-necked flask via vacuum regulator and cold trap. At a vacuum of 0.6 mm Hg, the gel disintegration started within 5 minutes when the flask was heated by means of a thermostat bath to a gel temperature of 30 to 40 ° C. and was over after a short time.

f) Gelzerstörung durch Zugabe eines kationischen Tensidsf) Gel destruction by adding a cationic surfactant

100 g des nach Beispiel 1a hergestellten Gels wurden in einem 500 ml-Erlenmeyer-Kolben vorgelegt und mit 600 ppm eines handelsüblichen Tensids auf Basis Kokosfettamin versetzt. Bei Durchmischung durch einfache mechanische Bewegung erfolgte der Gelzerfall spontan. Es resultierte ein System aus zwei dünnflüssigen, miteinander nicht mischbaren Phasen.100 g of the gel prepared according to Example 1a were placed in a 500 ml Erlenmeyer flask and mixed with 600 ppm of a commercial surfactant based on coconut fatty amine. When mixed by simple mechanical movement, the gel disintegrated spontaneously. The result was a system consisting of two thin, immiscible phases.

g) Gelzerstörung durch Zugabe eines Polymers mit kationischen Gruppeng) Gel destruction by adding a polymer with cationic groups

100g des nach Beispiel 1a hergestellten Gels wurden in einem 500ml-Erlenmeyer-Kolben vorgelegt und mit 4000 ppm Poly-Diallyl-dimethyl-ammoniumchlorid versetzt. Bei Durchmischung durch einfache mechanische Bewegung erfolgte der Gelzerfall spontan. Es resultierte ein System aus zwei dünnflüssigen, miteinander nicht mischbaren Phasen.100 g of the gel prepared according to Example 1a were placed in a 500 ml Erlenmeyer flask and 4000 ppm of poly-diallyl-dimethyl-ammonium chloride were added. When mixed by simple mechanical movement, the gel disintegrated spontaneously. The result was a system consisting of two thin, immiscible phases.

Beispiel 2Example 2

Ein kohlenwasserstoffreiches Gel aus 1,6 g Natrium-dodecylsulfat, 6,4 g H₂O und 392 g Kerosin wurde wie in Beispiel 1a beschrieben hergestellt, wobei die Durchmischung mit Hilfe eines Vortex Genie-Mixers erfolgte.A hydrocarbon-rich gel of 1.6 g of sodium dodecyl sulfate, 6.4 g of H₂O and 392 g of kerosene was prepared as described in Example 1a, the mixing being carried out using a Vortex Genie mixer.

Pumpversuche analog Beispiel 1b ergaben die folgenden Ergebnisse: Geschwindigkeitsstufe Versuchsdauer gepumpte Gelmenge 10 5 min 64,9 g 10 5 min 60,2 g 10 5 min 64,3 g Pumping tests analogous to Example 1b gave the following results: Speed level Test duration amount of gel pumped 10th 5 min 64.9 g 10th 5 min 60.2 g 10th 5 min 64.3 g

Die Gelzersetzung gelang analog den Beispielen 1d bis 1g.The gel decomposition was carried out analogously to Examples 1d to 1g.

Beispiel 3Example 3

Ein kohlenwasserstoffreiches Gel aus 1,6 g eines handelsüblichen nichtionischen Tensids auf Basis eines Nonylphenolpolyglykolethers, 6,4 g H₂O und 392 g Kerosin wurde wie in Beispiel 1a beschrieben hergestellt.A hydrocarbon-rich gel made from 1.6 g of a commercially available nonionic surfactant based on a nonylphenol polyglycol ether, 6.4 g H₂O and 392 g kerosene was prepared as described in Example 1a.

Pumpversuche analog Beispiel 1b ergaben die folgenden Ergebnisse: Geschwindigkeitsstufe Versuchsdauer gepumpte Gelmenge 10 5 min 55,4 g 10 5 min 58,5 g 10 5 min 54,4 g Pumping tests analogous to Example 1b gave the following results: Speed level Test duration amount of gel pumped 10th 5 min 55.4 g 10th 5 min 58.5 g 10th 5 min 54.4 g

Die Gelzerstörung gelang analog den Beispielen 1d und 1e.Gel destruction was carried out analogously to Examples 1d and 1e.

Beispiel 4Example 4

Ein kohlenwasserstoffreiches Gel aus 1,6 g Natrium-dodeylsulfat, 6,4 g H₂O und 392 g Hexan wurde wie in Beispiel 1a beschrieben hergestellt.A hydrocarbon-rich gel of 1.6 g of sodium dodeyl sulfate, 6.4 g of H₂O and 392 g of hexane was prepared as described in Example 1a.

Pumpversuche analog Beispiel 1b ergaben die folgenden Ergebnisse: Geschwindigkeitsstufe Versuchsdauer gepumpte Gelmenge 10 5 min 21,4 g 10 5 min 22,2 g 10 5 min 21,5 g Pumping tests analogous to Example 1b gave the following results: Speed level Test duration amount of gel pumped 10th 5 min 21.4 g 10th 5 min 22.2 g 10th 5 min 21.5 g

Die Gelzerstörung gelang analog den Beispielen 1d bis 1g.Gel destruction was carried out analogously to Examples 1d to 1g.

Beispiel 5Example 5

Ein kohlenwasserstoffreiches Gel aus 1,6 g eines handelsüblichen kationischen Tensids auf Basis einer quartären Ammoniumverbindung, 6,4 g H₂O und 392 g Kerosin wurde wie in Beispiel 1a beschrieben herstellt.A hydrocarbon-rich gel from 1.6 g of a commercial cationic surfactant based on a quaternary ammonium compound, 6.4 g H₂O and 392 g kerosene was prepared as described in Example 1a.

Pumpversuche analog Beispiel 1b ergaben die folgenden Ergebnisse: Geschwindigkeitsstufe Versuchsdauer gepumpte Gelmenge 10 5 min 283,0 g 10 5 min 288,8 g 10 5 min 248,8 g Pumping tests analogous to Example 1b gave the following results: Speed level Test duration amount of gel pumped 10th 5 min 283.0 g 10th 5 min 288.8 g 10th 5 min 248.8 g

Die Gelzerstörung gelang analog den Beispielen 1d bis 1g, wobei aber im Falle 1g eine vernetzte, teilneutralisierte Polyacrylsäure verwendet wurde.Gel destruction was carried out analogously to Examples 1d to 1g, but in the case of 1g a crosslinked, partially neutralized polyacrylic acid was used.

Wie in den Beispielen 1 bis 5 beschrieben, wurden die kohlenwasserstoffreichen Gele der nachstehenden Beispiele 6 bis 19 aus Ligroin, anionischem Tensid und Wasser hergestellt und jeweils 41 g mit der angegebenen Menge an kationischem Tensid zerstört. Folgende kationischen Tenside wurden verwendet:

Figure imgb0017
Figure imgb0018
Figure imgb0019
Figure imgb0020
As described in Examples 1 to 5, the hydrocarbon-rich gels of Examples 6 to 19 below were prepared from ligroin, anionic surfactant and water and 41 g each were destroyed with the stated amount of cationic surfactant. The following cationic surfactants were used:
Figure imgb0017
Figure imgb0018
Figure imgb0019
Figure imgb0020

Wie in den Beispielen 1 bis 5 beschrieben, wurden die kohlenwasserstoffreichen Gele der nachstehenden Beispiele 20 bis 36 aus Ligroin, kationischem Tensid und Wasser hergestellt und jeweils 1 g mit der angegebenen Menge an anionischem Tensid zerstört.

Figure imgb0021
Figure imgb0022
As described in Examples 1 to 5, the hydrocarbon-rich gels of Examples 20 to 36 below were prepared from ligroin, cationic surfactant and water and 1 g each was destroyed with the stated amount of anionic surfactant.
Figure imgb0021
Figure imgb0022

Wie in den Beispielen 1 bis 5 beschrieben, wurden die kohlenwasserstoffreichen Gele der nachstehenden Beispiele 37 bis 50 aus Ligroin, Tensid und Wasser hergestellt und jeweils 1 g mit der angegebenen Menge eines entgegengesetzt geladenen Polymeren zerstört.As described in Examples 1 to 5, the hydrocarbon-rich gels of Examples 37 to 50 below were prepared from ligroin, surfactant and water and 1 g each was destroyed with the stated amount of an oppositely charged polymer.

Folgende Polymere wurden eingesetzt:

Polymer 1:
Polyacrylat
Polymer 2:
Poly-Dialkyl-dimethyl-ammoniumchlorid
Polymer 3:
Poly-2-Acrylamido-2-methyl-propansulfonsäure
Polymer 4:
Poly-Vinylphosphonsäure
Polymer 5:
Poly-Methacrylsäure-2-dimethylaminoethylester
Figure imgb0023
The following polymers were used:
Polymer 1:
Polyacrylate
Polymer 2:
Poly-dialkyl-dimethyl-ammonium chloride
Polymer 3:
Poly-2-acrylamido-2-methyl-propanesulfonic acid
Polymer 4:
Poly vinyl phosphonic acid
Polymer 5:
Poly-methacrylic acid 2-dimethylaminoethyl ester
Figure imgb0023

Claims (6)

  1. Process for the safe storage and the safe transportation of liquid hydrocarbons by
    a) converting the hydrocarbon into a hydrocarbon-rich gel by addition of a surfactant and water and
    b) breaking down the hydrocarbon-rich gel after storage or transportation has taken place, characterised in that the hydrocarbon-rich gel is broken down by treatment with mechanical waves, application of a reduced pressure or vacuum or, if the hydrocarbon-rich gel is formed with the aid of an ionic surfactant, by addition of oppositely charged surfactants or polymers or copolymers.
  2. Process of breaking down a hydrocarbon-rich gel by treatment with mechanical waves, application of a reduced pressure or vacuum or, if the hydrocarbon-rich gel is formed with the aid of an ionic surfactant, by addition of oppositely charged surfactants or polymers or copolymers.
  3. Process according to Claim 1 and/or 2, characterised in that the hydrocarbon-rich gel consists of 70 to 99.5 % by weight of hydrocarbon, 0.01 to 15 % by weight of surfactant and 0.49 to 15 % by weight of water.
  4. Process according to one or more of Claims 1 to 3 characterised in that the hydrocarbon-rich gel consists of 80 to 99.5 by weight of hydrocarbon, 0.01 to 5 % by weight of surfactant and 0.49 to 15 % by weight of water.
  5. Process according to one or more of Claims 1 to 4, characterised in that n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-dodecane, n-tetradecane, n-hexadecane, cyclohexane, cyclooctane, benzene, toluene, kerosene, petrol, lead-free petrol, heating oil, diesel oil or crude oil are employed as the hydrocarbons.
  6. Process according to one or more of Claims 1 to 5, characterised in that anionic, cationic, amphoteric or non-ionic surfactants are employed as the surfactant.
EP19920114585 1991-09-09 1992-08-27 Process for storing and transporting liquid hydrocarbons Expired - Lifetime EP0531807B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4129943A DE4129943A1 (en) 1991-09-09 1991-09-09 PROCESS FOR STORAGE BZW. FOR THE TRANSPORT OF LIQUID HYDROCARBONS
DE4129943 1991-09-09

Publications (2)

Publication Number Publication Date
EP0531807A1 EP0531807A1 (en) 1993-03-17
EP0531807B1 true EP0531807B1 (en) 1995-03-15

Family

ID=6440200

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920114585 Expired - Lifetime EP0531807B1 (en) 1991-09-09 1992-08-27 Process for storing and transporting liquid hydrocarbons

Country Status (6)

Country Link
US (1) US5276248A (en)
EP (1) EP0531807B1 (en)
JP (1) JPH07179870A (en)
AT (1) ATE119934T1 (en)
CA (1) CA2077705A1 (en)
DE (2) DE4129943A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016798A (en) * 1995-04-18 2000-01-25 Advanced Molecular Technologies Llc Method of heating a liquid and a device therefor
US6019499A (en) * 1995-04-18 2000-02-01 Advanced Molecular Technologies, Llc Method of conditioning hydrocarbon liquids and an apparatus for carrying out the method
US6194622B1 (en) * 1998-06-10 2001-02-27 Exxonmobil Upstream Research Company Method for inhibiting hydrate formation
US6222083B1 (en) 1999-10-01 2001-04-24 Exxonmobil Upstream Research Company Method for inhibiting hydrate formation
US6994104B2 (en) * 2000-09-05 2006-02-07 Enersea Transport, Llc Modular system for storing gas cylinders
US6584781B2 (en) 2000-09-05 2003-07-01 Enersea Transport, Llc Methods and apparatus for compressed gas
US7405188B2 (en) 2001-12-12 2008-07-29 Wsp Chemicals & Technology, Llc Polymeric gel system and compositions for treating keratin substrates containing same
US8273693B2 (en) * 2001-12-12 2012-09-25 Clearwater International Llc Polymeric gel system and methods for making and using same in hydrocarbon recovery
US7183239B2 (en) * 2001-12-12 2007-02-27 Clearwater International, Llc Gel plugs and pigs for pipeline use
US8065905B2 (en) 2007-06-22 2011-11-29 Clearwater International, Llc Composition and method for pipeline conditioning and freezing point suppression
US8099997B2 (en) 2007-06-22 2012-01-24 Weatherford/Lamb, Inc. Potassium formate gel designed for the prevention of water ingress and dewatering of pipelines or flowlines
US20130025857A1 (en) * 2011-07-27 2013-01-31 Conlen Surfactant Technology, Inc. Preserving oil gravity

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2890257A (en) * 1955-12-28 1959-06-09 Pure Oil Co Method of stabilizing odorless naphthas during storage
US3378418A (en) * 1966-04-11 1968-04-16 Petrolite Corp Method of resolving thixotropic jet and rocket fuel emulsions
US3416320A (en) * 1967-07-14 1968-12-17 Exxon Research Engineering Co Turbo-jet propulsion method using emulsified fuels and demulsification

Also Published As

Publication number Publication date
EP0531807A1 (en) 1993-03-17
DE59201653D1 (en) 1995-04-20
US5276248A (en) 1994-01-04
ATE119934T1 (en) 1995-04-15
JPH07179870A (en) 1995-07-18
CA2077705A1 (en) 1993-03-10
DE4129943A1 (en) 1993-03-11

Similar Documents

Publication Publication Date Title
DE3302069C2 (en)
EP0531807B1 (en) Process for storing and transporting liquid hydrocarbons
DE4319297C2 (en) Acid anhydride esters as oilfield corrosion inhibitors, process for their production and use
DE2306845C3 (en) Means for the accelerated disposal of petroleum products through biodegradation
DE60110044T2 (en) PART-WIPED IMPROVEMENT PRODUCT, METHOD FOR THE PRODUCTION THEREOF, AND EMULSION CONTAINING THEREOF
DE1642822A1 (en) Process for removing dispersed oil droplets from water
DE2902380C2 (en) Use of aqueous solutions of alkanolamine salts of polyoxyalkylene compounds as lubricants
DE19822791A1 (en) Use of amides of polymerized fatty acids as thickeners
EP0021471B1 (en) A stabilized water-in-mineral oil emulsion and a process for the preparation of said emulsion
DE1003898B (en) Additive for heating oils and lubricants
DE1188751B (en) Corrosion protection mixtures
DE2827286A1 (en) DRILLING LIQUID, LUBRICANT USED IN IT, AND USE OF DRILLING LIQUID IN A DRILLING METHOD
DE69725138T2 (en) ANTISTATIC ADDITIVES FOR HYDROCARBONS
DE1617193B2 (en) LIQUID DETERGENT
DE2215492A1 (en)
DE4227436A1 (en) MULTI-BASED ACID ESTERS AS A CORROSION INHIBITOR FOR OIL HOLES
DE1102033B (en) Production of a bitumen mixture that cannot be stripped off, especially for road construction
DE2840112A1 (en) WATER-MIXABLE ANTI-CORROSIVE AGENT
DE1147345B (en) Lubricating oil and grease
DE2414337A1 (en) STRAIGHT CHAIN POLYALKENYL SUCCINIMIDE
DE2160698C2 (en) Agent for dispersing oil silt on water surfaces
DE1814359B1 (en) Process for the production of dispersions of negatively charged fillers in aqueous, cationic bituminous emulsions
DE2431160C2 (en) Process for making an ashless detergent dispersant composition and its use in hydrocarbon oil compositions
DE1545248C3 (en)
DD296284A5 (en) PROCESS FOR PREPARING BOROUS POLYMER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19930607

17Q First examination report despatched

Effective date: 19940422

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950315

Ref country code: FR

Effective date: 19950315

Ref country code: BE

Effective date: 19950315

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950315

Ref country code: GB

Effective date: 19950315

Ref country code: DK

Effective date: 19950315

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950315

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950315

REF Corresponds to:

Ref document number: 119934

Country of ref document: AT

Date of ref document: 19950415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59201653

Country of ref document: DE

Date of ref document: 19950420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Effective date: 19950616

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950831

Ref country code: CH

Effective date: 19950831

Ref country code: LI

Effective date: 19950831

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950315

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980912

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000601