EP0495770B1 - Infrared radiant heater - Google Patents

Infrared radiant heater Download PDF

Info

Publication number
EP0495770B1
EP0495770B1 EP92890010A EP92890010A EP0495770B1 EP 0495770 B1 EP0495770 B1 EP 0495770B1 EP 92890010 A EP92890010 A EP 92890010A EP 92890010 A EP92890010 A EP 92890010A EP 0495770 B1 EP0495770 B1 EP 0495770B1
Authority
EP
European Patent Office
Prior art keywords
infrared radiator
infrared
frame
radiator according
radiators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92890010A
Other languages
German (de)
French (fr)
Other versions
EP0495770A1 (en
Inventor
Friedrich Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0495770A1 publication Critical patent/EP0495770A1/en
Application granted granted Critical
Publication of EP0495770B1 publication Critical patent/EP0495770B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/04Stoves or ranges heated by electric energy with heat radiated directly from the heating element
    • F24C7/043Stoves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/262Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an insulated metal plate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the invention relates to an infrared radiator with a carrier plate, on which at least one conductor track made of a material that generates heat by electrical energy is arranged.
  • infrared radiation instead of known methods, which work almost exclusively with warm or hot air, is very rapidly spread in all areas of technology which require heating, drying and / or curing processes.
  • Drying and / or hardening processes which are carried out with infrared emitters, work with a considerably better efficiency, since thermal energy is transmitted directly to the object to be heated or irradiated by electromagnetic wave radiation, without material carrier.
  • infrared emitters instead of conventional drying devices is particularly advantageous for those drying or curing processes that require precise observance of temperature and / or heat quantities, since infrared emitters can react particularly quickly, with low inertia feedback systems for temperature and heat control.
  • infrared radiators are also of great advantage compared to conventional heating and drying processes if, in addition to curing due to the evaporation of solvents by the application of heat, the macromolecule formation of the paint or coating binder is to be accelerated.
  • infrared radiators have therefore already been proposed, for example in FR-A 2 558 579, which describes an infrared radiator with rod-shaped infrared emitters mounted in channels provided with reflectors and in US Pat. No. 2,500,872 an infrared radiator is known which has several infrared emitters, which are each assigned a reflector. Furthermore, from DE-C 850 573 an infrared emitter designed like a light bulb is known.
  • an infrared radiator unit which consists of several parts which can be pivoted relative to one another. Each of these parts has a substantially U-shaped channel, in which sockets, which hold infrared emitters designed like incandescent lamps, are fastened.
  • US Pat. No. 2,387,804 describes a module for infrared radiators in which the infrared emitters are arranged in two rows next to one another in a housing. Finally, a tunnel-shaped drying oven is described in US Pat. No. 2,439,005, which is equipped with several infrared emitters similar to incandescent lamps.
  • Infrared radiation sources e.g. those according to DE-A 24 42 892 are for the formation of large infrared radiation sources, such as e.g. are not suitable for curing paints in the automotive industry.
  • the radiation source for infrared radiation described in DE-A 34 37 397 is also a very small radiation source which is intended to enable the intensity of the radiation source to be modulated with sufficiently high frequencies.
  • gas analysis devices form an area of application of such infrared radiation sources.
  • the carrier substrate of the radiation source according to DE-A 34 37 397 consists of silicon of about 300 »thick, which is coated on its top with an insulating oxide layer. Below the conductor track, the carrier substrate has a thickness of only about 20 republic
  • infrared emitter fields of this type are designed for power densities from 16 to 45 kW / m2.
  • these heater fields cannot be used economically for drying and curing foils and thin layers, since only 4 to 8 kW / m2 are required in these application areas.
  • an infrared radiator of the type mentioned at the outset which is characterized in that the carrier plate consists of sheet metal which is at least partially coated with a non-conductor (dielectric), preferably on a ceramic basis or from enamel.
  • a non-conductor dielectric
  • Materials that convert electrical energy (electricity) into heat include, for example, heat conductor alloys according to DIN 17470, such as CrAl 20 5, NiCr 30 20, NiCr 60 15 or NiCr 80 20, resistance alloys according to DIN 17 471, such as CuMn 12 Ni, CuNi 30 Mn or CuNi 44 or so-called resistance-forming metal oxides such as bismuth-ruthenium oxide, from which the conductor track can be produced by methods known in the art.
  • An essential property of the material of the conductor track must therefore be that it emits heat, preferably heat radiation in the infrared range, when current flows through the conductor track.
  • the carrier plate consists of sheet metal, which is at least partially coated with a non-conductor (dielectric), preferably on a ceramic basis or made of enamel, has made it possible to produce carrier plates up to a size of 400 x 400 mm or larger at low cost in this way to form surface emitters that ensure a very uniform distribution of the radiant intensity on the surface to be treated.
  • a non-conductor dielectric
  • the electrical resistance of the conductor tracks of the flat radiators intended for drying film and lacquer layers is designed such that a radiator temperature of at least 240 ° C. is not exceeded and not exceeded by 280 ° C. and that a power consumption of approximately 6 kW / m2 is achieved.
  • Flat radiators with this dimensioning of the heating conductors emit long-wave infrared radiation with a maximum of the spectral energy distribution at 5400 nm. Experiments have shown that all color tones reflect the performance of long-wave infrared radiation above 4000 nm much less, i.e. absorb better than that of the short-wave under 2000 nm lying.
  • a white, glossy lacquered surface reflects about 75% of the power of infrared radiation with a wavelength of 1300 nm, but only about 10% of that with 5400 nm.
  • test specimens coated in glossy black, green, red, light blue, ivory, yellow and white are illuminated comparable conditions with infrared radiation of 5400 nm wavelength, the mean value of the surface temperature is 20% higher than that which is achieved with infrared radiation of 1300 nm.
  • the difference in the surface temperature of the black to the white test specimen is 72% for infrared radiation of 1300 nm, but only 12% for infrared radiation of 5400 nm.
  • the infrared radiator according to the invention has several essentials Advantages on.
  • the entire working area of the emitter field emits with very little difference in the beam intensity distribution.
  • the heating conductors cover a very large proportion of the radiator field area. This results in an above average level of conversion of electrical energy into electromagnetic radiation power.
  • the emission of long-wave infrared radiation from the radiators with a maximum of the spectral energy distribution at 5400 nm improves the power transmission e.g. on film and lacquer layers significantly compared to power transmission with short-wave infrared radiation.
  • the radiation distribution is achieved without additional optical aids, such as mirrors and reflector surfaces or lenses, by means of radiation directed directly at the object. This avoids the clogging of these aids by paint mist and dusts, a fact that adheres to all known radiation fields.
  • a particularly suitable metal for the carrier plate is e.g. Stole.
  • infrared radiator Another advantage of the infrared radiator according to the invention is that e.g. Enameled steel sheets can be used instead of ceramic-coated as a carrier for the heating conductors, especially if large infrared radiators are to be produced. While ceramic-coated carrier plates can only be produced with known production facilities up to a size of approximately 400 x 400 mm, the systems for enamelling enable the production of much larger carrier plates for infrared radiators.
  • the carrier plate consists of a non-conductor, such as aluminum oxide.
  • the flatness and the metallic or ceramic working surface of the emitter field according to the invention enables it to be easily cleaned.
  • At a selected working temperature of max. 280 ° C of the infrared radiator enables a simple and inexpensive construction of the radiator.
  • plug-in tabs connected to the conductor track for connecting electrical lines or the like are attached to the carrier plate by means of conductive adhesive or soft solder connections. This is a very simple and effective way of attachment. All inner conductor connections of the radiator fields can be carried out with standard silicone-coated conductors.
  • the infrared radiator according to the invention enables the construction of inexpensive infrared fields in that one or more infrared radiators is (are) held in a frame and that advantageously a rear cover is held in the frame on the back of the infrared radiator (s) and in the space between the (the) infrared radiator (s), the rear cover and the frame an insulating layer and preferably the electrical connection lines are arranged.
  • infrared radiation fields with infrared radiators are that one or more infrared radiators are attached to a frame, e.g. screwed or glued, that a cover is attached to the rear of the frame and that in the space between the (the ) Infrared radiator (s), the cover and the frame an insulating layer and preferably the electrical connection lines are arranged.
  • gas-tight radiator fields in the two types described above is e.g. possible because the frame is sealed on all sides by means of silicone rubber.
  • the infrared radiator (s) are screwed or glued to a mounting plate.
  • a mounting plate can e.g. consist of aluminum sheet.
  • the mounting plate or the frame can be flat or, in sections, curved or bent.
  • an infrared radiator 1 which consists of a carrier plate 3 made of sheet steel, which is coated with a dielectric on a ceramic basis.
  • a conductor track 4 e.g. Made of metal oxide, applied in the so-called thick film technique in the screen printing process.
  • a pin 5 or 6 At both ends of the conductor track 4 there is a pin 5 or 6 for connecting electrical lines. These plug-in lugs 5, 6 are soldered to the carrier plate 3 or the ends of the conductor track 4.
  • the carrier plate 3 At the corners of the carrier plate 3 there are four holes 7, by means of which the carrier plate 3 can be fastened to any mounting plate or mounting frame.
  • a carrier plate 2 made of aluminum oxide which carries two conductor tracks 8, 9, the ends of which are connected in pairs with plug-in tabs 10, 11 for connecting electrical lines.
  • This infrared radiator 2 which has, for example, an edge length of 100 x 100 mm, is advantageously fastened according to the respective requirements by gluing by means of heat-resistant and heat-conducting adhesive to mounting plates or by fastening in suitable frames.
  • FIG. 3 shows a radiator field which is equipped with four schematically illustrated infrared radiators 1 or 2.
  • the infrared emitters 1 or 2 (flat radiators) are held in a frame 15 which consists of multi-grooved profiles 16, 17, 18 and 19, e.g. made of plastic or aluminum.
  • the profiles 16 and 17 have the same cross-sectional shape and meet at right angles. They have a substantially U-shaped profile, with the legs 20 and 21 each outwardly facing grooves 22, 23 and 24 are such that there are three circumferential grooves 22, 23 and 24 when the frame 15 is assembled.
  • the groove 22 serves for receiving an infrared radiator 1 or 2, the groove 23 for receiving an insulating layer and the groove 24 for receiving rear cover plates.
  • the frame 15 is further divided by profiles 18 and 19 like window rungs, these profiles 18, 19 also having mutually opposite pairs of grooves 25, 26 and 27, which cooperate with the corresponding grooves 22, 23 and 24 of the profiles 16 and 17. So that the infrared emitters 1 or 2 are as close as possible to one another, the profiles 18 and 19 are narrower than the profiles 16 and 17.
  • the corner connection of the profiles 16 and 17 shown in FIGS. 4 and 5 consists essentially of a cross bolt 28 which is inserted through two holes 29 in the legs 20, 21 of the profile 17 and two screws or threaded bolts 30. These screws 30 are located each in the opposite central grooves 23 of the profile 17 and protrude through holes in the leg 21 of the profile 16 or are received in threaded holes in the cross bolt 28. The screws 30 protrude through the leg 21 into the central recess 31 of the U-shaped profile 16 and have nuts 32. By tightening the nuts 32, the profile 17 is pulled over the cross bolt 28 against the profile 16, thus creating a firm connection between the profiles 16 and 17.
  • the fastening of the profile 18, which is received between two profiles 17, consists essentially of two cross bolts 35, one of which is received in bores 38 in the legs 20 and 21 of the profiles 17.
  • the cross bolts 35 have in their center transverse to the longitudinal axis bores, which are penetrated by a screw 36. This screw also passes through a hole in the central web of the profile 18 and lies in the central recess 31 of the profiles 17. If the nut 37 of the screw 36 is tightened, the profiles 17, between which the profile 18 is received, are pulled towards one another via the transverse bolts 35, and thus a firm connection between the profiles 17 and 18 is established.
  • the frame 15 of FIG. 3 can in this way be composed of any number of profiles 16 to 19 and accommodate a certain number of infrared radiators 1 or 2, as required.
  • the sealing of the joint between the infrared radiators 1 or 2 and the profiles 16 to 19 can e.g. as shown with an infrared radiator 1 or 2 in Fig. 3, by a bead 39 made of appropriate silicone rubber.
  • the radiator field shown in Fig. 6 has a frame 40, e.g. made of aluminum on which two infrared radiators 1, only shown schematically, are fastened by means of screws passing through the holes 7.
  • the frame 40 of the radiator field of FIG. 6, shown in partial section in FIG. 7, has a U-shaped profile, the infrared radiators 1 being screwed to a leg 41 of the frame profile.
  • a rear cover plate 43 is attached to the second leg 42, e.g. glued on.
  • the space 44 thus formed between the infrared radiator 1 the rear cover plate 43 and the frame 40, e.g. an insulating layer is arranged or it is filled with quartz sand.
  • the electrical lines can also be arranged in this space 44.
  • the seal between the infrared radiators 1 or 2 and the frame 40 can, as can be seen from FIG. 7, be made by beads 50 made of silicone rubber or the like.
  • an infrared radiator array 45 is shown schematically, which consists of three mutually inclined plates 46, 47 and 48, on each of which two infrared radiators 1 or 2 are attached.
  • the plates 46 to 48 can of course also be units formed by frames 15 (FIG. 3) or 40 (FIG. 6) and connected to one another in a fixed or movable manner, for example via joints. In this way, the respective Corresponding emitter fields can be assembled, which are characterized by a very high strength and a very high ease of maintenance at low manufacturing costs.
  • the infrared radiators 1, 2 are well protected with a beam direction indicated by the arrows 49.
  • the infrared radiators 1 or 2 are with their back on the plates 46 to 48 e.g. glued or screwed on.

Abstract

The novel infrared radiator comprises a supporting panel (1, 2) made of sheet steel which is coated at least partially with a dielectric, preferably a ceramic-base one, or of enamel, or is made of aluminium oxide on which at least one metal-oxide conductor track (4, 8, 9) is deposited. Said infrared radiators (1, 2), which have a high efficiency and produce a very uniform radiation level distribution, can be assembled in a simple way to produce an infrared radiator array. <IMAGE>

Description

Die Erfindung betrifft einen Infrarotstrahler mit einer Trägerplatte, auf welcher wenigstens eine Leiterbahn aus einem Werkstoff, der durch elektrische Energie Wärme erzeugt, angeordnet ist.The invention relates to an infrared radiator with a carrier plate, on which at least one conductor track made of a material that generates heat by electrical energy is arranged.

Die Verwendung von Infrarotstrahlung anstelle von bekannten Verfahren, die nahezu ausschließlich mit Warm- oder Heißluft arbeiten, findet in allen Bereichen der Technik, die Wärme-, Trocken- und/oder Aushärtevorgänge benötigen, sehr schnelle Verbreitung.The use of infrared radiation instead of known methods, which work almost exclusively with warm or hot air, is very rapidly spread in all areas of technology which require heating, drying and / or curing processes.

Trocken- und/oder Härtevorgänge, die mit Infrarotstrahlern durchgeführt werden, arbeiten mit einem erheblich besseren Wirkungsgrad, da Wärmeenergie durch elektromagnetische Wellenstrahlung, ohne stofflichen Träger, direkt auf das zu erwärmende oder zu bestrahlende Objekt übertragen wird.Drying and / or hardening processes, which are carried out with infrared emitters, work with a considerably better efficiency, since thermal energy is transmitted directly to the object to be heated or irradiated by electromagnetic wave radiation, without material carrier.

Die Verwendung von Infrarotstrahlern anstelle von üblichen Trockeneinrichtungen ist besonders bei solchen Trocken- oder Aushärteprozessen von Vorteil, die eine genaue Einhaltung von Temperatur und/oder Wärmemengen benötigen, da mit Infrarotstrahlern besonders schnell reagierende, trägheitsarme Rückkopplungssysteme zur Temperatur- und Wärmeregelung verwirklicht werden können.The use of infrared emitters instead of conventional drying devices is particularly advantageous for those drying or curing processes that require precise observance of temperature and / or heat quantities, since infrared emitters can react particularly quickly, with low inertia feedback systems for temperature and heat control.

Der Einsatz von Infrarotstrahlern ist weiters gegenüber konventionellen Heiz- und Trockenverfahren von großem Vorteil, wenn neben dem Aushärten aufgrund der Lösungsmittelverdunstung durch Wärmezufuhr die Makromolekülbildung des Lack- oder Beschichtungsbindemittels beschleunigt werden soll.The use of infrared radiators is also of great advantage compared to conventional heating and drying processes if, in addition to curing due to the evaporation of solvents by the application of heat, the macromolecule formation of the paint or coating binder is to be accelerated.

Es sind daher auch schon verschiedene Ausführungsformen von Infrarotstrahlern vorgeschlagen worden, wie z.B. in der FR-A 2 558 579, in der ein Infrarotstrahler mit stabförmigen, in mit Reflektoren versehenen Kanälen montierten Infrarotemittern beschrieben ist und in der US-A 2 500 872, aus der ein Infrarotstrahler bekannt ist, der mehrere Infrarotemitter aufweist, denen jeweils ein Reflektor zugerodnet ist. Weiters ist aus der DE-C 850 573 ein glühlampenähnlich ausgebildeter Infrarotemitter bekannt.Various embodiments of infrared radiators have therefore already been proposed, for example in FR-A 2 558 579, which describes an infrared radiator with rod-shaped infrared emitters mounted in channels provided with reflectors and in US Pat. No. 2,500,872 an infrared radiator is known which has several infrared emitters, which are each assigned a reflector. Furthermore, from DE-C 850 573 an infrared emitter designed like a light bulb is known.

Aus der FR-A 1 104 164 ist eine Infrarotstrahlereinheit bekannt, die aus mehreren, gegeneinander verschwenkbaren Teilen besteht. Jeder dieser Teile weist einen im wesentlichen U-förmigen Kanal auf, in dem Fassungen, die glühlampenähnlich ausgebildete Infrarotemitter halten, befestigt sind.From FR-A 1 104 164 an infrared radiator unit is known which consists of several parts which can be pivoted relative to one another. Each of these parts has a substantially U-shaped channel, in which sockets, which hold infrared emitters designed like incandescent lamps, are fastened.

In der US-A 2 387 804 ist ein Modul für Infrarotstrahler beschrieben, bei dem die Infrarotemitter in zwei Reihen nebeneinander in einem Gehäuse angeordnet sind. Schließlich ist in der US-A 2 439 005 ein tunnelförmig ausgebildeter Trockenofen beschrieben, der mit mehreren glühlampenähnlichen Infrarotemittern bestückt ist.US Pat. No. 2,387,804 describes a module for infrared radiators in which the infrared emitters are arranged in two rows next to one another in a housing. Finally, a tunnel-shaped drying oven is described in US Pat. No. 2,439,005, which is equipped with several infrared emitters similar to incandescent lamps.

Alle bekannten Infrarotstrahlfelder weisen den Nachteil auf, daß Emitter mit linien- oder quasi punktförmigen Glühwendeln verwendet werden, wobei unter Zuhilfenahme von Reflektorspiegelflächen und Linsen sowie durch die Abstimmung der Strahlerabstände zueinander versucht wird, die Strahlerstärkeverteilung auf der zu behandelnden Oberfläche so gleichmäßig wie möglich zu halten. Trotz aller Maßnahmen sind Strahlstärkeunterschiede bis 1:3 allgemein üblich.All known infrared radiation fields have the disadvantage that emitters with linear or quasi-point incandescent filaments are used, attempts being made to keep the radiation intensity distribution on the surface to be treated as uniform as possible with the aid of reflector mirror surfaces and lenses and by coordinating the spacing between the radiators . Despite all the measures, differences in radiant intensity of up to 1: 3 are common.

Infrarot-Strahlungsquellen, wie z.B. die gemäß der DE-A 24 42 892 sind zur Bildung großer Infrarot-Strahlungsquellen, wie sie z.B. zur Aushärtung von Lacken in der Fahrzeugindustrie Verwendung finden, nicht geeignet.Infrared radiation sources, e.g. those according to DE-A 24 42 892 are for the formation of large infrared radiation sources, such as e.g. are not suitable for curing paints in the automotive industry.

Auch die in der DE-A 34 37 397 beschriebene Strahlungsquelle für Infrarot-Strahlung ist eine sehr kleine Strahlungsquelle, die eine Modulation der Intensität der Strahlungsquelle mit genügend hohen Frequenzen ermöglichen soll. Einen Anwendungsbereich solcher Infrarot-Strahlungsquellen bilden gemäß Seite 2, letzter Absatz dieser Schrift Gasanalysengeräte. Das Trägersubstrat der Strahlungsquelle gemäß der DE-A 34 37 397 besteht aus Silizium von etwa 300 » Dicke, das an seiner Oberseite mit einer isolierenden Oxidschicht überzogen ist. Unterhalb der Leiterbahn weist das Trägersubstrat eine Dicke von nur etwa 20 » auf.The radiation source for infrared radiation described in DE-A 34 37 397 is also a very small radiation source which is intended to enable the intensity of the radiation source to be modulated with sufficiently high frequencies. According to page 2, last paragraph of this document, gas analysis devices form an area of application of such infrared radiation sources. The carrier substrate of the radiation source according to DE-A 34 37 397 consists of silicon of about 300 »thick, which is coated on its top with an insulating oxide layer. Below the conductor track, the carrier substrate has a thickness of only about 20 ».

Besonders beim Trocknen und/oder Aushären von Folien und dünnen Schichten, die aus Lacken und Pasten hergestellt sind, ist eine möglichst gleichmäßige Strahlfeldstärke über der gesamten zu behandelnden Oberfläche von entscheidender Wichtigkeit, da das Auftreten von Spitzenwerten der Strahlstärke eine zu schnelle oder hauptsächlich an der Oberfläche erfolgende Lösungsmittelverdunstung, oder aber auch eine zu starke Vernetzung, mit entsprechender Sprödigkeit zur Folge hat. Anderseits führen zu niedrige Werte oder sogar "Lücken" in der Strahlstärkeverteilung zu ungenügend ausgehärteten oder vernetzten Folien und Schichten.Particularly when drying and / or curing foils and thin layers, which are made of lacquers and pastes, the most uniform possible beam field strength over the entire surface to be treated is of crucial importance, since the appearance of peak values of the beam strength is too fast or mainly due to the Solvent evaporation taking place on the surface, or also excessive crosslinking, with corresponding brittleness. On the other hand, too low values or even "gaps" in the beam intensity distribution lead to insufficiently hardened or cross-linked foils and layers.

Eine annähernd gleichmäßige Strahlstärkeverteilung ist nach dem heutigen Stand der Technik nur durch ein unmittelbares Aneinanderreihen von sogenannten Infrarot-Flächenstrahlern erzielbar. Infrarotstrahlerfelder dieser Bauart sind für Leistungsdichten von 16 bis 45 kW/m² ausgelegt. Für das Trocknen und Aushärten von Folien und dünnen Schichten sind diese Strahlerfelder jedoch nicht wirtschaftlich einsetzbar, da in diesen Anwendungsbereichen nur 4 bis 8 kW/m² notwendig sind.According to the current state of the art, an approximately uniform distribution of the beam intensity can only be achieved by directly stringing together so-called infrared surface radiators. Infrared emitter fields of this type are designed for power densities from 16 to 45 kW / m². However, these heater fields cannot be used economically for drying and curing foils and thin layers, since only 4 to 8 kW / m² are required in these application areas.

Es ist Aufgabe der Erfindung, einen Infrarotstrahler anzugeben, der die Mängel der bekannten Strahler vermeidet, und der für eine Leistungsdichte vorzugsweise bis etwa 8 kW/m² ausgelegt und dabei kostengünstig ist.It is an object of the invention to provide an infrared radiator which avoids the shortcomings of the known radiators and which is preferably designed for a power density of up to approximately 8 kW / m² and is inexpensive in the process.

Gelöst wird diese Aufgabe mit einem Infrarotstrahler der eingangs genannten Gattung, der dadurch gekennzeichnet ist, daß die Trägerplatte aus Metallblech besteht, das zumindest teilweise mit einem Nichtleiter (Dielektrikum), vorzugsweise auf keramischer Basis oder aus Email beschichtet ist.This object is achieved with an infrared radiator of the type mentioned at the outset, which is characterized in that the carrier plate consists of sheet metal which is at least partially coated with a non-conductor (dielectric), preferably on a ceramic basis or from enamel.

Als Werkstoffe, die elektrische Energie (Strom) in Wärme umsetzen, kommen beispielsweise Heizleiterlegierungen nach DIN 17470, wie CrAl 20 5, NiCr 30 20, NiCr 60 15 oder NiCr 80 20, Widerstandslegierungen nach DIN 17 471, wie CuMn 12 Ni, CuNi 30 Mn oder CuNi 44 oder sog. widerstandbildende Metalloxide wie Wismut-Rutheniumoxid in Frage, aus denen die Leiterbahn durch im Stand der Technik bekannte Verfahren hergestellt werden kann. Eine wesentliche Eigenschaft des Werkstoffes der Leiterbahn muß also sein, daß er Wärme, vorzugsweise Wärmestrahlung im Infrarotbereich abgibt, wenn die Leiterbahn von Strom durchflossen wird. Dadurch, daß die Trägerplatte aus Metallblech besteht, das zumindest teilweise mit einem Nichtleiter (Dielektrikum), vorzugsweise auf keramischer Basis oder aus Email beschichtet ist, ist es kostengünstig möglich geworden, auch Trägerplatten bis zu einer Größe von 400 x 400 mm oder größer herzustellen und auf diese Weise Flächenstrahler zu bilden, die eine sehr gleichmäßige Strahlstärkeverteilung auf der zu behandelnden Oberfläche gewährleisten.Materials that convert electrical energy (electricity) into heat include, for example, heat conductor alloys according to DIN 17470, such as CrAl 20 5, NiCr 30 20, NiCr 60 15 or NiCr 80 20, resistance alloys according to DIN 17 471, such as CuMn 12 Ni, CuNi 30 Mn or CuNi 44 or so-called resistance-forming metal oxides such as bismuth-ruthenium oxide, from which the conductor track can be produced by methods known in the art. An essential property of the material of the conductor track must therefore be that it emits heat, preferably heat radiation in the infrared range, when current flows through the conductor track. The fact that the carrier plate consists of sheet metal, which is at least partially coated with a non-conductor (dielectric), preferably on a ceramic basis or made of enamel, has made it possible to produce carrier plates up to a size of 400 x 400 mm or larger at low cost in this way to form surface emitters that ensure a very uniform distribution of the radiant intensity on the surface to be treated.

Beispielsweise wird der elektrische Widerstand der Leiterbahnen der zum Trocknen von Folien- und Lackschichten bestimmten Flachstrahler so ausgelegt, daß eine Strahlertemperatur von mindestens 240° C erreicht und von 280° C nicht überschritten wird und daß eine Leistungsaufnahme von etwa 6 kW/m² erreicht wird. Flachstrahler mit dieser Dimensionierung der Heizleiterbahnen emittieren langwellige Infrarotstrahlung mit einem Maximum der spektralen Energieverteilung bei 5400 nm. Versuche haben gezeigt, daß durchwegs alle Farbtöne die Leistung einer langwelligen, über 4000 nm liegenden Infrarotstrahlung wesentlich weniger reflektieren, also besser absorbieren als die der kurzwelligen unter 2000 nm liegenden. Beispielsweise reflektiert eine weiße, glänzend lackierte Oberfläche etwa 75 % der Leistung einer Infrarotstrahlung mit 1300 nm Wellenlänge, jedoch nur etwa 10 % einer mit 5400 nm. Bestrahlt man beispielsweise glänzend schwarz, grün, rot, hellblau, elfenbein, gelb und weiß lackierte Prüflinge unter vergleichbaren Bedingungen mit Infrarotstrahlung von 5400 nm Wellenlänge, so liegt der Mittelwert der Oberflächentemperatur 20 % höher als der, der mit einer Infrarotstrahlung von 1300 nm erreicht wird. Weiters ist bei diesen Meßreihen festzustellen, daß der Unterschied der Oberflächentemperatur des schwarzen zum weißen Prüflings 72 % bei Infrarotstrahlung von 1300 nm, aber nur 12 % bei Infrarotstrahlung von 5400 nm beträgt.For example, the electrical resistance of the conductor tracks of the flat radiators intended for drying film and lacquer layers is designed such that a radiator temperature of at least 240 ° C. is not exceeded and not exceeded by 280 ° C. and that a power consumption of approximately 6 kW / m² is achieved. Flat radiators with this dimensioning of the heating conductors emit long-wave infrared radiation with a maximum of the spectral energy distribution at 5400 nm. Experiments have shown that all color tones reflect the performance of long-wave infrared radiation above 4000 nm much less, i.e. absorb better than that of the short-wave under 2000 nm lying. For example, a white, glossy lacquered surface reflects about 75% of the power of infrared radiation with a wavelength of 1300 nm, but only about 10% of that with 5400 nm. For example, test specimens coated in glossy black, green, red, light blue, ivory, yellow and white are illuminated comparable conditions with infrared radiation of 5400 nm wavelength, the mean value of the surface temperature is 20% higher than that which is achieved with infrared radiation of 1300 nm. Furthermore, it can be seen in these series of measurements that the difference in the surface temperature of the black to the white test specimen is 72% for infrared radiation of 1300 nm, but only 12% for infrared radiation of 5400 nm.

Der erfindungsgemäße Infrarotstrahler weist mehrere wesentliche Vorteile auf.The infrared radiator according to the invention has several essentials Advantages on.

Die gesamte Arbeitsfläche der Strahlerfeldes emittiert mit sehr geringen Unterschieden in der Strahlstärkeverteilung.The entire working area of the emitter field emits with very little difference in the beam intensity distribution.

Die Heizleiter bedecken einen sehr großen Anteil der Strahlerfeldfläche. Daraus resultiert ein überdurchschnittlich guter Umsetzungsgrad von elektrischer Energie in elektromagnetische Strahlungsleistung.The heating conductors cover a very large proportion of the radiator field area. This results in an above average level of conversion of electrical energy into electromagnetic radiation power.

Die Emission von langwelliger Infrarotstrahlung der Strahler mit einem Maximum der spektralen Energieverteilung bei 5400 nm verbessert die Leistungsübertragung z.B. auf Folien- und Lackschichten wesentlich im Vergleich zur Leistungsübertragung mit kurzwelliger Infrarotstrahlung.The emission of long-wave infrared radiation from the radiators with a maximum of the spectral energy distribution at 5400 nm improves the power transmission e.g. on film and lacquer layers significantly compared to power transmission with short-wave infrared radiation.

Die Strahlungsverteilung wird bei Flachstrahlern ohne zusätzliche optische Hilfsmittel, wie Spiegel und Reflektorflächen oder Streulinsenscheiben durch unmittelbar auf das Objekt gerichtete Strahlung erzielt. Dadurch wird das Zusetzen dieser Hilfsmittel durch Farbnebel und Stäube, ein Umstand, der allen bekannten Strahlerfeldern anhaftet, vermieden.With flat radiators, the radiation distribution is achieved without additional optical aids, such as mirrors and reflector surfaces or lenses, by means of radiation directed directly at the object. This avoids the clogging of these aids by paint mist and dusts, a fact that adheres to all known radiation fields.

Ein besonders geeignetes Metall für die Trägerplatte ist z.B. Stahl.A particularly suitable metal for the carrier plate is e.g. Stole.

Eine weiterer Vorteil des erfindungsgemäßen Infrarotstrahlers besteht darin, daß z.B. emaillierte Stahlbleche anstelle von keramikbeschichteten als Träger der Heizleiterbahnen verwendet werden können, besonders, wenn große Infrarotstrahler hergestellt werden sollen. Während keramisch beschichtete Trägerplatten mit bekannten Fertigungseinrichtungen nur bis zu einer Größe von etwa 400 x 400 mm herstellbar sind, ermöglichen die Anlagen zur Emaillierung die Herstellung von wesentlich größeren Trägerplatten für Infrarotstrahler.Another advantage of the infrared radiator according to the invention is that e.g. Enameled steel sheets can be used instead of ceramic-coated as a carrier for the heating conductors, especially if large infrared radiators are to be produced. While ceramic-coated carrier plates can only be produced with known production facilities up to a size of approximately 400 x 400 mm, the systems for enamelling enable the production of much larger carrier plates for infrared radiators.

Bei Herstellung kleiner und kleinster Strahlerfelder hat es sich als vorteilhaft erwiesen, wenn die Trägerplatte aus einem Nichtleiter, wie z.B. Aluminiumoxid besteht.When producing small and very small radiator fields, it has proven to be advantageous if the carrier plate consists of a non-conductor, such as aluminum oxide.

Der einfache elektrische und mechanische Aufbau, insbesondere die Möglichkeit der Ganzmetallbauweise, ergibt eine bisher unbekannte Unempfindlichkeit gegenüber Erschütterungen und Vibrationen.The simple electrical and mechanical construction, in particular the possibility of the all-metal construction, results in a hitherto unknown insensitivity to shocks and vibrations.

Die Planheit sowie die metallische oder keramische Arbeitsfläche des erfindungsgemäßen Strahlerfeldes ermöglicht dessen einfache Reinigung.The flatness and the metallic or ceramic working surface of the emitter field according to the invention enables it to be easily cleaned.

Bei einer gewählten Arbeitstemperatur von max. 280° C des Infrarotstrahlers wird eine einfache und kostengünstige Bauweise des Strahlers ermöglicht.At a selected working temperature of max. 280 ° C of the infrared radiator enables a simple and inexpensive construction of the radiator.

In einer erfindungsgemäßen Ausführungsform sind auf der Trägerplatte mit der Leiterbahn verbundene Steckfahnen zum Anschluß elektrischer Leitungen od. dgl. mittels Leitklebe- oder Weichlötverbindungen angebracht. Dies ist eine sehr einfache und wirksame Möglichkeit der Befestigung. Alle inneren Leiterverbindungen der Strahlerfelder sind mit üblichen silikonumhüllten Leitern ausführbar.In one embodiment according to the invention, plug-in tabs connected to the conductor track for connecting electrical lines or the like are attached to the carrier plate by means of conductive adhesive or soft solder connections. This is a very simple and effective way of attachment. All inner conductor connections of the radiator fields can be carried out with standard silicone-coated conductors.

Der erfindungsgemäße Infrarotstrahler ermöglicht den Bau kostengünstiger Infrarotfelder dadurch, daß ein oder mehrere Infrarotstrahler in einem Rahmen gehalten ist (sind) und daß vorteilhafterweise im Rahmen an der Rückseite der (des) Infrarotstrahler(s) eine rückwärtige Abdeckung gehalten ist und daß im Raum zwischen dem (den) Infrarotstrahler(n), der rückwärtigen Abdeckung und dem Rahmen eine Isolierschicht und vorzugsweise die elektrischen Verbindungsleitungen angeordnet sind.The infrared radiator according to the invention enables the construction of inexpensive infrared fields in that one or more infrared radiators is (are) held in a frame and that advantageously a rear cover is held in the frame on the back of the infrared radiator (s) and in the space between the (the) infrared radiator (s), the rear cover and the frame an insulating layer and preferably the electrical connection lines are arranged.

Eine weitere einfache und kostengünstige Bauweise von Infrarotstrahlfeldern mit Infrarotstrahlern besteht darin, daß ein oder mehrere Infrarotstrahler an einem Rahmen befestigt, z.B. angeschraubt oder angeklebt ist (sind), daß an der Rückseite des Rahmens eine Abdeckung befestigt ist und daß im Raum zwischen dem (den) Infrarotstrahler(n), der Abdeckung und dem Rahmen eine Isolierschicht und vorzugsweise die elektrischen Verbindungsleitungen angeordnet sind.Another simple and inexpensive construction of infrared radiation fields with infrared radiators is that one or more infrared radiators are attached to a frame, e.g. screwed or glued, that a cover is attached to the rear of the frame and that in the space between the (the ) Infrared radiator (s), the cover and the frame an insulating layer and preferably the electrical connection lines are arranged.

Wenn der Raum zwischen dem (den) Strahler(n), der Abdeckung und dem Rahmen mit Quarzsand gefüllt ist, dann sind explosionsgeschützte Strahlerfelder herstellbar.If the space between the emitter (s), the cover and the frame is filled with quartz sand, then explosion-proof emitter fields can be produced.

Die Verwirklichung von gasdichten Strahlerfeldern bei beiden zuvor beschriebenen Bauarten ist z.B. dadurch möglich, daß der Rahmen mittels Silikonkautschuk allseitig abgedichtet ist.The implementation of gas-tight radiator fields in the two types described above is e.g. possible because the frame is sealed on all sides by means of silicone rubber.

In einer besonders einfachen Ausführungsform ist (sind) der (die) Infrarotstrahler mit einer Montageplatte verschraubt oder verklebt. Eine derartige Montageplatte kann z.B. aus Aluminiumblech bestehen.In a particularly simple embodiment, the infrared radiator (s) are screwed or glued to a mounting plate. Such a mounting plate can e.g. consist of aluminum sheet.

Um auf einfache Weise anwendungsbezogene Infrarotstrahlerfelder herzustellen, kann die Montageplatte bzw. der Rahmen eben oder absatzweise gekrümmt oder geknickt sein.In order to produce application-related infrared radiator fields in a simple manner, the mounting plate or the frame can be flat or, in sections, curved or bent.

Weitere Einzelheiten, Vorteile und Merkmale der Erfindung ergeben sich aus den Unteransprüchen und der Beschreibung von Ausführungsbeispielen erfindungsgemäßer Infrarotstrahler unter Bezugnahme auf die Zeichnungen.Further details, advantages and features of the invention result from the subclaims and the description of exemplary embodiments of infrared radiators according to the invention with reference to the drawings.

Es zeigen:

  • Fig. 1 und Fig. 2 Ausführungsformen erfindungsgemäßer Infrarotstrahler,
  • Fig. 3 zu einem Strahlerfeld zusammengesetzte erfindungsgemäße Infrarotstrahler,
  • Fig. 4 einen Teilschnitt durch das Strahlerfeld von Fig. 3 entlang der Linie IV-IV,
  • Fig. 5 eine Ansicht des Gegenstandes von Fig. 4 von unten,
  • Fig. 6 eine weitere Ausführungsform eines Strahlerfeldes,
  • Fig. 7 einen Teilschnitt durch das Strahlerfeld von Fig. 6 entlang der Linie VII-VII und
  • Fig. 8 eine weitere Ausführungsform eines erfindungsgemäßen Strahlerfeldes.
Show it:
  • 1 and FIG. 2 embodiments of infrared radiators according to the invention,
  • 3 is an infrared radiator according to the invention assembled to form a radiator field,
  • 4 shows a partial section through the radiator field of FIG. 3 along the line IV-IV,
  • 5 is a bottom view of the object of FIG. 4,
  • 6 shows a further embodiment of a radiator field,
  • Fig. 7 is a partial section through the radiator field of Fig. 6 along the line VII-VII and
  • 8 shows a further embodiment of a radiator field according to the invention.

In Fig. 1 ist ein Infrarotstrahler 1 dargestellt, der aus einer Trägerplatte 3 aus Stahlblech, die mit einem Dielektrikum auf keramischer Basis beschichtet ist, besteht. Darauf ist eine Leiterbahn 4, z.B. aus Metalloxid, in der sogenannten Dickfilmtechnik im Siebdruckverfahren aufgebracht. An den beiden Enden der Leiterbahn 4 befindet sich jeweils eine Steckfahne 5 bzw. 6 zum Anschluß elektrischer Leitungen. Diese Steckfahnen 5, 6 sind an der Trägerplatte 3 bzw. den Enden der Leiterbahn 4 angelötet.In Fig. 1, an infrared radiator 1 is shown, which consists of a carrier plate 3 made of sheet steel, which is coated with a dielectric on a ceramic basis. There is a conductor track 4, e.g. Made of metal oxide, applied in the so-called thick film technique in the screen printing process. At both ends of the conductor track 4 there is a pin 5 or 6 for connecting electrical lines. These plug-in lugs 5, 6 are soldered to the carrier plate 3 or the ends of the conductor track 4.

An den Ecken der Trägerplatte 3 befinden sich vier Bohrungen 7, mittels derer die Trägerplatte 3 an einer beliebigen Montageplatte oder einem Montagerahmen befestigt werden kann.At the corners of the carrier plate 3 there are four holes 7, by means of which the carrier plate 3 can be fastened to any mounting plate or mounting frame.

In Fig. 2 ist eine Trägerplatte 2 aus Aluminiumoxid dargestellt, die zwei Leiterbahnen 8, 9 trägt, deren Enden paarweise mit Steckfahnen 10, 11 zum Anschluß elektrischer Leitungen verbunden sind. Dieser Infrarotstrahler 2, der beispielsweise eine Kantenlänge von 100 x 100 mm aufweist, wird den jeweiligen Anforderungen entsprechend vorteilhafterweise durch Ankleben mittels wärmebeständigem und wärmeleitendem Klebstoff auf Montageplatten oder durch Befestigen in geeigneten Rahmen befestigt.In Fig. 2, a carrier plate 2 made of aluminum oxide is shown, which carries two conductor tracks 8, 9, the ends of which are connected in pairs with plug-in tabs 10, 11 for connecting electrical lines. This infrared radiator 2, which has, for example, an edge length of 100 x 100 mm, is advantageously fastened according to the respective requirements by gluing by means of heat-resistant and heat-conducting adhesive to mounting plates or by fastening in suitable frames.

In Fig. 3 ist ein Strahlerfeld dargestellt, das mit vier schematisch dargestellten Infrarotstrahlern 1 oder 2 bestückt ist. Die Infrarotstrahler 1 oder 2 (Flachstrahler) werden in einem Rahmen 15 gehalten, der aus mehrfach genuteten Profilen 16, 17, 18 und 19, z.B. aus Kunststoff oder Aluminium, zusammengesetzt ist.3 shows a radiator field which is equipped with four schematically illustrated infrared radiators 1 or 2. The infrared emitters 1 or 2 (flat radiators) are held in a frame 15 which consists of multi-grooved profiles 16, 17, 18 and 19, e.g. made of plastic or aluminum.

In Fig. 4 und 5 sind beispielsweise Möglichkeiten zur Verbindung dieser Profile dargestellt, wobei die Flachstrahler 1 oder 2 in diesen Darstellungen weggelassen wurden. Die Profile 16 und 17 weisen die gleiche Querschnittsform auf und stoßen rechtwinkelig aneinander. Sie haben ein im wesentlichen U-förmiges Profil, wobei sich an den Schenkeln 20 und 21 jeweils nach außen weisende Nuten 22, 23 und 24 befinden, derart, daß sich bei zusammengebautem Rahmen 15 drei umlaufende Nuten 22, 23 und 24 ergeben.4 and 5, for example, options for connecting these profiles are shown, the flat radiators 1 or 2 being omitted in these representations. The profiles 16 and 17 have the same cross-sectional shape and meet at right angles. They have a substantially U-shaped profile, with the legs 20 and 21 each outwardly facing grooves 22, 23 and 24 are such that there are three circumferential grooves 22, 23 and 24 when the frame 15 is assembled.

Die Nut 22 dient dabei zur Aufnahme eines Infrarotstrahlers 1 oder 2, die Nut 23 der Aufnahme einer Isolierschichte und die Nut 24 zur Aufnahme rückwärtiger Abdeckplatten.The groove 22 serves for receiving an infrared radiator 1 or 2, the groove 23 for receiving an insulating layer and the groove 24 for receiving rear cover plates.

Der Rahmen 15 ist weiters durch Profile 18 und 19 fenstersprossenartig unterteilt, wobei diese Profile 18, 19 ebenfalls einander gegenüberliegende Paare von Nuten 25, 26 und 27 aufweisen, die mit den entsprechenden Nuten 22, 23 und 24 der Profile 16 und 17 zusammenwirken. Damit die Infrarotstrahler 1 oder 2 möglichst nahe nebeneinanderliegen, sind die Profile 18 und 19 schmäler als die Profile 16 und 17.The frame 15 is further divided by profiles 18 and 19 like window rungs, these profiles 18, 19 also having mutually opposite pairs of grooves 25, 26 and 27, which cooperate with the corresponding grooves 22, 23 and 24 of the profiles 16 and 17. So that the infrared emitters 1 or 2 are as close as possible to one another, the profiles 18 and 19 are narrower than the profiles 16 and 17.

Die in den Fig. 4 und 5 dargestellte Eckverbindung der Profile 16 und 17 besteht im wesentlichen aus einem Querbolzen 28, der durch zwei Löcher 29 in den Schenkeln 20, 21 des Profiles 17 gesteckt ist und zwei Schrauben oder Gewindebolzen 30. Diese Schrauben 30 liegen jeweils in den einander gegenüberliegenden mittleren Nuten 23 des Profiles 17 und ragen durch Bohrungen im Schenkel 21 des Profiles 16 bzw. sind in Gewindebohrungen im Querbolzen 28 aufgenommen. Die Schrauben 30 ragen dabei durch den Schenkel 21 in die mittlere Ausnehmung 31 des U-förmigen Profiles 16 und weisen Muttern 32 auf. Durch das Anziehen der Muttern 32 wird das Profil 17 über den Querbolzen 28 gegen das Profil 16 gezogen und somit eine feste Verbindung zwischen den Profilen 16 und 17 geschaffen.The corner connection of the profiles 16 and 17 shown in FIGS. 4 and 5 consists essentially of a cross bolt 28 which is inserted through two holes 29 in the legs 20, 21 of the profile 17 and two screws or threaded bolts 30. These screws 30 are located each in the opposite central grooves 23 of the profile 17 and protrude through holes in the leg 21 of the profile 16 or are received in threaded holes in the cross bolt 28. The screws 30 protrude through the leg 21 into the central recess 31 of the U-shaped profile 16 and have nuts 32. By tightening the nuts 32, the profile 17 is pulled over the cross bolt 28 against the profile 16, thus creating a firm connection between the profiles 16 and 17.

Die in den Fig. 4 und 5 dargestellte Befestigung des Profiles 18, das zwischen zwei Profilen 17 aufgenommen ist, besteht im wesentlichen aus zwei Querbolzen 35, von denen jeweils einer in Bohrungen 38 in den Schenkeln 20 und 21 der Profile 17 aufgenommen ist.4 and 5, the fastening of the profile 18, which is received between two profiles 17, consists essentially of two cross bolts 35, one of which is received in bores 38 in the legs 20 and 21 of the profiles 17.

Die Querbolzen 35 weisen in ihrer Mitte quer zur Längsachse verlaufende Bohrungen auf, die von einer Schraube 36 durchsetzt werden. Diese Schraube durchsetzt ebenfalls eine Bohrung im Mittelsteg des Profiles 18 und liegt in der mittleren Ausnehmung 31 der Profile 17. Wird die Mutter 37 der Schraube 36 angezogen, so werden die Profile 17, zwischen denen das Profil 18 aufgenommen ist, über die Querbolzen 35 zueinander gezogen und somit eine feste Verbindung zwischen den Profilen 17 und 18 hergestellt.The cross bolts 35 have in their center transverse to the longitudinal axis bores, which are penetrated by a screw 36. This screw also passes through a hole in the central web of the profile 18 and lies in the central recess 31 of the profiles 17. If the nut 37 of the screw 36 is tightened, the profiles 17, between which the profile 18 is received, are pulled towards one another via the transverse bolts 35, and thus a firm connection between the profiles 17 and 18 is established.

Der Rahmen 15 von Fig. 3 kann auf diese Weise aus beliebig vielen Profilen 16 bis 19 zusammengesetzt werden und je nach Bedarf eine bestimmte Anzahl von Infrarotstrahlern 1 bzw. 2 aufnehmen.The frame 15 of FIG. 3 can in this way be composed of any number of profiles 16 to 19 and accommodate a certain number of infrared radiators 1 or 2, as required.

Die Abdichtung der Fuge zwischen den Infrarotstrahlern 1 oder 2 und den Profilen 16 bis 19 kann z.B. wie bei einem Infrarotstrahler 1 oder 2 in Fig. 3 dargestellt, durch eine Raupe 39 aus entsprechendem Silikonkautschuk erfolgen.The sealing of the joint between the infrared radiators 1 or 2 and the profiles 16 to 19 can e.g. as shown with an infrared radiator 1 or 2 in Fig. 3, by a bead 39 made of appropriate silicone rubber.

Das in Fig. 6 dargestellte Strahlerfeld weist einen Rahmen 40, z.B. aus Aluminium auf, auf dem zwei lediglich schematisch dargestellte Infrarotstrahler 1 mittels die Bohrungen 7 durchsetzender Schrauben befestigt sind. Der Rahmen 40 des in Fig. 7 im Teilschnitt dargestellten Strahlerfeldes von Fig. 6 weist ein U-förmiges Profil auf, wobei die Infrarotstrahler 1 an einem Schenkel 41 des Rahmenprofils angeschraubt sind. Am zweiten Schenkel 42 ist eine hintere Abdeckplatte 43 befestigt, z.B. angeklebt. In dem so zwischen dem Infrarotstrahler 1, der hinteren Abdeckplatte 43 und dem Rahmen 40 gebildeten Raum 44 ist z.B. eine Isolierschicht angeordnet oder er ist mit Quarzsand gefüllt. Zusätzlich können in diesem Raum 44 auch die elektrischen Leitungen angeordnet sein. Die Abdichtung zwischen den Infrarotstrahlern 1 oder 2 und dem Rahmen 40 kann wie aus Fig. 7 ersichtlich, durch Raupen 50 aus Silikonkautschuk od. dgl. erfolgen.The radiator field shown in Fig. 6 has a frame 40, e.g. made of aluminum on which two infrared radiators 1, only shown schematically, are fastened by means of screws passing through the holes 7. The frame 40 of the radiator field of FIG. 6, shown in partial section in FIG. 7, has a U-shaped profile, the infrared radiators 1 being screwed to a leg 41 of the frame profile. A rear cover plate 43 is attached to the second leg 42, e.g. glued on. In the space 44 thus formed between the infrared radiator 1, the rear cover plate 43 and the frame 40, e.g. an insulating layer is arranged or it is filled with quartz sand. In addition, the electrical lines can also be arranged in this space 44. The seal between the infrared radiators 1 or 2 and the frame 40 can, as can be seen from FIG. 7, be made by beads 50 made of silicone rubber or the like.

In Fig. 8 ist schematisch ein Infrarotstrahlerfeld 45 dargestellt, das aus drei zueinander geneigten Platten 46, 47 und 48 besteht, auf denen jeweis zwei Infrarotstrahler 1 oder 2 befestigt sind. Die Platten 46 bis 48 können selbstverständlich auch durch Rahmen 15 (Fig. 3) bzw. 40 (Fig. 6) gebildete Einheiten sein und miteinander fest oder beweglich, z.B. über Gelenke, verbunden sein. Auf diese Weise sind den jeweiligen Bedürfnissen entsprechende Strahlerfelder zusammensetzbar, die sich durch eine sehr hohe Festigkeit und eine sehr hohe Wartungsfreundlichkeit bei geringen Herstellungskosten auszeichnen.In Fig. 8, an infrared radiator array 45 is shown schematically, which consists of three mutually inclined plates 46, 47 and 48, on each of which two infrared radiators 1 or 2 are attached. The plates 46 to 48 can of course also be units formed by frames 15 (FIG. 3) or 40 (FIG. 6) and connected to one another in a fixed or movable manner, for example via joints. In this way, the respective Corresponding emitter fields can be assembled, which are characterized by a very high strength and a very high ease of maintenance at low manufacturing costs.

Bestehen die in Fig. 8 dargestellten Platten 46 bis 48 aus einem thermisch gut leitenden Werkstoff, dann sind die Infrarotstrahler 1, 2 bei einer durch die Pfeile 49 angedeuteten Strahlrichtung gut geschützt. Die Infrarotstrahler 1 oder 2 sind dabei mit ihrer Rückseite an den Platten 46 bis 48 z.B. angeklebt oder angeschraubt.If the plates 46 to 48 shown in FIG. 8 consist of a thermally highly conductive material, then the infrared radiators 1, 2 are well protected with a beam direction indicated by the arrows 49. The infrared radiators 1 or 2 are with their back on the plates 46 to 48 e.g. glued or screwed on.

Claims (12)

  1. Infrared radiator with a support plate (1, 2), on which at least one conductor strip (4, 8, 9) made of a material, which generates heat through electrical energy, is arranged, characterised in that the support plate (1) is made of sheet metal, which is at least partially coated with a non-conductor (dielectric), preferably ceramic based or enamel.
  2. Infrared radiator according to Claim 1, characterised in that the support plate (1) is made of sheet steel.
  3. Infrared radiator according to Claim 1, characterised in that the support plate (2) is made of a non-conductor such as aluminium oxide, for example.
  4. Infrared radiator according to one of Claims 1 to 3, characterised in that connector lugs (5, 6, 10, 11) connected to the conductor strip (4, 8, 9) are attached to the support plate (1, 2) for the connection of electrical conductors or similar by means of conductive adhesive or soft solder joints.
  5. Infrared radiator according to one of Claims 1 to 4, characterised in that at least two infrared radiators (1, 2) are combined to form an infrared radiator array.
  6. Infrared radiator according to one of Claims 1 to 5, characterised in that one or more radiators (1, 2) is (are) held in a frame (15).
  7. Infrared radiator according to Claim 6, characterised in that a rear cover is held in the frame (15) on the rear side of the infrared radiator(s) (1, 2); and that an insulating layer and preferably the electrical connection lines are arranged in the space between the infrared radiator(s) (1, 2), the rear cover and the frame.
  8. Infrared radiator according to one of Claims 1 to 5, characterised in that one or more infrared radiator(s) (1, 2) is (are) fastened to a frame (40), e.g. by screw or adhesive joint; that a cover (43) is fastened to the rear side of the frame (40); and that an insulating layer and preferably the electrical connection lines are arranged in the space (44) between the infrared radiator(s) (1, 2), the cover (43) and the frame (40).
  9. Infrared radiator according to Claim 7 or 8, characterised in that the space (44) between the radiator(s) (1, 2), the cover (43) and the frame (40) is filled with quartz sand.
  10. Infrared radiator according to one of Claims 6 to 9, characterised in that the frame (15, 40) is sealed on all sides by means of silicon rubber.
  11. Infrared radiator according to one of Claims 1 to 5, characterised in that the infrared radiator(s) (1, 2) is (are) screwed or adhered to an assembly plate (46, 47, 48).
  12. Infrared radiator according to one of Claims 6 to 11, characterised in that the assembly plate (45) or the frame (15, 40) is flat or curved stepwise or bent stepwise.
EP92890010A 1991-01-16 1992-01-15 Infrared radiant heater Expired - Lifetime EP0495770B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT8491 1991-01-16
AT84/91 1991-01-16

Publications (2)

Publication Number Publication Date
EP0495770A1 EP0495770A1 (en) 1992-07-22
EP0495770B1 true EP0495770B1 (en) 1995-07-12

Family

ID=3481103

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92890010A Expired - Lifetime EP0495770B1 (en) 1991-01-16 1992-01-15 Infrared radiant heater

Country Status (3)

Country Link
EP (1) EP0495770B1 (en)
AT (1) ATE125095T1 (en)
DE (1) DE59202831D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141912A (en) * 2015-09-16 2018-06-08 赖纳·弗尔斯特 Infra red heating device
CN109716858A (en) * 2016-09-26 2019-05-03 贺利氏特种光源有限公司 Infrared panel radiator
CN110546005A (en) * 2017-04-12 2019-12-06 贺利氏特种光源有限公司 Printing machine with infrared drying unit

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT403518B (en) * 1993-12-01 1998-03-25 Hoffmann Friedrich METHOD AND DEVICE FOR DRYING AND / OR CURING COATINGS
EP0656739B1 (en) * 1993-12-02 2001-03-07 E.G.O. Elektro-Gerätebau GmbH Heating with a heating unit
ES1027468Y (en) * 1994-03-28 1995-02-16 Morillo Casals Pilar RADIANT PANEL TO PERFECTED PRINTED CIRCUIT.
DE4419285C2 (en) * 1994-06-01 1999-01-28 Heraeus Noblelight Gmbh Infrared heater
CN102155750B (en) * 2011-04-21 2015-09-09 浙江苏泊尔家电制造有限公司 A kind of electromagnetic oven and this electromagnetic oven manufacture method
DE102012209936A1 (en) 2012-06-13 2013-12-19 Webasto Ag Electric heating device for a motor vehicle
NL2013415B1 (en) * 2014-09-04 2016-09-27 Pillen Onroerend Goed B V Heating assembly.
DE102015119763A1 (en) * 2015-11-16 2017-05-18 Heraeus Quarzglas Gmbh & Co. Kg infrared Heaters
CN110430626A (en) * 2019-06-26 2019-11-08 黄润添 A kind of toaster Double-side Heating micarex heating wire winding mode
DE102021133587A1 (en) * 2021-12-17 2023-06-22 Valueneers Gmbh infrared heating

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718497A (en) * 1970-11-19 1973-02-27 Gen Motors Corp Heater coil support
US3875413A (en) * 1973-10-09 1975-04-01 Hewlett Packard Co Infrared radiation source
DE3437397A1 (en) * 1984-10-12 1986-04-17 Drägerwerk AG, 2400 Lübeck INFRARED RADIANT

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108141912A (en) * 2015-09-16 2018-06-08 赖纳·弗尔斯特 Infra red heating device
CN108141912B (en) * 2015-09-16 2022-03-04 赖纳·弗尔斯特 Infrared heating equipment
CN109716858A (en) * 2016-09-26 2019-05-03 贺利氏特种光源有限公司 Infrared panel radiator
CN110546005A (en) * 2017-04-12 2019-12-06 贺利氏特种光源有限公司 Printing machine with infrared drying unit

Also Published As

Publication number Publication date
DE59202831D1 (en) 1995-08-17
ATE125095T1 (en) 1995-07-15
EP0495770A1 (en) 1992-07-22

Similar Documents

Publication Publication Date Title
EP0495770B1 (en) Infrared radiant heater
EP0069298B1 (en) Cooking plate
EP2521876B1 (en) Led-lighting device and method for producing an led lighting device
EP3101999B1 (en) Ptc heating element and electric heater for a motor vehicle comprising such a ptc heating element
DE2726387C3 (en) Device for irradiating a substrate with bundled UV radiation
EP0304595B1 (en) Electric heating device
DE3504270A1 (en) WARNING LIGHT DEVICE
DE3804704A1 (en) INFRARED HEATING DEVICE
WO2005099323A2 (en) Light-emitting diode arrangement and method for the production thereof
DE4009677C2 (en) Organic thermistor with positive temperature coefficient and process for its manufacture
DE102007057240A1 (en) Arrangement with a light-emitting module and a flexible conductor carrier
DE102015101947A1 (en) Elongated optics for LED modules
DE2755200C2 (en) Headlights for vehicles
EP1552983B1 (en) Light, especially warning light, for vehicle
DE2725428A1 (en) HOUSING FOR OPERATING LIGHT
DE102017105918A1 (en) Light band with discrete LEDs, lamp and luminaire with light bands and process for the production of a light band with discrete LEDs
EP0285171A2 (en) Surface radiator
DE2619242A1 (en) Positive temperature coefficient semiconductor heating device - has heating element in good thermal contact with emission plate for even transfer of heat
DE102015111284A1 (en) Method for operating a xenon excimer lamp and lamp system with an excimer lamp
DE19603025A1 (en) Light generator for feeding into optical fibers
DE2512763A1 (en) LIGHT, ESPECIALLY FILM LIGHT
DE19635408C1 (en) Resistance housing
WO2003056262A1 (en) Energy transmitter forming a component of a coating and/or drying installation, in particular for a paint coating
EP3671035B1 (en) Light with cooling fins in the light housing
EP0528344B1 (en) Light source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR IT LI LU NL SE

17P Request for examination filed

Effective date: 19930108

17Q First examination report despatched

Effective date: 19940919

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950712

Ref country code: BE

Effective date: 19950712

REF Corresponds to:

Ref document number: 125095

Country of ref document: AT

Date of ref document: 19950715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59202831

Country of ref document: DE

Date of ref document: 19950817

ITF It: translation for a ep patent filed

Owner name: DR. ING. A. RACHELI & C.

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960131

Ref country code: LI

Effective date: 19960131

Ref country code: CH

Effective date: 19960131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000119

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000131

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000316

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000727

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010116

EUG Se: european patent has lapsed

Ref document number: 92890010.9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050115