EP0403522A1 - Method of continuous measurement of blood pressure in humans - Google Patents

Method of continuous measurement of blood pressure in humans

Info

Publication number
EP0403522A1
EP0403522A1 EP89903093A EP89903093A EP0403522A1 EP 0403522 A1 EP0403522 A1 EP 0403522A1 EP 89903093 A EP89903093 A EP 89903093A EP 89903093 A EP89903093 A EP 89903093A EP 0403522 A1 EP0403522 A1 EP 0403522A1
Authority
EP
European Patent Office
Prior art keywords
blood pressure
pulse
ear
measuring device
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89903093A
Other languages
German (de)
French (fr)
Inventor
Waldemar Greubel
Albrecht A. C. VON MÜLLER
Hubertus Von Stein
Rudolf Wieczorek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vectron Gesellschaft fuer Technologieentwicklung und Systemforschung mbH
Original Assignee
Vectron Gesellschaft fuer Technologieentwicklung und Systemforschung mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vectron Gesellschaft fuer Technologieentwicklung und Systemforschung mbH filed Critical Vectron Gesellschaft fuer Technologieentwicklung und Systemforschung mbH
Publication of EP0403522A1 publication Critical patent/EP0403522A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • A61B5/02255Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds the pressure being controlled by plethysmographic signals, e.g. derived from optical sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • A61B5/6816Ear lobe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/7214Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using signal cancellation, e.g. based on input of two identical physiological sensors spaced apart, or based on two signals derived from the same sensor, for different optical wavelengths

Definitions

  • the invention relates to a method for the continuous, non-invasive measurement of blood pressure in humans.
  • the pulse swell speed allows a certain access to blood pressure.
  • PWL pulse wave velocity or pulse wave transit time
  • the transit time of the pulse wave caused by each heartbeat is measured, either using the time difference between the R wave of the electrocardiogram (EKG) and the arrival of the pulse at a peripheral artery measures or the time difference between two different distal pulses via mechanical or optical Sensor recorded.
  • the thus determined pulse transit time correlates intraindi vidually high with average Blutdruckwer ⁇ th.
  • the Hauptnachtei of this method is that a measurement of the separated ge ⁇ di Astol regard and systolic pressures is in principle not possible.
  • ear pulse measuring devices which only determine the changes in the amount of blood on the earlobe fluctuating with the pulse in a photoelectrical manner, qualitatively and roughly, so-called ear pulse measuring devices (OPM). These devices, which have been known in principle for a long time, only serve to determine the pulse frequency.
  • OPM ear pulse measuring devices
  • the object of the invention is therefore to provide a blood pressure measuring method with which the blood pressure can be measured continuously and without blood with the required accuracy, in particular the systolic, diastolic and mean blood pressure.
  • Another object of the invention is to avoid the above-mentioned disadvantages of the known measuring devices based on the RR method.
  • the problem of sensitivity to movement artifacts should also be solved. This object is achieved essentially by the method defined in claim 1.
  • Blood volume density in the sense of the present invention is to be understood as the blood volume per unit volume of tissue in a body tissue with a dense blood vessel network (e.g. earlobe) that changes periodically with the pulse rate and is influenced by the body's own regulations.
  • a dense blood vessel network e.g. earlobe
  • the main advantages of the invention are that a continuous, non-invasive blood pressure measurement is possible not only in the clinic, but also in the everyday environment, even in the state of the head, that the sensors, namely ear clip and EKG, electrodes for Patien ⁇ th too vernachl ssigende physical impairment represent that the measuring system easily portable on the body is because it is very small and light that the system has reduced to a 'minimum susceptibility to motion artifacts, because not is measured on a single artery and that the measuring system is considerably cheaper to produce than systems according to the prior art.
  • all pulse-registering measuring systems can be used as the ear pulse measuring device sensor for determining the arterial blood volume density proportional to the blood pressure, in which a measuring signal taken from the earlobe is proportional to the blood volume density and / or the blood pressure.
  • a suitable miniature microphone is used instead of the EKG electrode, which is attached with an adhesive strip over the heart. The microphone then serves to determine the systole (first heart tone).
  • a particularly preferred further development of the invention can also include an LED and photodiode to be attached to certain areas of the chest or back near the heart Use sensor.
  • the light of the LED is scattered on the fine blood vessel network, the scattered light is registered by the photodiode, and thus the exact time at which the pulse wave passes the sensor. It is crucial that the area of skin on which the sensor is attached is supplied with blood from an intercostal artery as close as possible to the heart.
  • the location on the chest or back should be selected, taking into account the anatomical course of the vessel, so that the duration of the pulse wave from the heart to the sensor close to the heart is minimized, thus maximizing the time difference between the pulse wave between the sensor near the heart and the ear pulse sensor.
  • This preferred embodiment is particularly precise and is not particularly prone to failure.
  • 1 is a graphical representation of the time course of the output signal of the ear pulse measuring device of the blood pressure measuring device operating according to the method according to the invention
  • FIG. 2 shows a schematic illustration of the blood pressure measuring device operating according to the method according to the invention
  • FIG 3 shows a section through the ear clip of the blood pressure measuring device according to the invention in a semi-schematic representation.
  • the ear pulse measuring device sensor is clamped or additionally glued to the earlobe with an ear clip.
  • the ear pulse measuring device sensor fulfills a double function: a small light source with a suitable wavelength shines through the earlobe.
  • the transmission of the earlobe which varies proportionally with the blood pressure, is measured by a photodiode.
  • the arrival of the pulse wave at the earlobe registered relative to the systole by the EKG signal, can also be seen directly from the transmission timing. This determines the pulse wave transit time for the heart / earlobe segment.
  • FIG. 1 shows schematically the course of the photocurrent i (t) on the ear pulse measuring device photodiode, the light source in this example being a pulsed (infrared) light-emitting diode.
  • the associated blood pressure values are shown on the right edge of the figure (mean p, systolic p gratuitand di astolic pressure p.).
  • the second independent blood pressure value is determined as follows with the aid of the photocurrent curve of the ear pulse measuring device.
  • i can be assigned to ⁇ p, ie the photocurrent curve can be converted into blood pressure values for a limited period of time (at least for a few seconds) and at the same time the blood pressure scale (Fig. 1 on the right) can be permanently changed Zero point establish.
  • signal changes .DELTA.i can typically be caused firstly by blood pressure-proportional pulse-synchronous vasodilatation and secondly by slow vasomotor and other changes in the amount of C-apillaries through which flow occurs.
  • FIG. 2 illustrates the structure of the blood pressure measuring system, wherein one can be content with a sketch of the signal paths between the components and details can be left to the person skilled in the art.
  • the ear pulse measuring device 10 in FIG. 1 sketched signal i (t) in the analogue digital wall! he 12.
  • the digitized signal goes for processing in the microcomputer 14.
  • the AD converter 12 receives control signals from the microcomputer 14.
  • the microcomputer 14 also controls all signals emanating from the ear pulse measuring device 10.
  • the signals from the reference sensor 16 for detecting the start of the pulse wave go directly to the microcomputer 14.
  • the sample-specific calibration curve is input to the microcomputer 14 via the line 18 and the calibration curve is in the micro ⁇ computer 14 stored (in Fig. 2, the case was chosen that the pulse wave transit time was determined as a function of p r m).
  • This calibration curve is used by the microcomputer for the ongoing conversion of the pulse wave transit times into the respectively selected blood pressure size.
  • a further task of the microcomputer 14 is sketched in FIG. 2, namely the automatic re-calibration of the photocurrent curve in blood pressure values at 20.
  • FIG. 3 An exemplary embodiment of an ear pulse measuring device sensor in the form of an ear clip is shown in section in FIG. 3.
  • 1 denotes an LED
  • 2 a photodiode
  • 3 an integrated temperature sensor.
  • the clamped ear clip is well fixed on both sides of the earlobe 5 with the help of ring-shaped adhesive strips 4.
  • the temperature sensor 3 is in skin contact with the earlobe. The temperature measurement is used for the additional control of changes in the blood volume density of the earlobe, which have to be continuously monitored as described.

Abstract

Selon un procédé de mesure en continu de la tension artérielle, la tension artérielle moyenne est déterminée sur la base de la durée de propagation des ondes du pouls. Les autres paramètres de la tension artérielle sont obtenus en combinaison avec une mesure optoélectronique de la densité volumétrique du sang effectuée de manière typique sur le lobe de l'oreille. On part d'un étalonnage de base individuel des valeurs de la tension artérielle obtenues par un procédé conventionnel. Des étalonnages ultérieurs automatiques continus sont effectués par des moyens optoélectroniques. On utilise de préférence comme capteurs de mesure des clips d'oreilles (10) et des électrodes d'ECG (16) ou des capteurs photoélectriques. Ce procédé s'applique surtout en médecine préventive et pour des diagnostics.According to a continuous blood pressure measurement method, the average blood pressure is determined on the basis of the pulse wave propagation time. Other blood pressure parameters are obtained in combination with an optoelectronic measurement of volumetric blood density typically performed on the earlobe. One starts from an individual basic calibration of the blood pressure values obtained by a conventional method. Continuous automatic subsequent calibrations are performed by optoelectronic means. Ear clips (10) and ECG electrodes (16) or photoelectric sensors are preferably used as measuring sensors. This method is mainly used in preventive medicine and for diagnostics.

Description

Verfahren zum kontinuierlichen Messen des Blutdrucks am Menschen Method for continuously measuring human blood pressure
Die Erfindung betrifft ein Verfahren zum kontinuierlichen, nichti nvasi en Messen des Blutdrucks am Menschen.The invention relates to a method for the continuous, non-invasive measurement of blood pressure in humans.
Alle bekannten, praktisch einsatzfähigen, ni chti nvasi ven Blutdruckmeßgeräte benutzen in abgewandelter Form das Me߬ verfahren nach Riva-Rocci / Korotkoff (RR-Methode) bzw. anstelle es Korotkoff-Mi krofons die Oszillation des Drucks in einer elastischen Manschette. Das gilt sowohl bei manu¬ eller Bedienung als auch für automatisierte Geräte, die. als ambulante Blutdruckmonitore mit 24-Stunden-Messung an¬ geboten werden. Die Hauptnachteile solcher im Prinzip auch am Körper tragbaren Blutdruckmonitore sind, daß sie auf¬ grund der wiederholten Unterbrechung des Blutkreislaufs auf Dauer sehr unangenehm für den Patienten sind und daß der dadurch verursachte lange zeitliche Abstand zwischen den Messungen keine kontinuierliche Messung zuläßt.All known, practically usable, non-invasive blood pressure monitors use in a modified form the measuring method according to Riva-Rocci / Korotkoff (RR method) or instead of Korotkoff microphones, the oscillation of the pressure in an elastic cuff. This applies both to manual operation and to automated devices that. are offered as outpatient blood pressure monitors with 24-hour measurement. The main disadvantages of such blood pressure monitors, which can in principle also be worn on the body, are that, due to the repeated interruption of the blood circulation, they are very uncomfortable for the patient in the long run and that the long time interval between the measurements caused thereby does not permit continuous measurement.
Bekannt ist weiterhin, daß die Pul swell engeschwi ndi gkei t einen gewissen Zugang zum Blutdruck ermöglicht. Bei der Messung der Pulswellengeschwindigkeit bzw. Pulswellenlauf¬ zeit (PWL) wird die Laufzeit der durch jeden Herzschlag verursachten Pulswelle gemessen, wobei man entweder die Zeitdifferenz zwischen der R-Zacke des Elektrokardiogramms (EKG) und der Ankunft des Pulses an einer peripheren Arte¬ rie mißt oder die Zeitdifferenz zwischen zwei verschieden weit distal liegenden Pulsen über mechanische oder optische Aufnehmer erfaßt. Die so bestimmte Pulswellenlaufzeit kor- reliert intraindi viduell hoch mit mittleren Blutdruckwer¬ ten. Der Hauptnachtei dieses Verfahrens ist, daß eine ge¬ trennte Messung der di astol ischen und systolischen Drucke prinzipiell nicht möglich ist.It is also known that the pulse swell speed allows a certain access to blood pressure. When measuring the pulse wave velocity or pulse wave transit time (PWL), the transit time of the pulse wave caused by each heartbeat is measured, either using the time difference between the R wave of the electrocardiogram (EKG) and the arrival of the pulse at a peripheral artery measures or the time difference between two different distal pulses via mechanical or optical Sensor recorded. The thus determined pulse transit time correlates intraindi vidually high with average Blutdruckwer¬ th. The Hauptnachtei of this method is that a measurement of the separated ge ¬ di Astol regard and systolic pressures is in principle not possible.
Des weiteren befinden sich Meßgeräte auf dem Markt, die lediglich qualitativ und grob annäherungsweise die mit dem Puls schwankenden Änderungen der Blutmenge am Ohrläppchen photoelektrisch kontinuierlich bestimmen, sogenannte Ohr¬ pul smeßgeräte (OPM). Diese Geräte, die im Prinzip seit lan¬ gem bekannt sind, dienen jedoch lediglich zur Bestimmung der Pulsf equenz.Furthermore, there are measuring devices on the market which only determine the changes in the amount of blood on the earlobe fluctuating with the pulse in a photoelectrical manner, qualitatively and roughly, so-called ear pulse measuring devices (OPM). These devices, which have been known in principle for a long time, only serve to determine the pulse frequency.
Andere Vorschläge zur ni chtinvasi ven , kontinuierlichen Blut¬ druckmessung, die davon Gebrauch machen, einen Sensor exakt über eine Einzel arteri e (z.B. Armarterie) unverrückbar zu placieren, scheitern praktisch an der viel zu großen Em¬ pfind! ictikeit gegen Bewegungs-Artefakte.Other suggestions for non-invasive, continuous blood pressure measurement that make use of placing a sensor immovably exactly over a single artery (e.g. arm artery) practically fail due to the much too large sensor! ictikeit against movement artifacts.
Obwohl der menschliche Blutdruck eines der wichtigsten krei sl auf-physiol ogi sehen Maße ist und im präventiven Be¬ reich, in der Diagnostik und bei der per- und postoperati¬ ven Überwachung von großer Bedeutung ist, besteht in all diesen Bereichen das Problem, den Blutdruck fortlaufend und unblutig zu messen.Although the human blood pressure is one of the most important dimensions on the physiological scale and is of great importance in the preventive area, in diagnostics and in per- and postoperative monitoring, the problem that exists in all of these areas is: Measure blood pressure continuously and bloodlessly.
Aufgabe der Erfindung ist es daher, ein Blutdruck-Meßverfah¬ ren anzugeben, mit dem der Blutdruck fortlaufend und unblu¬ tig mit der erforderlichen Genauigkeit gemessen werden kann, insbesondere der systolische, diastolische und mitt¬ lere Blutdruck. Weiter ist es Aufgabe der Erfindung, die oben genannten Nachteile der bekannten, auf der RR-Methode beruhenden Meßgeräte zu vermeiden. Auch das Problem der Empfindlichkeit gegen Bewegungsartefakte soll dabei gelöst werden . Diese Aufgabe wird erfindungsgemäß im wesentlichen durch das im Patentanspruch 1 definierte Verfahren gelöst. Vor¬ teilhafte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.The object of the invention is therefore to provide a blood pressure measuring method with which the blood pressure can be measured continuously and without blood with the required accuracy, in particular the systolic, diastolic and mean blood pressure. Another object of the invention is to avoid the above-mentioned disadvantages of the known measuring devices based on the RR method. The problem of sensitivity to movement artifacts should also be solved. This object is achieved essentially by the method defined in claim 1. Before ¬ part refinements of the invention result from the subclaims.
unter Blutvolumendichte im Sinne der vorliegenden Erfin¬ dung ist das sich mit dem Pulsschlag periodisch ändernde und von körpereigenen Regelungen beeinflußte Blutvolumen pro Volumeneinheit des Gewebes in einem Körpergewebe mit dichtem Blutgefäßnetz (z.B. Ohrläppchen) zu verstehen.Blood volume density in the sense of the present invention is to be understood as the blood volume per unit volume of tissue in a body tissue with a dense blood vessel network (e.g. earlobe) that changes periodically with the pulse rate and is influenced by the body's own regulations.
Die wesentlichen Vorteile der Erfindung bestehen darin, daß eine kontinuierliche, ni chti nvasi ve Blutdruckmessung nicht nur in der Klinik, sondern auch in der Alltagsumge¬ bung möglich ist, ja sogar im Schi afzustand, daß die Me߬ fühler, nämlich Ohrclip und EKG-Elektroden, für den Patien¬ ten eine zu vernachl ssigende körperliche Beeinträchtigung darstellen, daß das Meßsystem bequem am Körper tragbar ist, weil es sehr klein und leicht ist, daß das System eine auf ein'Minimum reduzierte Anfälligkeit für Bewegungs-Artefakte aufweist, weil nicht an einer Einzel arteri e gemessen wird und daß das Meßsystem erheblich preisgünstiger herstellbar ist als Systeme nach dem Stand der Technik.The main advantages of the invention are that a continuous, non-invasive blood pressure measurement is possible not only in the clinic, but also in the everyday environment, even in the state of the head, that the sensors, namely ear clip and EKG, electrodes for Patien¬ th too vernachl ssigende physical impairment represent that the measuring system easily portable on the body is because it is very small and light that the system has reduced to a 'minimum susceptibility to motion artifacts, because not is measured on a single artery and that the measuring system is considerably cheaper to produce than systems according to the prior art.
Als Ohrpulsmeßgerät-Sensor zur Bestimmung der arteriellen blutdruckproportionalen Blutvolumendichte können prinzi¬ piell alle pulsregistrierenden Meßsysteme angewandt werden, bei denen ein am Ohrläppchen abgenommenes Meßsignal propor¬ tional zur Blutvolumendichte und/oder zum Blutdruck ist.In principle, all pulse-registering measuring systems can be used as the ear pulse measuring device sensor for determining the arterial blood volume density proportional to the blood pressure, in which a measuring signal taken from the earlobe is proportional to the blood volume density and / or the blood pressure.
Als Meßstelle für die arterielle Blutvolumendichte kommen im Prinzip alle gut durchbluteten Hautgebiete in Frage, wobei natürlich die acralen Hautgebiete (Finger, Zehen, Ohrläppchen) zur Anbringung von Sensoren besonders geeig¬ net sind. Zur Ausschaltung des Einflusses der variablen Sauerstoff¬ sättigung des Blutes auf das Ohrpulsmeßgerät-Detektorsignal wählt man vorzugsweise eine IR-Li chtwell enl nge X , die * sich aus dem Kreuzungspunkt der spektralen Transmission für reduziertes und oxygeniertes Blut ergibt, dem sogenann¬ ten i sobesti sehen Punkt (z.B. λ = 805 nm).In principle, all well-perfused areas of the skin can be used as a measuring point for the arterial blood volume density, of course the acral areas of the skin (fingers, toes, earlobes) are particularly suitable for attaching sensors. To switch off the influence of the variable oxygen saturation of the blood on the ear pulse measuring device detector signal, an IR light wavelength length X is preferably chosen, which * results from the crossing point of the spectral transmission for reduced and oxygenated blood, the so-called i sobesti see point (e.g. λ = 805 nm).
In Fällen, wo die Pul swell enl aufzei t-Bestimmung mit Hilfe der EKG-Elektroden zu unbef iedigenden Ergebnissen führt, wird statt der EKG-Elektrode ein geeignetes Miniatur-Mikro¬ fon verwendet, das mit einem Klebestreifen über dem Herz befestigt wird. Das Mikrofon dient dann zur Feststellung der Systole (erster Herzton).In cases where the pulse swell time determination with the aid of the EKG electrodes leads to unsatisfactory results, a suitable miniature microphone is used instead of the EKG electrode, which is attached with an adhesive strip over the heart. The microphone then serves to determine the systole (first heart tone).
Statt EKG-Elektroden oder Miniatur-Mikrofon als Referenz- Sensor zur Erfassung der Pulswelle in Herznähe zu verwen¬ den, kann man in besonders bevorzugter Weiterbildung der Erfindung auch einen aus LED und Photodiode bestehenden, auf bestimmten Brust- oder Rückenpartien in Herznähe anzu¬ bringenden Sensor verwenden. Dabei wird, i n Analogie zum Ohrpulsmeßgerät-Sensor das Licht der LED am feinen Blutge¬ fäßnetz gestreut, das gestreute Licht von der Photodiode registriert, und somit der Zeitpunkt genau erfaßt, zu dem die Pulswelle am Sensor vorbeiläuft. Entscheidend ist da¬ bei , daß die Hautpartie, auf der der Sensor angebracht wird, von einer möglichst herznahen Interkostal -Arteri e mit Blut versorgt wird. Für diesen herznahen Sensor ist der Ort auf Brust oder Rücken unter Berücksichtigung des gefäßanatomischen Verlaufs so zu wählen, daß die Laufzeit der Pulswelle vom Herzen bis zum herznahen Sensor minimiert wird und damit die Laufzei tdifferenz der Pulswelle zwischen herznahem Sensor und Ohrpulssensor maximiert wird. Diese bevorzugte Ausführungsform ist besonders genau und beson¬ ders wenig störanfällig.Instead of using ECG electrodes or a miniature microphone as a reference sensor for detecting the pulse wave near the heart, a particularly preferred further development of the invention can also include an LED and photodiode to be attached to certain areas of the chest or back near the heart Use sensor. In analogy to the ear pulse measuring device sensor, the light of the LED is scattered on the fine blood vessel network, the scattered light is registered by the photodiode, and thus the exact time at which the pulse wave passes the sensor. It is crucial that the area of skin on which the sensor is attached is supplied with blood from an intercostal artery as close as possible to the heart. For this sensor close to the heart, the location on the chest or back should be selected, taking into account the anatomical course of the vessel, so that the duration of the pulse wave from the heart to the sensor close to the heart is minimized, thus maximizing the time difference between the pulse wave between the sensor near the heart and the ear pulse sensor. This preferred embodiment is particularly precise and is not particularly prone to failure.
Eine zusätzliche Möglichkeit zur weiteren Reduzierung von Bewegungs-Artefakten, aber auch sonstiger Störeinflüsse besteht darin, beide Ohrläppchen mit je einem Ohrpulsmeß- gerät zu versehen. Durch Vergleich der von beiden Ohrläpp¬ chen kommenden Signale, z.B. Anwendung einer Koinzidenz- Schaltung, lassen sich vielerlei Störungen eliminieren.An additional possibility to further reduce movement artifacts, but also other disturbances, is to use both earlobes with one ear pulse measurement device. By comparing the signals coming from both earlobes, for example using a coincidence circuit, many types of interference can be eliminated.
Im folgenden wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung näher beschrieben. In der Zeichnung zeigen:In the following an embodiment of the invention will be described with reference to the drawing. The drawing shows:
Fig. 1 eine graphische Darstellung des zeitlichen Verlaufs des Ausgangssignals des Ohrpulsmeßgeräts des nach dem erfindungsgemäßen Verfahren arbeitenden Blut¬ druckmeßgeräts,1 is a graphical representation of the time course of the output signal of the ear pulse measuring device of the blood pressure measuring device operating according to the method according to the invention,
Fig. 2 eine schematische Darstellung des nach dem erfin¬ dungsgemäßen Verfahren arbeitenden Blutdruckmeßge¬ räts, und2 shows a schematic illustration of the blood pressure measuring device operating according to the method according to the invention, and
Fig. 3 einen Schnitt durch den Ohrclip des erfindungsgemä¬ ßen Blutdruckmeßgeräts in hal bschemati scher Darstel¬ lung.3 shows a section through the ear clip of the blood pressure measuring device according to the invention in a semi-schematic representation.
Auf der Brust des Patienten sind über dem Herz .(zwei ) EKG- Elektroden angebracht. Am Ohrläppchen ist mit einem Ohrclip der Ohrpulsmeßgerät-Sensor angeklemmt bzw. zusätzlich ange¬ klebt. Der Ohrpulsmeßgerät-Sensor erfüllt eine Doppelfunk¬ tion: Eine kleine Lichtquelle mit geeigneter Wellenlänge durchstrahlt das Ohrläppchen. Die Transmission des Ohrläpp¬ chens, die proportional mit dem Blutdruck variiert, wird von einer Photodiode gemessen. Dem zeitlichen Transmissions¬ verlauf läßt sich außerdem unmittelbar die Ankunft der Puls¬ welle am Ohrläppchen, relativ zur Systole registriert durch das EKG-Signal , entnehmen. Damit ist die Pulswellenlaufzeit für die Strecke Herz / Ohrläppchen bestimmt.On the patient's chest, (two) ECG electrodes are attached above the heart. The ear pulse measuring device sensor is clamped or additionally glued to the earlobe with an ear clip. The ear pulse measuring device sensor fulfills a double function: a small light source with a suitable wavelength shines through the earlobe. The transmission of the earlobe, which varies proportionally with the blood pressure, is measured by a photodiode. The arrival of the pulse wave at the earlobe, registered relative to the systole by the EKG signal, can also be seen directly from the transmission timing. This determines the pulse wave transit time for the heart / earlobe segment.
Für jeden Patienten wird vor Beginn der Dauermessung eine individuelle Eichkurve erstellt, die den Zusammenhang zwi¬ schen der Pulswellenlaufzeit und dem zugehörigen mittleren Blutdruck p anqibt, bestimmt nach der altbekannten Man- m 3 schetten-Methode. Da dieser Zusammenhang fast linear ist, genügen zur Darstellung etwa drei Meßpunkte, entsprechend gleichvielen erforderlichen K-rei sl auf-Bei astungsstufen bei der EichungjAn individual calibration curve is created for each patient before the start of the continuous measurement, which curve shows the relationship between the pulse wave transit time and the associated mean Blood pressure p indicates, determined according to the well-known • • 3 cuff method. Since this relationship is almost linear, about three measuring points are sufficient for the display, corresponding to the same number of required K-rei sl on load stages in the calibration
Zur weiteren Erläuterung zeigt Fig. 1 schematisch den Ver¬ lauf des Photostroms i (t) an der Ohrpulsmeßgerät-Photodio¬ de, wobei in diesem Beispiel die Lichtquelle eine gepulste ( Infrarot )-Leuchtdiode ist. Am rechten Rand der Abbildung sind die zugehörigen Blutdruckwerte angegeben (mittlerer p , systolischer p„ und di astol i scher Druck p.). In der rm J rs αFor further explanation, FIG. 1 shows schematically the course of the photocurrent i (t) on the ear pulse measuring device photodiode, the light source in this example being a pulsed (infrared) light-emitting diode. The associated blood pressure values are shown on the right edge of the figure (mean p, systolic p „and di astolic pressure p.). In the r m J r s α
Praxis gilt:Practice applies:
Pm = Pd + f * (Ps " Pd} (Gl eichung 1 )Pm = Pd + f * ( Ps " Pd } (Equation 1)
wobei für periphere Arterien allgemein f = 1/3 gilt. Im Zweifelsfall kann f leicht probandenspezifiseh bestimmt werden. -where f = 1/3 generally applies to peripheral arteries. In case of doubt, f can easily be determined specimen-specific. -
Da gemäß Gleichung 1 zwischen den drei Blutdruckgrößen p , p und p . in der Praxis ein linearer Zusammenhang besteht, wird klar, daß man der Pul swell enl aufzeit PWL bei der Ei¬ chu-ng3 alternativ entweder pm, prs„ oder prd. zuordnen kann.Since according to equation 1 between the three blood pressure parameters p, p and p. in practice there is a linear relationship, it becomes clear that the pulse swell enl time PWL at calibration 3 alternatively either pm, p r s "or p r d. can assign.
Jedenfalls ist festzuhalten, daß durch Messung der Pulswel¬ lenlaufzeit nur eine der zwei unabhängigen Blutdruckgrößen gewonnen werden kann. Die zweite unabhängige Blutdruckgröße wird folgendermaßen mit Hilfe der Photostromkurve des Ohr¬ pul smeßgeräts bestimmt.In any case, it should be noted that only one of the two independent blood pressure variables can be obtained by measuring the pulse wave transit time. The second independent blood pressure value is determined as follows with the aid of the photocurrent curve of the ear pulse measuring device.
Man betrachte die Hüllkurve des Photostromsignals i(t) in Fig. 1. In dieser entspricht der Signaldifferenz Δi die Blutdruckdifferenz Ap = ps - p Mißt man zu Beginn der Blutdruckmessung einmal nach der Riva-Rocci -Methode p und Pd in einem bestimmten Zeitpunkt, so läßt sich i zuordnen zu Δp, d.h. die Photostromkurve läßt sich für einen begrenz¬ ten Zeitraum (mindestens für einige Sekunden) in Blutdruck¬ werte umrechnen und gleichzeitig läßt sich für die Blut¬ druckskala (Fig. 1 rechts außen) dauerhaft der Nullpunkt festlegen. Da sich aber durch vasomotorische und andere körpereigene Regelungen die Zuordnung von Photostromwert zu Blutdruckwert im Laufe der Zei't ändert, erfolgt erfin¬ dungsgemäß eine automatische Nacheichung dieser Zuordnung, indem man z.B. den laufend über die Pul swell enl aufzei t be¬ stimmten Wert von p , verwendet, um die Photostromkurve in Blutdruckwerten nachzuei chen , so daß sieh dann aus dem Pho- tostromw rt , der zu p 'gehört, direkt der systolische Blut¬ druck ablesen läßt. Analog läßt sich verfahren, wenn man alternativ der Pul swell enl aufzeit die Blutdruckgrößen p oder p in der probandenspezifi sehen Eichkurve zugeordnet hat. Bei der Eichung der Photostromkurve des Ohrpulsmeßge¬ räts in Blutdruckwerte kann von Gleichung 1 Gebrauch ge¬ macht werden.Consider the envelope of the photocurrent signal i (t) in Fig. 1. In this, the signal difference Δi corresponds to the blood pressure difference Ap = p s - p. At the beginning of the blood pressure measurement, one measures according to the Riva-Rocci method p and P d in a specific one Time, then i can be assigned to Δp, ie the photocurrent curve can be converted into blood pressure values for a limited period of time (at least for a few seconds) and at the same time the blood pressure scale (Fig. 1 on the right) can be permanently changed Zero point establish. But since by vasomotor and other body's regulations assigning photocurrent value to blood pressure value over Zei 't change Erfin done dung as an automatic recalibration of this association by, for example the ongoing aufzei swell enl about the Pul t be ¬ voted worth p, used to follow up the photocurrent curve in blood pressure values, so that the systolic blood pressure can then be read directly from the photocurrent value belonging to p ' . An analogous procedure can be used if, alternatively, the pulse pressure p or p in the sample-specific calibration curve has been assigned to the pulse swell enl over time. Equation 1 can be used to calibrate the photocurrent curve of the ear pulse measuring device into blood pressure values.
Die oben angesprochene laufende, automatisch auf elektro¬ nischem Weg vorgenommene Nacheichung ist aus fo.lgenden Grün¬ den notwendig:The above-mentioned ongoing re-calibration, carried out automatically by electronic means, is necessary for the following reasons:
Im dichten arteriellen Gefäßsystem des Ohrläppchens können Signal nderüngen Δi typischerweise erstens durch blutdruck¬ proportionale pulssynchrone Gef ßerweiterungen verursacht sein und zweitens durch langsame vasomotorische und andere Änderungen der Menge der durchströmten C-apillaren beein- f1 ußt sein .In the dense arterial vascular system of the earlobe, signal changes .DELTA.i can typically be caused firstly by blood pressure-proportional pulse-synchronous vasodilatation and secondly by slow vasomotor and other changes in the amount of C-apillaries through which flow occurs.
Ist e die Extinktion des IR-Lichts (Summe aus Absorption und Streuung), q(t) der pulsierende Gefäßquerschnitt und nCaD die Men9e der eweils blutführenden Capillaren, dann gilt folgende Proportionalität: e<v>q(t) • n~ . n~If e is the extinction of the IR light (sum of absorption and scattering), q (t) the pulsating cross-section of the vessel and n Ca D the men 9 e of the capillaries, which sometimes carry blood, then the following proportionality applies: e <v> q (t) • n ~. n ~
Cap Cap ändert sich langsam. Änderungen von nc werden durch die erwähnte automatische Nacheichung berücksichtigt. Das Blockschaltbild in Fig. 2 verdeutlicht den Aufbau des Blutdruck-Meßsystems, wobei man sich mit einer Skizzierung der Signalpfade zwischen den Komponenten begnügen kann und Einzelheiten dem Fachmann überlassen werden können.Cap cap is changing slowly. Changes in n c are taken into account by the automatic re-calibration mentioned. The block diagram in FIG. 2 illustrates the structure of the blood pressure measuring system, wherein one can be content with a sketch of the signal paths between the components and details can be left to the person skilled in the art.
Vom Ohrpulsmeßgerät 10 kommt das in 'Fig. 1 skizzierte Signal i(t) in den Analog-Di gi tal -Wand! er 12. Das digita¬ lisierte Signal geht zur Verarbeitung in den Mikrocomputer 14. Der AD-Wandler 12 erhält Steuersignale vom Mikrocompu¬ ter 14. Außerdem steuert der Mikrocomputer 14 auch alle vom Ohrpulsmeßgerät 10 ausgehenden Signale. Die Signale vom Referenzsensor 16 zur Erfassung des Starts der Pulswel¬ le (in Fig. 2 beispielhaft als EKG-Signal symbolisiert) gelangen direkt zum Mikrocomputer 14. Außerdem wird dem Mikrocomputer 14 die probandenspezifisehe Eichkurve über die Leitung 18 eingegeben und die Eichkurve wird im Mikro¬ computer 14 abgespeichert (in Fig. 2 wurde der Fall gewählt, daß die Pulswellenlaufzeit als Funktion von prm bestimmt wurde). Diese Eichkurve wird vom Mikrocomputer zur-laufen- deπ Umrechnung der Pulswellenlaufzeiten in die jeweils ge¬ wählte Blutdruckgröße verwendet. Außerdem ist in Fig. 2 eine weitere Aufgabe des Mikrocomputers 14 skizziert, näm¬ lich die automatische Nacheichung der Photostromkurve in Blutdruckwerte bei 20.This comes from the ear pulse measuring device 10 in FIG. 1 sketched signal i (t) in the analogue digital wall! he 12. The digitized signal goes for processing in the microcomputer 14. The AD converter 12 receives control signals from the microcomputer 14. In addition, the microcomputer 14 also controls all signals emanating from the ear pulse measuring device 10. The signals from the reference sensor 16 for detecting the start of the pulse wave (symbolized in FIG. 2 as an EKG signal) go directly to the microcomputer 14. In addition, the sample-specific calibration curve is input to the microcomputer 14 via the line 18 and the calibration curve is in the micro ¬ computer 14 stored (in Fig. 2, the case was chosen that the pulse wave transit time was determined as a function of p r m). This calibration curve is used by the microcomputer for the ongoing conversion of the pulse wave transit times into the respectively selected blood pressure size. In addition, a further task of the microcomputer 14 is sketched in FIG. 2, namely the automatic re-calibration of the photocurrent curve in blood pressure values at 20.
Ein Ausführungsbeispiel eines Ohrpulsmeßgerät-Sensors in Form eines Ohrclips ist in Fig. 3 im Schnitt dargestellt. Darin bezeichnet 1 ein LED, 2 eine Photodiode und 3 einen integrierten Temperaturfühler. Der angeklemmte Ohrclip ist auf beiden Seiten des Ohrläppchens 5 mit Hilfe ringförmiger Klebestreifen 4 gut fixiert. Der Temperaturfühler 3 steht in Hautkontakt mit dem Ohrläppchen. Die Temperaturmessung dient zur zusätzlichen Kontrolle von Änderungen der Blut¬ volumendichte des Ohrläppchens, die wie beschrieben laufend überwacht werden müssen. An exemplary embodiment of an ear pulse measuring device sensor in the form of an ear clip is shown in section in FIG. 3. Therein 1 denotes an LED, 2 a photodiode and 3 an integrated temperature sensor. The clamped ear clip is well fixed on both sides of the earlobe 5 with the help of ring-shaped adhesive strips 4. The temperature sensor 3 is in skin contact with the earlobe. The temperature measurement is used for the additional control of changes in the blood volume density of the earlobe, which have to be continuously monitored as described.

Claims

An sprüch e Expectations
1. Verfahren zum kontinuierlichen Messen des Blutdrucks am Menschen, dadurch gekennzeichnet,1. A method for continuously measuring human blood pressure, characterized in that
daß zur Bestimmung einer der drei Blutdruckgrößen (systo- lischer, di astol i scher oder mittlerer Blutdruck) die Puls¬ wellenlaufzeit kontinuierlich gemessen wird, wobei von ei¬ ner probandenspezifi sehen Eichkurve Gebrauch gemacht wird, die die Pul swell enl aufzei t als Funktion der verwendeten Blutdruckgröße angibt,that to determine one of the three blood pressure values (systolic, diastolic or mean blood pressure) the pulse wave transit time is measured continuously, use being made of a subject-specific calibration curve which shows the pulse swell enl as a function of blood pressure used indicates
daß mit einem Ohrpulsmeßgerät, welches am Ohrläppchen des Probanden befestigt wird, die arterielle blutdruckproportio¬ nale Blutvolumendichte kontinuierlich bestimmt wird,that the arterial blood pressure proportional blood volume density is continuously determined with an ear pulse measuring device which is attached to the earlobe of the test subject,
daß das Ohrpulsmeßgerät gleichzeitig zur Messung der Puls¬ wellenlaufzeit verwendet wird, undthat the ear pulse measuring device is used simultaneously for measuring the pulse wave transit time, and
daß zur Berücksichtigung vasomotorischer und änderer kör¬ pereigener Regelungen das Meßsignal des Ohrpulsmeßgeräts kontinuierlich auf elektronischem Weg nachgeeicht wird.that the measurement signal of the ear pulse measuring device is continuously re-calibrated electronically to take into account vasomotor and other body-specific regulations.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Nacheichung dadurch erfolgt, daß bei bestimmten konstanten Blutdruckwerten das zugehörige Meßsignal regis¬ triert wird und aus dessen Änderung eine Korrektur der Blut¬ druckwerte vorgenommen wird.2. The method according to claim 1, characterized in that the re-calibration takes place in that the associated measurement signal is registered at certain constant blood pressure values and a correction of the blood pressure values is made from the change thereof.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich¬ net, daß vor Beginn der kontinuierlichen Blutdruckmessung nach der Riva-Rocci -Methode der systolische und der diasto- lische Blutdruck gemessen werden, hieraus die Druckdiffe¬ renz Δp berechnet wird und diese Druckdifferenz Λp der Dif¬ ferenz Δi des dem di astol i sehen Wert entsprechenden Aus¬ gangssignal und des dem systolischen Wert entsprechenden Ausgangssignals des Ohrpulsmeßgeräts zugeordnet wird. 3. The method according to claim 1 or 2, characterized gekennzeich¬ net that before the start of the continuous blood pressure measurement according to the Riva-Rocci method, the systolic and diastolic blood pressure are measured, from this the pressure difference Δp is calculated and this pressure difference Λp the difference Δi of the output signal corresponding to the di astol i value and the output signal of the ear pulse measuring device corresponding to the systolic value is assigned.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Aufnahme der probandenspe- zifischen Eichkurve vor Beginn der kontinuierlichen Blut¬ druckmessung die Pulswellenlaufzeit in Abhängigkeit von mehreren Blutdruckwerten gemessen wird.4. The method according to any one of the preceding claims, characterized in that for recording the sample-specific calibration curve before the start of the continuous blood pressure measurement, the pulse wave transit time is measured as a function of several blood pressure values.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Messung der Pulswellenlauf¬ zeit ein photoelektrischer Sensor verwendet wird, der in Herznähe an einer Hautpartie an der Brust oder dem Rücken des Probanden, die von einer herznahen Interkostal -Arten* e mit Blut versorgt wird, angebracht wird.5. The method according to any one of the preceding claims, characterized in that a photoelectric sensor is used to measure the pulse wave running time, the near the heart on a skin area on the chest or the back of the subject, with a near-heart intercostal species * e Blood is supplied, is attached.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zur Messung der Pul swell enl aufzeit EKG- Elektroden über dem Herz verwendet werden.6. The method according to any one of claims 1 to 4, characterized in that EKG electrodes above the heart are used to measure the pulse swell enl time.
7. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zur Messung der Pul swell enl aufzeit ein Miniatur-Mikrofon zur Registrierung des ersten Herztons über dem Herz befestigt wird.7. The method according to any one of claims 1 to 4, characterized in that for measuring the pulse swell enl time a miniature microphone for registering the first heart tone is attached to the heart.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zur Durchstrahlung des Ohrläpp¬ chens eine gepulste Infrarot-Leuchtdiode verwendet wird und daß die Transmission des Ohrläppchens von einer Photo¬ diode gemessen wird.8. The method according to any one of the preceding claims, characterized in that a pulsed infrared light-emitting diode is used to irradiate the ear lobe and that the transmission of the ear lobe is measured by a photo diode.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß zur Vermeidung der Einflüsse der variablen Sauerstoff¬ sättigung des Blutes für die Infrarot-Leuchtdiode eine IR- Wellenlänge in der Nähe eines i sobesti sehen Punktes gewählt wird . 9. The method according to claim 8, characterized in that in order to avoid the influences of the variable oxygen saturation of the blood for the infrared light-emitting diode, an IR wavelength in the vicinity of an i sobesti see point is selected.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß beide Ohrläppchen mit je einem Ohrpulsmeßger t versehen werden und daß die Meßsignale der beiden Pulsmeßgeräte elektronisch verglichen werden, um Störungen verschiedener Art zu eliminieren.10. The method according to any one of the preceding claims, characterized in that both ear lobes are each provided with an ear pulse measuring device t and that the measurement signals of the two pulse measuring devices are compared electronically in order to eliminate different types of interference.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die beiden Meßsignale einer Koinzidenz-Schaltung zuge¬ führt werden, die alle Signale, die nicht an beiden Ohrläpp chen gleichzeitig gemessen werden, unterdrückt und somit als Artefakte bewertet.11. The method according to claim 10, characterized in that the two measurement signals are fed to a coincidence circuit which suppresses all signals which are not measured simultaneously on both ear lobes, and thus evaluates them as artifacts.
12. Verfahren nach einem der vorhergehenden Ansprüche, da¬ durch gekennzeichnet, daß zusätzlich kontinuierlich die Körpertemperatur am Ohrläppchen gemessen wird und das Me߬ signal des Ohrpulsmeßgeräts in Abhängigkeit von der gemes¬ senen Temperatur korrigiert wird.12. The method according to any one of the preceding claims, characterized in that the body temperature is continuously measured at the earlobe and the measurement signal of the ear pulse measuring device is corrected as a function of the measured temperature.
13. Blutdruckmeßgerät zur Durchführung des Verfahrens nach Anspruch 12, dadurch gekennzeichnet, daß der am Ohrläppchen zu befestigende Ohrpulsmeßgerät-Sensor einen integrierten Temperaturfühler (3) enthält, der mit dem Ohrläppchen (5) in Hautkontakt steht. 13. Blood pressure monitor for performing the method according to claim 12, characterized in that the ear pulse sensor to be attached to the earlobe contains an integrated temperature sensor (3) which is in skin contact with the earlobe (5).
EP89903093A 1988-03-09 1989-03-09 Method of continuous measurement of blood pressure in humans Withdrawn EP0403522A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3807672 1988-03-09
DE3807672A DE3807672A1 (en) 1988-03-09 1988-03-09 METHOD FOR CONTINUOUSLY MEASURING BLOOD PRESSURE ON HUMAN AND BLOOD PRESSURE MEASURING DEVICE FOR CARRYING OUT THE METHOD

Publications (1)

Publication Number Publication Date
EP0403522A1 true EP0403522A1 (en) 1990-12-27

Family

ID=6349216

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89903093A Withdrawn EP0403522A1 (en) 1988-03-09 1989-03-09 Method of continuous measurement of blood pressure in humans

Country Status (5)

Country Link
US (1) US5237997A (en)
EP (1) EP0403522A1 (en)
JP (1) JPH03505533A (en)
DE (1) DE3807672A1 (en)
WO (1) WO1989008424A1 (en)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0443267A1 (en) * 1990-02-23 1991-08-28 Sentinel Monitoring, Inc. Method and apparatus for continuous non-invasive blood pressure monitoring
HUT64459A (en) * 1992-03-31 1994-01-28 Richter Gedeon Vegyeszet Process and apparatus for the diagnostics of cardiovascular
JP2764702B2 (en) * 1994-03-30 1998-06-11 日本光電工業株式会社 Blood pressure monitoring device
JP3390883B2 (en) * 1994-03-30 2003-03-31 日本光電工業株式会社 Sphygmomanometer
US6371921B1 (en) 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
US5590649A (en) * 1994-04-15 1997-01-07 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine blood pressure
US5810734A (en) * 1994-04-15 1998-09-22 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physiological parameter
US5785659A (en) * 1994-04-15 1998-07-28 Vital Insite, Inc. Automatically activated blood pressure measurement device
JP3318727B2 (en) * 1994-06-06 2002-08-26 日本光電工業株式会社 Pulse wave transit time sphygmomanometer
US5603329A (en) * 1994-06-21 1997-02-18 Nihon Kohden Corporation Multi-functional blood pressure monitor
AU3759795A (en) * 1994-10-13 1996-05-06 Vital Insite, Inc. Automatically activated blood pressure measurement device
JP3422128B2 (en) * 1994-11-15 2003-06-30 オムロン株式会社 Blood pressure measurement device
US5743857A (en) * 1995-01-17 1998-04-28 Colin Corporation Blood pressure monitor apparatus
JP3259082B2 (en) * 1995-11-02 2002-02-18 日本光電工業株式会社 Blood pressure monitoring device
US5743856A (en) 1995-11-06 1998-04-28 Colin Corporation Apparatus for measuring pulse-wave propagation velocity
JP3580925B2 (en) * 1995-12-22 2004-10-27 コーリンメディカルテクノロジー株式会社 Biological circulatory function evaluation device
US6027452A (en) 1996-06-26 2000-02-22 Vital Insite, Inc. Rapid non-invasive blood pressure measuring device
US5752920A (en) * 1996-08-01 1998-05-19 Colin Corporation Blood pressure monitor apparatus
AU772973B2 (en) * 1996-10-11 2004-05-13 Dxtek, Inc. Non-invasive cuffless determination of blood pressure
US5865755A (en) * 1996-10-11 1999-02-02 Dxtek, Inc. Method and apparatus for non-invasive, cuffless, continuous blood pressure determination
US5755669A (en) * 1997-04-30 1998-05-26 Nihon Kohden Corporation Blood pressure monitoring apparatus
DE19746377C1 (en) * 1997-10-21 1999-07-01 Fresenius Medical Care De Gmbh Blood treatment device with a device for continuous monitoring of the patient's blood pressure
US6280390B1 (en) * 1999-12-29 2001-08-28 Ramot University Authority For Applied Research And Industrial Development Ltd. System and method for non-invasively monitoring hemodynamic parameters
AU2001221391A1 (en) 2000-01-26 2001-08-07 Vsm Medtech Ltd. Continuous blood pressure monitoring method and apparatus
JP2001224564A (en) * 2000-02-18 2001-08-21 Nippon Colin Co Ltd Cardiac sound detector and pulse wave propagating speed information measuring instrument using it
US6616613B1 (en) 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
US6475153B1 (en) * 2000-05-10 2002-11-05 Motorola Inc. Method for obtaining blood pressure data from optical sensor
DE10043266A1 (en) * 2000-08-28 2002-03-14 Getemed Medizin Und Informatio Method and device for continuous non-invasive determination of blood pressure
DE10051943B4 (en) * 2000-10-19 2015-01-15 Fresenius Medical Care Deutschland Gmbh Method and device for pulse wave transit time determination and extracorporeal blood treatment device with such a device
US6893401B2 (en) 2001-07-27 2005-05-17 Vsm Medtech Ltd. Continuous non-invasive blood pressure monitoring method and apparatus
US7065396B2 (en) * 2001-07-30 2006-06-20 The Curavita Corporation System and method for non-invasive monitoring of physiological parameters
US20050148882A1 (en) * 2004-01-06 2005-07-07 Triage Wireless, Incc. Vital signs monitor used for conditioning a patient's response
US20060142648A1 (en) * 2003-01-07 2006-06-29 Triage Data Networks Wireless, internet-based, medical diagnostic system
US7011631B2 (en) * 2003-01-21 2006-03-14 Hemonix, Inc. Noninvasive method of measuring blood density and hematocrit
US7569018B1 (en) * 2003-02-18 2009-08-04 Purdue Research Foundation Apparatus and method for noninvasively detecting the quality of cardiac pumping
US7263396B2 (en) * 2003-08-08 2007-08-28 Cardiodigital Limited Ear sensor assembly
US7601123B2 (en) * 2003-08-22 2009-10-13 Eppcor, Inc. Non-invasive blood pressure monitoring device and methods
US20070135717A1 (en) * 2003-10-09 2007-06-14 Nippon Telegraph And Telephone Corp Organism information detection device and sphygmomanometer
US20050216199A1 (en) * 2004-03-26 2005-09-29 Triage Data Networks Cuffless blood-pressure monitor and accompanying web services interface
US20050261598A1 (en) * 2004-04-07 2005-11-24 Triage Wireless, Inc. Patch sensor system for measuring vital signs
US20050228297A1 (en) * 2004-04-07 2005-10-13 Banet Matthew J Wrist-worn System for Measuring Blood Pressure
US20060009698A1 (en) * 2004-04-07 2006-01-12 Triage Wireless, Inc. Hand-held monitor for measuring vital signs
US7179228B2 (en) * 2004-04-07 2007-02-20 Triage Wireless, Inc. Cuffless system for measuring blood pressure
US20060009697A1 (en) * 2004-04-07 2006-01-12 Triage Wireless, Inc. Wireless, internet-based system for measuring vital signs from a plurality of patients in a hospital or medical clinic
US20050228244A1 (en) * 2004-04-07 2005-10-13 Triage Wireless, Inc. Small-scale, vital-signs monitoring device, system and method
US20050228300A1 (en) * 2004-04-07 2005-10-13 Triage Data Networks Cuffless blood-pressure monitor and accompanying wireless mobile device
US7164938B2 (en) * 2004-06-21 2007-01-16 Purdue Research Foundation Optical noninvasive vital sign monitor
US7544168B2 (en) * 2004-09-30 2009-06-09 Jerusalem College Of Technology Measuring systolic blood pressure by photoplethysmography
US20060084878A1 (en) * 2004-10-18 2006-04-20 Triage Wireless, Inc. Personal computer-based vital signs monitor
US7658716B2 (en) * 2004-12-07 2010-02-09 Triage Wireless, Inc. Vital signs monitor using an optical ear-based module
US20060122520A1 (en) * 2004-12-07 2006-06-08 Dr. Matthew Banet Vital sign-monitoring system with multiple optical modules
US20060206014A1 (en) * 2005-03-13 2006-09-14 Nexense Ltd. Ear probe particularly for measuring various physiological conditions particularly blood pressure, temperature and/or respiration
US7678059B2 (en) * 2005-10-12 2010-03-16 General Electric Company Non-invasive blood pressure monitor with improved performance
US20070142715A1 (en) * 2005-12-20 2007-06-21 Triage Wireless, Inc. Chest strap for measuring vital signs
US20070185393A1 (en) * 2006-02-03 2007-08-09 Triage Wireless, Inc. System for measuring vital signs using an optical module featuring a green light source
US7993275B2 (en) * 2006-05-25 2011-08-09 Sotera Wireless, Inc. Bilateral device, system and method for monitoring vital signs
US9149192B2 (en) * 2006-05-26 2015-10-06 Sotera Wireless, Inc. System for measuring vital signs using bilateral pulse transit time
US8442607B2 (en) * 2006-09-07 2013-05-14 Sotera Wireless, Inc. Hand-held vital signs monitor
US20080082004A1 (en) * 2006-09-08 2008-04-03 Triage Wireless, Inc. Blood pressure monitor
US8449469B2 (en) * 2006-11-10 2013-05-28 Sotera Wireless, Inc. Two-part patch sensor for monitoring vital signs
US20080221461A1 (en) * 2007-03-05 2008-09-11 Triage Wireless, Inc. Vital sign monitor for cufflessly measuring blood pressure without using an external calibration
US20080221399A1 (en) * 2007-03-05 2008-09-11 Triage Wireless, Inc. Monitor for measuring vital signs and rendering video images
US8147416B2 (en) * 2007-08-31 2012-04-03 Pacesetter, Inc. Implantable systemic blood pressure measurement systems and methods
ES2336997B1 (en) * 2008-10-16 2011-06-13 Sabirmedical,S.L. SYSTEM AND APPARATUS FOR NON-INVASIVE MEASUREMENT OF BLOOD PRESSURE.
EP3127476A1 (en) 2009-02-25 2017-02-08 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
WO2011110491A1 (en) 2010-03-09 2011-09-15 Sabirmedical, S.L. A non-invasive system and method for diagnosing and eliminating white coat hypertention and white coat effect in a patient
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
DE102014206678A1 (en) 2014-04-07 2015-10-08 Bayerische Motoren Werke Aktiengesellschaft Continuous blood pressure measurement by drivers
US11246495B2 (en) 2014-10-27 2022-02-15 Vital Sines International Inc. System and method for monitoring aortic pulse wave velocity and blood pressure
CN105748051B (en) * 2016-02-18 2018-10-09 京东方科技集团股份有限公司 A kind of blood pressure measuring device
JP6885545B2 (en) * 2018-01-13 2021-06-16 株式会社デルタツーリング Blood pressure estimation device, blood pressure estimation method, computer program and recording medium
US11357412B2 (en) * 2018-11-20 2022-06-14 42 Health Sensor Holdings Ltd. Wearable cardiovascular monitoring device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628525A (en) * 1969-06-19 1971-12-21 American Optical Corp Blood oxygenation and pulse rate monitoring apparatus
AR200173A1 (en) * 1973-02-08 1974-10-24 Detection Sciences DIAGNOSTIC INSTRUMENT FOR MONITORING THE MICROCIRCULATORY SYSTEM OF A PATIENT
DE2329973A1 (en) * 1973-06-13 1975-01-09 Philips Patentverwaltung Optical pulse-taker with light-beam gap - for body part of patient, light guide from gap to photocell
US4030485A (en) * 1974-11-12 1977-06-21 Glenfield Warner Method and apparatus for continuously monitoring systolic blood pressure
DE2460839C3 (en) * 1974-12-21 1979-11-15 Volkswagenwerk Ag, 3180 Wolfsburg Measuring arrangement for the pulse wave transit time of a person being measured
US3985121A (en) * 1975-05-20 1976-10-12 International Telephone And Telegraph Corporation Heart detective
US4201222A (en) * 1977-08-31 1980-05-06 Thomas Haase Method and apparatus for in vivo measurement of blood gas partial pressures, blood pressure and blood pulse
US4278095A (en) * 1977-09-12 1981-07-14 Lapeyre Pierre A Exercise monitor system and method
DE2926241A1 (en) * 1979-06-29 1981-01-08 Schwarzer Gmbh Fritz Sphygmomanometer with vibrator producing artificial pulse - monitors propagation delay between two signals in continuous operational mode
FR2499398A1 (en) * 1981-02-11 1982-08-13 Ulanovsky Ephraim APPARATUS AND METHOD FOR MONITORING BLOOD COAGULABILITY, PREVENTING THROMBOGENESIS AND MONITORING BLOOD CIRCULATION
DE3106733A1 (en) * 1981-02-24 1982-09-09 Rolf 6100 Darmstadt Neusel Method and arrangement of a circulation test system
US4703758A (en) * 1982-09-30 1987-11-03 Yoshiaki Omura Non-invasive monitoring of blood flow and cerebral blood pressure using ultra miniature reflection type photoelectric plethysmographic sensors or ultrasonic doppler flow meter
GB8401500D0 (en) * 1984-01-20 1984-02-22 Johnson Matthey Plc Measurement of physiological parameter
GB8422770D0 (en) * 1984-09-10 1984-10-17 Pulse Time Products Ltd Indicating blood pressure
DE3533912A1 (en) * 1985-09-23 1987-04-02 Schmid Walter Sphygmomanometer
US5054493A (en) * 1986-01-31 1991-10-08 Regents Of The University Of Minnesota Method for diagnosing, monitoring and treating hypertension
JPS6323645A (en) * 1986-05-27 1988-01-30 住友電気工業株式会社 Reflection heating type oxymeter
US4913150A (en) * 1986-08-18 1990-04-03 Physio-Control Corporation Method and apparatus for the automatic calibration of signals employed in oximetry
US4869262A (en) * 1987-02-02 1989-09-26 Pulse Time Products Limited Device for displaying blood pressure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8908424A1 *

Also Published As

Publication number Publication date
JPH03505533A (en) 1991-12-05
DE3807672A1 (en) 1989-09-21
DE3807672C2 (en) 1989-12-14
US5237997A (en) 1993-08-24
WO1989008424A1 (en) 1989-09-21

Similar Documents

Publication Publication Date Title
EP0403522A1 (en) Method of continuous measurement of blood pressure in humans
EP0467853B1 (en) Device and method for the measurement of blood pressure
EP1860999B1 (en) Mobile diagnosis device
DE69835843T2 (en) Pulse wave examination apparatus
DE69727243T2 (en) SENSOR FOR ADJUSTING NON-INVASIVE OPTICAL BLOOD ANALYSIS
DE60223787T2 (en) METHOD AND DEVICE FOR IMPROVING THE ACCURACY OF NONINVASIVE HEMATOCRIT MEASUREMENTS
EP0892617B1 (en) Detection of parasitic signals during pulsoxymetric measurement
DE69821775T2 (en) SYSTEM AND METHOD FOR CORRECTING THE MEASURED BLOOD PRESSURE OF A LIFE
DE60315596T2 (en) VENOUS PULSE OXIMETRY
DE102005057757A1 (en) Integrated-type physiological signal evaluation apparatus for measuring cardiovascular parameters, has detection interface modules having two electrodes for obtaining electrocardiogram signal of subject
DE4226972A1 (en) Non-invasive measurement of venous and arterial blood pressure in finger or toe - correlating slow increase from zero air pressure in cuff, caused by electronically-controlled pump, with change in venous signal from reflection or transmission photoplethysmograph sensor
DE102007042298A1 (en) Method and system for qualitatively estimating NIBP pulses using a SpO2 lethysmographic signal
DE4110444A1 (en) PRESSURE WAVE SHAPE CONTROL UNIT
DE112009004271T5 (en) Electronic sphygmomanometer and blood pressure measurement
EP3125743B1 (en) Method for determining blood pressure in a blood vessel and device for carrying out said method
WO1995031928A1 (en) Transcutaneous, non-bloody determination of the concentration of substances in the blood
EP1673009A1 (en) Blood pressure measuring method and blood pressure manometer
DE69634901T2 (en) DEVICE FOR MEASURING INDUCED INTERFERENCE TUNES FOR DETERMINING THE PHYSIOLOGICAL STATE OF THE HUMAN ARTERY SYSTEM
DE4238641C2 (en) Device and working method for determining and evaluating the physiological state of vascular systems
CH557671A (en) Continuous indirect blood pressure measuring system - uses peripheral blood flow calibrated intermittently by indirect pressure measurement
EP0359972B1 (en) Device for non-invasively determining flow parameters in human limbs
DE2405348A1 (en) METHOD AND DEVICE FOR DIRECT MEASUREMENT OF A MICRO CIRCUIT SYSTEM
AT524040B1 (en) METHOD AND MEASURING DEVICE FOR THE CONTINUOUS, NON-INVASIVE DETERMINATION OF AT LEAST ONE CARDIAC CIRCULATORY PARAMETER
DE10319361A1 (en) Measurement of vegetative balance for care of patient&#39;s health using biofeedback and achieving of sympathetic-vagus nerve balance by monitoring parameters including heart rate variability
DE10033171A1 (en) Device for non-invasive, stress-free blood pressure measurement has non-invasive sensor device, signal processing unit for deriving blood flow/blood flow rate at least five times per second

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900827

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19940421

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19950408