EP0391392B1 - Schwachschäumende und kältestabile flüssige Tensidzusammensetzungen aus Wasser und nichtionischen, anionischen und kationischen Tensiden und deren Verwendung - Google Patents

Schwachschäumende und kältestabile flüssige Tensidzusammensetzungen aus Wasser und nichtionischen, anionischen und kationischen Tensiden und deren Verwendung Download PDF

Info

Publication number
EP0391392B1
EP0391392B1 EP90106442A EP90106442A EP0391392B1 EP 0391392 B1 EP0391392 B1 EP 0391392B1 EP 90106442 A EP90106442 A EP 90106442A EP 90106442 A EP90106442 A EP 90106442A EP 0391392 B1 EP0391392 B1 EP 0391392B1
Authority
EP
European Patent Office
Prior art keywords
surfactant
weight
ethylene oxide
oxide units
anionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90106442A
Other languages
English (en)
French (fr)
Other versions
EP0391392A3 (de
EP0391392A2 (de
Inventor
Wolfgang Klinger
Eckhard Milewski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoechst AG
Original Assignee
Hoechst AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG filed Critical Hoechst AG
Publication of EP0391392A2 publication Critical patent/EP0391392A2/de
Publication of EP0391392A3 publication Critical patent/EP0391392A3/de
Application granted granted Critical
Publication of EP0391392B1 publication Critical patent/EP0391392B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0026Low foaming or foam regulating compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/86Mixtures of anionic, cationic, and non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/123Sulfonic acids or sulfuric acid esters; Salts thereof derived from carboxylic acids, e.g. sulfosuccinates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/18Sulfonic acids or sulfuric acid esters; Salts thereof derived from amino alcohols
    • C11D1/20Fatty acid condensates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/42Amino alcohols or amino ethers
    • C11D1/44Ethers of polyoxyalkylenes with amino alcohols; Condensation products of epoxyalkanes with amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/523Carboxylic alkylolamides, or dialkylolamides, or hydroxycarboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain one hydroxy group per alkyl group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/74Carboxylates or sulfonates esters of polyoxyalkylene glycols

Definitions

  • the invention relates to low-foaming and cold-stable liquid surfactant compositions which consist essentially of water and nonionic, anionic and cationic surfactants.
  • the invention further relates to the use of these surfactant compositions.
  • anionic surfactants and cationic surfactants in a molar ratio of about 1: 1 in the presence of water.
  • These compositions with an anionic surfactant and a cationic surfactant are described as an aqueous suspension or emulsion and, in the case of higher concentrations, as a gel-like mass.
  • a surfactant composition which essentially consists of an ether sulfate as anionic surfactant and dodecylbenzyltrimethylammonium chloride as a cationic surfactant in a ratio of 1: 1 and from more than 99% by weight of water.
  • compositions containing an anionic surfactant and a cationic surfactant have very advantageous surfactant properties, it would be extremely desirable to have such compositions available that are liquid and therefore easy to handle even at a relatively high surfactant concentration.
  • Such surfactant compositions are described in the more recent GB-A-2 195 653. These are aqueous emulsions consisting essentially of 10 parts of an anionic surfactant and a cationic surfactant in a molar ratio of about 1: 1, 0.5 to 10 parts of an emulsifier and 15 to 100 parts of water.
  • the emulsion is prepared, in brief, by mixing together the cationic and anionic surfactant in the stated molar ratio, heating the mixture until it melts, mixing the cooled, solidified melt with the emulsifier, heating this mixture until it is liquid, and adding Water until the desired oil-in-water emulsion is present.
  • Contain the liquid surfactant formulations described in GB-A-2 195 653 Although, at least in part, a considerably higher amount of surfactant than that of the US patent mentioned, they, like this one, have a high emulsion-like or suspension-like character, ie they are not a clear liquid composition.
  • the emulsions according to British patent application mentioned is also disadvantageous that its production is complex and complicated.
  • cationic surfactant is a quaternary ammonium salt of the formula N+ (R1, R2, R3, R4) X ⁇ (1), in which R1 and R2 represent an alkyl radical with 1 to 4 carbon atoms or an oxalkylene radical with 1 to 10 ethylene oxide units, propylene oxide units or ethylene oxide units and propylene oxide units, R3 is an alkyl radical or an alkenyl radical with 6 to 22 C atoms, R4 is an alkyl radical or an alkenyl radical with 6 to 22 C atoms or the benzyl radical and X ⁇ an anion of an inorganic or organic acid.
  • R1 and R2 represent an alkyl radical with 1 to 4 carbon atoms or an oxalkylene radical with 1 to 10 ethylene oxide units, propylene oxide units or ethylene oxide units and propylene oxide units
  • R3 is an alkyl radical or an alkenyl radical with 6 to 22 C atoms
  • R4 is an alkyl radical or an
  • surfactant compositions are produced in the way that at least one anionic surfactant and at least one cationic surfactant in a molar ratio of 1: (0.3 to 10) with water in an amount of 50 to 80 wt .-%, based on the total weight of anionic surfactant , Cationic surfactant and water, mixed at a temperature of 25 to 95 ° C to form two phases, waiting for the separation of the two phases and separating the upper targeted surfactant phase from the lower salt phase.
  • compositions are known from the prior art which contain water and nonionic, anionic and cationic surfactants. Such compositions result, for example, from the fact that in addition to the large amount of water, the surfactants in question are also present in a laundry washing machine.
  • FR-A-2 388 882 discloses solid surfactant compositions composed of nonionic, anionic and cationic surfactants. It goes without saying that all these surfactant mixtures are far removed from those according to the invention.
  • the low-foaming and cold-stable liquid surfactant compositions according to the invention are characterized in that they have been prepared by mixing together 1 part by weight of at least one nonionic surfactant and 0.3 to 9 parts by weight, preferably 0.4 to 4 parts by weight , in particular 0.4 to 2.5 parts by weight, of a surfactant formulation consisting of 20 to 60% by weight of water, preferably 20 to 50% by weight, and 40 to 80% by weight, preferably 50 to 80% by weight of at least one anionic surfactant and at least one cationic surfactant in a molar ratio of 1: (0.3 to 5), preferably 1: (0.4 to 2), the cationic surfactant being a quaternary ammonium salt of the formula N+ (R1, R2, R3, R4) X ⁇ (1), in which R1 and R2 represent an alkyl radical having 1 to 4 carbon atoms or an oxalkylene radical having 1 to 10 ethylene oxide units, propylene oxide units or ethylene oxide Units and propylene
  • surfactant formulations are generally clear liquids with a high content of usually an anionic and a cationic surfactant, so they are concentrated solutions of water-containing anionic / cationic surfactant complexes.
  • anion and cation surfactants to be used for the preparation of the surfactant formulations are known and commercially available.
  • the anionic surfactants used are preferably those of the sulfonate and sulfate type (preferably with an alkali metal or with ammonium as the cation).
  • C6 to C22 alkanesulfonates C6 to C22- ⁇ -olefin sulfonates, (C6 to C22-alkyl) benzenesulfonates, N-C6 to C22-acyl-N-methyl-1-aminoethane-2-sulfonates (these are taurine derivatives), Sulfosuccinic acid mono- or sulfosuccinic acid di-C6 to C22-alkyl esters, C6 to C22 fatty alcohol sulfates or ethoxylated C6 to C22 fatty alcohol sulfates with 1 to 20 ethylene oxide units, the alkanesulfonates, ⁇ -olefin sulfonates, fatty alcohol sulfates and ethoxylated fatty alcohol sulfates mentioned being particularly preferred.
  • the C8 to C18 radicals are preferred (it goes without saying that the hydrophobic groups mentioned having 6 to 22 carbon atoms, preferably 8 to 18 carbon atoms, can also contain double bonds) usually 1 to 3).
  • Suitable anionic surfactants are mentioned below in detail: sodium C13 to C17 alkanesulfonate (primary or secondary alkanesulfonate), sodium C14 to C16 ⁇ -olefinsulfonate, Sodium dodecylbenzenesulfonate, the sodium salt of N-oleyl-N-methyl-taurine, sodium dioctyl-sulfosuccinate, the sodium salt of ⁇ -sulfo-C14 to C18-fatty acid methyl ester, sodium lauryl sulfate, sodium palmitylsulfate, sodium cocosalkylsulfate, sodium mono-sulfonate, sodium mono4 ethoxylated with 3 mol ethylene oxide, sodium t
  • anionic surfactant While the type of anionic surfactant is generally not critical, certain quaternary ammonium salts are suitable as cationic surfactants (for example, those quaternary ammonium salts are unsuitable which have three or more short aliphatic radicals on the nitrogen atom, such as lauryl trimethyl, tallow alkyl trimethyl and dodecylbenzyl trimethyl ammonium chloride (see above-mentioned US-A-3,684,736).
  • the quaternary ammonium salts to be used according to the invention correspond to formula 1 given above wherein R1 to R4 and X ⁇ have the meanings given.
  • Preferred representatives of cationic surfactants are those of the formula 1 when R 1 and R 2 (which may be the same or different) are an alkyl radical with 1 to 4 carbon atoms or an oxalkylene radical with 1 to 10, preferably 1 to 5, ethylene oxide units, propylene oxide Units or ethylene oxide units and Propylene oxide units mean, R3 is an alkyl radical having 8 to 14 carbon atoms, preferably 8 to 10 carbon atoms, R4 has one of the meanings of R3 or the benzyl radical and X ⁇ is an anion of an inorganic or organic acid (which for R1 and R2 mentioned C1 to C4 alkyl radicals are preferably methyl or ethyl).
  • anion X ⁇ in the cationic surfactant examples include inorganic acid residues, such as halide, preferably chloride or bromide, borate, phosphate and sulfate, organic acid residues of mono- or polyvalent, saturated or unsaturated, aliphatic or aromatic acids, such as formate, acetate, propionate , Laurate, stearate, oleate, lactate, citrate, sorbate, benzoate, salicylate and C1 to C3 alkosulfate anions, preferably the methosulfate anion.
  • inorganic acid residues such as halide, preferably chloride or bromide, borate, phosphate and sulfate
  • organic acid residues of mono- or polyvalent, saturated or unsaturated, aliphatic or aromatic acids such as formate, acetate, propionate , Laurate, stearate, oleate, lactate, citrate, sorbate, benzoate, salicylate and C
  • cationic surfactants dioctyl Octyldecyldimethyl-, Didecyldimethyl-, Dilauryldimethyl-, Dioleyldimethyl-, Dicocosalkyldimethyl- and ditallowalkyldimethylammonium, Myristyldimethylbenzyl- and stearyl dimethyl, didecyl-methyl-oxethylammoniumpropionat, dioctyl polyoxethylammoniumpropionat, Ditalgalkyl-methyl-oxpropylammoniumchlorid.
  • the surfactant formulations to be used according to the invention are the result of a special procedure when bringing the components water, anion and cation surfactant together.
  • Anion surfactant, cation surfactant and water at a temperature of 25 to 95 ° C, preferably 40 to 85 ° C, mixed to form two phases, the separation of the two phases is awaited and the upper desired concentrated surfactant phase separated from the lower salt phase .
  • anion surfactants and cation surfactants to be used are often present as solids or as a gel-like surfactant-water mixture.
  • anionic surfactant, cationic surfactant and water preferably demineralized water, are mixed in the stated amount in a reaction vessel at a temperature of 25 to 95 ° C., preferably 40 to 85 ° C., preferably with stirring, whereby it Formation of two phases comes.
  • the order in which the three components are introduced into the reaction vessel is not critical. It is crucial that the three components are mixed well at the specified temperature.
  • the mixing time is usually 5 to 90 minutes.
  • the mixing time is advantageously 20 to 60 minutes.
  • the upper phase represents the desired concentrated and liquid and at the same time clear, water-containing surfactant formulation
  • the lower phase essentially consists of the anion of the cationic surfactant and the cation of the anionic surfactant formed salt contains dissolved in water.
  • the desired surfactant phase (which in addition to the components water and surfactant may also contain some salt) can be obtained simply by pouring, for example.
  • the low-foaming and cold-stable liquid surfactant composition according to the invention comprises, in addition to the surfactant formulation described above, at least one nonionic surfactant as a further component.
  • the nonionic surfactants used are preferably those from the group of polyglycol ethers (generally only one nonionic surfactant is used).
  • Preferred representatives of this group are (a) the oxalkylates of C8 to C18 alcohols (fatty alcohols, oxo alcohols), (C4 to C12 alkyl) phenols (mono-, di- or trialkyl-substituted), C8 to C18 fatty acids, C8 to C18 -Fatty amines, C8 to C18 fatty acid amides and (C8 to C18 fatty acid) ethanolamides with (each) 2 to 30, preferably 4 to 15, ethylene oxide units, propylene oxide units or ethylene oxide and propylene oxide units (in the oxalkylate group) and (b) the ethylene oxide / propylene oxide block polymers, also known as nonionic surfactants, which consist of a propylene oxide inner block with a molecular weight of 1,000 to 3,000 and 5 to 50% by weight (condensed) ethylene oxide exist, percentages by weight based on the block polymer.
  • nonionic surfactants consist of a propy
  • nonionic surfactants are the oxalkylates mentioned in the form of the polyethylene glycol ethers (oxethylates) and ethylene oxide / propylene oxide block polymers, which consist of a propylene oxide inner block with a molecular weight of 1,500 to 2,500 and 10 to 30% by weight of ethylene oxide, weight percentages based on the block polymer.
  • Those nonionic surfactants are preferably used which have a cloud point - measured in butyl diglycol according to DIN 53 917 - from 30 to 100 ° C.
  • the nonionic surfactants to be used according to the invention are known and commercially available. They are usually in the form of water-free, more or less viscous liquids, sometimes with a content of about 10 to 20% by weight of water.
  • the low-foaming and cold-stable liquid surfactant compositions according to the invention are prepared in that the two components nonionic surfactant and surfactant formulation in a weight ratio of 1: (0.3 to 9), preferably 1: (0.4 to 4), in particular 1: (0.4 to 2.5), preferably brought together with stirring.
  • the two components are mixed at room temperature or with heating to a temperature of 30 to 80 ° C., preferably 40 to 60 ° C.
  • the two components mix relatively quickly to a homogeneous and essentially clear liquid (especially if they are mixed while heated).
  • the order in which the components are brought together is not critical. The only decisive factor is that the weight ratios mentioned are observed.
  • the mixing time is generally 5 to 30 minutes, depending on the type of components and the mixing temperature.
  • the surfactant compositions according to the invention essentially consist of an anionic and a cationic surfactant (anion / cation-surfactant complex), a nonionic surfactant and water.
  • the amount of water essentially results from the surfactant formulation used and, depending on the surfactant formulation and the mixing ratio of surfactant formulation and nonionic surfactant, is 5 to 50% by weight, preferably 10 to 30% by weight, based on the surfactant composition.
  • the surfactant compositions according to the invention have a number of advantages. They are concentrated and generally clear liquids on surfactants, which are characterized in particular by relatively low foaming (favorable foaming behavior), good wetting behavior and low pour points (favorable low-temperature behavior). Even when using relatively highly viscous and cloudy-looking nonionic surfactant concentrates, mixing with the surfactant formulations described gives clear and liquid compositions which are therefore easy to handle. They show only a slight tendency to foam and good network values. These values are particularly good if the cationic surfactant has a relatively short-chain hydrocarbon residue in the surfactant formulation used.
  • the surfactant compositions according to the invention are distinguished in particular by their surprisingly favorable cold behavior.
  • the mixing according to the invention can be used to produce, as it were, tailor-made surfactant compositions which, compared to the two surfactants used, often have greatly improved properties and thus possible uses.
  • mixtures can be produced which are characterized in particular by one or more of the following properties: favorable foam and wetting behavior, low surface tension, high clarity and excellent low-temperature behavior.
  • the surfactant compositions according to the invention can be used as such or diluted with solvents such as water or alcohols.
  • the surfactant compositions according to the invention are advantageously used for the preparation of low-foam and low-temperature surfactant concentrates by being mixed with surfactant products in need of improvement in order to impart low foam and low-temperature stability (low pour point) to them.
  • a mixture of 70% by weight of water and 30% by weight of anionic surfactant 1 and cationic surfactant 1 in a molar ratio of 1: 1 was stirred well at 80 ° C. for 30 minutes. After this time, stirring and heating were stopped and the contents of the beaker (in which the formation of two phases was seen) were left to stand at room temperature for 5 hours. After this time, two distinct phases had formed.
  • the upper clear phase, that is the desired surfactant phase or surfactant formulation 1 was obtained by pouring off the lower phase, that is the aqueous salt phase (NaCl).
  • the liquid and somewhat cloudy surfactant formulation 1 consisted of 26% by weight of water and 74% by weight of anionic surfactant 1 plus cationic surfactant 1 in a molar ratio of 1: 1 (the salt content was below 0.1% by weight) . If the above-mentioned standing (standing time) of the contents of the beaker takes place after stopping the stirring while maintaining the temperature of 80 ° C., the formation of the two sharply separated phases is already over after one hour; by allowing the mixture to stand in the heat, the separation into the two phases is considerably accelerated.
  • a mixture of 70% by weight of water and 30% by weight of anionic surfactant 2 and cationic surfactant 2 in a molar ratio of 1: 1 was stirred well at 70 ° C. for 30 minutes and as at Treated surfactant formulation 1.
  • the liquid and clear surfactant formulation 2 consisted of 45% by weight of water and 55% by weight of anionic surfactant 2 and cationic surfactant 2 in a molar ratio of 1: 1 (the salt content was below 0.1% by weight).
  • a mixture of 70% by weight of water and 30% by weight of anionic surfactant 3 and cationic surfactant 3 in a molar ratio of 1: 1 was stirred well at 80 ° C. for 45 minutes and treated as in surfactant formulation 1.
  • the liquid and clear surfactant formulation 3 consisted of 32% by weight of water and 68% by weight of anionic surfactant 3 and cationic surfactant 3 in a molar ratio of 1: 1 (the salt content was below 1% by weight).
  • a mixture of 70% by weight of water and 30% by weight of anionic surfactant 4 and cationic surfactant 4 in a molar ratio of 1: 1 was stirred well at 60 ° C. for 30 minutes and treated as in surfactant formulation 1.
  • the liquid and clear surfactant formulation 4 consisted of 27% by weight of water and 73% by weight of anionic surfactant 4 and cationic surfactant 4 in a molar ratio of 1: 1 (the salt content was below 1% by weight; also in the other surfactant formulations, the salt content was more or less below 1% by weight).
  • a mixture of 70% by weight of water and 30% by weight of anionic surfactant 5 and cationic surfactant 5 in a molar ratio of 1: 0.4 was stirred well at 80 ° C. for 1 hour and treated as in surfactant formulation 1.
  • the liquid and clear surfactant formulation 5 consisted of 55% by weight of water and 45% by weight of anionic surfactant 5 and cationic surfactant 5 in a molar ratio of 1: 0.4.
  • a mixture of 70% by weight of water and 30% by weight of anionic surfactant 6 and cationic surfactant 6 in a molar ratio of 1: 0.7 was stirred well at 70 ° C. for 30 minutes and treated as in surfactant formulation 1.
  • the liquid and clear surfactant formulation 6 consisted of 58% by weight of water and 42% by weight of anionic surfactant 6 and cationic surfactant 6 in a molar ratio of 1: 0.7.
  • a mixture of 70% by weight of water and 30% by weight of anionic surfactant 7 and cationic surfactant 7 in a molar ratio of 1: 1.5 was stirred well at 80 ° C. for 1 hour and treated as in surfactant formulation 1.
  • the liquid and clear surfactant formulation 7 consisted of 41% by weight of water and 59% by weight of anionic surfactant 7 and cationic surfactant 7 in a molar ratio of 1: 1.5.
  • a mixture of 70% by weight of water and 30% by weight of anionic surfactant 8 and cationic surfactant 8 in a molar ratio of 1: 1.7 was stirred well at 80 ° C. for 90 minutes and treated as in surfactant formulation 1.
  • the liquid and clear surfactant formulation 8 consisted of 30% by weight of water and 70% by weight of anionic surfactant 8 and cationic surfactant 8 in a molar ratio of 1: 1.7.
  • a mixture of 70% by weight of water and 30% by weight of anionic surfactant 9 and cationic surfactant 9 in a molar ratio of 1: 4 was stirred well at 80 ° C. for 1 hour and treated as in surfactant formulation 1.
  • the liquid and clear surfactant formulation 9 consisted of 48% by weight of water and 52% by weight of anionic surfactant 9 and cationic surfactant 9 in a 1: 4 molar ratio.
  • a mixture of 70% by weight of water and 30% by weight of anionic surfactant 10 and cationic surfactant 10 in a molar ratio of 1: 2 was stirred well at 60 ° C. for 30 minutes and treated as in surfactant formulation 1.
  • the liquid and clear surfactant formulation 10 consisted of 32% by weight of water and 68% by weight of anionic surfactant 10 and cationic surfactant 10 in a molar ratio of 1: 2.
  • nonionic surfactant 1 and 700 g of surfactant formulation 4 were placed in a beaker and stirred at room temperature for 20 minutes, after which there was a liquid and clear mixture.
  • This surfactant composition according to the invention was thus prepared by adding 1 part by weight of the nonionic surfactant mentioned with 2.3 parts by weight of a surfactant formulation consisting of 27% by weight of water and 73% by weight of the anion / cation mentioned.
  • Surfactant in a molar ratio of 1: 1 were mixed together at room temperature.
  • Examples 4 to 15 in which a liquid (easily pourable) and more or less clear surfactant composition according to the invention were also obtained, are summarized in Table 1 below.
  • Table 1 provides information on the nonionic surfactants and surfactant formulations used and on the weight ratio of nonionic surfactant to surfactant formulation. For the sake of completeness, Table 1 also contains the corresponding information from Examples 1 to 3: Table 1 Example No. Nonionic surfactant no. Surfactant Formulation No.
  • Table 2 below shows the properties of the 15 surfactant compositions according to the invention from Examples 1 to 15, namely the pour points, the foam values, the wetting values and the surface tension values. Table 2 also shows (to allow a direct comparison) the pour points, foam values, network values and surface tension values of the 12 nonionic surfactants and 10 surfactant formulations used to prepare the surfactant compositions.
  • the 12 nonionic surfactants used are designated A1 to A12, the 10 surfactant compositions used B1 to B10 and the 15 surfactant compositions according to the invention C1 to C15.
  • the pour points of the surfactant compositions according to the invention are in some cases far below the pour points of the nonionic surfactants and surfactant formulations used. Because of this obviously high synergistic effect, the new surfactant compositions have an extremely favorable cooling behavior. The other properties tested, in particular the foam behavior, also show good values.
  • the pour point was determined according to DIN ISO 3016. 50 to 80 g of the surfactant composition were placed in a beaker and cooled until the composition which was liquid and readily pourable at room temperature was no longer pourable. The temperature present is referred to as the pour point of the composition.
  • the foam value was determined in accordance with DIN 53 902. 1 g of the surfactant composition was dissolved in one liter of deionized water. About 200 ml of this solution were added to the 1000 ml measuring cylinder and beaten thirty times with the perforated beating disc. The resulting foam height in the measuring cylinder, expressed in milliliters, represents the foam value.
  • the surface tension was determined in accordance with DIN 53 914. 0.1 g of the surfactant composition was dissolved in one liter of deionized water. The surface tension of this solution was measured in mN / m using a conventional tensiometer using the ring tearing method.
  • the wetting capacity was determined in accordance with DIN 53 901. 1 g of the surfactant composition was dissolved in one liter of deionized water. A cotton plate was immersed in the solution. The time was measured after the plate had been immersed until it began to sink further into the solution. This time in seconds represents the wetting ability (if the cotton plate is wetted quickly, which means high wetting ability, it drops after a few seconds).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Cosmetics (AREA)
  • Paper (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

  • Die Erfindung betrifft schwachschäumende und kältestabile flüssige Tensidzusammensetzungen, die im wesentlichen aus Wasser und nichtionischen, anionischen und kationischen Tensiden bestehen. Die Erfindung betrifft ferner die Verwendung dieser Tensidzusammensetzungen.
  • Es ist schon seit langem bekannt, Anion-Tenside und Kation-Tenside im Molverhältnis von etwa 1 : 1 in Gegenwart von Wasser zusammenzubringen. Diese Zusammensetzungen mit einem Anion-Tensid und einem Kation-Tensid (Anion/Kation-Tensidkomplexe) werden als wäßrige Suspension oder Emulsion und im Falle höherer Konzentration als gelartige Masse beschrieben. So ist aus US-A-3 684 736 eine Tensidzusammensetzung bekannt, die im wesentlichen aus einem Ethersulfat als Anion-Tensid und Dodecylbenzyltrimethylammoniumchlorid als Kation-Tensid im Verhältnis von 1 : 1 und aus mehr als 99 Gew.-% Wasser besteht. In der Patentschrift wird mehrfach hervorgehoben, daß nur bei dieser niedrigen Konzentration an Tensid eine handhabbare Suspension erhalten wird und schon geringfügig höher konzentrierte Zusammensetzungen nicht mehr flüssig, sondern als gelatinartige Masse vorliegen. In der genannten US-Patentschrift wird ferner gezeigt, daß die in Rede stehenden Tensidzusammensetzungen eine niedrigere Oberflächenspannung und einen kleineren Schaumwert liefern, als das Anion-Tensid oder Kation-Tensid allein.
  • Nachdem also Zusammensetzungen, die ein anionisches Tensid und ein kationisches Tensid enthalten, sehr vorteilhafte Tensideigenschaften besitzen, wäre es äußerst wünschenswert, solche Zusammensetzungen zur Verfügung zu haben, die auch bei relativ hoher Tensidkonzentration flüssig und damit gut handhabbar sind.
    Derartige Tensidzusammensetzungen werden in der neueren GB-A-2 195 653 beschrieben. Es handelt sich um wäßrige Emulsionen, bestehend im wesentlichen aus 10 Teilen von einem Anion-Tensid und einem Kation-Tensid im Molverhältnis von etwa 1 : 1, 0,5 bis 10 Teilen von einem Emulgator und 15 bis 100 Teilen Wasser. Die Herstellung der Emulsion erfolgt, kurz zusammengefaßt, durch Zusammenmischen des kationischen und anionischen Tensids im genannten Molverhältnis, Erwärmen der Mischung, bis sie schmilzt, Vermischen der abgekühlten, erstarrten Schmelze mit dem Emulgator, Erwärmen dieser Mischung, bis sie flüssig ist, und Zugeben von Wasser, bis die angestrebte Öl-in-Wasser-Emulsion vorliegt.
    Die in GB-A-2 195 653 beschriebenen flüssigen Tensidformulierungen enthalten zwar, zumindest teilweise, eine beträchtlich höhere Menge an Tensid als jene der genannten US-Patentschrift, sie weisen aber, genauso wie diese, einen hohen emulsionsartigen oder suspensionsartigen Charakter auf, sie stellen also keine klare flüssige Zusammensetzung dar. Im Falle der Emulsionen gemäß der genannten britischen Patentanmeldung ist ferner von Nachteil, daß ihre Herstellung aufwendig und kompliziert ist.
  • Es besteht demnach ein Bedürfnis nach einer Tensidformulierung aus Wasser, Anion-Tensiden und Kation-Tensiden, die eine hohe Tensidkonzentration besitzt und gleichzeitig eine im wesentlichen klare Lösung darstellt. Sie sollte ferner in einfacher Weise herzustellen sein und vorteilhafte Eigenschaften aufweisen. Derartige Tensidformulierungen werden in EP-A-0 363 855 vorgeschlagen. Sie bestehen im wesentlichen aus (a) 15 bis 70 Gew.-% Wasser und (b) 30 bis 85 Gew.-% von mindestens einem Anion-Tensid und mindestens einem Kation-Tensid im Molverhältnis von 1 : (0,3 bis 10), wobei das Kation-Tensid ein quartäres Ammoniumsalz der Formel N⁺(R¹,R²,R³,R⁴)X⁻ (1) ist, worin bedeuten R¹ und R² einen Alkylrest mit 1 bis 4 C-Atomen oder einen Oxalkylenrest mit 1 bis 10 Ethylenoxid-Einheiten, Propylenoxid-Einheiten oder Ethylenoxid-Einheiten und Propylenoxid-Einheiten, R³ einen Alkylrest oder einen Alkenylrest mit 6 bis 22 C-Atomen, R⁴ einen Alkylrest oder einen Alkenylrest mit 6 bis 22 C-Atomen oder den Benzylrest und X⁻ ein Anion einer anorganischen oder organischen Säure. Die Herstellung dieser Tensidzusammensetzungen erfolgt in der Weise, daß man mindestens ein Anion-Tensid und mindestens ein Kation-Tensid im Molverhältnis von 1 : (0,3 bis 10) mit Wasser in einer Menge von 50 bis 80 Gew.-%, bezogen auf die Gewichtssumme aus Anion-Tensid, Kation-Tensid und Wasser, bei einer Temperatur von 25 bis 95 °C unter Ausbildung zweier Phasen mischt, die Trennung der beiden Phasen abwartet und die obere angestrebte konzentrierte Tensidphase von der unteren Salzphase abtrennt.
  • Ausgehend von den Tensidformulierungen der genannten EP-A-0 363 855 wurde überraschenderweise gefunden, daß durch Kombination dieser Formulierungen mit nichtionischen Tensiden flüssige Zusammensetzungen mit hervorragenden Tensideigenschaften erhalten werden. Die so erhaltenen Tensidzusammensetzungen stellen flüssige (und damit gut handhabbare) und im wesentlichen klare Konzentrate dar, die unter anderem eine überraschend geringe Schaumneigung und ein überraschend gutes Kälteverhalten aufweisen. So liegen die Stockpunkte dieser Tensidkonzentrate weit unter denen der Ausgangstenside, was auf einen unerwartet hohen synergistischen Effekt beruhen dürfte.
  • Aus dem Stand der Technik sind Zusammensetzungen bekannt, die Wasser und nichtionische, anionische und kationische Tenside enthalten. Solche Zusammensetzungen resultieren beispielsweise daraus, daß in einer Wäschewaschmaschine neben der großen Wassermenge auch die in Rede stehenden Tenside vorliegen. Aus FR-A-2 388 882 sind feste Tensidzusammensetzungen aus nichtionischen, anionischen und kationischen Tensiden bekannt. Es versteht sich von selbst, daß all diese Tensidmischungen von den erfindungsgemäßen weit entfernt sind.
  • Die erfindungsgemäßen schwachschäumenden und kältestabilen flüssigen Tensidzusammensetzungen sind dadurch gekennzeichnet, daß sie hergestellt worden sind durch Zusammenmischen von 1 Gew.-Teil von mindestens einem nichtionischen Tensid und 0,3 bis 9 Gew.-Teile, vorzugsweise 0,4 bis 4 Gew.-Teile, insbesondere 0,4 bis 2,5 Gew.-Teile, von einer Tensidformulierung, bestehend aus 20 bis 60 Gew.-% Wasser, vorzugsweise 20 bis 50 Gew.-%, und 40 bis 80 Gew.-%, vorzugsweise 50 bis 80 Gew.-%, von mindestens einem Anion-Tensid und mindestens einem Kation-Tensid im Molverhältnis von 1 : (0,3 bis 5), vorzugsweise 1 : (0,4 bis 2), wobei das Kation-Tensid ein quartäres Ammoniumsalz der Formel N⁺(R¹,R²,R³,R⁴)X⁻ (1) ist, worin bedeuten R¹ und R² einen Alkylrest mit 1 bis 4 C-Atomen oder einen Oxalkylenrest mit 1 bis 10 Ethylenoxid-Einheiten, Propylenoxid-Einheiten oder Ethylenoxid-Einheiten und Propylenoxid-Einheiten, R³ einen Alkylrest oder einen Alkenylrest mit 6 bis 22 C-Atomen, R⁴ einen Alkylrest oder einen Alkenylrest mit 6 bis 22 C-Atomen oder den Benzylrest und X⁻ ein Anion einer anorganischen oder organischen Säure, und wobei die Tensidformulierung hergestellt worden ist, indem man die Komponenten Anion-Tensid, Kation-Tensid und Wasser bei einer Temperatur von 25 bis 95 °C unter Ausbildung zweier Phasen mischt, die Trennung der beiden Phasen abwartet und die obere konzentrierte Tensidphase, welche die Tensidformulierung darstellt, von der unteren Salzphase abtrennt.
  • Wenn auch die erfindungsgemäß einzusetzenden Tensidformulierungen in EP-A-0 363 855, die hier miteinbezogen wird, ausführlich beschrieben sind, seien sie dennoch im folgenden kurz dargestellt.
  • Diese Tensidformulierungen stellen im allgemeinen klare Flüssigkeiten mit einem hohen Gehalt an in der Regel einem anionischen und einem kationischen Tensid dar, es handelt sich also um konzentrierte Lösungen wasserhaltiger anionischer/kationischer Tensidkomplexe. Die einzusetzenden Anion- und Kation-Tenside zur Herstellung der Tensidformulierungen sind bekannt und im Handel erhältlich. Als anionische Tenside werden vorzugsweise solche vom Sulfonat- und Sulfat-Typ (mit vorzugsweise einem Alkalimetall oder mit Ammonium als Kation) eingesetzt. Als bevorzugte Vertreter dieser Anion-Tenside seien genannt
    C₆ bis C₂₂-Alkansulfonate,
    C₆ bis C₂₂-α-Olefinsulfonate,
    (C₆ bis C₂₂-Alkyl)benzolsulfonate,
    N-C₆ bis C₂₂-Acyl-N-methyl-1-aminoethan-2-sulfonate (das sind Taurinderivate),
    Sulfobernsteinsäuremono- oder Sulfobernsteinsäuredi-C₆ bis C₂₂-alkylester,
    C₆ bis C₂₂-Fettalkoholsulfate oder
    ethoxylierte C₆ bis C₂₂-Fettalkoholsulfate mit 1 bis 20 Ethylenoxid-Einheiten,
    wobei die genannten Alkansulfonate, α-Olefinsulfonate, Fettalkoholsulfate und ethoxylierten Fettalkoholsulfate besonders bevorzugt sind. Von den genannten C₆ bis C₂₂-Resten sind die C₈ bis C₁₈-Reste bevorzugt (es versteht sich von selbst, daß die genannten hydrophoben Gruppen mit 6 bis 22 C-Atomen, vorzugsweise 8 bis 18 C-Atomen, auch Doppelbindungen enthalten können, in der Regel 1 bis 3). Nachstehend seien noch geeignete anionische Tenside im einzelnen genannt: Natrium-C₁₃ bis C₁₇-alkansulfonat (primäres oder sekundäres Alkansulfonat), Natrium-C₁₄ bis C₁₆-α-olefinsulfonat, Natriumdodecylbenzolsulfonat, das Natriumsalz von N-Oleyl-N-methyl-taurin, Natrium-dioctyl-sulfosuccinat, das Natriumsalz von α-Sulfo-C₁₄ bis C₁₈-fettsäuremethylester, Natriumlaurylsulfat, Natriumpalmitylsulfat, Natriumcocosalkylsulfat, Natriummonoethoxydodecanolsulfat, Natrium-C₁₂ bis C₁₄-alkylsulfat, ethoxyliert mit 3 mol Ethylenoxid, Natriumtalgalkylsulfat, ethoxyliert mit 10 mol Ethylenoxid, und Natriumtributylphenolsulfat, ethoxyliert mit 7 mol Ethylenoxid.
    Während die Art des anionischen Tensids im allgemeinen nicht kritisch ist, kommen als kationische Tenside bestimmte quartäre Ammoniumsalze in Betracht (so sind zum Beispiel jene quartären Ammoniumsalze ungeeignet, die am Stickstoffatom drei oder mehr kurze aliphatische Reste aufweisen, wie Lauryltrimethyl-, Talgalkyltrimethyl- und Dodecylbenzyltrimethylammoniumchlorid (vergleiche eingangs genannte US-A-3 684 736).
    Die erfindungsgemäß einzusetzenden quartären Ammoniumsalze entsprechen der oben angegebenen Formel 1
    Figure imgb0001

    worin R¹ bis R⁴ und X⁻ die angegebenen Bedeutungen haben. Bevorzugte Vertreter von Kation-Tensiden sind solche der Formel 1, wenn R¹ und R² (die gleich oder verschieden sein können) einen Alkylrest mit 1 bis 4 C-Atomen oder einen Oxalkylenrest mit 1 bis 10, vorzugsweise 1 bis 5 Ethylenoxid-Einheiten, Propylenoxid-Einheiten oder Ethylenoxid-Einheiten und Propylenoxid-Einheiten bedeuten, R³ ein Alkylrest mit 8 bis 14 C-Atomen ist, vorzugsweise 8 bis 10 C-Atomen, R⁴ eine der Bedeutungen von R³ hat oder der Benzylrest ist und X⁻ ein Anion einer anorganischen oder organischen Säure ist (die für R¹ und R² genannten C₁ bis C₄-Alkylreste sind vorzugsweise Methyl oder Ethyl).
    Beispiele für das Anion X⁻ im kationischen Tensid sind anorganische Säurereste, wie Halogenid, vorzugsweise Chlorid oder Bromid, Borat, Phosphat und Sulfat, organische Säurereste von ein- oder mehrwertigen, gesättigten oder ungesättigten, aliphatischen oder aromatischen Säuren, wie Formiat, Acetat, Propionat, Laurat, Stearat, Oleat, Lactat, Citrat, Sorbat, Benzoat, Salicylat und C₁ bis C₃-Alkosulfatanionen, vorzugsweise das Methosulfatanion. Nachstehend seien noch geeignete kationische Tenside im einzelnen genannt: Dioctyldimethylammoniumchlorid, Octyldecyldimethyl-, Didecyldimethyl-, Dilauryldimethyl-, Dioleyldimethyl-, Dicocosalkyldimethyl- und Ditalgalkyldimethylammoniumchlorid, Myristyldimethylbenzyl- und Stearyldimethylbenzylammoniumchlorid, Didecyl-methyl-oxethylammoniumpropionat, Dioctyl-polyoxethylammoniumpropionat, Ditalgalkyl-methyl-oxpropylammoniumchlorid.
  • Die erfindungsgemäß einzusetzenden Tensidformulierungen sind das Ergebnis einer speziellen Arbeitsweise beim Zusammenbringen der Komponenten Wasser, Anion- und Kation-Tensid. Es werden ein Anion-Tensid und ein Kation-Tensid der genannten Art im Molverhältnis von 1 : (0,3 bis 5), vorzugsweise 1 : (0,4 bis 2), mit Wasser in einer Menge von 50 bis 80 Gew.-%, vorzugsweise 60 bis 80 Gew.-%, Gewichtsprozente bezogen auf die Gewichtssumme aus Anion-Tensid, Kation-Tensid und Wasser, bei einer Temperatur von 25 bis 95 °C, vorzugsweise 40 bis 85 °C, unter Ausbildung zweier Phasen gemischt, die Trennung der beiden Phasen abgewartet und die obere angestrebte konzentrierte Tensidphase von der unteren Salzphase abgetrennt. Die einzusetzenden Anion-Tenside und Kation-Tenside liegen bekanntlich oft als Feststoffe oder als gelartige Tensid-Wasser-Mischung vor. Im einzelnen werden Anion-Tensid, Kation-Tensid und Wasser, vorzugsweise entmineralisiertes Wasser, in der angegebenen Menge in einem Reaktionsgefäß bei einer Temperatur von 25 bis 95 °C, vorzugsweise 40 bis 85 °C, vermischt, vorzugsweise unter Rühren, wobei es zur Bildung von zwei Phasen kommt. In welcher Reihenfolge die drei Komponenten in das Reaktionsgefäß eingebracht werden, ist nicht kritisch. Entscheidend ist, daß die drei Komponenten bei der angegebenen Temperatur gut gemischt werden. Die Zeit des Mischens liegt in der Regel bei 5 bis 90 Minuten. Mit weniger als 5 Minuten ist im allgemeinen auch mit starkem Rührem keine intensive Vermischung der Komponenten gegeben und mehr als 90 Minuten bringen im allgemeinen keine weitere Verstärkung der Vermischung. Aus diesen Gründen liegt die Mischzeit zweckmäßigerweise bei 20 bis 60 Minuten. Nach Abschluß der Vermischung der Komponenten bei der angegebenen Mischtemperatur wird das Reaktionsgefäß stehengelassen, bis sich der Inhalt in eine obere und eine untere Phase getrennt hat. Während dieser Standzeit, die etwa 30 Minuten bis mehrere Stunden betragen kann, kühlt sich der Inhalt in der Regel auf Raumtemperatur ab. Von den beiden in scharfer Trennung vorliegenden Phasen stellt die obere Phase (Tensidphase) die angestrebte konzentrierte und flüssige und gleichzeitig klare, wasserhaltige Tensidformulierung dar, während die untere Phase (Salzphase) im wesentlichen das aus dem Anion des kationischen Tensids und dem Kation des anionischen Tensid gebildete Salz gelöst in Wasser enthält. Die angestrebte Tensidphase (die neben den Komponenten Wasser und Tensid gegebenenfalls auch etwas Salz enthält) kann beispielsweise einfach durch Abgießen gewonnen werden.
  • Die erfindungsgemäße schwachschäumende und kältestabile flüssige Tensidzusammensetzung umfaßt neben der oben beschriebenen Tensidformulierung mindestens ein nichtionisches Tensid als weitere Komponente. Als nichtionische Tenside werden vorzugsweise solche aus der Gruppe der Polyglykolether eingesetzt (in der Regel wird nur ein nichtionisches Tensid eingesetzt). Bevorzugte Vertreter dieser Gruppe sind (a) die Oxalkylate von C₈ bis C₁₈-Alkoholen (Fettalkoholen, Oxoalkoholen), (C₄ bis C₁₂-Alkyl)-phenolen (mono-, di- oder trialkylsubstituiert), C₈ bis C₁₈-Fettsäuren, C₈ bis C₁₈-Fettaminen, C₈ bis C₁₈-Fettsäureamiden und (C₈ bis C₁₈-Fettsäure)-ethanolamiden mit (jeweils) 2 bis 30, vorzugsweise 4 bis 15, Ethylenoxid-Einheiten, Propylenoxid-Einheiten oder Ethylenoxid- und Propylenoxid-Einheiten (in der Oxalkylatgruppe) und (b) die ebenfalls als nichtionische Tenside bekannten Ethylenoxid/Propylenoxid-Blockpolymeren, die aus einem Propylenoxid-Innenblock mit einem Molekulargewicht von 1 000 bis 3 000 und 5 bis 50 Gew-% (ankondensiertem) Ethylenoxid bestehen, Gewichtsprozente bezogen auf das Blockpolymere. Besonders bevorzugte nichtionische Tenside sind die genannten Oxalkylate in Form der Polyethylenglykolether (Oxethylate) und Ethylenoxid/Propylenoxid-Blockpolymere, die aus einem Propylenoxid-Innenblock mit einem Molekulargewicht von 1 500 bis 2 500 und 10 bis 30 Gew-% Ethylenoxid bestehen, Gewichtsprozente bezogen auf das Blockpolymere. Es kommen vorzugsweise solche nichtionischen Tenside zur Anwendung, die einen Trübungspunkt - gemessen in Butyldiglykol gemäß DIN 53 917 - von 30 bis 100 °C aufweisen. Die erfindungsgemäß einzusetzenden nichtionischen Tenside sind bekannt und im Handel erhältlich. Sie liegen in der Regel als wasserfreie, mehr oder weniger viskose Flüssigkeiten vor, gelegentlich auch mit einem Gehalt von etwa 10 bis 20 Gew.-% Wasser.
  • Die erfindungsgemäßen schwachschäumenden und kältestabilen flüssigen Tensidzusammensetzungen werden dadurch hergestellt, daß die beiden Komponenten nichtionisches Tensid und Tensidformulierung im Gewichtsverhältnis von 1 : (0,3 bis 9), vorzugsweise 1 : (0,4 bis 4), insbesondere 1 : (0,4 bis 2,5), vorzugsweise unter Rühren zusammengebracht werden. Das Vermischen der beiden Komponenten wird bei Raumtemperatur oder unter Erhitzen auf eine Temperatur von 30 bis 80 °C, vorzugsweise 40 bis 60 °C, vorgenommen. Die beiden Komponenten vermischen sich relativ schnell zu einer homogenen und im wesentlichen klaren Flüssigkeit (dies vor allem dann, wenn sie unter Erhitzen vermischt werden). In welcher Reihenfolge die Komponenten zusammengebracht werden, ist nicht kritisch. Entscheidend ist lediglich, daß die genannten Gewichtsverhältnisse eingehalten werden. Die Zeit des Vermischens beträgt, je nach Art der Komponenten und Mischtemperatur, im allgemeinen 5 bis 30 Minuten. Die erfindungsgemäßen Tensidzusammensetzungen bestehen im wesentlichen aus einem anionischen und einem kationischen Tensid (Anion/Kation-Tensidkomplex), einem nichtionischen Tensid und Wasser. Die Wassermenge resultiert im wesentlichen aus der eingesetzten Tensidformulierung und beträgt, je nach Tensidformulierung und Mischungsverhältnis von Tensidformulierung und nichtionischem Tensid, 5 bis 50 Gew.-%, vorzugsweise 10 bis 30 Gew.-%, Gewichtsprozente bezogen auf die Tensidzusammensetzung.
  • Die erfindungsgemäßen Tensidzusammensetzungen weisen eine Reihe von Vorteilen auf. Sie stellen an Tensiden konzentrierte und im allgemeinen klare Flüssigkeiten dar, die sich insbesondere durch eine relativ geringe Schaumbildung (günstiges Schaumverhalten), gutes Netzverhalten und tiefe Stockpunkte (günstiges Kälteverhalten) auszeichnen. Selbst bei Einsatz von relativ hochviskosen und trübaussehenden nichtionischen Tensidkonzentraten werden durch das Abmischen mit den beschriebenen Tensidformulierungen klare und flüssige und damit gut handhabbare Zusammensetzungen erhalten. Sie zeigen nur geringe Schaumneigung und gute Netzwerte. Diese Werte sind vor allem dann gut, wenn das Kation-Tensid in der eingesetzten Tensidformulierung einen relativ kurzkettigen Kohlenwasserstoffrest aufweist. Die erfindungsgemäßen Tensidzusammensetzungen zeichnen sich insbesondere durch ihr überraschend günstiges Kälteverhalten aus. Ihre Stockpunkte liegen allgemein tiefer als die Stockpunkte der beiden Komponenten Tensidformulierung und nichtionisches Tensid, was offensichtlich aus einem unerwartet hohen synergistischen Effekt resultiert. Durch das erfindungsgemäße Mischen lassen sich gleichsam maßgeschneiderte Tensidzusammensetzungen herstellen, die im Vergleich zu den beiden Einsatz-Tensiden oft stark verbesserte Eigenschaften und damit Anwendungsmöglichkeiten aufweisen. Je nach Wahl der beschriebenen Tensidformulierungen und der nichtionischen Verbindungen können Mischungen hergestellt werden, die sich insbesondere durch eine oder mehrere der folgenden Eigenschaften auszeichnen: günstiges Schaum- und Netzverhälten, geringe Oberflächenspannung, hohe Klarheit und ausgezeichnetes Kälteverhalten. Die erfindungsgemäßen Tensidzusammensetzungen können als solche oder verdünnt mit Lösungsmitteln, wie Wasser oder Alkohole, eingesetzt werden.
  • Die erfindungsgemäßen Tensidzusammensetzungen werden in vorteilhafter Weise zur Bereitung von schaumarmen und kältestabilen Tensidkonzentraten verwendet, indem sie mit verbesserungsbedürftigen Tensidprodukten abgemischt werden, um auch diesen insbesondere Schaumarmut und Kältestabilität (niedrigen Stockpunkt) zu verleihen.
  • Die Erfindung wird nun an Beispielen noch näher erläutert.
  • Es werden zunächst 10 Anion-Tenside und Kation-Tenside angegeben, die zur Bereitung der entsprechenden 10 Tensidformulierungen eingesetzt wurden:
    • 1: Natrium-C₁₃ bis C₁₇-alkansulfonat und Ditalgalkyldimethylammoniumchlorid,
    • 2: Natrium-C₁₄ bis C₁₆-α-olefinsulfonat und Dioctyl-methyl-oxethylammoniumpropionat (erhalten durch Umsetzung von Dioctylmethylamin mit 4 mol Ethylenoxid und 1 mol Propionsäure pro mol tertiärem Amin),
    • 3: Natrium-C₁₂ bis C₁₄-alkylsulfat, ethoxyliert mit 3 mol Ethylenoxid, und Dioctyldimethylammoniumchlorid,
    • 4: Natrium-C₁₃ bis C₁₇-alkansulfonat und Dioctyldimethylammoniumchlorid,
    • 5: Natrium-C₁₃ bis C₁₇-alkansulfonat und Dicocosalkyldimethylammoniumchlorid,
    • 6: Natrium-C₁₄ bis C₁₆-α-olefinsulfonat und Dioctyl-methyl-oxethylammoniumpropionat (erhalten durch Umsetzung von Dioctylmethylamin mit 4 mol Ethylenoxid und 1 mol Propionsäure pro mol tertiärem Amin),
    • 7: Natrium-C₁₂ bis C₁₄-alkylsulfat, ethoxyliert mit 3 mol Ethylenoxid, und Dioctyldimethylammoniumchlorid,
    • 8: Natrium-N-oleoyl-N-methyl-taurid und Didecyl-oxethyl-methylammoniumpropionat (erhalten durch Umsetzung von Didecylmethylamin mit 4 mol Ethylenoxid und 1 mol Propionsäure pro mol tertiärem Amin),
    • 9: Natrium-tributylphenolsulfat, ethoxyliert mit 7 mol Ethylenoxid, und Dioctyldimethylammoniumchlorid,
    • 10: Natrium-C₁₃ bis C₁₇-alkansulfonat und Dioctyldimethylammoniumchlorid,
    Nachstehend wird die Bereitung und die Zusammensetzung der Tensidformulierungen 1 bis 10 näher beschrieben. Tensidformulierung 1
  • Eine Mischung aus 70 Gew.-% Wasser und 30 Gew.-% Anion-Tensid 1 und Kation-Tensid 1 im Molverhältnis 1 : 1 wurde bei 80 °C 30 Minuten lang gut gerührt. Nach dieser Zeit wurden das Rühren und das Erhitzen abgebrochen und der Inhalt des Becherglases (in dem die Bildung von zwei Phasen zu sehen war) 5 Stunden lang bei Raumtemperatur stehengelassen. Nach dieser Zeit hatten sich zwei scharf voneinander getrennte Phasen gebildet. Die obere klare Phase, das ist die angestrebte Tensid-Phase oder Tensidformulierung 1, wurde durch Abgießen von der unteren Phase, das ist die wäßrige Salz-Phase (NaCl), gewonnen. Die flüssige und etwas trübe Tensidformulierung 1 bestand aus 26 Gew.-% Wasser und 74 Gew.-% Anion-Tensid 1 plus Kation-Tensid 1 im Molverhältnis 1 : 1 (der Gehalt an Salz lag unter 0,1 Gew.-%).
    Erfolgt das obengenannte Stehenlassen (Standzeit) des Inhaltes des Becherglases nach dem Abbrechen des Rührens unter Aufrechterhaltung der Temperatur von 80 °C, so ist die Bildung der beiden scharf voneinander getrennten Phasen schon nach einer Stunde beendet; durch Stehenlassen der Mischung in der Wärme wird also die Trennung in die beiden Phasen beträchtlich beschleunigt.
  • Tensidformulierung 2
  • Eine Mischung aus 70 Gew.-% Wasser und 30 Gew.-% Anion-Tensid 2 und Kation-Tensid 2 im Molverhältnis 1 : 1 wurde bei 70 °C 30 Minuten lang gut gerührt und wie bei Tensidformulierung 1 weiterbehandelt. Die flüssige und klare Tensidformulierung 2 bestand aus 45 Gew.-% Wasser und 55 Gew.-% Anion-Tensid 2 und Kation-Tensid 2 im Molverhältnis 1 : 1 (der Gehält an Salz lag unter 0,1 Gew.-%).
  • Tensidformulierung 3
  • Eine Mischung aus 70 Gew.-% Wasser und 30 Gew.-% Anion-Tensid 3 und Kation-Tensid 3 im Molverhältnis 1 : 1 wurde bei 80 °C 45 Minuten lang gut gerührt und wie bei Tensidformulierung 1 weiterbehandelt. Die flüssige und klare Tensidformulierung 3 bestand aus 32 Gew.-% Wasser und 68 Gew.-% Anion-Tensid 3 und Kation-Tensid 3 im Molverhältnis 1 : 1 (der Gehält an Salz lag unter 1 Gew.-%).
  • Tensidformulierung 4
  • Eine Mischung aus 70 Gew.-% Wasser und 30 Gew.-% Anion-Tensid 4 und Kation-Tensid 4 im Molverhältnis 1 : 1 wurde bei 60 °C 30 Minuten lang gut gerührt und wie bei Tensidformulierung 1 weiterbehandelt. Die flüssige und klare Tensidformulierung 4 bestand aus 27 Gew.-% Wasser und 73 Gew.-% Anion-Tensid 4 und Kation-Tensid 4 im Molverhältnis 1 : 1 (der Gehalt an Salz lag unter 1 Gew.-%; auch bei den weiteren Tensidformulierungen lag der Salzgehalt mehr oder weniger unter 1 Gew.-%).
  • Tensidformulierung 5
  • Eine Mischung aus 70 Gew.-% Wasser und 30 Gew.-% Anion-Tensid 5 und Kation-Tensid 5 im Molverhältnis 1 : 0,4 wurde bei 80 °C 1 Stunde lang gut gerührt und wie bei Tensidformulierung 1 weiterbehandelt. Die flüssige und klare Tensidformulierung 5 bestand aus 55 Gew.-% Wasser und 45 Gew.-% Anion-Tensid 5 und Kation-Tensid 5 im Molverhältnis 1 : 0,4.
  • Tensidformulierung 6
  • Eine Mischung aus 70 Gew.-% Wasser und 30 Gew.-% Anion-Tensid 6 und Kation-Tensid 6 im Molverhältnis 1 : 0,7 wurde bei 70 °C 30 Minuten lang gut gerührt und wie bei Tensidformulierung 1 weiterbehandelt. Die flüssige und klare Tensidformulierung 6 bestand aus 58 Gew.-% Wasser und 42 Gew.-% Anion-Tensid 6 und Kation-Tensid 6 im Molverhältnis 1 : 0,7.
  • Tensidformulierung 7
  • Eine Mischung aus 70 Gew.-% Wasser und 30 Gew.-% Anion-Tensid 7 und Kation-Tensid 7 im Molverhältnis 1 : 1,5 wurde bei 80 °C 1 Stunde lang gut gerührt und wie bei Tensidformulierung 1 weiterbehandelt. Die flüssige und klare Tensidformulierung 7 bestand aus 41 Gew.-% Wasser und 59 Gew.-% Anion-Tensid 7 und Kation-Tensid 7 im Molverhältnis 1 : 1,5.
  • Tensidformulierung 8
  • Eine Mischung aus 70 Gew.-% Wasser und 30 Gew.-% Anion-Tensid 8 und Kation-Tensid 8 im Molverhältnis 1 : 1,7 wurde bei 80 °C 90 Minuten lang gut gerührt und wie bei Tensidformulierung 1 weiterbehandelt. Die flüssige und klare Tensidformulierung 8 bestand aus 30 Gew.-% Wasser und 70 Gew.-% Anion-Tensid 8 und Kation-Tensid 8 im Molverhältnis 1 : 1,7.
  • Tensidformulierung 9
  • Eine Mischung aus 70 Gew.-% Wasser und 30 Gew.-% Anion-Tensid 9 und Kation-Tensid 9 im Molverhältnis 1 : 4 wurde bei 80 °C 1 Stunde lang gut gerührt und wie bei Tensidformulierung 1 weiterbehandelt. Die flüssige und klare Tensidformulierung 9 bestand aus 48 Gew.-% Wasser und 52 Gew.-% Anion-Tensid 9 und Kation-Tensid 9 im Molverhältnis 1 : 4.
  • Tensidformulierung 10
  • Eine Mischung aus 70 Gew.-% Wasser und 30 Gew.-% Anion-Tensid 10 und Kation-Tensid 10 im Molverhältnis 1 : 2 wurde bei 60 °C 30 Minuten lang gut gerührt und wie bei Tensidformulierung 1 weiterbehandelt. Die flüssige und klare Tensidformulierung 10 bestand aus 32 Gew.-% Wasser und 68 Gew.-% Anion-Tensid 10 und Kation-Tensid 10 im Molverhältnis 1 : 2.
  • Nachstehend werden 12 nichtionischen Tenside angegeben, die im Rahmen der erfindungsgemäßen Beispiele gemeinsam mit den Tensidformulierungen 1 bis 10 eingesetzt wurden:
    • 1: Isotridecylalkanol, ethoxyliert mit 8 mol Ethylenoxid pro mol Alkanol,
    • 2: C₁₂ bis C₁₅-Alkanol, ethoxyliert mit 6 mol Ethylenoxid pro mol Alkanol,
    • 3: Undecylalkanol, ethoxyliert mit 11 mol Ethylenoxid pro mol Alkanol,
    • 4: C₁₀ bis C₁₂-Alkanol, alkoxyliert mit 4 mol Ethylenoxid und 4 mol Propylenoxid pro mol Alkanol,
    • 5: Cocosfettalkohol plus 9 mol Ethylenoxid und endverschlossen mit n-C₄H₉,
    • 6: Nonylphenol, ethoxyliert mit 4 mol Ethylenoxid pro mol Nonylphenol,
    • 7: Tributylphenol, ethoxyliert mit 30 mol Ethylenoxid pro mol Tributylphenol,
    • 8: Cocosfettsäure, ethoxyliert mit 10 mol Ethylenoxid pro mol Cocosfettsäure,
    • 9: Stearylamin, ethoxyliert mit 15 mol Ethylenoxid pro mol Stearylamin,
    • 10: Cocosfettsäuremonoethanolamid, ethoxyliert mit 5 mol Ethylenoxid pro mol Amid,
    • 11: Cocosalkylamido-polyglykolethersulfattriethanolaminsalz, erhalten durch Sulfatierung von Cocosalkylamid plus 3 mol Ethylenoxid und Salzbildung mit Triethanolamin,
    • 12: Ethylenoxid/Propylenoxid-Blockpolymeres, erhalten durch Umsetzung eines Polypropylenglykolblockes mit einem Molekulargewicht von etwa 1 700 mit soviel Ethylenoxid, daß das Ethylenoxid/Propylenoxid-Blockpolymere 20 Gew.-% Ethylenoxid enthält, Gewichtsprozente bezogen auf das Blockpolymere.
    Erfindungsgemäße Beispiele Beispiel 1
  • 300 g vom nichtionischen Tensid 1 und 700 g von der Tensidformulierung 4 wurden in ein Becherglas gegeben und bei Raumtemperatur 20 Minuten lang gerührt, worauf eine flüssige und klare Mischung vorlag. Diese erfindungsgemäße Tensidzusammensetzung wurde also dadurch hergestellt, daß 1 Gew.-Teil des genannten nichtionischen Tensids mit 2,3 Gew.-Teilen einer Tensidformulierung, bestehend aus 27 Gew.-% Wasser und 73 Gew.-% von dem genannten Anion/Kation-Tensid im Molverhältnis von 1 : 1, bei Raumtemperatur miteinander vermischt wurden.
  • Beispiel 2
  • 700 g vom nichtionischen Tensid 2 und 300 g von der Tensidformulierung 2 wurden in ein Becherglas gegeben und bei 50 °C 10 Minuten lang gerührt, worauf eine flüssige und leicht trübe Mischung vorlag. Diese erfindungsgemäße Tensidzusammensetzung wurde also dadurch hergestellt, daß 1 Gew.-Teil des genannten nichtionischen Tensids mit 0,4 Gew.-Teilen einer Tensidformulierung, bestehend aus 45 Gew.-% Wasser und 55 Gew.-% von dem genannten Anion/Kation-Tensid im Molverhältnis von 1 : 1, bei 50 °C miteinander vermischt wurden.
  • Beispiel 3
  • 500 g vom nichtionischen Tensid 3 und 500 g von der Tensidformulierung 2 wurden in ein Becherglas gegeben und bei 60 °C 10 Minuten lang gerührt, worauf eine flüssige und leicht trübe Mischung vorlag. Diese erfindungsgemäße Tensidzusammensetzung wurde also dadurch hergestellt, daß 1 Gew.-Teil des genannten nichtionischen Tensids mit 1 Gew.-Teil einer Tensidformulierung, bestehend aus 45 Gew.-% Wasser und 55 Gew.-% von dem genannten Anion/Kation-Tensid im Molverhältnis von 1 : 1, bei 60 °C miteinander vermischt wurden.
  • Beispiele 4 bis 15
  • Die Beispiele 4 bis 15, in denen ebenfalls eine flüssige (gut gießbare) und mehr oder weniger klare erfindungsgemäße Tensidzusammensetzung erhalten wurde, sind in der folgenden Tabelle 1 zusammengefaßt. Die Tabelle 1 gibt Auskunft über die eingesetzten nichtionischen Tenside und Tensidformulierungen und über das Gewichtsmengenverhältnis von nichtionischem Tensid zu Tensidformulierung. Die Tabelle 1 enthält der Vollständigkeit halber auch die entsprechenden Angaben der Beispiele 1 bis 3: Tabelle 1
    Beispiel Nr. Nichtionisches Tensid Nr. Tensidformulierung Nr. Mischungsverhältnis in Gewichtsteilen
    1 1 4 1 : 2,3
    2 2 2 1 : 0,4
    3 3 2 1 : 1
    4 4 4 1 : 1
    5 1 1 1 : 1
    6 4 3 1 : 0,7
    7 11 4 1 : 1
    8 5 5 1 : 0,7
    9 6 7 1 : 4
    10 7 9 1 : 7
    11 8 6 1 : 7
    12 9 8 1 : 4
    13 10 10 1 : 7
    14 12 8 1 : 7
    15 2 5 1 : 0,4
  • In der folgenden Tabelle 2 sind die Eigenschaften der 15 erfindungsgemäßen Tensidzusammensetzungen der Beispiele 1 bis 15 angegeben, und zwar die Stockpunkte, die Schaumwerte, die Netzwerte und die Oberflächenspannungswerte. Die Tabelle 2 zeigt auch (um einen direkten Vergleich zu gewähren) die Stockpunkte, Schaumwerte, Netzwerte und Oberflächenspannungswerte der zur Bereitung der Tensidzusammensetzungen eingesetzten 12 nichtionischen Tenside und 10 Tensidformulierungen.
    In der Tabelle 2 werden (der Kürze halber) die 12 eingesetzten nichtionischen Tenside mit A1 bis A12 bezeichnet, die 10 eingesetzten Tensidzusammensetzungen mit B1 bis B10 und die 15 erfindungsgemäßen Tensidzusammensetzungen mit C1 bis C15.
    Figure imgb0002
    Figure imgb0003
  • Wie die Beispiele zeigen, liegen die Stockpunkte der erfindungsgemäßen Tensidzusammensetzungen teilweise weit unter den Stockpunkten der eingesetzten nichtionischen Tenside und Tensidformulierungen. Aufgrund dieses offensichtlich hohen synergistischen Effektes besitzen die neuen Tensidzusammensetzungen ein überaus günstiges Kälteverhälten. Auch die anderen getesteten Eigenschaften, insbesondere das Schaumverhalten, weisen gute Werte auf.
  • Nachstehend seien noch die Testmethoden für die einzelnen Eigenschaften kurz angegeben:
  • Der Stockpunkt (pour point) wurde nach DIN-ISO 3016 bestimmt. Es wurden 50 bis 80 g Tensidzusammensetzung in ein Becherglas gegeben und so weit abgekühlt, bis die bei Raumtemperatur flüssige und gut gießbare Zusammensetzung nicht mehr gießbar war. Die dabei vorliegende Temperatur wird als Stockpunkt der Zusammensetzung bezeichnet.
    Der Schaumwert wurde nach DIN 53 902 bestimmt. Es wurde 1 g von der Tensidzusammensetzung in einem Liter vollentsalztem Wasser gelöst. Von dieser Lösung wurden etwa 200 ml in den 1000-ml-Meßzylinder gegeben und mit der gelochten Schlagscheibe dreißigmal geschlagen. Die entstandene Schaumhöhe im Meßzylinder, ausgedrückt in Milliliter, stellt den Schaumwert dar.
    Die Oberflächenspannung wurde nach DIN 53 914 bestimmt. Es wurden 0,1 g von der Tensidzusammensetzung in einem Liter vollentsalztem Wasser gelöst. Von dieser Lösung wurde die Oberflächenspannung mit einem üblichen Tensiometer nach der Ringabreißmethode in mN/m gemessen.
  • Das Netzvermögen wurde nach DIN 53 901 bestimmt. Es wurde 1 g von der Tensidzusammensetzung in einem Liter vollentsalztem Wasser gelöst. In die Lösung wurde ein Baumwolleplättchen eingetaucht. Es wurde die Zeit gemessen, die nach dem Eintauchen des Plättchens bis zum Beginn seines weiteren Absinkens in der Lösung verging. Diese Zeit in Sekunden stellt das Netzvermögen dar (wird das Baumwolleplättchen schnell benetzt, was hohes Netzvermögen bedeutet, sinkt es schon nach einigen Sekunden ab).

Claims (10)

  1. Verfahren zur Herstellung von schwachschäumenden und kältestabilen flüssigen Tensidzusammensetzungen, die im wesentlichen aus Wasser und nichtionischen, anionischen und kationischen Tensiden bestehen, gekennzeichnet durch Zusammenmischen von 1 Gew.-Teil von mindestens einem nichtionischen Tensid und 0,3 bis 9 Gew.-Teilen von einer Tensidformulierung, bestehend aus 20 bis 60 Gew.-% Wasser und 40 bis 80 Gew.-% von mindestens einem Anion-Tensid und mindestens einem Kation-Tensid im Molverhältnis von 1 : (0,3 bis 5), wobei das Kation-Tensid ein quartäres Ammoniumsalz der Formel N⁺(R¹,R²,R³,R⁴)X⁻ (1) ist, worin bedeuten R¹ und R² einen Alkylrest mit 1 bis 4 C-Atomen oder einen Oxalkylenrest mit 1 bis 10 Ethylenoxid-Einheiten, Propylenoxid-Einheiten oder Ethylenoxid-Einheiten und Propylenoxid-Einheiten, R³ einen Alkylrest oder einen Alkenylrest mit 6 bis 22 C-Atomen, R⁴ einen Alkylrest oder einen Alkenylrest mit 6 bis 22 C-Atomen oder den Benzylrest und X⁻ ein Anion einer anorganischen oder organischen Säure, und wobei die Tensidformulierung hergestellt worden ist, indem man die Komponenten Anion-Tensid, Kation-Tensid und Wasser bei einer Temperatur von 25 bis 95 °C unter Ausbildung zweier Phasen mischt, die Trennung der beiden Phasen abwartet und die obere konzentrierte Tensidphase, welche die Tensidformulierung darstellt, von der unteren Salzphase abtrennt.
  2. Verfahren nach Anspruch 1, gekennzeichnet durch Zusammenmischen von 1 Gew.-Teil von mindestens einem nichtionischen Tensid und 0,4 bis 4 Gew.-Teilen von der Tensidformulierung.
  3. Verfahren nach Anspruch 1, gekennzeichnet durch Zusammenmischen von 1 Gew.-Teil von mindestens einem nichtionischen Tensid und 0,4 bis 2,5 Gew.-Teilen von der Tensidformulierung.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Tensidformulierung aus 20 bis 60 Gew.-% Wasser und 40 bis 80 Gew.-% von mindestens einem Anion-Tensid und mindestens einem Kation-Tensid im Molverhältnis von 1 : (0,4 bis 2) besteht.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Tensidformulierung aus 20 bis 50 Gew.-% Wasser und 50 bis 80 Gew.-% von mindestens einem Anion-Tensid und mindestens einem Kation-Tensid im Molverhältnis von 1 : (0,4 bis 2) besteht.
  6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Anion-Tensid ein C₆ bis C₂₂-Alkansulfonat,
    C₆ bis C₂₂-α-Olefinsulfonat,
    (C₆ bis C₂₂-Alkyl)benzolsulfonat,
    N-C₆ bis C₂₂-Acyl-N-methyl-1-aminoethan-2-sulfonat,
    Sulfobernsteinsäuremono- oder
    Sulfobernsteinsäuredi-C₆ bis C₂₂-alkylester,
    C₆ bis C₂₂-Fettalkoholsulfat oder ein ethoxyliertes C₆ bis C₂₂-Fettalkoholsulfat mit 1 bis
    20 Ethylenoxid-Einheiten ist, und das Kation Tensid ein solches der Formel 1 ist, wobei R¹ und R² einen Alkylrest mit 1 bis 4 C-Atomen oder einen Oxalkylenrest mit 1 bis 10 Ethylenoxid-Einheiten, Propylenoxid-Einheiten oder Ethylenoxid-Einheiten und Propylenoxid-Einheiten bedeuten, R³ ein Alkylrest mit 8 bis 14 C-Atomen ist, R⁴ eine der Bedeutungen von R³ hat oder der Benzylrest ist und X⁻ ein Anion einer anorganischen oder organischen Säure ist.
  7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das nichtionische Tensid ein solches aus der Gruppe der Polyglykolether ist.
  8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das nichtionische Tensid ein Oxalkylat von C₈ bis C₁₈-Alkoholen, (C₄ bis C₁₂-Alkyl)-phenolen, C₈ bis C₁₈-Fettsäuren, C₈ bis C₁₈-Fettaminen, C₈ bis C₁₈-Fettsäureamiden oder von (C₈ bis C₁₈-Fettsäure)-ethanolamiden ist, mit 2 bis 30 Ethylenoxid-Einheiten, Propylenoxid-Einheiten oder Ethylenoxid- und Propylenoxid-Einheiten, oder ein Ethylenoxid/Propylenoxid-Blockpolymeres ist, das aus einem Propylenoxid-Innenblock mit einem Molekulargewicht von 1 000 bis 3 000 und 5 bis 50 Gew-% Ethylenoxid besteht, Gewichtsprozente bezogen auf das Blockpolymere.
  9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das nichtionische Tensid ein Oxethylat von C₈ bis C₁₈-Alkoholen, (C₄ bis C₁₂-Alkyl)-phenolen, C₈ bis C₁₈-Fettsäuren, C₈ bis C₁₈-Fettaminen, C₈ bis C₁₈-Fettsäureamiden oder von (C₈ bis C₁₈-Fettsäure)-ethanolamiden ist, mit 2 bis 30 Ethylenoxid-Einheiten, oder ein Ethylenoxid/Propylenoxid-Blockpolymeres ist, das aus einem Propylenoxid-Innenblock mit einem Molekulargewicht von 1 500 bis 2 500 und 10 bis 30 Gew-% Ethylenoxid besteht, Gewichtsprozente bezogen auf das Blockpolymere.
  10. Verwendung der nach den Ansprüchen 1 bis 9 hergestellten Tensidzusammensetzungen zur Bereitung von schaumarmen und kältestabilen Tensidkonzentraten.
EP90106442A 1989-04-06 1990-04-04 Schwachschäumende und kältestabile flüssige Tensidzusammensetzungen aus Wasser und nichtionischen, anionischen und kationischen Tensiden und deren Verwendung Expired - Lifetime EP0391392B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3911098A DE3911098A1 (de) 1989-04-06 1989-04-06 Schwachschaeumende und kaeltestabile fluessige tensidzusammensetzungen aus wasser und nichtionischen, anionischen und kationischen tensiden und deren verwendung
DE3911098 1989-04-06

Publications (3)

Publication Number Publication Date
EP0391392A2 EP0391392A2 (de) 1990-10-10
EP0391392A3 EP0391392A3 (de) 1991-01-16
EP0391392B1 true EP0391392B1 (de) 1995-07-26

Family

ID=6377968

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90106442A Expired - Lifetime EP0391392B1 (de) 1989-04-06 1990-04-04 Schwachschäumende und kältestabile flüssige Tensidzusammensetzungen aus Wasser und nichtionischen, anionischen und kationischen Tensiden und deren Verwendung

Country Status (8)

Country Link
US (1) US5298193A (de)
EP (1) EP0391392B1 (de)
JP (1) JPH02284639A (de)
AT (1) ATE125564T1 (de)
BR (1) BR9001527A (de)
CA (1) CA2013920A1 (de)
DE (2) DE3911098A1 (de)
ES (1) ES2076984T3 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT103U1 (de) * 1992-04-16 1995-02-27 Purator Umwelttechnik Gmbh Verfahren zum waschen und trocknen sowie gegebenenfalls wachsen in kraftfahrzeugwaschanlagen
US6180740B1 (en) 1998-02-27 2001-01-30 E. I. Du Pont De Nemours And Company Stabilization of fluorochemical copolymer emulsions
US6617303B1 (en) 1999-01-11 2003-09-09 Huntsman Petrochemical Corporation Surfactant compositions containing alkoxylated amines
CA2391371A1 (en) * 1999-11-22 2001-05-31 Howard Meyer Stridde Surfactant adjuvants useful in herbicide compositions
DE10203225A1 (de) 2002-01-28 2003-07-31 Weigert Chem Fab Reinigung chirurgischer Instrumente
DE10316001A1 (de) * 2003-04-07 2004-10-21 Goldschmidt Ag Wässrige Formulierungen enthaltend Kombinationen aus anionischen und kationischen Tensiden zur Erzeugung einer Fließgrenze
DE102004039727A1 (de) * 2004-08-16 2006-02-23 Bode Chemie Gmbh & Co. Kg Reinigungs- und Desinfektionsmittel für medizinische Instrumente mit verbesserter Wirksamkeit gegen Hepatitis-B-Viren
ATE547170T1 (de) 2008-05-20 2012-03-15 Cognis Ip Man Gmbh Wässrige tensid-zusammensetzungen mit niedrigem pourpoint
EP2455156B1 (de) * 2010-11-18 2013-06-05 Cognis IP Management GmbH Niedrigviskose wäßrige Zusammensetzungen
FR3095558B1 (fr) 2019-04-24 2021-04-30 Niedax France Element de fixation de couvercle pour chemin de cables

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0363855A1 (de) * 1988-10-11 1990-04-18 Hoechst Aktiengesellschaft Konzentrierte und flüssige wasserhaltige Tensidzusammensetzung und deren Verwendung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2398295A (en) * 1943-03-13 1946-04-09 Emulsol Corp Emulsions
US2779741A (en) * 1950-12-26 1957-01-29 Gen Aniline & Film Corp Water-soluble compositions containing water-insoluble organic amines
US3658717A (en) * 1969-07-07 1972-04-25 Atlas Chem Ind Surfactants for solvent/water systems and textile treating compositions
US3668136A (en) * 1969-07-07 1972-06-06 Witco Chemical Corp Compatible anionic-catonic surfactant compositions
US3684736A (en) * 1970-09-10 1972-08-15 William L Groves Jr Low-foaming surface active compositions and method of preparing such compositions
BE7T1 (fr) * 1977-06-29 1979-12-07 Procter & Gamble Compositions detergentes
JPS54159416A (en) * 1978-06-07 1979-12-17 Lion Corp Liquid detergent composition
US4392965A (en) * 1981-11-12 1983-07-12 Woodward Fred E Laundry softener antistatic composition
US4507219A (en) * 1983-08-12 1985-03-26 The Proctor & Gamble Company Stable liquid detergent compositions
US4888119A (en) * 1986-10-06 1989-12-19 Colgate-Palmolive Co. Cationic/anionic surfactant complex antistatic and fabric softening emulsion for wash cycle laundry applications
US4913828A (en) * 1987-06-10 1990-04-03 The Procter & Gamble Company Conditioning agents and compositions containing same
US4751009A (en) * 1987-08-05 1988-06-14 Akzo America Inc. Fabric softeners comprising stable single phase clear solutions of anionic and cationic surfactants
US4810409A (en) * 1987-12-16 1989-03-07 Sterling Drug Inc. Stable, isotropic liquid laundry detergents
US4919839A (en) * 1989-02-21 1990-04-24 Colgate Palmolive Co. Light duty microemulsion liquid detergent composition containing an aniocic/cationic complex

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0363855A1 (de) * 1988-10-11 1990-04-18 Hoechst Aktiengesellschaft Konzentrierte und flüssige wasserhaltige Tensidzusammensetzung und deren Verwendung

Also Published As

Publication number Publication date
CA2013920A1 (en) 1990-10-06
EP0391392A3 (de) 1991-01-16
DE3911098A1 (de) 1990-10-11
BR9001527A (pt) 1991-04-23
JPH02284639A (ja) 1990-11-22
ES2076984T3 (es) 1995-11-16
DE59009425D1 (de) 1995-08-31
US5298193A (en) 1994-03-29
ATE125564T1 (de) 1995-08-15
EP0391392A2 (de) 1990-10-10

Similar Documents

Publication Publication Date Title
DE1956671C3 (de) Grenzflächenaktives Mittel
EP0188242B1 (de) Wässriges konzentriertes Textilweichmachungsmittel
DE3608093A1 (de) Konfektioniertes textilweichmacher-konzentrat
EP0158174A1 (de) Nichtionische, fliessfähige Perlglanzdispersionen
EP0569869B1 (de) Lactobionsäureamidzusammensetzungen und deren Verwendung
EP0391392B1 (de) Schwachschäumende und kältestabile flüssige Tensidzusammensetzungen aus Wasser und nichtionischen, anionischen und kationischen Tensiden und deren Verwendung
EP0498050B1 (de) Fettsäureester des N-Methyl-N,N,N,-trihydroxyethyl-ammonium-methylsulfat enthaltende wässrige Emulsionen
EP0613457B1 (de) Ester von fettsäuren mit ethoxylierten polyolen
WO1994014935A1 (de) Wässrige textilweichmacher-dispersionen
DE2810703A1 (de) Nichtiogenes tensid
DE3638918A1 (de) Quartaere ammoniumverbindungen, deren herstellung und verwendung als textilnachbehandlungsmittel
DE3818061A1 (de) Fluessiges, waessriges waeschenachbehandlungsmittel
EP0295386A2 (de) Konzentrierte Wäscheweichspülmittel
EP0363855B1 (de) Konzentrierte und flüssige wasserhaltige Tensidzusammensetzung und deren Verwendung
DE3617306A1 (de) Verfahren zur herstellung einer hochkonzentrierten perliermitteldispersion
DE19752067A1 (de) Fließfähige, wäßrige Perlglanzdispersion mit Behensäure als perlglanzgebender Komponente und Alkylethersulfat als Dispergiermittel
EP0095580A2 (de) Polyätherderivate, deren Verwendung als Dispergatoren in Mitteln zum Weichspülen von Textilien auf der Basis quaternärer Ammoniumsalze sowie Verfahren zur Herstellung der Mittel zum Weichspülen
DE4402527A1 (de) Wäßrige Lösungen von Esterquats
DE3816328A1 (de) Verfahren zur herstellung von quaternaeren ammoniumsalzen langkettiger aliphatischer carbonsaeuren und verwendung dieser ammoniumsalze
DE4332373C2 (de) Wasserfreie Detergensgemische
DE19646413A1 (de) Verfahren zur Herstellung einer fließfähigen, wäßrigen Perlglanzdispersion mit Fettsäure als perlglanzgebender Komponente
DE1617185B2 (de) Waschmittel
DE2657581C2 (de) Niedrigviskose, wäßrige Mischung von Sulfosuccinamaten, Verfahren zu deren Herstellung und deren Verwendung
EP0674701B1 (de) Wässrige textilweichmacher-dispersionen
DE2817626C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19901221

ITF It: translation for a ep patent filed

Owner name: FUMERO BREVETTI S.N.C.

17Q First examination report despatched

Effective date: 19940317

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 125564

Country of ref document: AT

Date of ref document: 19950815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59009425

Country of ref document: DE

Date of ref document: 19950831

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951009

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2076984

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960313

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960319

Year of fee payment: 7

Ref country code: CH

Payment date: 19960319

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960321

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960325

Year of fee payment: 7

Ref country code: GB

Payment date: 19960325

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19960412

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960417

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960618

Year of fee payment: 7

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970404

Ref country code: AT

Effective date: 19970404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970405

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970430

Ref country code: BE

Effective date: 19970430

BERE Be: lapsed

Owner name: HOECHST A.G.

Effective date: 19970430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19971101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970404

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19971101

EUG Se: european patent has lapsed

Ref document number: 90106442.8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050404