EP0353217A1 - Device for controlling and regulating the combustion engine of a vehicle - Google Patents

Device for controlling and regulating the combustion engine of a vehicle Download PDF

Info

Publication number
EP0353217A1
EP0353217A1 EP89890172A EP89890172A EP0353217A1 EP 0353217 A1 EP0353217 A1 EP 0353217A1 EP 89890172 A EP89890172 A EP 89890172A EP 89890172 A EP89890172 A EP 89890172A EP 0353217 A1 EP0353217 A1 EP 0353217A1
Authority
EP
European Patent Office
Prior art keywords
cylinder
memory
speed
unit
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89890172A
Other languages
German (de)
French (fr)
Other versions
EP0353217B1 (en
Inventor
Christian Dipl.-Ing. Augesky
Michael Dipl.-Ing. Heiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Automotive Diesel GmbH
Original Assignee
Voestalpine Metal Forming GmbH
Automotive Diesel GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Metal Forming GmbH, Automotive Diesel GmbH filed Critical Voestalpine Metal Forming GmbH
Priority to AT89890172T priority Critical patent/ATE78898T1/en
Publication of EP0353217A1 publication Critical patent/EP0353217A1/en
Application granted granted Critical
Publication of EP0353217B1 publication Critical patent/EP0353217B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires

Definitions

  • the invention relates to a device for controlling and regulating the internal combustion engine of a vehicle, in particular a diesel engine, with a basic controller, the signals from sensors and sensors for detecting operating variables of the engine or vehicle, such as the speed, the accelerator pedal position and the engine temperature etc.
  • an output signal of the basic controller is used to set the fuel and / or air quantity supplied to the engine, with a speed computer to which signals from a speed sensor are supplied and which is set up to calculate a cylinder-specific speed n i of each cylinder, and with a mean value calculator for determining an average speed signal n , with a comparator unit for the output of positive or negative change values for each cylinder, if the cylinder-specific speeds n i below or above the average speed n lie, with a correction value memory with z cylinder memories for the cylinder-specific correction values, the cylinder memories, synchronized by a synchronization unit, the change values can be supplied, and with a summing device, which can be supplied with the output signal of the basic controller and the correction values of the correction value memory.
  • a device of the type mentioned at the outset is from the publication "The Nippondenso Electronic Control System for the Diesel Engine", F. Murayama and Y. Tanaka, in SAE paper 880489 on the International Congress and Exposition, Detroit, Michigan, Feb. 29 - March 4, 1988.
  • the deviation between the maximum and minimum speed is determined for each cylinder and the arithmetic mean of these deviations is calculated. The deviations are then compared to this mean. If the cylinder-specific deviation is smaller than the mean value, a cylinder-specific correction value is increased, if the deviation is larger than the mean value, this correction value is decreased and if the deviation corresponds to the mean value, the correction value remains unchanged.
  • These correction values determined in idle mode are added during operation to the value determined by the basic controller for the adjustment of the injection quantity actuator in order to compensate for cylinder-specific deviations in the combustion, but obviously the primary aim is quiet idling of the engine.
  • the aim of the invention is to enable effective and stable single-cylinder control not only in idle mode, but as far as possible over the entire engine speed range.
  • each cylinder is assigned its own actuator for the amount of fuel, the output signal of each cylinder memory together with the output signal of the basic controller being fed to a control unit for the associated actuator, each cylinder memory k has working area-dependent storage areas, a storage area selection unit is provided, which contains the average speed signal n , and / or other operating variables, such as the average actuator travel, engine temperature etc., are supplied as selection criteria and the memory area selection unit as a function of these selection criteria according to a predetermined selection characteristic via an input and output control of each cylinder memory controlled by it and a selected memory area or selected memory areas assigns.
  • the division according to the invention into memory areas dependent on the operating point takes into account the speed-dependent behavior of the engine or the individual cylinders and the corresponding individual cylinder correction that is required as a function of the speed.
  • FIG. 1 shows, based on a possible block diagram, the device according to the invention, applied to a 6-cylinder diesel engine
  • FIG. 2 shows a similar block diagram, but goes into more detail
  • FIG. 2a shows the block diagram of a modified cylinder memory
  • FIG. 3 shows a possible one Structogram for single cylinder control in a device according to the invention.
  • a 6-cylinder diesel engine 1 is shown schematically with six pump nozzles 2-i, the quantity actuators are electromechanically adjustable by means of associated servo drives 3-i.
  • Such pump nozzles and the drives of their volume control elements are, for example, the subject of DE application 38 11 844 of the applicant, in which reference is also made to DE-A-2845 139 and AT-PS 372 502 in relation to the prior art.
  • the invention relates not only to those injection elements in which, for example, a control rod is adjusted, i.e. moved or a quantity actuator is rotated, but in general on each controlled injection unit, such as also on solenoid valves.
  • a speed sensor 5 which scans pins, not shown here, inserted on the flywheel 4 and accordingly delivers pulses during engine rotation which correspond to specific angular positions of the flywheel 4.
  • Such speed sensors are also known and are disclosed, for example, in DE-A-31 22 533 (FIG. 3 and associated description).
  • two speed sensors can also be used, the alternator of the vehicle being able to be used as a speed sensor, as described in DE-A-35 01 435 by the applicant.
  • Further sensors 6 are also provided, which provide signals with information about various operating states of the engine 1 or of the vehicle, e.g. Temperature and pressure sensors.
  • a needle stroke sensor 7-i is generally provided in each pump nozzle 2-i, which provides information about the position of the valve needle of an injection valve, e.g. in DE-A-37 26 712 of the applicant.
  • an electronic controller for the regulation or control of the motor 1 is an electronic controller, here basic controller 8 ge in a known manner called, brought up.
  • a controller contains computing units which calculate an output signal RW from supplied operating variable signals, which, via the servo drives 3-i, determines the current position of the quantity control element of each pump nozzle 2-i and thus the amount of fuel to be injected.
  • the operating variable signals of the sensors 6 and 7-i are thus fed to the basic controller 8 and at least one output signal of a speed computer 9, which is an average speed or a corresponding signal n determined.
  • the calculation of speed signals or average speeds is also known, reference being made to the applicant's DE application 38 08 819 and the literature cited therein.
  • the speed calculator 9 is shown in the general part of the basic controller 8 and only here, for the sake of clarity, separately from it.
  • the output signal of an accelerator pedal position sensor 10 is fed to the basic controller.
  • a basic controller 8 as used here, generally has a PID control characteristic, as can be seen, for example, from DE-A-27 35 596. It forms, in principle, via which the servo drives 3-i, the motor 1 and the speed sensor 5 form a closed control loop, the actual variable being the average speed n and the target variable in the basic controller 8 is calculated as a function of the supplied operating variable signals, of which of course the signal indicating the accelerator pedal position is an essential signal.
  • the middle speed signal becomes a comparator unit 11 n and also a cylinder-specific speed signal n i determined in the speed computer 9.
  • This signal n i is determined by measuring the time period T i via the combustion strokes of the individual cylinders, specifically by counting the time in a time counter 12 and generating reciprocal values in a reciprocal value generator 13.
  • the time counter 12, the reciprocal value generator 13 and an average value generator 14 are here shown as blocks of the speed calculator 9 (Fig. 2).
  • the time is counted between pulses from the speed sensor 5, which correspond to pins on the flywheel 4 and successive top dead centers of the cylinders (in the chronological order of ignition).
  • the pulses do not have to correspond exactly to the top dead center, they can also each be generated a small angle of rotation before or after top dead center, but should occur essentially in the vicinity of top dead center, since in this case the most reliable information about the speed fluctuations is obtained.
  • the comparator unit 11 in this exemplary embodiment contains a subtractor 15 to which the middle or cylinder-specific speed signal n or n i are fed, and a signal generator 16 connected downstream of the subtractor, which outputs a change value +1 if n i ⁇ n , and a change value -1 if n i > n . If the cylinder-specific speed n i does not differ from the mean speed, or not significantly n deviates, no change value is output. However, the comparator unit 11 can generally output a change value ⁇ Q i , the size of which also depends on the measure of the deviation between n i and n can depend, as indicated in Fig. 1 at the output of the comparator unit 11 with ⁇ Q i .
  • the change values ⁇ Q i form the starting point for the single-cylinder control, because according to these change values the respective cylinders should receive more or less fuel so that uneven running is compensated for.
  • a synchronization unit 20 is provided for the necessary synchronization, to which the signal of the speed sensor 5 and on the other hand the signal of at least one of the needle lift sensors 7-i are supplied, so that an absolute, i.e. cylinder-related synchronization is possible.
  • an absolute i.e. cylinder-related synchronization is possible.
  • another signal can also be used, e.g. is derived from moving engine parts and enables absolute synchronization. If the invention is applied to a gasoline engine, it could e.g. are signals derived from the electrical ignition.
  • the synchronizing unit 20 controls the memory control unit 17 by means of a synchronizing signal s in such a way that the change values ⁇ Q i always reach the assigned cylinder memory 19-i.
  • a controlled switch 21 This is illustrated in FIG. 2 by a controlled switch 21. 2 also shows a controlled switch 22 which is located between the comparator unit 11 and the memory control unit 17 and is shown here as a multiplier.
  • the switch 22 is controlled by a status signal st of the synchronization unit 20. This status signal has the value "0" as long as no synchronization has taken place, which is possible, for example, when starting the engine, and the value "1" if synchronization is present.
  • the change values .DELTA.Q i are thus only passed on with existing synchronization.
  • the memory area selection unit 18, for example, as shown in FIG. 2, consists of z-controlled switches 23-i, 24-i at the input and at the output of each cylinder memory 19-i, each switch having a k position.
  • all z switches 23-i, 24-i are controlled by a speed range discriminator 25, which is the mean speed signal n is fed and connects via the switches 23-i, 24-i to the speed range corresponding to this speed range memory area 19-ij with the input and output of each cylinder memory 19-i.
  • the range is thus selected exclusively according to the selection criterion "average engine speed", but other operating variable signals can also be supplied to the function of the memory area selection unit 18, such as a signal r according to FIG.
  • Each cylinder memory 19-i thus represents a three-dimensional correction field for each cylinder.
  • the cylinder memories 19-i and their memory areas 19-ij are each designed as summing or integrating memories, so that the stored correction value ⁇ RW ij increases or decreases depending on the sign (and size) of the corresponding supplied change value ⁇ Q i .
  • the correction values ⁇ RW i may be multiplied in a respective multiplier 27-i with a dynamic adjustment factor K EZR before their supply to a respective summer 26-i, in which they are added to the respective output signal RW of the base regulator 8. This may be advisable due to the digital development of the correction values for numerical reasons.
  • the summers 26-i are drawn with an additional subtracting input, to each of which a feedback signal m from an actuator feedback 28-i is supplied.
  • the servo drives 3-i namely have an analog servo controller 29-i which acts on the actuator 30-i mechanically connected to the feedback 28. This provides a closed servo circuit for the actuator of each pump nozzle 2-i. With regard to further details of such servo circuits, reference can be made to the applicant's DE-A-37 40 443.
  • FIG. 2a A modification of the cylinder memories 19-i is shown in FIG. 2a, in which an interpolation and arithmetic unit 31 is assigned to each memory area 19-ij.
  • This unit takes on the one hand the function of the switches 23-i, 24-i of FIG. 2 and on the other hand enables an interpolation between speed bases n j .
  • the drift compensator 32 has k summers 33-j (FIG. 2), each summator being supplied with the z correction values of the memory areas 19-ij with the same index j.
  • the arithmetic mean value ⁇ RW ij / z is formed in each divider 34-j.
  • a subtractor 35-ij 35-ij is connected upstream of each input of each memory area 19-ij, on the one hand the change value ⁇ Q ij determined by the comparator unit 11 and assigned by the selection unit 18 and on the other hand the mean value of the correction values coming from the corresponding divider 34-j is fed.
  • the drift compensator 32 is also supplied with an activation signal as (FIG. 1) of the synchronizing unit 20, which occurs synchronously with the rotation, for example every 10 or 20 revolutions, and the actual calculation or output of the arithmetic mean value to the subtracting elements 35-ij causes controlled switches (Not shown) or the like. can be provided.
  • the activation signal as can also occur at fixed time intervals, for example every second, in which case it is generated in a clock. It is in no way necessary to carry out the drift compensation with each combustion stroke, so that computing time can be saved for other calculations if the drift compensation is only carried out at intervals at which it is likely to be required.
  • FIG. 2 A possible embodiment of the memory areas 19-ij is shown in FIG. 2 for the first cylinder memory 19-1.
  • Each memory area 19-1k acts as a digital integrator or totalizer with limitation.
  • a limiting unit 36-1j At the input of a limiting unit 36-1j is a summing element 37-1j, on the one hand the output signal of the corresponding subtracting element 35-1j of the drift compensator 32 and on the other hand the output signal of a reset element 38-1j located in the feedback branch of the integrator 19-1j (symbol z ⁇ 1: see Isermann, "Digital Control Systems", Springerverlag, Berlin / Heidelberg 1977). Such memories belong to the prior art.
  • Each memory area with limiter unit 36-1j can be set up to emit an indicator signal which occurs if the stored correction value ⁇ RW-ij reaches an upper or lower limit. This is indicated in Fig. 2 for the first cylinder memory 19-1 for a memory area 19-1j with the signal d-1j. All indicator signals d-ij can be OR-fed and used to trigger an error display or an alarm signal.
  • the drawing shows block diagrams with individual function blocks, but in practice, all or most of the function blocks are implemented by software in a microcomputer or a microcomputer system.
  • a possible program sequence for this purpose is illustrated in the structure diagram according to FIG. 3, which does not require any further explanation in view of the above explanations.

Abstract

A device for controlling and regulating a diesel engine, with a base controller (8), to which performance quantity signals of the engine are fed and an output signal of the base controller is used for setting the fuel and/or air quantity, with a rotational speed calculator (9) for calculating a cylinder-specific rotational speed (ni) and a mean rotational speed signal () with a comparator unit (11) for outputting alteration values ( DELTA Qi) for each cylinder if the cylinder-specific rotational speeds (ni), are below or above the mean rotational speed (), with a correction value memory (19) with z cylinder memories (19-i) for the cylinder-specific correction values, it being possible for the alteration values ( DELTA Qi) to be fed to the cylinder memories (19-i). Each cylinder is allocated its own final controlling element for the fuel quantity, the output signal of each cylinder memory (19-i) together with the output signal of the base controller (8) being fed in each case to a control unit (3-i) for the allocated final controlling element, each cylinder memory (19-i) having k working- point-dependent memory areas (19-ij) and a memory-area selection unit (18) allocating the input and output of each cylinder memory (19-i) to a selected memory area or selected memory areas as a function of the mean rotational-speed signal (n) and/or other performance quantities according to a predetermined selection characteristic via an allocation unit (23-i, 24-i; 31) controlled by it. <IMAGE>

Description

Die Erfindung bezieht sich auf eine Einrichtung zum Steuern und Regeln der Brennkraftmaschine eines Fahrzeuges, insbe­sondere eines Dieselmotors, mit einem Basisregler, dem Sig­nale von Gebern und Sensoren zur Erfassung von Betriebs­größen des Motors bzw. Fahrzeuges, wie z.B. der Drehzahl, der Gaspedalstellung, der Motortemperatur etc. zugeführt sind und ein Ausgangssignal des Basisreglers zur Einstellung der dem Motor zugeführten Kraftstoff- und/oder Luftmenge he­rangezogen ist, mit einem Drehzahlrechner, dem Signale eines Drehzahlsensors zugeführt sind und der zur Berechnung einer zylinderspezifischen Drehzahl ni jedes Zylinders eingerich­tet ist, sowie mit einem Mittelwertrechner zur Ermittlung eines mittleren Drehzahlsignals n, mit einer Vergleicherein­heit zur Ausgabe positiver oder negativer Änderungswerte für jeden Zylinder, falls die zylinderspezifischen Drehzahlen ni unter oder oberhalb der mittleren Drehzahl n liegen, mit ei­nem Korrekturwertspeicher mit z Zylinderspeichern für die zylinderspezifischen Korrekturwerte, wobei den Zylinderspei­chern, synchronisiert von einer Synchronisiereinheit, die Änderungswerte zuführbar sind, sowie mit einer Summierein­richtung, der das Ausgangssignal des Basisreglers sowie die Korrekturwerte des Korrekturwertspeichers zuführbar sind.The invention relates to a device for controlling and regulating the internal combustion engine of a vehicle, in particular a diesel engine, with a basic controller, the signals from sensors and sensors for detecting operating variables of the engine or vehicle, such as the speed, the accelerator pedal position and the engine temperature etc. are supplied and an output signal of the basic controller is used to set the fuel and / or air quantity supplied to the engine, with a speed computer to which signals from a speed sensor are supplied and which is set up to calculate a cylinder-specific speed n i of each cylinder, and with a mean value calculator for determining an average speed signal n , with a comparator unit for the output of positive or negative change values for each cylinder, if the cylinder-specific speeds n i below or above the average speed n lie, with a correction value memory with z cylinder memories for the cylinder-specific correction values, the cylinder memories, synchronized by a synchronization unit, the change values can be supplied, and with a summing device, which can be supplied with the output signal of the basic controller and the correction values of the correction value memory.

Bei Mehrzylinderdieselmotoren kommt es auf Grund von Ferti­gungstoleranzen und unterschiedlicher Abnützung zu einer unterschiedlichen Leistungsabgabe der einzelnen Zylinder, auch dann, wenn das Mengenstellglied, i.a. die Regelstange der Einspritzpumpe unverändert bleibt. Sinngemäß gleiches gilt für Ottomotoren. Eine solche Streuung in der Leistung der einzelnen Zylinder bewirkt nicht nur eine Laufunruhe und hiedurch eine stärkere Belastung der Lager etc., sondern erhöht auch die Menge schädlicher Abgaskomponenten bzw. erschwert die Einstellung vorgegebener Maximalwerte der­artiger Komponenten. Man versucht daher durch individuelle Korrektur der den einzelnen Zylindern zugeführten Kraft­stoffmenge die genannten Unregelmäßigkeiten auszugleichen, wobei als Ausgangsgröße meist die periodischen Drehzahl­ schwankungen herangezogen werden, die einen Rückschluß auf zu große oder zu geringe Leistungsabgabe einzelner Zylinder ermöglichen.In the case of multi-cylinder diesel engines, due to manufacturing tolerances and different wear, there is a different output of the individual cylinders, even if the quantity control element, generally the control rod of the injection pump, remains unchanged. The same applies analogously to gasoline engines. Such a scatter in the performance of the individual cylinders not only causes uneven running and thus a greater load on the bearings etc., but also increases the amount of harmful exhaust gas components or makes it difficult to set predetermined maximum values of such components. Attempts are therefore made to compensate for the irregularities mentioned by individually correcting the amount of fuel supplied to the individual cylinders, the periodic speed usually being the output variable Fluctuations are used, which allow conclusions to be drawn about too high or too low power output of individual cylinders.

Eine Einrichtung der eingangs genannten Art ist aus der Ver­öffentlichung "The Nippondenso Electronic Control System for the Diesel Engine", F. Murayama und Y. Tanaka, im SAE-­Paper 880489 zum International Congress and Exposition, Detroit, Michigan, 29. Feb. - 4. März 1988, bekannt geworden. Hiebei wird für jeden Zylinder die Abweichung zwischen Maximal - und Minimaldrehzahl ermittelt und der arithmetische Mittelwert dieser Abweichungen berechnet. Sodann werden die Abweichungen je mit diesem Mittelwert verglichen. Ist die zylinderspezifische Abweichung kleiner als der Mittelwert, wird ein zylinderspezifischer Korrekturwert erhöht, ist die Abweichung größer als der Mittelwert, so wird dieser Korrek­turwert erniedrigt und entspricht die Abweichung dem Mittel­wert, bleibt der Korrekturwert unverändert. Diese im Leer­laufbetrieb ermittelten Korrekturwerte werden während des Betriebes zu dem von dem Basisregler ermittelten Wert für die Verstellung des Einspritzmengenstellgliedes addiert, um eine Kompensation von zylinderspezifischen Abweichungen der Verbrennung zu erreichen, wobei aber offensichtlich in er­ster Linie ein ruhiger Leerlauf des Motors angestrebt wird.A device of the type mentioned at the outset is from the publication "The Nippondenso Electronic Control System for the Diesel Engine", F. Murayama and Y. Tanaka, in SAE paper 880489 on the International Congress and Exposition, Detroit, Michigan, Feb. 29 - March 4, 1988. The deviation between the maximum and minimum speed is determined for each cylinder and the arithmetic mean of these deviations is calculated. The deviations are then compared to this mean. If the cylinder-specific deviation is smaller than the mean value, a cylinder-specific correction value is increased, if the deviation is larger than the mean value, this correction value is decreased and if the deviation corresponds to the mean value, the correction value remains unchanged. These correction values determined in idle mode are added during operation to the value determined by the basic controller for the adjustment of the injection quantity actuator in order to compensate for cylinder-specific deviations in the combustion, but obviously the primary aim is quiet idling of the engine.

Ähnliche Einrichtungen zur Einzelzylinderregelung eines Die­selmotors im Leerlauf sind in den DE-OS 3 609 245 und 3 644 639 beschrieben, wobei als Bezugswert für die Drehzahl­abweichung immer die Drehzahl des vorhergehenden Zylinders herangezogen wird. Da Instabilitäten der Einzelzylinder­regelung sehr leicht auftreten können, wird diese Rege­lung oberhalb der Leerlaufdrehzahl oder bei Änderungen der Fahrpedalstellung etc. sofort abgeschaltet und die Regelung erfolgt über den Basisregler in herkömmlicher Weise.Similar devices for single-cylinder control of a diesel engine at idle are described in DE-OS 3 609 245 and 3 644 639, the speed of the preceding cylinder always being used as a reference value for the speed deviation. Since instabilities of the single-cylinder control can very easily occur, this control is switched off immediately above the idling speed or in the event of changes in the accelerator pedal position, and the control is carried out in a conventional manner via the basic controller.

Ziel der Erfindung ist es, nicht nur im Leerlaufbetrieb son­dern möglichst über den gesamten Drehzahlbereich des Motors eine effektive und stabile Einzelzylinderregelung zu ermöglichen.The aim of the invention is to enable effective and stable single-cylinder control not only in idle mode, but as far as possible over the entire engine speed range.

Dieses Ziel läßt sich mit einer Einrichtung der eingangs ge­nannten Art erreichen, bei welcher erfindungsgemäß jedem Zylinder ein eigenes Stellglied für die Kraftstoffmenge zugeordnet ist, wobei das Ausgangssignal jedes Zylinderspei­chers zusammen mit dem Ausgangssignal des Basisreglers je einer Ansteuereinheit für das zugeordnete Stellglied zuge­führt ist, jeder Zylinderspeicher k arbeitspunktabhängige Speicherbereiche aufweist, eine Speicherbereichauswahlein­heit vorgesehen ist, der das mittlere Drehzahlsignal n, und/oder andere Betriebsgrößen, wie mittlerer Stellglied­weg, Motortemperatur etc., als Auswahlkriterien zugeführt sind und die Speicherbereichauswahleinheit in Abhängigkeit von diesen Auswahlkriterien nach einer vorgegebenen Auswahl­charakteristik über eine von ihr angesteuerte Zuordnungsein­heit Ein-und Ausgang jedes Zylinderspeichers einem ausge­wählten Speicherbereich bzw. ausgewählten Speicherbereichen zuordnet.This goal can be achieved with a device of the type mentioned, in which according to the invention each cylinder is assigned its own actuator for the amount of fuel, the output signal of each cylinder memory together with the output signal of the basic controller being fed to a control unit for the associated actuator, each cylinder memory k has working area-dependent storage areas, a storage area selection unit is provided, which contains the average speed signal n , and / or other operating variables, such as the average actuator travel, engine temperature etc., are supplied as selection criteria and the memory area selection unit as a function of these selection criteria according to a predetermined selection characteristic via an input and output control of each cylinder memory controlled by it and a selected memory area or selected memory areas assigns.

Die erfindungsgemäße Aufteilung in arbeitspunktabhängige Speicherbereiche berücksichtigt das drehzahlabhängige Ver­halten des Motors bzw. der einzelnen Zylinder und die demge­mäß drehzahlabhängig erforderliche Einzelzylinderkorrektur.The division according to the invention into memory areas dependent on the operating point takes into account the speed-dependent behavior of the engine or the individual cylinders and the corresponding individual cylinder correction that is required as a function of the speed.

Weitere Merkmale der Erfindung sind in den Unteransprüchen gekennzeichnet.Further features of the invention are characterized in the subclaims.

Die Erfindung samt ihren weiteren Vorteilen ist im folgenden an Hand von Ausführungsbeispielen näher erläutert, die in der Zeichnung veranschaulicht sind. In dieser zeigen Fig. 1 an Hand eines möglichen Blockschaltbildes die erfindungsge­mäße Einrichtung, angewandt auf einen 6-Zylinder Dieselmo­tor, Fig. 2 ein ähnliches Blockschaltbild, jedoch mehr ins Detail gehend, Fig. 2a das Blockschaltbild eines modifizier­ten Zylinderspeichers und Fig. 3 ein mögliches Struktogramm zur Einzelzylinderregelung in einer Einrichtung nach der Er­findung.The invention and its further advantages are explained in more detail below with reference to exemplary embodiments which are illustrated in the drawing. 1 shows, based on a possible block diagram, the device according to the invention, applied to a 6-cylinder diesel engine, FIG. 2 shows a similar block diagram, but goes into more detail, FIG. 2a shows the block diagram of a modified cylinder memory and FIG. 3 shows a possible one Structogram for single cylinder control in a device according to the invention.

In Fig. 1 ist schematisch ein 6-Zylinder Dieselmotor 1 mit sechs Pumpedüsen 2-i dargestellt, deren Mengenstellglieder elektromechanisch mittels zugehöriger Servoantriebe 3-i ver­stellbar sind. Solche Pumpedüsen und die Antriebe ihrer Men­genstellglieder sind beispielsweise Gegenstand der DE-Anmel­dung 38 11 844 der Anmelderin, in welcher zum Stand der Technik auch auf die DE-A-2845 139 und die AT-PS 372 502 verwiesen wird.In Fig. 1, a 6-cylinder diesel engine 1 is shown schematically with six pump nozzles 2-i, the quantity actuators are electromechanically adjustable by means of associated servo drives 3-i. Such pump nozzles and the drives of their volume control elements are, for example, the subject of DE application 38 11 844 of the applicant, in which reference is also made to DE-A-2845 139 and AT-PS 372 502 in relation to the prior art.

Zu dem verwendeten Begriff "Stellglied" sei bemerkt, daß sich die Erfindung nicht nur auf jene Einspritzelemente be­zieht, bei denen beispielsweise eine Regelstange verstellt, d.h. verschoben oder ein Mengenstellglied verdreht wird, sondern ganz allgemein auf jede gesteuerte Einspritzeinheit, wie z.B. auch auf Magnetventile.Regarding the term "actuator" used, it should be noted that the invention relates not only to those injection elements in which, for example, a control rod is adjusted, i.e. moved or a quantity actuator is rotated, but in general on each controlled injection unit, such as also on solenoid valves.

Beispielsweise in Nähe des Schwungrades 4 des Motors 1 ist ein Drehzahlsensor 5 vorgesehen, der an dem Schwungrad 4 eingesetzte, hier nicht gezeigte Stifte abtastet und dement­sprechend während der Motordrehung Impulse liefert, die be­stimmten Winkelstellungen des Schwungrades 4 entsprechen. Derartige Drehzahlsensoren sind gleichfalls bekannt und bei­spielsweise in der DE-A-31 22 533 (Fig. 3 und dazugehörige Beschreibung) geoffenbart. Es können aus Sicherheitsgründen auch zwei Drehzahlsensoren verwendet werden, wobei als ein Drehzahlsensor die Lichtmaschine des Fahrzeuges herangezo­gen werden kann, wie in der DE-A-35 01 435 der Anmelderin beschrieben. Es sind noch weitere Sensoren 6 vorgesehen, die Signale mit Informationen über diverse Betriebszustände des Motors 1 bzw. des Fahrzeuges liefern, z.B. Temperatur- und Drucksensoren. Auch ist im allgemeinen in jeder Pumpedüse 2-i ein Nadelhubsensor 7-i vorgesehen, der eine Information über die Lage der Ventilnadel eines Einspritzventils lie­fert, wie z.B. in der DE-A-37 26 712 der Anmelderin beschrieben.For example, in the vicinity of the flywheel 4 of the engine 1, a speed sensor 5 is provided, which scans pins, not shown here, inserted on the flywheel 4 and accordingly delivers pulses during engine rotation which correspond to specific angular positions of the flywheel 4. Such speed sensors are also known and are disclosed, for example, in DE-A-31 22 533 (FIG. 3 and associated description). For safety reasons, two speed sensors can also be used, the alternator of the vehicle being able to be used as a speed sensor, as described in DE-A-35 01 435 by the applicant. Further sensors 6 are also provided, which provide signals with information about various operating states of the engine 1 or of the vehicle, e.g. Temperature and pressure sensors. In addition, a needle stroke sensor 7-i is generally provided in each pump nozzle 2-i, which provides information about the position of the valve needle of an injection valve, e.g. in DE-A-37 26 712 of the applicant.

Für die Regelung bzw. Steuerung des Motors 1 wird in bekann­ter Weise ein elektronischer Regler, hier Basisregler 8 ge­ nannt, herangezogen. Ein solcher Regler enthält Rechenein­heiten, die aus zugeführten Betriebsgrößensignalen ein Aus­gangssignal RW errechnen, welches über die Servoantriebe 3-i die augenblickliche Lage des Mengenstellgliedes jeder Pumpe­düse 2-i und damit die einzuspritzende Kraftstoffmenge be­stimmt. Dem Basisregler 8 sind somit die Betriebsgrößensig­nale der Sensoren 6 und 7-i zugeführt und zumindest ein Ausgangssignal eines Drehzahlrechners 9, der eine mittlere Drehzahl bzw. ein entsprechendes Signal n ermittelt. Die Be­rechnung von Drehzahlsignalen bzw. mittleren Drehzahlen ist gleichfalls bekannt, wobei auf die DE-Anmeldung 38 08 819 der Anmelderin und die dort zitierte Literatur verwiesen wird. Der Drehzahlrechner 9 ist im allgemeinen Teil des Ba­sisreglers 8 und nur hier, der Übersichtlichkeit halber, von diesem getrennt dargestellt. Schließlich ist dem Basisregler noch das Ausgangssignal eines Fahrpedalstellungsgebers 10 zugeführt.For the regulation or control of the motor 1 is an electronic controller, here basic controller 8 ge in a known manner called, brought up. Such a controller contains computing units which calculate an output signal RW from supplied operating variable signals, which, via the servo drives 3-i, determines the current position of the quantity control element of each pump nozzle 2-i and thus the amount of fuel to be injected. The operating variable signals of the sensors 6 and 7-i are thus fed to the basic controller 8 and at least one output signal of a speed computer 9, which is an average speed or a corresponding signal n determined. The calculation of speed signals or average speeds is also known, reference being made to the applicant's DE application 38 08 819 and the literature cited therein. The speed calculator 9 is shown in the general part of the basic controller 8 and only here, for the sake of clarity, separately from it. Finally, the output signal of an accelerator pedal position sensor 10 is fed to the basic controller.

Ein Basisregler 8, wie hier verwendet, weist im allgemeinen eine PID-Regelcharakteristik auf, wie dies z.B. aus der DE-A-27 35 596 hervorgeht. Er bildet, vom Prinzip her, über den die Servoantriebe 3-i, den Motor 1 und den Drehzahlsen­sor 5 eine geschlossene Regelschleife, wobei die Ist-Größe die mittlere Drehzahl n ist und die Sollgröße im Basisregler 8 in Abhängigkeit der zugeführten Betriebsgrößensignale, von welchen selbstverständlich das die Fahrpedalstellung anzei­gende ein wesentliches Signal ist, errechnet wird.A basic controller 8, as used here, generally has a PID control characteristic, as can be seen, for example, from DE-A-27 35 596. It forms, in principle, via which the servo drives 3-i, the motor 1 and the speed sensor 5 form a closed control loop, the actual variable being the average speed n and the target variable in the basic controller 8 is calculated as a function of the supplied operating variable signals, of which of course the signal indicating the accelerator pedal position is an essential signal.

Zusätzlich zu der Regelung durch den Basisregler erfolgt ei­ne Einzelzylinderregelung, die im folgenden näher erläutert wird. Einer Vergleichereinheit 11 wird das mittlere Drehzahl­signal n sowie ein gleichfalls in dem Drehzahlrechner 9 er­mitteltes, zylinderspezifisches Drehzahlsignal ni zugeführt. Dieses Signal ni wird durch Messung der Zeitdauer Ti über die Verbrennungshübe der einzelnen Zylinder ermittelt, und zwar durch Zeitzählung in einem Zeitzähler 12 und Kehrwert­bildung in einem Kehrwertbildner 13. Der Zeitzähler 12, der Kehrwertbildner 13 und ein Mittelwertbildner 14 sind hier als Blöcke des Drehzahlrechners 9 dargestellt (Fig. 2). Die Zeitzählung erfolgt dabei zwischen Impulsen des Drehzahlsen­sors 5, die Stiften an dem Schwungrad 4 und aufeinanderfol­genden oberen Totpunkten der Zylinder (in der zeitlichen Reihenfolge des Zündens) entsprechen. Die Impulse müssen nicht genau dem oberen Totpunkt entsprechen, sie können je­der auch einen kleinen Drehwinkel vor oder nach dem oberen Totpunkt erzeugt werden, sollten jedoch im wesentlichen in Nähe des oberen Totpunktes auftreten, da man in diesem Fall die zuverlässigste Information über die Drehzahlschwankungen erhält.In addition to the control by the basic controller, there is a single cylinder control, which is explained in more detail below. The middle speed signal becomes a comparator unit 11 n and also a cylinder-specific speed signal n i determined in the speed computer 9. This signal n i is determined by measuring the time period T i via the combustion strokes of the individual cylinders, specifically by counting the time in a time counter 12 and generating reciprocal values in a reciprocal value generator 13. The time counter 12, the reciprocal value generator 13 and an average value generator 14 are here shown as blocks of the speed calculator 9 (Fig. 2). The time is counted between pulses from the speed sensor 5, which correspond to pins on the flywheel 4 and successive top dead centers of the cylinders (in the chronological order of ignition). The pulses do not have to correspond exactly to the top dead center, they can also each be generated a small angle of rotation before or after top dead center, but should occur essentially in the vicinity of top dead center, since in this case the most reliable information about the speed fluctuations is obtained.

Wie aus Fig. 2 hervorgeht, enthält die Vergleichereinheit 11 bei diesem Ausführungsbeispiel ein Subtrahierglied 15 dem das mittlere bzw. das zylinderspezifische Drehzahlsignal n bzw. ni zugeführt sind, sowie einen dem Subtrahierglied nachgeschalteter Signumgenerator 16, der einen Änderungswert +1 ausgibt, falls ni < n, und einen Änderungswert -1, falls ni > n. Soferne die zylinderspezifische Drehzahl ni nicht oder nicht wesentliche von der mittleren Drehzahl n abweicht, wird kein Änderungswert ausgegeben. Die Vergleichereinheit 11 kann aber ganz allgemein einen Änderungswert Δ Qi ausge­ben, dessen Größe auch von dem Maß der Abweichung zwischen ni und n abhängen kann, wie in Fig. 1 am Ausgang der Ver­gleichereinheit 11 mit Δ Qi angegeben.As can be seen from FIG. 2, the comparator unit 11 in this exemplary embodiment contains a subtractor 15 to which the middle or cylinder-specific speed signal n or n i are fed, and a signal generator 16 connected downstream of the subtractor, which outputs a change value +1 if n i < n , and a change value -1 if n i > n . If the cylinder-specific speed n i does not differ from the mean speed, or not significantly n deviates, no change value is output. However, the comparator unit 11 can generally output a change value Δ Q i , the size of which also depends on the measure of the deviation between n i and n can depend, as indicated in Fig. 1 at the output of the comparator unit 11 with Δ Q i .

Die Änderungswerte Δ Qi bilden den Ausgangspunkt für die Einzelzylinderregelung, denn diesen Änderungswerten entspre­chend sollen die jeweiligen Zylinder mehr oder weniger Kraftstoff erhalten, damit eine Laufunruhe ausgeglichen wird. Die Änderungswerte Δ Qi werden über eine Speicheran­steuereinheit 17 und eine Speicherbereichauswahleinheit 18 einem Korrekturwertspeicher 19 zugeführt, der z, hier z=6, Zylinderspeicher 19-i mit je k Speicherbereichen 19-ij auf­weist. Dies geht aus Fig. 2 hervor, wo für den Zylinderspei­cher 19-1 die Aufteilung in drei Speicherbereiche 19-1j ge­zeigt ist.The change values Δ Q i form the starting point for the single-cylinder control, because according to these change values the respective cylinders should receive more or less fuel so that uneven running is compensated for. The change values Δ Q i are fed via a memory control unit 17 and a memory area selection unit 18 to a correction value memory 19 which has z, here z = 6, cylinder memories 19-i with k memory areas 19-ij each. This can be seen from FIG. 2, where the division into three memory areas 19-1j is shown for the cylinder memory 19-1.

Für die erforderliche Synchronisierung ist eine Synchroni­siereinheit 20 vorgesehen, der einerseits das Signal des Drehzahlsensors 5 und andererseits das Signal zumindest ei­ner der Nadelhubsensoren 7-i zugeführt sind, sodaß eine ab­solute, d.h. zylinderbezogene Synchronisierung möglich ist. Anstelle des Signals eines Nadelhubsensors kann ebensogut ein anderes Signal verwendet werden, das z.B. von sich bewe­genden Motorteilen abgeleitet ist und die Absolutsynchroni­sierung ermöglicht. Im Falle der Anwendung der Erfindung auf einen Ottomotor könnte es sich z.B. um von der eleketrischen Zündung abgeleitete Signale handeln.A synchronization unit 20 is provided for the necessary synchronization, to which the signal of the speed sensor 5 and on the other hand the signal of at least one of the needle lift sensors 7-i are supplied, so that an absolute, i.e. cylinder-related synchronization is possible. Instead of the signal from a needle stroke sensor, another signal can also be used, e.g. is derived from moving engine parts and enables absolute synchronization. If the invention is applied to a gasoline engine, it could e.g. are signals derived from the electrical ignition.

Die Synchronisierteinheit 20 steuert die Speicheransteuerein­heit 17 mittels eines Synchronisiersignales s so, daß die Änderungswerte Δ Qi immer in den zugeordneten Zylinderspei­cher 19-i gelangen. In Fig. 2 ist dies durch einen gesteuer­ten Schalter 21 veranschaulicht. Aus Fig. 2 geht weiters ein gesteuerter Schalter 22 hervor, der zwischen der Ver­gleichereinheit 11 und der Speicheransteuereinheit 17 liegt und hier als Multiplikator dargestellt ist. Der Schalter 22 ist von einem Statussignal st der Synchronisiereinheit 20 gesteuert. Diese Statussignal weist den Wert "0" auf, so­lange keine Synchronisation erfolgt ist, was z.B. bei Star­ten das Motors möglich ist, und den Wert "1", wenn Synchro­nisation vorliegt. Somit erfolgt eine Weitergabe der Ände­rungswerte Δ Qi nur bei bestehender Synchronisation.The synchronizing unit 20 controls the memory control unit 17 by means of a synchronizing signal s in such a way that the change values Δ Q i always reach the assigned cylinder memory 19-i. This is illustrated in FIG. 2 by a controlled switch 21. 2 also shows a controlled switch 22 which is located between the comparator unit 11 and the memory control unit 17 and is shown here as a multiplier. The switch 22 is controlled by a status signal st of the synchronization unit 20. This status signal has the value "0" as long as no synchronization has taken place, which is possible, for example, when starting the engine, and the value "1" if synchronization is present. The change values .DELTA.Q i are thus only passed on with existing synchronization.

Die Speicherbereichsauswahleinheit 18 besteht beispielsweise, wie Fig. 2 zeigt, aus je z gesteuerten Schaltern 23-i, 24-i am Eingang bzw. am Ausgang jedes Zylinderspeichers 19-i, wo­bei jeder Schalter k Stellung aufweist. Sämtliche z Schal­ter 23-i, 24-i werden im Beispiel nach Fig. 2 von einem Drehzahlbereichdiskriminator 25 gesteuert, welchem das mitt­lere Drehzahlsignal n zugeführt ist und der über die Schal­ter 23-i, 24-i dem Drehzahlbereich entsprechend einen diesem Drehzahlbereich zugeordneten Speicherbereich 19-ij mit dem Ein- und Ausgang jedes Zylinderspeichers 19-i verbindet. Bei dem Beispiel nach Fig. 2 erfolgt somit die Bereichsauswahl ausschließlich nach dem Auswahlkriterium "mittlere Motor­drehzahl", doch es können der Funktion der Speicherbereichs­auswahleinheit 18 auch andere Betriebsgrößensignale zuge­führt werden, wie gemäß Fig. 1 ein Signal r, dessen Größe für den mittleren Verstellweg der Mengenstellglieder der Pumpedüsen 2-i charakteristisch ist. Damit stellt jeder Zy­linderspeicher 19-i ein dreidimensionales Korrekturfeld für jeden Zylinder dar.The memory area selection unit 18, for example, as shown in FIG. 2, consists of z-controlled switches 23-i, 24-i at the input and at the output of each cylinder memory 19-i, each switch having a k position. In the example according to FIG. 2, all z switches 23-i, 24-i are controlled by a speed range discriminator 25, which is the mean speed signal n is fed and connects via the switches 23-i, 24-i to the speed range corresponding to this speed range memory area 19-ij with the input and output of each cylinder memory 19-i. In the example according to FIG. 2, the range is thus selected exclusively according to the selection criterion "average engine speed", but other operating variable signals can also be supplied to the function of the memory area selection unit 18, such as a signal r according to FIG. Each cylinder memory 19-i thus represents a three-dimensional correction field for each cylinder.

Die Zylinderspeicher 19-i bzw. deren Speicherbereiche 19-ij sind je als summierende oder integrierende Speicher ausge­bildet, sodaß sich der abgespeicherte Korrekturwert Δ RWij je nach Vorzeichen (und Größe) des entsprechenden, zugeführten Änderungswertes Δ Qi erhöht oder erniedrigt. Gewünschtenfalls können die Korrekturwerte Δ RWi vor ihrer Zuführung an je einen Summierer 26-i, in dem sie zu dem je­weiligen Ausgangssignal RW des Basisreglers 8 addiert wer­den, in je einem Multiplikator 27-i mit einem Dynamikanpas­sungsfaktor KEZR multipliziert werden. Dies ist unter Um­ständen wegen der digitalen Erarbeitung der Korrekturwerte aus numerischen Gründen zweckmäßig.The cylinder memories 19-i and their memory areas 19-ij are each designed as summing or integrating memories, so that the stored correction value Δ RW ij increases or decreases depending on the sign (and size) of the corresponding supplied change value Δ Q i . If desired, the correction values Δ RW i may be multiplied in a respective multiplier 27-i with a dynamic adjustment factor K EZR before their supply to a respective summer 26-i, in which they are added to the respective output signal RW of the base regulator 8. This may be advisable due to the digital development of the correction values for numerical reasons.

In Fig. 2 sind die Summierer 26-i mit einem zusätzlichen Subtrahiereingang gezeichnet, dem je ein Rückmeldersignal m eines Stellgliedrückmelders 28-i zugeführt ist. Die Servoan­triebe 3-i weisen nämlich einen analogen Servoregler 29-i auf, der auf das mit dem Rückmelder 28 mechanisch verbundene Stellglied 30-i wirkt. Hiedurch ist für das Stellglied jeder Pumpedüse 2-i ein geschlossener Servokreis gegeben. Hin­sichtlich näherer Details derartiger Servokreise kann auf die DE-A-37 40 443 der Anmelderin verwiesen werden.2, the summers 26-i are drawn with an additional subtracting input, to each of which a feedback signal m from an actuator feedback 28-i is supplied. The servo drives 3-i namely have an analog servo controller 29-i which acts on the actuator 30-i mechanically connected to the feedback 28. This provides a closed servo circuit for the actuator of each pump nozzle 2-i. With regard to further details of such servo circuits, reference can be made to the applicant's DE-A-37 40 443.

In Fig. 2a ist eine Modifikation der Zylinderspeicher 19-i gezeigt, bei welcher jeden Speicherbereich 19-ij eine Interpolations- und Recheneinheit 31 zugeordnet ist. Diese Einheit übernimmt einerseits die Funktion der Schalter 23-i, 24-i der Fig. 2 und ermöglicht andererseits eine In­terpolation zwischen Drehzahlstützpunkten nj. Dies bedeutet, daß die Speicherbereiche 19-ij diskreten Drehzahlwerten zu­geordnet sind und dank der Einheit 31 die Ausgabe interpo­lierter Zwischenwerte möglich ist.A modification of the cylinder memories 19-i is shown in FIG. 2a, in which an interpolation and arithmetic unit 31 is assigned to each memory area 19-ij. This unit takes on the one hand the function of the switches 23-i, 24-i of FIG. 2 and on the other hand enables an interpolation between speed bases n j . This means, that the memory areas 19-ij are assigned to discrete speed values and, thanks to the unit 31, the output of interpolated intermediate values is possible.

Aus Fig. 1 und 2 geht weiters ein Driftkompensator 32 her­vor, der ein "Davonlaufen" der Korrekturwerte verhindert. Während z.B. längerer Beschleunigungsphasen liegt der Mit­telwert der Drehzahl naturgemäß unter den zylinderspezifi­schen Drehzahlwerten und die Einzelzylinderregelung würde in diesem Fall bei allen Zylindern eine unerwünschte Korrektur zu geringeren Kraftstoffmengen hin versuchen. Die Regelung würde instabil werden, zumindest aber wären rasch alle Ein­zelspeicher bzw. Speicherbereiche an einem Begrenzungswert angelangt, der ein weiteres Regeln erschwert. Der Driftkom­pensator 32 weist k Summierer 33-j auf (Fig. 2), wobei jedem Summierer die je z Korrekturwerte der Speicherbereiche 19-ij mit gleichem Index j zugeführt sind. In je einem Dividierer 34-j wird der arithmetische Mittelwert Δ RWij/z gebildet. Jedem Eingang jedes Speicherbereiches 19-ij ist ein Subtra­hierglied 35-ij 35-ij vorgeschaltet, dem einerseits der von der Vergleichereinheit 11 ermittelte und durch die Aus­wahleinheit 18 zugeordnete Änderungswert Δ Qij und anderer­seits der von dem entsprechenden Dividierer 34-j stammende Mittelwert der Korrekturwerte zugeführt ist.1 and 2 also show a drift compensator 32 which prevents the correction values from "running away". During longer acceleration phases, for example, the mean value of the engine speed is naturally lower than the cylinder-specific engine speed values, and in this case the single-cylinder control would attempt an undesirable correction for lower amounts of fuel in all cylinders. The regulation would become unstable, but at least all the individual memories or memory areas would quickly have reached a limit value which would make further regulation difficult. The drift compensator 32 has k summers 33-j (FIG. 2), each summator being supplied with the z correction values of the memory areas 19-ij with the same index j. The arithmetic mean value Δ RW ij / z is formed in each divider 34-j. A subtractor 35-ij 35-ij is connected upstream of each input of each memory area 19-ij, on the one hand the change value Δ Q ij determined by the comparator unit 11 and assigned by the selection unit 18 and on the other hand the mean value of the correction values coming from the corresponding divider 34-j is fed.

Dem Driftkompensator 32 ist noch ein Aktivierungssignal as (Fig. 1) der Synchronisiereinheit 20 zugeführt, das umdre­hungssynchron auftritt, beispielsweise alle 10 oder 20 Um­drehungen, und die tatsächliche Berechnung bzw. Ausgabe des arithmetischen Mittelwertes an die Subtrahierglieder 35-ij bewirkt, wozu gesteuerte Schalter (nicht gezeigt) od.dgl. vorgesehen sein können. Alternativ kann das Aktivierungssig­nal as auch in festen Zeitabständen, z.B. jede Sekunde auf­treten, wobei es in diesem Fall in einer Uhr erzeugt wird. Es ist nämlich keineswegs erforderlich die Driftkompensation bei jedem Verbrennungshub vorzunehmen, sodaß man Rechenzeit für andere Berechnungen einsparen kann, wenn die Driftkom­pensation bloß in Zeitabständen vorgenommen wird, zu welchen sie wahrscheinlich erforderlich ist.The drift compensator 32 is also supplied with an activation signal as (FIG. 1) of the synchronizing unit 20, which occurs synchronously with the rotation, for example every 10 or 20 revolutions, and the actual calculation or output of the arithmetic mean value to the subtracting elements 35-ij causes controlled switches (Not shown) or the like. can be provided. Alternatively, the activation signal as can also occur at fixed time intervals, for example every second, in which case it is generated in a clock. It is in no way necessary to carry out the drift compensation with each combustion stroke, so that computing time can be saved for other calculations if the drift compensation is only carried out at intervals at which it is likely to be required.

Eine mögliche Ausführung der Speicherbereiche 19-ij ist in Fig. 2 für den ersten Zylinderspeicher 19-1 dargestellt. Je­der Speicherbereich 19-1k wirkt als digitaler Integrator bzw. Summierer mit Begrenzung. Am Eingang einer Begrenzungs­einheit 36-1j liegt ein Summierglied 37-1j, dem einerseits das Ausgangssignal des entsprechenden Subtrahiergliedes 35-1j des Driftkompensators 32 und andererseits das Aus­gangssignal eines im Rückkopplungszweig des Integrators 19-1j liegenden Rücksetzelementes 38-1j (Symbol z⁻¹: vgl. Isermann, "Digitale Regelsysteme", Springerverlag, Berlin/Heidelberg 1977) zugeführt ist. Solche Speicher gehören dem Stand der Technik an.A possible embodiment of the memory areas 19-ij is shown in FIG. 2 for the first cylinder memory 19-1. Each memory area 19-1k acts as a digital integrator or totalizer with limitation. At the input of a limiting unit 36-1j is a summing element 37-1j, on the one hand the output signal of the corresponding subtracting element 35-1j of the drift compensator 32 and on the other hand the output signal of a reset element 38-1j located in the feedback branch of the integrator 19-1j (symbol z⁻¹: see Isermann, "Digital Control Systems", Springerverlag, Berlin / Heidelberg 1977). Such memories belong to the prior art.

Jeder Speicherbereich mit Begrenzereinheit 36-1j kann zur Abgabe eines Indikatorsignales eingerichtet sein, das auf­tritt, falls der abgespeicherte Korrekturwert Δ RW-ij eine obere oder untere Begrenzung erreicht. Dies ist in Fig. 2 für den ersten Zylinderspeicher 19-1 für einen Speicherbe­reich 19-1j mit dem Signal d-1j angedeutet. Alle Indikator­signale d-ij können einer ODER-Verknüpfung zugeführt und zur Auslösung einer Fehleranzeige oder eines Alarmsignales herangezogen werden.Each memory area with limiter unit 36-1j can be set up to emit an indicator signal which occurs if the stored correction value Δ RW-ij reaches an upper or lower limit. This is indicated in Fig. 2 for the first cylinder memory 19-1 for a memory area 19-1j with the signal d-1j. All indicator signals d-ij can be OR-fed and used to trigger an error display or an alarm signal.

In der Zeichnung sind Blockschaltbilder mit einzelnen Funk­tionsblöcken dargestellt, doch sind in der praktischen Aus­führung alle oder die meisten der Funktionsblöcke software­mäßig in einem Mikrorechner oder einem Mikrorechnersystem realisiert. Ein möglicher Programmablauf hiezu ist in dem Struktogramm nach Fig. 3 veranschaulicht, das in Hinblick auf die vorgehenden Ausführungen keiner näheren Erläuterung bedarf.The drawing shows block diagrams with individual function blocks, but in practice, all or most of the function blocks are implemented by software in a microcomputer or a microcomputer system. A possible program sequence for this purpose is illustrated in the structure diagram according to FIG. 3, which does not require any further explanation in view of the above explanations.

Claims (15)

1. Einrichtung zum Steuern und Regeln der Brennkraftmaschine eines Fahrzeuges, insbesondere eines Dieselmotors, mit einem Basisregler (8), dem Signale von Gebern und Sensoren zur Er­fassung von Betriebsgrößen des Motors bzw. Fahrzeuges, wie z.B. der Drehzahl, der Gaspedalstellung, der Motortemperatur etc. zugeführt sind, und ein Ausgangssignal des Basisreglers zur Einstellung der dem Motor zugeführten Kraftstoff- und/oder Luftmenge herangezogen ist, mit einem Drehzahlrechner (9), dem Signale eines Drehzahlsensors (5) zugeführt sind und der zur Berechnung einer zylinderspezifischen Drehzahl (ni) jedes Zylinders sowie zur Ermittlung eines mittleren Dreh­zahlsignals (n) eingerichtet ist, mit einer Vergleicherein­heit (11) zur Ausgabe positiver oder negativer Änderungswer­te (Δ Qi) für jeden Zylinder, falls die zylinderspezifischen Drehzahlen (ni) unter oder oberhalb der mittleren Drehzahl (n) liegen, mit einem Korrekturwertspeicher (19) mit z Zy­linderspeichern (19-i) für die zylinderspezifischen Korrek­turwerte, wobei den Zylinderspeicher (19-i), synchronisiert von einer Synchronisiereinheit (20), die Änderungswerte (Δ Qi) zuführbar sind, sowie mit einer Summiereinrichtung, der das Ausgangssignal des Basisreglers (RW) sowie die Korrek­turwerte des Korrekturwertspeichers (19) zuführbar sind, da­durch gekennzeichnet, daß jedem Zylinder ein eigenes Stell­glied für die Kraftstoffmenge zugeordnet ist, wobei das Aus­gangssignal jedes Zylinderspeichers (19-i) zusammen mit dem Ausgangssignal des Basisreglers (8) je einer Ansteuerein­heit (3-i) für das zugeordnete Stellglied zugeführt ist, je­der Zylinderspeicher (19-i) k arbeitspunktabhängige Spei­cherbereiche (19-ij) aufweist, eine Speicherbereichauswahl­einheit (18) vorgesehen ist, der das mittlere Drehzahlsig­nal (n) und/oder andere Betriebsgrößen, wie mittlerer Stellgliedweg, Motortemperatur etc., als Auswahlkriterien zugeführt sind und die Speicherbereichauswahleinheit (18) in Abhängigkeit von diesen Auswahlkriterien nach einer vorgege­benen Auswahlcharakteristik über eine von ihr angesteuerte Zuordnungseinheit (23-i, 24-i; 31) Ein-und Ausgang jedes Zy­linderspeichers (19-i) einem ausgewählten Speicherbereich bzw. ausgewählten Speicherbereichen zuordnet.1.Device for controlling and regulating the internal combustion engine of a vehicle, in particular a diesel engine, with a basic controller (8), the signals from sensors and sensors for recording operating variables of the engine or vehicle, such as the speed, the accelerator pedal position, the engine temperature, etc. ., and an output signal of the basic controller is used to adjust the amount of fuel and / or air supplied to the engine, with a speed computer (9) to which signals from a speed sensor (5) are supplied and which is used to calculate a cylinder-specific speed (n i ) of each cylinder and to determine an average speed signal ( n ) is set up, with a comparator unit (11) for outputting positive or negative change values (Δ Q i ) for each cylinder if the cylinder-specific speeds (n i ) are below or above the average speed ( n ), with a correction value memory (19) with z cylinder memories (19-i) for the cylinder-specific correction values, the cylinder memory (19-i), synchronized by a synchronization unit (20), the change values (Δ Q i ) can be fed, and with a summing device to which the output signal of the basic controller (R W ) and the correction values of the correction value memory (19) can be fed, characterized in that each cylinder is assigned its own actuator for the fuel quantity, the output signal of each cylinder memory (19-i) being combined with the output signal of the basic controller (8) a control unit (3-i) for the assigned actuator is supplied, each cylinder memory (19-i) has k operating point-dependent memory areas (19-ij), a memory area selection unit (18) is provided, which average speed signal ( n ) and / or other operating variables, such as average actuator travel, engine temperature etc., are supplied as selection criteria and the memory area selection unit (18) depending on these selection criteria according to a predetermined selection characteristic via an assignment unit (23-i, 24-i; 31 ) Assigns the input and output of each cylinder memory (19-i) to a selected memory area or selected memory areas. 2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Speicherbereichauswahleinheit (18) das mittlere Dreh­zahlsignal (n) zugeführt ist, die Auswahl nach k Drehzahlbe­reichen erfolgt und jeder Zylinderspeicher (19-i) k Speicher­bereiche (19-ij) aufweist.2. Device according to claim 1, characterized in that the memory area selection unit (18) the average speed signal ( n ) is supplied, the selection is made according to k speed ranges and each cylinder memory (19-i) has k memory areas (19-ij). 3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeich­net, daß ein Driftkompensator (32) vorgesehen ist, dem die in dem Korrekturwertspeicher (19) abgelegten z.k Korrek­turwerte der je k Speicherbereiche (19-ij) aller z Zylinder­speicher (19-i) zugeführt sind und der zur Bildung von k Mit­telwerten der je z Korrekturwerte der ersten bis k-ten Spei­cherbereiche (19-ij) eingerichtet ist und jedem Eingang jedes Speicherbereiches (19-ij) der z Zylinderspeicher (19-i) ein Subtrahierglied (35-ij) vorgeschlatet ist, dem einerseits der in der Vergleichereinheit (11) ermittelte Korrekturwert und andererseits der im Driftkompensator (32) gebildete, zugehö­rige Mittelwert zugeführt ist.3. Device according to claim 1 or 2, characterized in that a drift compensator (32) is provided, to which the zk correction values of the k storage areas (19-ij) of all z cylinder memories (19-i) stored in the correction value memory (19) are supplied and which is set up to form k mean values of the z correction values of the first to kth memory areas (19-ij) and each input of each memory area (19-ij) of the z cylinder memory (19-i) has a subtractor (35-ij ), to which on the one hand the correction value determined in the comparator unit (11) and on the other hand the associated mean value formed in the drift compensator (32) is supplied. 4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die Mittelwertbildung im Driftkompensator (32) in aufeinan­derfolgenden festen Zeitabständen oder drehzahlsynchron erfolgt.4. Device according to claim 3, characterized in that the averaging in the drift compensator (32) takes place in successive fixed time intervals or speed-synchronously. 5. Einrichtung nach Anspurch 4, dadurch gekennzeichnet, daß dem Driftkompensator (32) Aktivierungssignale (as) der Synchronisiereinheit (20) zugeführt sind.5. Device according to Anspurch 4, characterized in that the drift compensator (32) activation signals (as) of the synchronization unit (20) are supplied. 6. Einrichtung nach einem der Ansprüche 3 bis 5, dadurch ge­kennzeichnet, daß der Driftkompensator (32) zur Bildung des arithmetischen Mittelwertes der Korrekturwerte eingerichtet ist.6. Device according to one of claims 3 to 5, characterized in that the drift compensator (32) is set up to form the arithmetic mean of the correction values. 7. Einrichtung nach einem der Ansprüche 1 bis 6, dadurch ge­kennzeichnet, daß dem Korrekturwertspeicher (19) eine von der Synchronisiereinheit (20) synchronisierte Speicheran­steuereinheit (17) zur zylinderspezifischen Zuordnung der jeweiligen Korrekturwerte an die Zylinderspeicher (19-i) vorge­schaltet ist.7. Device according to one of claims 1 to 6, characterized in that the correction value memory (19) from the synchronization unit (20) synchronized memory control unit (17) for cylinder-specific assignment of respective correction values upstream of the cylinder memory (19-i). 8. Einrichtung nach einem der Ansprüche 1 bis 7, dadurch ge­kennzeichnet, daß jeder Speicherbereich (19-ij) der Zylin­derspeicher (19-i) des Korrekturwertspeichers (19) als sum­mierender bzw. integrierender Speicher ausgebildet ist.8. Device according to one of claims 1 to 7, characterized in that each memory area (19-ij) of the cylinder memory (19-i) of the correction value memory (19) is designed as a summing or integrating memory. 9. Einrichtung nach einem der Ansprüche 1 bis 8, dadurch ge­kennzeichnet, daß vorzugsweise jeder Speicherbereich (19-ij) der Zylinderspeicher (19-i) des Korrekturwertspeichers (19) einen Begrenzer (36-ij) enthält.9. Device according to one of claims 1 to 8, characterized in that preferably each memory area (19-ij) of the cylinder memory (19-i) of the correction value memory (19) contains a limiter (36-ij). 10. Einrichtung nach Anspruch 9, dadurch gekennzeichnet, daß jeder Begrenzer (36-ij) zur Abgabe eines Indikatorsignales (d-ij) bei Erreichen des festgelegten Grenzwertes einge­richtet ist.10. Device according to claim 9, characterized in that each limiter (36-ij) is set up to emit an indicator signal (d-ij) when the defined limit value is reached. 11. Einrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß zumindest eine, den Speicherbereichen (19-ij) jedes Zylinderspeichers (19-i) zugeordnete Interpolations- und Recheneinheit (31) vorgesehen ist.11. Device according to one of claims 1 to 10, characterized in that at least one, the memory areas (19-ij) of each cylinder memory (19-i) associated interpolation and computing unit (31) is provided. 12. Einrichtung nach einem der Ansprüche 1 bis 11, dadurch ge­kennzeichnet, daß der Synchronisiereinheit (20) Ausgangssig­nale eines Drehzahlgebers (5) und mindestens eines Nadel­hubsensors (7-i) zugeführt sind.12. Device according to one of claims 1 to 11, characterized in that the synchronization unit (20) output signals of a speed sensor (5) and at least one needle stroke sensor (7-i) are supplied. 13. Einrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Synchronisiereinheit (20) zur Abgabe eines Synchronisier-Statussignales (st) eingerichtet ist, welches die Änderung der Korrketurwerte nur ermöglicht, falls der Synchronisierstatus erreicht ist.13. Device according to one of claims 1 to 12, characterized in that the synchronization unit (20) is set up to emit a synchronization status signal (s t ), which only allows the correction values to be changed if the synchronization status has been reached. 14. Einrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß jedem der z Zylinderspeicher (19-i) ein Multiplikator (27-i) zur Multiplikation mit einem konstanten Dynamikanpassungsfaktor (KEZR) nachgeordnet ist.14. Device according to one of claims 1 to 13, characterized in that each of the z cylinder memory (19-i) is followed by a multiplier (27-i) for multiplication by a constant dynamic adaptation factor (K EZR ). 15. Einrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß der Drehzahlrechner (9) zur Ermittlung der zylinderspezifischen Drehzahl (ni) durch Messung der Dauer (Ti) des jeweiligen Verbrennungshubes eingerichtet ist, die im Bereich des oberen Totpunktes eines Zylinders beginnt und im Bereich des oberen Totpunktes des nächstzün­denden Zylinders endet.15. Device according to one of claims 1 to 14, characterized in that the speed computer (9) for determining the cylinder-specific speed (n i ) is set up by measuring the duration (T i ) of the respective combustion stroke, which in the area of top dead center Cylinder begins and ends at the top dead center of the next firing cylinder.
EP89890172A 1988-07-04 1989-06-20 Device for controlling and regulating the combustion engine of a vehicle Expired - Lifetime EP0353217B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89890172T ATE78898T1 (en) 1988-07-04 1989-06-20 DEVICE FOR CONTROLLING AND REGULATING THE INTERNAL COMBUSTION ENGINE OF A VEHICLE.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3822582 1988-07-04
DE3822582A DE3822582A1 (en) 1988-07-04 1988-07-04 DEVICE FOR CONTROLLING AND REGULATING THE INTERNAL COMBUSTION ENGINE OF A VEHICLE

Publications (2)

Publication Number Publication Date
EP0353217A1 true EP0353217A1 (en) 1990-01-31
EP0353217B1 EP0353217B1 (en) 1992-07-29

Family

ID=6357912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89890172A Expired - Lifetime EP0353217B1 (en) 1988-07-04 1989-06-20 Device for controlling and regulating the combustion engine of a vehicle

Country Status (4)

Country Link
EP (1) EP0353217B1 (en)
AT (1) ATE78898T1 (en)
DE (2) DE3822582A1 (en)
ES (1) ES2034768T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3906083A1 (en) * 1989-02-27 1990-08-30 Voest Alpine Automotive DEVICE FOR CONTROLLING AND REGULATING A DIESEL INTERNAL COMBUSTION ENGINE
DE10047003A1 (en) * 2000-09-22 2002-04-25 Bosch Gmbh Robert Method for operating an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517948A (en) * 1982-08-03 1985-05-21 Nippondenso Co., Ltd. Method and apparatus for controlling air-fuel ratio in internal combustion engines
GB2163276A (en) * 1984-07-20 1986-02-19 Fuji Heavy Ind Ltd I.C. engine adaptive mixture control system having sensor failure compensation
US4627402A (en) * 1984-11-14 1986-12-09 Nippon Soken, Inc. Method and apparatus for controlling air-fuel ratio in internal combustion engine
EP0140065B1 (en) * 1983-10-04 1988-12-07 Robert Bosch Gmbh Electronic apparatus for controlling the fuel amount in an internal combusion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495920A (en) * 1982-04-09 1985-01-29 Nippondenso Co., Ltd. Engine control system and method for minimizing cylinder-to-cylinder speed variations

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517948A (en) * 1982-08-03 1985-05-21 Nippondenso Co., Ltd. Method and apparatus for controlling air-fuel ratio in internal combustion engines
EP0140065B1 (en) * 1983-10-04 1988-12-07 Robert Bosch Gmbh Electronic apparatus for controlling the fuel amount in an internal combusion engine
GB2163276A (en) * 1984-07-20 1986-02-19 Fuji Heavy Ind Ltd I.C. engine adaptive mixture control system having sensor failure compensation
US4627402A (en) * 1984-11-14 1986-12-09 Nippon Soken, Inc. Method and apparatus for controlling air-fuel ratio in internal combustion engine

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 163 (M-487)[2219] 11. Juni 1986; & JP-A-61 14 446 (NIPPON DENSO K.K.) 22-01-1986 *
PATENT ABSTRACTS OF JAPAN, Band 10, Nr. 216 (M-502)[2272], 29. Juli 1986; & JP-A-61 53 443 (TOYOTA MOTOR CORP.) 17-03-1986 *
PATENT ABSTRACTS OF JAPAN, Band 8, Nr. 216 (M-329)[1653], 3. Oktober 1984; & JP-A-59 101 562 (MAZDA K.K.) 12-06-1984 *

Also Published As

Publication number Publication date
DE3822582C2 (en) 1990-07-19
DE58901936D1 (en) 1992-09-03
ES2034768T3 (en) 1993-04-01
ATE78898T1 (en) 1992-08-15
EP0353217B1 (en) 1992-07-29
DE3822582A1 (en) 1990-02-08

Similar Documents

Publication Publication Date Title
DE102008043165B4 (en) Method and device for calibrating the pre-injection quantity of an internal combustion engine, in particular a motor vehicle
DE2633617C2 (en) Method and device for determining setting variables in an internal combustion engine, in particular the duration of fuel injection pulses, the ignition angle, the exhaust gas recirculation rate
DE2829958C2 (en)
EP0416270B1 (en) Method and apparatus to control and regulate an engine with self-ignition
DE3408215C2 (en)
DE3408223C2 (en)
DE102008054690B4 (en) Method and device for calibrating partial injections in an internal combustion engine, in particular a motor vehicle
DE3336028A1 (en) DEVICE FOR INFLUENCING CONTROL SIZES OF AN INTERNAL COMBUSTION ENGINE
DE3644639C2 (en)
DE3725521C2 (en)
DE3422384C2 (en)
EP0449851B1 (en) Processes for metering fuel
EP0819210A1 (en) Process for finding an additional quantity of fuel to be injected during reinjection in an internal combustion engine
DE3416370C2 (en)
DE4319677A1 (en) Method and device for regulating the smooth running of an internal combustion engine
EP0385969B1 (en) Apparatus for the control and regulation of a diesel engine
DE19813378A1 (en) Method for operating an internal combustion engine
DE3700942C1 (en) Method for regulating the mixture composition in a mixture-compressing internal combustion engine
DE19612453A1 (en) IC engine cylinder fuel mass flow determination method
EP0353216B1 (en) Device for controlling and regulating the combustion engine of a vehicle
EP0353217B1 (en) Device for controlling and regulating the combustion engine of a vehicle
DE4327702C1 (en) Engine idling speed control module
DE19809010A1 (en) Fuel injection controller for internal combustion engine
DE19813382A1 (en) Method for operating an internal combustion engine
EP0150437B1 (en) Measuring system for the fuel-air mixture in a combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900306

17Q First examination report despatched

Effective date: 19910219

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AUTOMOTIVE DIESEL GESELLSCHAFT M.B.H.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 78898

Country of ref document: AT

Date of ref document: 19920815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58901936

Country of ref document: DE

Date of ref document: 19920903

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: D'AGOSTINI ORGANIZZAZIONE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2034768

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 89890172.3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960516

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960517

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960521

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960523

Year of fee payment: 8

Ref country code: AT

Payment date: 19960523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19960524

Year of fee payment: 8

Ref country code: BE

Payment date: 19960524

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19960529

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960618

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970620

Ref country code: AT

Effective date: 19970620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970621

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970630

Ref country code: BE

Effective date: 19970630

BERE Be: lapsed

Owner name: AUTOMOTIVE DIESEL G.M.B.H.

Effective date: 19970630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19980101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980227

EUG Se: european patent has lapsed

Ref document number: 89890172.3

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980303

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050620