EP0350647A1 - Self supporting wall or roof element and high temperature industrial furnace using these - Google Patents

Self supporting wall or roof element and high temperature industrial furnace using these Download PDF

Info

Publication number
EP0350647A1
EP0350647A1 EP89110900A EP89110900A EP0350647A1 EP 0350647 A1 EP0350647 A1 EP 0350647A1 EP 89110900 A EP89110900 A EP 89110900A EP 89110900 A EP89110900 A EP 89110900A EP 0350647 A1 EP0350647 A1 EP 0350647A1
Authority
EP
European Patent Office
Prior art keywords
wall
insulating
furnace
ceiling element
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP89110900A
Other languages
German (de)
French (fr)
Inventor
Hanns-Wolfgang Dipl.-Ing. Heider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanthal GmbH
Original Assignee
Kanthal GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanthal GmbH filed Critical Kanthal GmbH
Publication of EP0350647A1 publication Critical patent/EP0350647A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • F27D1/0009Comprising ceramic fibre elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/02Crowns; Roofs
    • F27D1/025Roofs supported around their periphery, e.g. arched roofs

Definitions

  • the invention relates to heat-insulating wall or ceiling elements made of fiber-ceramic insulating material for high-temperature industrial furnaces and to an industrial furnace equipped with such insulating elements or modules.
  • fiber-ceramic insulating materials in the form of insulating wool, flexible fiber mats or insulating blocks that are dimensionally stable up to certain operating temperatures are increasingly being used in addition to conventional solid linings .
  • the fiber insulation which can be vacuum-formed or cast in the case of block-like elements or modules, consist of fibers with different contents of aluminum oxide, silicon oxide and / or zirconium oxide, which are brought into a shape suitable for lining and insulation of the furnace walls by means of an inorganic or organic binder will.
  • Such reinforced elements are therefore only suitable for small laboratory furnace systems or for low furnace temperatures up to T ⁇ 1300 ° C.
  • the use of support profiles made of silicon infiltrated silicon carbide (SiSiC), which are located directly in the furnace of the furnace, has also already been considered. However, this requires the simultaneous use of thin plates made of refractory ceramic on which the insulating mats or elements are placed. Because of the risk of metallic silicon melting out of the SiSiC, combined with frequently observed crack formation, a temperature of T max 1300 ° C. also results in this case when the furnace lining is reinforced as the highest operating limit.
  • the invention is therefore based on the object of providing a secure support for the thermal insulation lining made of fiber-ceramic insulating materials of high-temperature furnaces, which is absolutely dimensionally stable even at high temperatures and enables very simple installation of furnace linings.
  • the insulation body preferably consists of high-temperature-resistant aluminum oxide and / or zirconium oxide-containing fiber material which is bound by means of an organic binder, the cavities adapted to the reinforcing elements being molded into the insulation body or introduced by a mechanical processing method. Furthermore, the cavities are preferably designed as hollow channels penetrating the insulating body and the reinforcing elements as reinforcing bars with a form-fitting adaptation to the hollow channels.
  • the reinforcing elements or rods can be surrounded by a chemically stable intermediate layer in the form of a non-woven material.
  • the reinforcement elements are preferred elements or rods with a chemically stable coating at high temperatures.
  • the reinforcing bars preferably have a square, rectangular or circular cross section and preferably consist of self-bonded silicon carbide of the type RSiC, SSiC or SiSiC, that is to say from materials which do not contain a glass phase and therefore do not deform even at high temperatures.
  • separating layer surrounding the reinforcing elements to avoid chemical reactions
  • this can be applied by coating processes known per se, for example by engobing or by means of plasma spraying processes.
  • the insulating body itself is preferably made of a high temperature resistant fiber material made of aluminum silicate type A0 and an organic low-alkali binder with SiO2 as the main component.
  • the main advantage of the invention is that even for industrial furnaces of large dimensions and for comparatively high operating temperatures, special fastening elements to be mounted separately for fastening the insulation to the furnace housing, but also complex vaulted ceiling constructions can be avoided.
  • the assembly of such industrial furnaces is therefore considerably simplified.
  • a ceramic insulating body reinforced according to the invention preferably has a length of at least 1000 mm. Depending on the length of the available reinforcement elements, lengths of the insulating bodies of 3000 mm for furnace temperatures up to 1600 ° C are easily possible.
  • the cross section of the reinforcing elements should be as possible can be chosen small in order to reduce undesired heat flow to the furnace side wall.
  • these can each have a groove-shaped recess on the side faces and a web on the opposite side, which is dimensioned such that a quasi-seamless connection results with the groove of the next insulating body according to the tongue and groove principle .
  • the modules are then expediently installed by simply putting them together, the ceiling elements then being supported on the side walls of the furnace lining.
  • Another possibility for a space-saving construction is to extend the reinforcing bars beyond the fiber insulation bodies of ceiling elements and to connect them directly to the outer wall of the stove.
  • the shrinkage which usually occurs under the action of high temperatures in the case of fiber insulating bodies of the type mentioned can be avoided either by appropriate thermal pretreatment at temperatures which are just above the operating temperature. Another possibility is to subsequently fill the resulting gaps with fiber mat material.
  • the wall or ceiling elements according to the invention With the wall or ceiling elements according to the invention, the lining of large industrial furnace systems, which are preferably used in periodic operation, is made possible. The assembly and repair of such ovens is made considerably easier.
  • FIG. 1 shows a vacuum-shaped fiber insulation module to be used as a heat-insulating wall or ceiling element, the fiber material of which contains Al2O3, about 3 to 4% SiO2 and some trace components as the main component and is characterized by a melting point T s > 2000 ° C.
  • a hollow space 3 which is rectangular in the illustrated example and is enclosed on all sides by fiber insulation material, is left out or introduced by subsequent mechanical processing.
  • a rod-shaped reinforcing element 2 with a rectangular cross section made of recrystallized silicon carbide is fitted into the cavity 3 in a form-fitting manner.
  • the length of the rod-shaped reinforcing element formed in the example shown as a hollow profile is dimensioned such that the material of the fiber insulating body protrudes sufficiently far at both ends to prevent harmful heat flow in the direction of the furnace wall.
  • the fiber insulation module is designed like a board or board and has a web 6 with a rectangular cross-section along one longitudinal edge and one along the other longitudinal edge large rectangular, groove-shaped recess 7. As already stated, large-area linings can be easily achieved by simply joining the individual fiber insulation modules.
  • the lining of the furnace shown in Fig. 2 takes place so that the side walls 81, 82 or the rear wall 9 abut each other and the ceiling elements 1 rest on the furnace side walls 81, 82.
  • this first layer of fiber insulation modules reinforced with SiC elements further layers 10 of flexible insulation mats can be arranged, which together with the first layer 1 ensure the required insulation effect.
  • a self-supporting metallic outer wall 4 surrounds the entire furnace and closes it tightly.
  • An industrial furnace with an insulation lining made of fiber insulation modules reinforced according to the invention can be used in air with furnace temperatures of up to 1600 ° C. in periodic or continuous operation without deformation, in particular on ceiling modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

For high temperature industrial furnaces, the inner lining is preferably manufactured from insulating member elements (1) which can be assembled according to a building block principle and which, according to the invention, are reinforced by means of ceramic elements which are resistant to high temperatures, dimensionally stable and preferably rod-shaped and which are introduced positively into hollow channels (3) of the insulating members (1) and absorb, even at high operating temperatures, the forces resulting from the dead weight of the insulating members. <IMAGE>

Description

Die Erfindung betrifft wärmeisolierende Wand- oder Decken­elemente aus faserkeramischem Isolierwerkstoff für Hochtem­peratur-Industrieöfen sowie einen mit derartigen Isolier­elementen oder -moduln ausgerüsteten Industrieofen.The invention relates to heat-insulating wall or ceiling elements made of fiber-ceramic insulating material for high-temperature industrial furnaces and to an industrial furnace equipped with such insulating elements or modules.

Zur Auskleidung und Isolation von industriell oder in La­bors genutzten Ofengehäusen, wie sie als Kammer-, Tunnel- oder Durchschuböfen bekannt sind, werden neben herkömmli­chen massiven Auskleidungen in zunehmendem Maße faserkera­mische Isolierwerkstoffe in Form von Isolierwolle, flexi­blen Fasermatten oder bis zu bestimmten Betriebstemperatu­ren formstabilen Isolierblöcken verwendet. Die Faserisolie­rungen, die im Falle von blockartigen Elementen oder Moduln vakuumgeformt oder gegossen sein können, bestehen aus Fa­sern mit unterschiedlichen Gehalten an Aluminiumoxid, Sili­ciumoxid und/oder Zirkonoxid, die mittels eines anorgani­schen oder organischen Binders in eine zur Auskleidung und Isolation der Ofenwände geeignete Form gebracht werden. Die wesentlichen Vorteile dieser Isolierart sind die außeror­dentlich hohe Isolationswirkung und das niedrige spezifi­sche Gewicht des Isolationsmaterials, die es ermöglichen, raumsparende Ofeneinheiten mit geringer Speicherwärme und im Vergleich zu herkömmlichen Konstruktionen niedrigen Energie- und damit Betriebskosten zu fertigen. Faseriso­lierwerkstoffe haben jedoch den Nachteil geringer Festig­keit bzw. Tragfähigkeit und einer unzureichenden Formstabi­ lität bei hohen Temperaturen. So treten beispielsweise bei Temperaturen über 1200°C Umkristallisationen ein, die zu Verformungen insbesondere bei Deckenelementen (Durchhängen) führen. Für den Einsatz von Faserkeramikisolationen bei hö­heren Temperaturen und/oder für größere Ofenabmessungen sind daher verschiedene Stützkonstruktionen bekannt und üb­lich, z. B. die Verwendung von keramischen Haltern, welche senkrecht durch die Isolation hindurchgeführt und meist an der Außenwand verankert werden. Für ein Deckenelement mit einer Breite von z. B. 600 mm und einer Länge von z. B. 2500 mm werden üblicherweise mindestens achtzehn Befesti­gungselemente benötigt. Dies erfordert einen hohen Montage­aufwand und die Einsatztemperatur ist gleichwohl auf T ≦ 1300°C beschränkt. Eine andere bekannte Möglichkeit besteht darin, die vakuumgeformten Elemente oder Moduln zu einer bogenförmigen Konstruktionseinheit zu verbinden, die bei­spielsweise als Deckenelement eine Spannweite von maximal 4000 mm ermöglicht. Die erzielbare Anwendungstemperatur ist aber ebenfalls auf T ≦ 1300°C beschränkt. Des weiteren ist es bekannt, rohrförmige Stützprofile aus Aluminium- oder Zirkonsilicat direkt in die Faserisolation einzubringen. Diese Verstärkungselemente enthalten jedoch eine bei höhe­ren Temperaturen erweichende Glasphase und besitzen daher nur eine unbefriedigende Formstabilität. Derart verstärkte Elemente kommen daher nur für kleine Laborofenanlagen oder für niedrige Ofentemperaturen bis ebenfalls T ≦ 1300°C in Frage. Es wurde auch schon die Verwendung von Stützprofilen aus siliciuminfiltriertem Siliciumcarbid (SiSiC) erwogen, die unmittelbar im Feuerraum des Ofens liegen. Dies erfor­dert jedoch den gleichzeitigen Einsatz von dünnen Platten aus feuerfester Keramik, auf welche die Isoliermatten oder -elemente aufgelegt werden. Wegen der Gefahr des Ausschmel­zens von metallischem Silicium aus dem SiSiC, verbunden mit häufig beobachteter Rißbildung, ergibt sich auch für diesen Fall einer Verstärkung der Ofenauskleidung als oberste Be­triebsgrenze eine Temperatur von Tmax = 1300°C.For the lining and insulation of furnace housings used industrially or in laboratories, as they are known as chamber, tunnel or push-through furnaces, fiber-ceramic insulating materials in the form of insulating wool, flexible fiber mats or insulating blocks that are dimensionally stable up to certain operating temperatures are increasingly being used in addition to conventional solid linings . The fiber insulation, which can be vacuum-formed or cast in the case of block-like elements or modules, consist of fibers with different contents of aluminum oxide, silicon oxide and / or zirconium oxide, which are brought into a shape suitable for lining and insulation of the furnace walls by means of an inorganic or organic binder will. The main advantages of this type of insulation are the extraordinarily high insulation effect and the low specific weight of the insulation material, which make it possible to manufacture space-saving furnace units with low storage heat and, compared to conventional designs, low energy and thus operating costs. However, fiber insulation materials have the disadvantage of low strength or load-bearing capacity and inadequate dimensional stability at high temperatures. For example, recrystallizations occur at temperatures above 1200 ° C, which lead to deformations especially in ceiling elements (sagging). For the use of fiber ceramic insulation at higher temperatures and / or for larger furnace dimensions, various support structures are therefore known and common, for. B. the use of ceramic holders which are passed vertically through the insulation and usually anchored to the outer wall. For a ceiling element with a width of z. B. 600 mm and a length of z. B. 2500 mm are usually required at least eighteen fasteners. This requires a lot of assembly work and the operating temperature is nevertheless limited to T ≦ 1300 ° C. Another known possibility is to connect the vacuum-shaped elements or modules to form an arch-shaped construction unit, which, for example as a ceiling element, enables a maximum span of 4000 mm. The achievable application temperature is also limited to T ≦ 1300 ° C. Furthermore, it is known to introduce tubular support profiles made of aluminum or zirconium silicate directly into the fiber insulation. However, these reinforcing elements contain a glass phase softening at higher temperatures and therefore have only an unsatisfactory dimensional stability. Such reinforced elements are therefore only suitable for small laboratory furnace systems or for low furnace temperatures up to T ≦ 1300 ° C. The use of support profiles made of silicon infiltrated silicon carbide (SiSiC), which are located directly in the furnace of the furnace, has also already been considered. However, this requires the simultaneous use of thin plates made of refractory ceramic on which the insulating mats or elements are placed. Because of the risk of metallic silicon melting out of the SiSiC, combined with frequently observed crack formation, a temperature of T max = 1300 ° C. also results in this case when the furnace lining is reinforced as the highest operating limit.

Der Erfindung liegt damit die Aufgabe zugrunde, eine siche­re Abstützung der aus faserkeramischen Isoliermaterialien hergestellten Wärmeisolationsauskleidung von Hochtempera­turöfen zu schaffen, die auch insbesondere bei hohen Tempe­raturen absolut formstabil ist und eine sehr einfache Mon­tage von Ofenauskleidungen ermöglicht.The invention is therefore based on the object of providing a secure support for the thermal insulation lining made of fiber-ceramic insulating materials of high-temperature furnaces, which is absolutely dimensionally stable even at high temperatures and enables very simple installation of furnace linings.

Gemäß der Erfindung wird vorgeschlagen, für Hochtemperatur-­Industrieöfen, die mit wärmeisolierenden Wand- und Decken­elementen aus faserkeramischem Isolierwerkstoff ausgeklei­det sind, erfindungsgemäß selbsttragende Teile zu verwen­den, bei denen in Hohlräume des das einzelne Wand- oder Deckenelement bildenden Isolierkörpers keramische Verstär­kungselemente aus rekrisallisiertem, gesintertem silicium­nitrid- bzw. siliciumoxidnitridgebundenem Siliciumcarbid oder reaktionsgebundenem Siliciumnitrid eingesetzt oder eingezogen sind und bei denen der Abstand der Hohlkanäle von der heizelement- oder feuerseitigen Isolierkörper­oberfläche so bemessen ist, daß eine Reaktion des Materials der Verstärkungselemente mit der umgebenden Faserisolation verhindert ist.According to the invention, it is proposed to use self-supporting parts according to the invention for high-temperature industrial furnaces lined with heat-insulating wall and ceiling elements made of fiber-ceramic insulating material, in which ceramic reinforcing elements made of recrystallized, sintered silicon nitride are used in the cavities of the insulating body forming the individual wall or ceiling element - or silicon oxide nitride-bonded silicon carbide or reaction-bonded silicon nitride are inserted or retracted and in which the distance of the hollow channels from the heating element or fire-side insulating body surface is dimensioned such that a reaction of the material of the reinforcing elements with the surrounding fiber insulation is prevented.

Der Isolationskörper besteht vorzugsweise aus hochtempera­turbeständigem aluminiumoxid- und/oder zirkonoxidhaltigem Fasermaterial, das mittels eines organischen Binders gebun­den ist, wobei die auf die Verstärkungselemente angepaßten Hohlräume in den Isolationskörper eingeformt oder durch ein mechanisches Bearbeitungsverfahren eingebracht sind. Wei­terhin sind die Hohlräume vorzugsweise als den Isolierkör­per durchsetzende Hohlkanäle und die Verstärkungselemente als Verstärkungsstäbe ausgebildet mit formschlüssiger An­passung an die Hohlkanäle.The insulation body preferably consists of high-temperature-resistant aluminum oxide and / or zirconium oxide-containing fiber material which is bound by means of an organic binder, the cavities adapted to the reinforcing elements being molded into the insulation body or introduced by a mechanical processing method. Furthermore, the cavities are preferably designed as hollow channels penetrating the insulating body and the reinforcing elements as reinforcing bars with a form-fitting adaptation to the hollow channels.

Die Verstärkungselemente oder -stäbe können durch eine che­misch stabile Zwischenschicht in Form eines Vliesmaterials umgeben sein. Vorzugsweise jedoch sind die Verstärkungsele­ mente oder -stäbe mit einer chemisch und bei hohen Tempera­turen stabilen Beschichtung versehen.The reinforcing elements or rods can be surrounded by a chemically stable intermediate layer in the form of a non-woven material. However, the reinforcement elements are preferred elements or rods with a chemically stable coating at high temperatures.

Die Verstärkungsstäbe besitzen vorzugsweise einen quadrati­schen, rechteck- oder kreisförmigen Querschnitt und beste­hen vorzugsweise aus selbstgebundenem Siliciumcarbid vom Typ RSiC, SSiC oder SiSiC, also aus Werkstoffen, die keine Glasphase enthalten und sich daher auch bei hohen Tempera­turen nicht verformen.The reinforcing bars preferably have a square, rectangular or circular cross section and preferably consist of self-bonded silicon carbide of the type RSiC, SSiC or SiSiC, that is to say from materials which do not contain a glass phase and therefore do not deform even at high temperatures.

Für den Fall einer die Verstärkungselemente umgebenden Trennschicht zur Vermeidung chemischer Reaktionen kann die­se durch an sich bekannte Beschichtungsverfahren aufge­bracht werden, beispielsweise durch Engobieren oder mit­tels Plasmaspritzverfahren.In the case of a separating layer surrounding the reinforcing elements to avoid chemical reactions, this can be applied by coating processes known per se, for example by engobing or by means of plasma spraying processes.

Der Isolierkörper selbst wird vorzugsweise aus einem hoch­temperaturbeständigen Fasermaterial aus Aluminiumsilicat vom Typ A0 und einem organischen alkaliarmen Binder mit SiO₂ als Hauptbestandteil hergestellt.The insulating body itself is preferably made of a high temperature resistant fiber material made of aluminum silicate type A0 and an organic low-alkali binder with SiO₂ as the main component.

Der Hauptvorteil der Erfindung besteht darin, daß auch für Industrieöfen großer Abmessungen und für vergleichsweise hohe Betriebstemperaturen besondere separat zu montierende Befestigungselemente zur Befestigung der Isolation am Ofen­gehäuse, aber auch aufwendige Gewölbedeckenkonstruktionen vermieden werden können. Die Montage solcher Industrieöfen wird daher wesentlich vereinfacht.The main advantage of the invention is that even for industrial furnaces of large dimensions and for comparatively high operating temperatures, special fastening elements to be mounted separately for fastening the insulation to the furnace housing, but also complex vaulted ceiling constructions can be avoided. The assembly of such industrial furnaces is therefore considerably simplified.

Ein gemäß der Erfindung verstärkter keramischer Isolierkör­per hat vorzugsweise eine Länge von mindestens 1000 mm. Je nach der Länge der verfügbaren Verstärkungselemente sind Längen der Isolierkörper von 3000 mm für Ofentemperaturen bis 1600°C ohne weiteres möglich.A ceramic insulating body reinforced according to the invention preferably has a length of at least 1000 mm. Depending on the length of the available reinforcement elements, lengths of the insulating bodies of 3000 mm for furnace temperatures up to 1600 ° C are easily possible.

Der Querschnitt der Verstärkungselemente sollte möglichst klein gewählt werden, um einen unerwünschten Wärmeabfluß zur Ofenseitenwand zu reduzieren.The cross section of the reinforcing elements should be as possible can be chosen small in order to reduce undesired heat flow to the furnace side wall.

Um das Aneinandersetzen mehrerer Faserisoliermodule zu ver­einfachen können diese an den Seitenflächen je eine nutför­mige Ausnehmung sowie auf der gegenüberliegenden Seite ei­nen Steg aufweisen, der so bemessen ist, daß sich mit der Nut des nächsten Isolierkörpers eine quasi nahtlose Verbin­dung nach dem Nut-Feder-Prinzip ergibt. Der Einbau der Mo­dule erfolgt dann zweckmäßigerweise durch einfaches Anein­andersetzen, wobei sich die Deckenelemente dann auf den Seitenwänden der Ofenauskleidung abstützen. Eine weitere Möglichkeit für eine raumsparende Konstruktion besteht dar­in, die Verstärkungsstäbe über die Faserisolationskörper von Deckenelementen hinaus zu verlängern und diese direkt mit der Außenwand des Ofens zu verbinden. Die bei Faseriso­lierkörpern der genannten Art üblicherweise unter der Ein­wirkung hoher Temperaturen auftretende Schrumpfung kann entweder durch eine entsprechende thermische Vorbehandlung bei Temperturen, welche knapp über der Einsatztemperatur liegen, vermieden werden. Eine andere Möglichkeit besteht darin, die entstehenden Spalte nachträglich mit Fasermat­tenmaterial auszufüllen.In order to simplify the placement of several fiber insulation modules, these can each have a groove-shaped recess on the side faces and a web on the opposite side, which is dimensioned such that a quasi-seamless connection results with the groove of the next insulating body according to the tongue and groove principle . The modules are then expediently installed by simply putting them together, the ceiling elements then being supported on the side walls of the furnace lining. Another possibility for a space-saving construction is to extend the reinforcing bars beyond the fiber insulation bodies of ceiling elements and to connect them directly to the outer wall of the stove. The shrinkage which usually occurs under the action of high temperatures in the case of fiber insulating bodies of the type mentioned can be avoided either by appropriate thermal pretreatment at temperatures which are just above the operating temperature. Another possibility is to subsequently fill the resulting gaps with fiber mat material.

Mit den erfindungsgemäßen Wand- oder Deckenelementen wird die Auskleidung großer Industrieofenanlagen, welche vor­zugsweise im periodischen Betrieb verwendet werden, ermög­licht. Die Montage und Reparatur solcher Öfen wird erheb­lich erleichtert.With the wall or ceiling elements according to the invention, the lining of large industrial furnace systems, which are preferably used in periodic operation, is made possible. The assembly and repair of such ovens is made considerably easier.

Versuche haben gezeigt, daß ein "Durchhängen" oder Verfor­men der Isolierkörper insbesondere auch bei horizontaler Einbauweise nicht mehr auftritt. Die Einsatztemperatur der Isolierkörper erfindungsgemäßer Struktur kann erheblich ge­steigert werden. Darüber hinaus ermöglicht die erfindungs­gemäße Bauweise die Anbringung von elektrischen Deckenheiz­ elementen, so daß eine höhere elektrische Leistung und eine gleichmäßigere Temperaturverteilung im Ofen erreicht wird.Experiments have shown that "sagging" or deformation of the insulating body no longer occurs, particularly in the case of horizontal installation. The operating temperature of the insulating body of the structure according to the invention can be increased considerably. In addition, the design according to the invention enables the installation of electric ceiling heating elements, so that a higher electrical output and a more uniform temperature distribution in the furnace is achieved.

Die Erfindung und vorteilhafte Einzelheiten werden nachfol­gend unter Bezug auf die Zeichnung in beispielsweiser Aus­führungsform näher erläutert. Es zeigen:

  • Fig. 1 den Querschnitt eines vakuumgeformten Faseriso­liermoduls mit erfindungsgemäßen Merkmalen, und
  • Fig. 2 einen vollständig mit faserkeramischen Isoliermo­duln und Deckenelementen gemäß der Erfindung aus­gekleideten Ofen im Querschnitt.
The invention and advantageous details are explained in more detail below with reference to the drawing in an exemplary embodiment. Show it:
  • Fig. 1 shows the cross section of a vacuum-formed fiber insulation module with features according to the invention, and
  • Fig. 2 shows a cross section of a furnace completely lined with fiber-ceramic insulation modules and ceiling elements according to the invention.

Die Querschnittsdarstellung der Fig. 1 läßt ein als wärme­isolierendes Wand- oder Deckenelement zu verwendendes vaku­umgeformtes Faserisoliermodul erkennen, dessen Fasermate­rial als Hauptbestandteil Al₂O₃, etwa 3 bis 4 % SiO₂ und einige Spurenanteile enthält und sich durch einen Schmelz­punkt Ts > 2000°C auszeichnet. In einem durch Näherungsbe­rechnungen und Erfahrungen festgelegten Abstand x von der feuerseitigen Faserisoliermoduloberfläche 5 ist ein im dar­gestellten Beispiel rechteckförmiger langgestreckter und allseitig von Faserisoliermaterial umschlossener Hohlraum 3 ausgespart oder durch nachträgliche mechanische Bearbeitung eingebracht. In den Hohlraum 3 ist ein stabförmiges Ver­stärkungselement 2 mit rechteckförmigem Querschnitt aus re­kristallisiertem Siliciumcarbid formschlüssig eingepaßt. Die Länge des im dargestellten Beispiel als Hohlprofil aus­gebildeten stabförmigen Verstärkungselements ist so bemes­sen, daß das Material des Faserisolierkörpers an beiden En­den ausreichend weit übersteht, um einen schädlichen Wärme­fluß in Richtung der Ofenwand zu verhindern. Der Faseriso­liermodul ist tafel- oder brettartig gestaltet und weist entlang einer Längskante einen Steg 6 mit rechteckförmigem Querschnitt und entlang der anderen Längskante eine ebenso große rechteckförmige, nutförmige Aussparung 7 auf. Wie be­reits angegeben, lassen sich damit großflächige Auskleidun­gen durch einfaches Zusammenfügen der einzelnen Faseriso­liermodule auf einfache Weise erreichen.1 shows a vacuum-shaped fiber insulation module to be used as a heat-insulating wall or ceiling element, the fiber material of which contains Al₂O₃, about 3 to 4% SiO₂ and some trace components as the main component and is characterized by a melting point T s > 2000 ° C. At a distance x from the fire-side fiber insulation module surface 5 determined by approximation calculations and experience, a hollow space 3, which is rectangular in the illustrated example and is enclosed on all sides by fiber insulation material, is left out or introduced by subsequent mechanical processing. A rod-shaped reinforcing element 2 with a rectangular cross section made of recrystallized silicon carbide is fitted into the cavity 3 in a form-fitting manner. The length of the rod-shaped reinforcing element formed in the example shown as a hollow profile is dimensioned such that the material of the fiber insulating body protrudes sufficiently far at both ends to prevent harmful heat flow in the direction of the furnace wall. The fiber insulation module is designed like a board or board and has a web 6 with a rectangular cross-section along one longitudinal edge and one along the other longitudinal edge large rectangular, groove-shaped recess 7. As already stated, large-area linings can be easily achieved by simply joining the individual fiber insulation modules.

Die Auskleidung des in Fig. 2 dargestellten Ofens erfolgt so, daß die Seitenwände 8₁, 8₂ bzw. die Rückwand 9 aneinan­derstoßen und die Deckenelemente 1 auf den Ofenseitenwänden 8₁, 8₂ aufliegen. Durch das Einfügen der Stege 6 in die Nut 7 des jeweils nächsten Isolierkörpers ergibt sich eine qua­si nahtlose Verbindung. Über dieser ersten Schicht aus mit SiC-Elementen verstärkten Faserisoliermodulen können weitere Lagen 10 aus flexiblen Isoliermatten angeordnet sein, die zusammen mit der ersten Schicht 1 die erforderliche Iso­lierwirkung gewährleisten. Eine selbsttragende metallische Außenwand 4 umgibt den gesamten Ofen und verschließt diesen dicht.The lining of the furnace shown in Fig. 2 takes place so that the side walls 8₁, 8₂ or the rear wall 9 abut each other and the ceiling elements 1 rest on the furnace side walls 8₁, 8₂. By inserting the webs 6 into the groove 7 of the next insulating body, there is a quasi-seamless connection. Over this first layer of fiber insulation modules reinforced with SiC elements, further layers 10 of flexible insulation mats can be arranged, which together with the first layer 1 ensure the required insulation effect. A self-supporting metallic outer wall 4 surrounds the entire furnace and closes it tightly.

Ein Industrieofen mit einer Isolationsauskleidung aus er­findungsgemäß verstärkten Faserisoliermodulen kann an Luft mit Ofentemperaturen bis 1600°C im periodischen Betrieb oder Dauerbetrieb eingesetzt werden, ohne daß Verformungen, insbesondere an Deckenmoduln, entstehen.An industrial furnace with an insulation lining made of fiber insulation modules reinforced according to the invention can be used in air with furnace temperatures of up to 1600 ° C. in periodic or continuous operation without deformation, in particular on ceiling modules.

Claims (6)

1. Selbsttragendes wärmeisolierendes Wand- oder Decken­element aus faserkeramischem Isolierwerkstoff für Hochtem­peratur-Industrieöfen, dadurch gekennzeichnet, daß in Hohl­räume (3) des das Wand- oder Deckenelement bildenden Iso­lierkörpers (1) keramische Verstärkungselemente (2) aus re­kristallisiertem, gesintertem siliciumnitrid- bzw. silici­umoxidnitridgebundenem Siliciumcarbid oder reaktionsgebun­denem Siliciumnitrid eingesetzt sind und daß der Abstand der Hohlräume von der feuerseitigen Isolierkörperoberfläche (5) so bemessen ist, daß eine Reaktion des Materials der Verstärkungselemente mit der umgebenden Faserisolation ver­hindert ist.1. Self-supporting heat-insulating wall or ceiling element made of fiber-ceramic insulating material for high-temperature industrial furnaces, characterized in that in cavities (3) of the insulating body forming the wall or ceiling element (1) ceramic reinforcing elements (2) made of recrystallized, sintered silicon nitride or silicon oxide nitride-bonded Silicon carbide or reaction-bonded silicon nitride are used and that the spacing of the cavities from the fire-side insulating body surface (5) is dimensioned such that a reaction of the material of the reinforcing elements with the surrounding fiber insulation is prevented. 2. Wand- oder Deckenelement nach Anspruch 1, dadurch gekennzeichnet, daß der Isolationskörper (1) aus hochtempe­raturbeständigem aluminiumoxid- und/oder zirkonoxidhaltigem Fasermaterial und einem organischen Binder besteht, in den die auf die Verstärkungselemente angepaßten Hohlräume ein­geformt oder durch ein mechanisches Bearbeitungsverfahren eingebracht sind.2. Wall or ceiling element according to claim 1, characterized in that the insulating body (1) consists of high temperature-resistant aluminum oxide and / or zirconium oxide-containing fiber material and an organic binder into which the cavities adapted to the reinforcing elements are molded or introduced by a mechanical processing method . 3. Wand- oder Deckenelement nach Anspruch 2, dadurch gekennzeichnet, daß die Hohlräume als den Isolierkörper durchsetzende Hohlkanäle und die Verstärkungselemente als die Hohlkanäle formschlüssig durchsetzende Verstärkungsstä­be ausgebildet sind.3. Wall or ceiling element according to claim 2, characterized in that the cavities are formed as hollow channels penetrating the insulating body and the reinforcing elements as reinforcing bars penetrating the hollow channels in a form-fitting manner. 4. Wand- oder Deckenelement nach Anspruch 1, dadurch gekennzeichnet, daß die Verstärkungselemente durch eine chemisch stabile Zwischenschicht in Form eines Vliesmate­rials umgeben sind.4. Wall or ceiling element according to claim 1, characterized in that the reinforcing elements are surrounded by a chemically stable intermediate layer in the form of a non-woven material. 5. Wand- oder Deckenelement nach Anspruch 3, dadurch gekennzeichnet, daß die Verstärkungsstäbe mit einer che­misch auch bei hohen Temperaturen stabilen Beschichtung versehen sind.5. Wall or ceiling element according to claim 3, characterized in that the reinforcing bars are provided with a chemically stable coating even at high temperatures. 6. Industrieofen für Betriebstemperaturen bis 1600°C und einer lichten Breite und/oder Länge des Ofeninnenraums von mindestens 1 m, bei dem mindestens ein Teil der isolie­renden Ofenauskleidung durch stützlose Wand- oder Decken­elemente gemäß einem der vorstehenden Ansprüche gebildet ist.6. Industrial furnace for operating temperatures up to 1600 ° C and a clear width and / or length of the furnace interior of at least 1 m, in which at least part of the insulating furnace lining is formed by unsupported wall or ceiling elements according to one of the preceding claims.
EP89110900A 1988-06-22 1989-06-15 Self supporting wall or roof element and high temperature industrial furnace using these Ceased EP0350647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19883821099 DE3821099A1 (en) 1988-06-22 1988-06-22 SELF-SUPPORTING WALL OR CEILING ELEMENT AND HIGH-TEMPERATURE INDUSTRIAL STOVE EQUIPPED WITH IT
DE3821099 1988-06-22

Publications (1)

Publication Number Publication Date
EP0350647A1 true EP0350647A1 (en) 1990-01-17

Family

ID=6357019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89110900A Ceased EP0350647A1 (en) 1988-06-22 1989-06-15 Self supporting wall or roof element and high temperature industrial furnace using these

Country Status (2)

Country Link
EP (1) EP0350647A1 (en)
DE (1) DE3821099A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0386555A1 (en) * 1989-03-04 1990-09-12 Linn High Therm Gmbh Insulation for a high-temperature heating apparatus, and use of the same
EP1528343A1 (en) * 2003-10-27 2005-05-04 Siemens Aktiengesellschaft Refractory tile with reinforcing members embedded therein, as liner for gas turbine combustion chamber

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19545681A1 (en) * 1995-12-07 1997-06-12 Caruso Gmbh Vliesstoff Werk Po Mainly fibre insulation element for heat and or sound insulation
DE10160898A1 (en) * 2001-12-12 2003-06-26 Jouri Pinaev Industrial furnace or oven has inner lining surrounded by additional vacuum insulation, avoiding local temperatures which could cause thermal deformation
DE102007056957B4 (en) * 2007-11-27 2014-07-17 Hans Lingl Anlagenbau Und Verfahrenstechnik Gmbh & Co. Kg Chamber wall for a drying chamber or combustion chamber or a tunnel furnace for the production of components of ceramic or similar material and wall module for such a chamber wall
DE102008019774A1 (en) * 2008-04-18 2009-10-29 Beck Packautomaten Gmbh & Co. Kg Shrink tunnel for thermal shrinking of packing foil which wraps packaged good piece, comprises tunnel housing which is opened at its front end, where packaged good pieces are conveyed in longitudinal direction through shrink tunnel
DE102010016511A1 (en) * 2010-04-19 2011-10-20 Roth & Rau Ag Substrate processing system comprises a process chamber, where a thermal insulation is provided at an inner side of a process chamber wall and has a layer of individual profiles, which are parallely arranged insulating tubes or rods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2060847A (en) * 1979-10-11 1981-05-07 Studiceram Spa Pre-fabricated beam element for self-supporting flat vaults of tunnel-type furnaces
FR2529541A1 (en) * 1982-06-30 1984-01-06 Didier Werke Ag Composite fibrous building unit
FR2557829A1 (en) * 1984-01-05 1985-07-12 Didier Werke Ag METHOD FOR MANUFACTURING COMPOSITE CONSTRUCTION ELEMENTS OF SANDWICH STRUCTURE BASED ON DIFFERENT FIBROUS MATERIALS

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2040415A (en) * 1979-01-11 1980-08-28 Morgan Refractories Ltd Improvements in refractory lining units
DE3510146A1 (en) * 1985-03-21 1986-10-02 Kanthal GmbH, 6082 Mörfelden-Walldorf Method of reinforcing an insulator of ceramic fibrous material and of joining such insulators to one another

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2060847A (en) * 1979-10-11 1981-05-07 Studiceram Spa Pre-fabricated beam element for self-supporting flat vaults of tunnel-type furnaces
FR2529541A1 (en) * 1982-06-30 1984-01-06 Didier Werke Ag Composite fibrous building unit
FR2557829A1 (en) * 1984-01-05 1985-07-12 Didier Werke Ag METHOD FOR MANUFACTURING COMPOSITE CONSTRUCTION ELEMENTS OF SANDWICH STRUCTURE BASED ON DIFFERENT FIBROUS MATERIALS

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0386555A1 (en) * 1989-03-04 1990-09-12 Linn High Therm Gmbh Insulation for a high-temperature heating apparatus, and use of the same
EP1528343A1 (en) * 2003-10-27 2005-05-04 Siemens Aktiengesellschaft Refractory tile with reinforcing members embedded therein, as liner for gas turbine combustion chamber
WO2005043058A2 (en) * 2003-10-27 2005-05-12 Siemens Aktiengesellschaft Ceramic thermal shield with integrated reinforcing elements, especially for lining the wall of a gas turbine combustion chamber
WO2005043058A3 (en) * 2003-10-27 2005-08-11 Siemens Ag Ceramic thermal shield with integrated reinforcing elements, especially for lining the wall of a gas turbine combustion chamber
JP2007510121A (en) * 2003-10-27 2007-04-19 シーメンス アクチエンゲゼルシヤフト Heat shield element
US7540710B2 (en) 2003-10-27 2009-06-02 Siemens Aktiengesellschaft Turbine blade for use in a gas turbine
US7805945B2 (en) 2003-10-27 2010-10-05 Siemens Aktiengesellschaft Thermal shield, especially for lining the wall of a combustion chamber
US8857190B2 (en) 2003-10-27 2014-10-14 Siemens Aktiengesellschaft Heat shield element, in particular for lining a combustion chamber wall

Also Published As

Publication number Publication date
DE3821099A1 (en) 1989-12-28

Similar Documents

Publication Publication Date Title
WO2004111562A2 (en) Support for structural components and method for producing the same
EP1693618B1 (en) Porous Body for a Porous Burner, Method for Manufacturing a Porous Body for a Porous Burner and Porous Burner
EP0350647A1 (en) Self supporting wall or roof element and high temperature industrial furnace using these
DE2530555A1 (en) OVEN, ESPECIALLY FURNACE
AT392692B (en) FIRE-RESISTANT LINING STONE FOR INDUSTRIAL OVENS
DE2648542C2 (en) Wall for an electric industrial furnace
EP0317494B1 (en) Coke oven door with a ceramic shield construction
DE102009045808A1 (en) Manufacturing component e.g. self-supporting wall element, for manufacturing tunnel furnace, has reinforcement layer extending parallel to outer side, where component is produced from pourable fire-resistant mass in one piece
DE2530432B2 (en) CEILING STONE FOR FLAT VIEW IN TUNNEL STOVES
DE3832358C2 (en)
DE8420075U1 (en) OVEN CEILING
WO2014094009A1 (en) Thermal shielding system
EP3708683B1 (en) Metallurgical furnace
DE3500186C2 (en)
EP0172496A1 (en) Refractory ceiling element for an industrial furnace, industrial furnace ceiling of refractory elements and furnace with such a ceiling
DE2754034A1 (en) CONTINUOUS RETORT OVEN
DE19747320C2 (en) Lining blocks and their use
EP1528344B1 (en) Wall and/or roof construction, wall module and fixing device therefore
AT407362B (en) Insulating panel
DE19849861C1 (en) Thermal insulating plate for use in e.g. furnaces, comprises insulating and support portions that are intimately interlocked
EP0325671A1 (en) Fire chariot superstructure
DE3520615C2 (en)
EP0890780A2 (en) Insulating panel
DE1758713C3 (en) Masonry-like lining for ovens operating at high temperatures
EP0042602A1 (en) Arrangement of the heating elements in an electrically heated furnace

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19900716

17Q First examination report despatched

Effective date: 19920302

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19930426