EP0325012B1 - Réseau d'antennes à commande par déphaseurs à coupleurs dans un arrangement à filtre spatial - Google Patents

Réseau d'antennes à commande par déphaseurs à coupleurs dans un arrangement à filtre spatial Download PDF

Info

Publication number
EP0325012B1
EP0325012B1 EP19880300427 EP88300427A EP0325012B1 EP 0325012 B1 EP0325012 B1 EP 0325012B1 EP 19880300427 EP19880300427 EP 19880300427 EP 88300427 A EP88300427 A EP 88300427A EP 0325012 B1 EP0325012 B1 EP 0325012B1
Authority
EP
European Patent Office
Prior art keywords
predetermined ratio
ports
input
spatial filter
output port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19880300427
Other languages
German (de)
English (en)
Other versions
EP0325012A1 (fr
Inventor
Alfred R. Lopez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAE Systems Aerospace Inc
Original Assignee
Hazeltine Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazeltine Corp filed Critical Hazeltine Corp
Priority to DE19883885082 priority Critical patent/DE3885082T2/de
Priority to EP19880300427 priority patent/EP0325012B1/fr
Publication of EP0325012A1 publication Critical patent/EP0325012A1/fr
Application granted granted Critical
Publication of EP0325012B1 publication Critical patent/EP0325012B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix

Definitions

  • This invention relates to array antenna systems and particularly to such systems wherein the antenna element pattern is modified by providing a lossless spatial filter between the antenna input ports and the antenna elements so that the effective element pattern associated with each input port is primarily within a selected angular region of space.
  • An array antenna system may be designed to transmit a desired radiation pattern into one of a plurality of angular directions in a selected region of space.
  • each of the antenna elements has an associated input port.
  • the antenna pattern can be electronically steered in space to point in a desired radiation direction or otherwise controlled to radiate a desired signal characteristic, such as a time reference beam scanning pattern.
  • the radiation pattern of the individual antenna elements also be primarily within the selected angular region. This permits maximum element spacing while suppressing undesired grating lobes.
  • control of the element pattern by modification of the physical shape of the antenna element may be impractical because of a desired element pattern may require an element aperture size which exceeds the necessary element spacing in the array.
  • a practical approach to overcome the physical elements size limitation is to provide networks for interconnecting each antenna input port with more than one antenna element, so that the effective element pattern associated with each input port is formed by the composite radiation of several elements. These networks can be realized by printed circuit techniques using a single substrate layer.
  • Nemit achieves a larger effective element size by providing intermediate antenna elements between the primary antenna elements and coupling signals from the primary antenna element ports to the intermediate element ports. This tapered multielement aperture excitation produces some measure of control over the radiated antenna pattern.
  • a more effective prior art antenna coupling network is described by Frazita et al. in U.S. Patent No. 4,041,501 incorporated herein by reference and assigned to the same assignee as the present invention.
  • the antenna elements are arranged in element modules, each module is provided with an input port. Transmission lines are coupled to all of the antenna element modules in the array. The transmission lines couple signals applied to any of the ports to selected elements in all the antenna element modules of the array.
  • This antenna herein referred to as a COMPACT antenna, provides an effective element aperture which is coextensive with the array aperture.
  • U.S. Patent No. 4,168,503 which describes an antenna array with a printed circuit lens in a coupling network.
  • the lens comprises a plurality of vertically standing and circularly arranged printed circuit panels, each of which includes a conductor strip connected at one end to each antenna.
  • a plurality of semi-elliptical circuit panels are affixed to the vertical panels at a predetermined angle.
  • Metal strips plated on the semi-elliptical panels provide the desired time delay to the antenna signals.
  • a combining strip couples the time delay strips and provides a combined output signal at one end of the semi-elliptical pattern.
  • the angle at which the semi-elliptical boards are affixed to the vertical boards corrects for time delay distortion caused by the placement of the combining strip.
  • This configuration cannot be implemented using printed circuit techniques on a single substrate layer.
  • U.S. Patent No. 4,321,605 describes an array antenna system having at least a 2:1 ratio of antenna elements to input terminals interconnected via primary transmission lines. Secondary transmission lines are coupled to and intersecting a selected number of the primary transmission lines. Signals supplied to any of the input terminals are coupled primarily to the elements corresponding to the input terminal, and are also coupled to other selected elements.
  • time reference scanning beam systems such as microwave landing systems (MLS)
  • MLS microwave landing systems
  • this invention provides a non-thinned or fully filled array which may be used to achieve linearity and minimize the field monitor distance.
  • the above-mentioned document US-A-4321605 describes an antenna system for radiating wave energy signals into a selected angular region of space and in a desired radiation pattern, comprising: a signal generator connected to supply wave signals to a power divider having N signal output ports; a beam steering unit comprising N phase shifters and a control unit for controlling the phase shifters to steer the radiated beam, each phase shifter having an output port and an input port connected to only a respective one of said signal output ports; transmission means having a plurality of output ports and N input ports each connected to only a respective one of said phase shifter output ports; and an aperture comprising a plurality of antenna elements arranged along a predetermined path, said elements being connected to said transmission means output ports.
  • the present invention is characterized in that said transmission means comprises a spatial filter having N output ports corresponding respectively one each to said N input ports, N being an integer greater than five; said spatial filter comprising a network of couplers arranged to couple signals from each of said input ports to its corresponding output port and also to at least two others of said output ports on each side of said corresponding output port other than those at the end portions of the aperture, and with the same phase; and said couplers in said spatial filter being adapted such that said spatial filter is substantially lossless and in operation said aperture can radiate said desired radiation pattern primarily within said selected region of space substantially without grating lobes.
  • FIG. 1 is a schematic diagram illustrating an antenna system in accordance with the present invention.
  • the diagram of Figure 1 includes a plurality of antenna elements 1-8 arranged in a predetermined path which, in this case, is a straight line.
  • Each antenna element is connected to one and only one output port 9-16 of spatial filter 17.
  • the spatial filter is comprised of a plurality of modules A through H, one module for each antenna element.
  • Spatial filters 17 includes 8 input ports, 18-25 each connected to the output of one and only one phase shifter 26-33.
  • the array of phase shifters 26-33 form beam steering unit 34.
  • the inputs 35-42 of the phase shifters are connected to one and only one output of power divider 43 which is fed by signal generator 44.
  • the power divider and signal generator form a supply means for supplying wave energy signals.
  • filter 17 has been illustrated as symmetrical, it is contemplated that spatial filters according to the invention may be unsymmetrical.
  • the original signal is provided via line 45 to power divider 43 which divides the signal into eight equal components.
  • Each component is provided via lines 46-53 to only one input of beam steering unit 34.
  • line 46 provides the signal component to input 35 of beam steering unit 34.
  • the component then passes through phase shifter 26 which may shift the phase of the component according to instructions received from control unit 54 via control line 55.
  • the output of phase shifter 26 is provided to input port 18 of spatial filter 17.
  • the signal component provided to input port 18 is provided to output port 9 which is connected to antenna element 1 and is also provided by a coupling arrangement to element 2 which is adjacent to antenna element 1.
  • Spatial filter 17 couples component signals which are provided to any input to the antenna element associated with the input and to elements adjacent to the associated element. Couplers 56-62 couple signals which are provided to an associated antenna element to the antenna element which is to the left of the associated antenna element.
  • the component signal provided to an input is transmitted to the antenna element associated with the input by transmission lines 64-71.
  • the component signal provided by branch 39 of the power divider 43 is fed through phase shifter 30 and provided to input 22 of spatial filter 17.
  • Input 22 is connected by transmission line 68 to its associated output 13 and antenna element 5.
  • the component signal is also coupled by coupler 59 to antenna element 4 which is to the left of and adjacent to antenna element 5.
  • component signals provided to an input are also coupled to antenna elements adjacent and right of the associated antenna element by couplers 72-80.
  • the component signal provided by branch 49 of the power divider to input 38 of phase shifter 29 passes through phase shifter 29 and is provided to input 21 of the spatial filter 17.
  • the component signal is then provided to output 12 by transmission line 67.
  • Output 12 is directly connected to antenna element 4.
  • Element 5 is adjacent to and to the right of antenna element 4 and receives a portion of the component signal via coupler 76.
  • Element 3 is adjacent to and to the left of antenna element 4 and receives a portion of the component signal via coupler 58.
  • Spatial filter 17 is shown in modular form. As a result, the input to coupler 72 is terminated by termination 81 because there is no antenna element to the left of antenna element 1. Similarly, the output from coupler 56 is terminated by termination 82 because there is no antenna element to the left of antenna element 1 to receive the component signal provided to input 18. On the right side of spatial filter 17, coupler 80 is terminated by termination 83 and coupler 63 is terminated by termination 84 because there is no antenna element to the right of antenna element 8 to receive the coupled signal from coupler 80 or to provide a coupled signal via coupler 63.
  • Figure 2 illustrates a plan view of a printed circuit coupling network useful as the spatial filter 17 of Figure 1.
  • Network 17 includes input ports 18-25 connected to the outputs of beam steering unit 34. These input ports are connected to a first series of couplers C1 shown in detail in Figure 2a.
  • Coupler C1 as well as all other couplers may be standard microstrip network couplers having a predetermined coupling ratio. The specific coupling ratio depends on the width, length and on the thickness of the transmission lines within the coupler.
  • signals provided to the inputs 101 and 102 of coupler C1 are coupled to the outputs 103 and 104 according to a predetermined ratio.
  • Couplers 109-116 work in the same manner as coupler C1 as shown in Figure 2a by combining signals provided to their inputs to the outputs 9-16 of spatial filter 17.
  • a non-thinned spatial filter is a filter formed by an array of couplers.
  • the array is essentially lossless in that the power dissipated within terminations is minimized.
  • FIG 3 is a schematic diagram of an antenna system in accordance with the invention including a three/four level cascaded spatial filter 300.
  • this spatial filter may be used in combination with the antenna system as shown in Figure 1 by replacing spatial filter 17 with spatial filter 300.
  • Each antenna element 1-8 would then be connected to one and only one output port 301 of the spatial filter 300.
  • Spatial filter 300 is comprised of a plurality of modules A through H, one module for each antenna element.
  • Spatial filter 300 includes input ports 302 each connected to one and only one of the outputs of a phase shift network.
  • Figure 4 is a plan view of a printed circuit coupling network of the cascaded spatial filter 300 illustrated in Figure 3.
  • Network 300 includes input ports 302 connected to the output ports of a beam steering unit. These input ports are connected to a first series of couplers C1 shown in detail in Figure 2a. Following the first array of couplers C1 is a second array of couplers C2 illustrated in more detail in Figure 2b. Following the second array of couplers C2 is a third array of couplers C2. Completing the four level spatial filter 300 is a fourth series of couplers C1. According to the invention, for symmetrical excitations, couplers C1 at the beginning and end of the array and intermediate couplers C2 have the same configuration.
  • Figure 5a illustrates an ideal antenna pattern for an antenna according to the invention employing spatial filters having a two level coupling. Essentially this coupling creates lobes 501, 502 and 503.
  • Figure 5b illustrates a typical antenna pattern employing a three level spatial filter which forms a single lobe 504.
  • Figure 5c illustrates a typical antenna pattern for a four level spatial filter generating a more well defined single lobe 505.
  • trial 5 illustrates an optimum arrangement with minimum power loss.
  • the design of a spatial filter involves the determination of coupler values for a multilayer circuit. No closed form solution is readily apparent to the synthesis of a network that produces a specified output voltage distribution. However, analysis of any network is possible. Therefore, synthesis involves the iterative trial and error procedure described above in which coupler values are gradually adjusted until the desired outputs are achieved.
  • the theoretical loss of a spatial filter network is determined by conservation of power considerations.
  • the network prototype is shown in Figure 7.
  • the network is symmetrical and continues to infinity in both directions.
  • Each input excites a sub array with N outputs.
  • the network shown in Figure 7 has an equal number of inputs and outputs. Therefore, the input and output spacings are equal and, when all inputs are excited, each output port will be the sum of contributions from N input ports. There must be an internal termination for each output port.
  • Bj(N) the power terminated
  • the loss, when a single input port is excited and the sub array pattern has a maximum in the in-phase direction, is given by:
  • the lower bound on the loss is increased by the difference in the sub array gain in the two directions.
  • the optimum network is one that provides the least loss.
  • the loss that can be expected is the difference between the computed network loss and the theoretical value.
  • Figure 11 describes the linearity requirement for MLS glide path guidance.
  • the discussion of linearity concentrates on the elevation guidance performance, however, linearity is also a requirement for the azimuth guidance.
  • Linearity is a subject that has generated much discussion in the MLS community.
  • the invention provides a phased array antenna which meets the elevation linearity requirement.
  • the spatial filter network is a practical way to satisfy the low effective sidelobe requirement which is directly related to the linearity requirement.
  • the linearity (autopilot) requirement limits the deviation from the ideal linear relationship of the MLS guidance angle and the actual angle (see Figure 11). It specifies the transverse accuracy characteristic of the angle guidance signal as opposed to the longitudinal characteristics of PFN and CMN.
  • the longitudinal characteristic causes the aircraft to deviate from the glide path (bends) or generates noise-like action of the controls.
  • the transverse characteristic is capable of causing instability in an automatic flight control system.
  • PFN Path Following Noise
  • the effective sidelobe level required to ensure that the PFN for a 1.5° beamwidth antenna does not exceed 0.083° is -25 dB (a 0 dB ground reflection coefficient is assumed, the 0.083° PFN limit is derived from the ICAO standard that the PFN shall not be greater than plus or minus 1.3 feet).
  • CMN could be generated when the aircraft was within 2000 feet. of the runway threshold. Consequently, in the draft specifications for the FAA second MLS procurement, the effective sidelobe level is specified such that the CMN does not exceed 0.045°. This requires an effective sidelobe level of -30 dB for a 1.5° beamwidth antenna.
  • the sidelobes radiated by the elevation antenna in the direction of the ground are folded back on the main beam because of specular reflection.
  • the sidelobe radiation distorts the beam and causes PFN, CMN and linearity errors.
  • the specification of PFN and CMN limits the magnitude of the angle guidance error.
  • the linearity error depends on the product of the maximum angle guidance error and the height of the antenna phase center above the reflecting ground surface.
  • a large error-height product is capable of causing substantial degradation of the guidance loop gain of an automatic flight control system to the point where the automatic flight control system becomes unstable. For example, a maximum error of 0.045° and a phase center height of 20 feet can cause the loop gain to vary between +6 dB and less than -40 dB (at the "max gain spot" and the "dead spot", see Figure 11).
  • FIG. 13 The model was used as a perturbation input to a simulation of an automatic glide slope control system for a small jet aircraft.
  • the criteria for the acceptability of the automatic flight control system is passenger comfort.
  • Figures 13, 14 and 15 provide a summary of the simulation results with respect to the allowable peak MLS guidance error, elevation antenna phase center height and passenger comfort. The simulations start at a distance of 3 NM from the elevation antenna.
  • Figure 13 shows that for a 20 feet phase center height and a peak error of 0.083° the automatic control system is unstable.
  • the vertical accelerations exceed the passenger comfort level by a factor of 2.4:1.
  • peak error of 0.045° the system is marginally stable; for larger phase center heights, say 37 feet, it is expected that the system would be unstable (the error-height product, 0.045° X 37′, is equal to that of the 0.083° maximum error and 20 feet height case).
  • Figures 14 and 15 exhibit the same trends; they show that for a 20 feet phase center height and a peak error of 0.083° the vertical velocity and attitude exceed the passenger comfort levels by factors of 4:1 and 2:1 respectively.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Claims (15)

  1. Un système d'antenne destiné à rayonner des signaux d'énergie ondulatoire dans une région angulaire sélectionnée de l'espace, et selon un diagramme de rayonnement désiré, comprenant :
       un générateur de signaux (44) connecté de façon à fournir des signaux d'ondes à un diviseur de puissance (43) ayant N accès de sortie de signal (46 à 53);
       une unité de pointage de faisceau (34) comprenant N déphaseurs (26 à 33) et une unité de commande (54) pour commander les déphaseurs de façon à pointer le faisceau rayonné, chaque déphaseur ayant un accès de sortie et un accès d'entrée (35 à 42) connectés seulement à l'un respectif des accès de sortie de signal (46 à 53);
       des moyens de transmission (17) ayant un ensemble d'accès de sortie et N accès d'entrée (18 à 25), chacun d'eux étant connecté seulement à l'un respectif des accès de sortie des déphaseurs; et
       une ouverture comprenant un ensemble d'éléments d'antenne (1 à 8), disposés le long d'un chemin prédéterminé , ces éléments étant connectés aux accès de sortie des moyens de transmission;
       caractérisé en ce que :
       les moyens de transmission comprennent un filtre spatial (17) ayant N accès de sortie (9 à 16) correspondant respectivement à l'un de chacun des N accès d'entrée (18 à 25), N étant un entier supérieur à cinq;
       le filtre spatial (17) comprenant un réseau de coupleurs disposés de façon à coupler des signaux à partir de chacun des accès d'entrée (18 à 25), vers son accès de sortie correspondant (9 à 16), et également vers au moins deux autres des accès de sortie (9 à 16) de chaque côté de l'accès de sortie correspondant, autres que ceux se trouvant dans les parties d'extrémités de l'ouverture, et avec la même phase; et
       les coupleurs dans le filtre spatial (17) étant conçus de façon que ce filtre spatial n'ait pratiquement pas de pertes, et que pendant le fonctionnement l'ouverture puisse rayonner le diagramme de rayonnement désiré essentiellement dans la région sélectionnée de l'espace, pratiquement sans lobes dûs à la structure discontinue de l'ouverture.
  2. Un système selon la revendication 1, caractérisé en ce que le filtre spatial (17) comprend :
       un ensemble de N premiers moyens de couplage (C₁) ayant chacun un premier accès d'entrée, un premier accès de sortie de couplage et un premier accès de sortie de transmission, les premiers moyens de couplage étant destinés à distribuer pratiquement sans pertes des signaux d'énergie ondulatoire qui sont appliqués au premier accès d'entrée, ces signaux appliqués étant distribués au premier accès de sortie de couplage et au premier accès de sortie de transmission conformément à un premier rapport prédéterminé, les N premiers accès d'entrée étant les N accès d'entrée du filtre spatial;
       un ensemble de N seconds moyens de couplage (C₂) dispersés parmi les N premiers moyens de couplage, ayant chacun un second accès d'entrée gauche associé au premier accès de sortie de couplage des premiers moyens de couplage adjacents droits, et un second accès d'entrée droit associé au premier accès de sortie de transmission des premiers moyens de couplage adjacents gauches, ces seconds moyens ayant un second accès de sortie de couplage et un second accès de sortie de transmission, les seconds moyens de couplage étant destinés à combiner et à distribuer pratiquement sans pertes des signaux d'énergie ondulatoire qui sont appliqués au second accès d'entrée gauche et au second accès d'entrée droit, ces signaux appliqués étant distribués au second accès de sortie de couplage et au second accès de sortie de transmission conformément à un second rapport prédéterminé; et
       un ensemble de N troisièmes moyens de couplage (109-116) dispersés parmi les N seconds moyens de couplage, ayant chacun un troisième accès d'entrée gauche associé au second accès de sortie de couplage des seconds moyens de couplage adjacents droits, et un troisième accès d'entrée droit associé au second accès de sortie de transmission des seconds moyens de couplage adjacents gauches, les troisièmes moyens de couplage ayant un troisième accès de sortie, les troisièmes moyens de couplage étant destinés à combiner pratiquement sans pertes des signaux d'énergie ondulatoire qui sont appliqués au troisième accès d'entrée gauche et au troisième accès d'entrée droit, ces signaux appliqués étant combinés et fournis par le troisième accès de sortie de combinaison conformément à un troisième rapport prédéterminé, et les N troisièmes accès de sortie étant les N accès de sortie du filtre spatial.
  3. Un système selon la revendication 2, caractérisé en ce que le premier rapport prédéterminé est égal au troisième rapport prédéterminé.
  4. Un système selon la revendication 3, caractérisé en ce que le second rapport prédéterminé (C₂) est associé au premier rapport prédéterminé (C₁) conformément à la relation suivante :

    C₁² = 1 2 (1 + √ 1 - C₂² ¯ )
    Figure imgb0036
  5. Un système selon la revendication 2, caractérisé en ce que le filtre spatial (17) comprend en outre un ensemble de N quatrièmes moyens de couplage qui sont placés entre les seconds moyens et les troisièmes moyens, ces N quatrièmes moyens étant respectivement dispersés parmi les N seconds moyens de couplage, chacun d'eux ayant un quatrième accès d'entrée gauche associé au second accès de sortie de couplage des premiers moyens de couplage adjacents droits, et un quatrième accès d'entrée droit associé au second accès de sortie de transmission des premiers moyens de couplage adjacents gauches, les quatrièmes moyens ayant un quatrième accès de sortie de couplage associé au troisième accès d'entrée droit, et ayant un quatrième accès de sortie de transmission associé au troisième accès d'entrée gauche, les quatrièmes moyens de couplage étant destinés à combiner et à distribuer pratiquement sans pertes des signaux d'énergie ondulatoire qui sont appliqués au quatrième accès d'entrée gauche et au quatrième accès d'entrée droit, ces signaux appliqués étant distribués au quatrième accès de sortie de couplage et au quatrième accès de sortie de transmission conformément à un quatrième rapport prédéterminé.
  6. Un système selon la revendication 5, caractérisé en ce que le premier rapport prédéterminé est égal au troisième rapport prédéterminé, et le second rapport prédéterminé est égal au quatrième rapport prédéterminé.
  7. Un système selon la revendication 6, caractérisé en ce que le second rapport prédéterminé (C₂) est associé au premier rapport prédéterminé (C₁) conformément à la relation suivante :

    C₁² = 1 2 + C₂ √ 1 ¯ - ¯ C₂² ¯
    Figure imgb0037
  8. Un système selon la revendication 1, caractérisé en ce que le filtre spatial comprend :
       des moyens de distribution ayant N accès d'entrée de distribution et 2N accès de sortie de distribution, pour distribuer pratiquement sans pertes des signaux d'énergie ondulatoire qui sont appliqués aux accès d'entrée de distribution, ces signaux appliqués étant distribués aux accès de sortie de distribution conformément à un premier rapport prédéterminé, les N accès d'entrée de distribution étant les N accès d'entrée du filtre spatial;
       des premiers moyens de transmission ayant 2N premiers accès d'entrée de transmission, chacun d'eux étant associé à un seul des 2N accès de sortie de distribution, et ayant 2N premiers accès de sortie de transmission, ces premiers moyens de transmission étant destinés à combiner et à distribuer pratiquement sans pertes des signaux d'énergie ondulatoire qui sont appliqués aux premiers accès d'entrée de transmission, ces signaux appliqués étant combinés et distribués aux premiers accès de transmission conformément à un second rapport prédéterminé;
       des moyens de combinaison ayant 2N accès d'entrée de combinaison, chacun d'eux étant associé à un seul des 2N premiers accès de sortie de transmission, et ayant N accès de sortie de combinaison, les moyens de combinaison étant destinés à combiner pratiquement sans pertes des signaux d'énergie ondulatoire qui sont appliqués aux 2N accès d'entrée de combinaison, ces signaux appliqués étant combinés aux accès de sortie de combinaison conformément à un troisième rapport prédéterminé, et les N accès de sortie de combinaison étant les N accès d'entrée du filtre spatial.
  9. Un système selon la revendication 8, caractérisé en ce que le premier rapport prédéterminé est égal au troisième rapport prédéterminé.
  10. Un système selon la revendication 9, caractérisé en ce que le second rapport prédéterminé (C₂) est associé au premier rapport prédéterminé (C₁) conformément à la relation suivante :

    C₁² = 1 2 (1 + √ 1 - C₂² ¯ )
    Figure imgb0038
  11. Un système selon la revendication 8, caractérisé en ce que le filtre spatial comprend en outre des seconds moyens de transmission qui sont placés entre les premiers moyens de transmission et les moyens de combinaison, ces seconds moyens de transmission ayant 2N seconds accès d'entrée de transmission, chacun d'eux étant associé à un seul des 2N premiers accès de sortie de transmission, et ayant 2N seconds accès de sortie de transmission, chacun d'eux étant associé à un seul des 2N accès d'entrée de combinaison, les seconds moyens de transmission étant destinés à combiner et à distribuer pratiquement sans pertes des signaux d'énergie ondulatoire qui sont appliqués aux seconds accès d'entrée de transmission, ces signaux appliqués étant combinés et distribués aux seconds accès de sortie de transmission conformément à un quatrième rapport prédéterminé.
  12. Un système selon la revendication 11, caractérisé en ce que le premier rapport prédéterminé est égal au troisième rapport prédéterminé, et le second rapport prédéterminé est égal au quatrième rapport prédéterminé.
  13. Un système selon la revendication 12, caractérisé en ce que le second rapport prédéterminé (C₂) est associé au premier rapport prédéterminé (C₁) conformément à la relation suivante :

    C₁² = 1 2 + C₂ √ 1 - C₂² ¯
    Figure imgb0039
  14. Un système selon la revendication 1, caractérisé en ce que le filtre comprend des premier et second filtres spatiaux sans pertes connectés en cascade, ayant N accès d'entrée et N accès de sortie.
  15. Un système selon l'une quelconque des revendications 2 à 14, caractérisé en ce que le filtre spatial comprend un circuit imprimé qui se trouve sur un seul substrat.
EP19880300427 1988-01-20 1988-01-20 Réseau d'antennes à commande par déphaseurs à coupleurs dans un arrangement à filtre spatial Expired - Lifetime EP0325012B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE19883885082 DE3885082T2 (de) 1988-01-20 1988-01-20 Phasengesteuerte Antenne mit Kopplern, die zu einem örtlich koppelndem Filter angordnet sind.
EP19880300427 EP0325012B1 (fr) 1988-01-20 1988-01-20 Réseau d'antennes à commande par déphaseurs à coupleurs dans un arrangement à filtre spatial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19880300427 EP0325012B1 (fr) 1988-01-20 1988-01-20 Réseau d'antennes à commande par déphaseurs à coupleurs dans un arrangement à filtre spatial

Publications (2)

Publication Number Publication Date
EP0325012A1 EP0325012A1 (fr) 1989-07-26
EP0325012B1 true EP0325012B1 (fr) 1993-10-20

Family

ID=8199929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880300427 Expired - Lifetime EP0325012B1 (fr) 1988-01-20 1988-01-20 Réseau d'antennes à commande par déphaseurs à coupleurs dans un arrangement à filtre spatial

Country Status (2)

Country Link
EP (1) EP0325012B1 (fr)
DE (1) DE3885082T2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024118325A1 (fr) * 2022-12-01 2024-06-06 Commscope Technologies Llc Antennes de station de base à division de secteur à faisceaux multiples ayant des réseaux de formation de faisceau à base de matrice de nolen modifiée

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11342668B2 (en) 2017-06-22 2022-05-24 Commscope Technologies Llc Cellular communication systems having antenna arrays therein with enhanced half power beam width (HPBW) control
EP3419104B1 (fr) 2017-06-22 2022-03-09 CommScope Technologies LLC Systèmes de communication cellulaire avec des réseaux d'antennes à commande de largeur de faisceau d'énergie (hpbw) à moitié améliorée
US10879605B2 (en) 2018-03-05 2020-12-29 Commscope Technologies Llc Antenna arrays having shared radiating elements that exhibit reduced azimuth beamwidth and increase isolation
CN113258261A (zh) 2020-02-13 2021-08-13 康普技术有限责任公司 天线组件以及具有天线组件的基站天线
CN113315550B (zh) * 2020-02-27 2022-03-29 上海华为技术有限公司 天线系统和接入网设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041501A (en) * 1975-07-10 1977-08-09 Hazeltine Corporation Limited scan array antenna systems with sharp cutoff of element pattern
US4143379A (en) * 1977-07-14 1979-03-06 Hazeltine Corporation Antenna system having modular coupling network
US4321605A (en) * 1980-01-29 1982-03-23 Hazeltine Corporation Array antenna system
EP0215971A1 (fr) * 1985-09-24 1987-04-01 Allied Corporation Réseau d'alimentation d'antenne

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024118325A1 (fr) * 2022-12-01 2024-06-06 Commscope Technologies Llc Antennes de station de base à division de secteur à faisceaux multiples ayant des réseaux de formation de faisceau à base de matrice de nolen modifiée

Also Published As

Publication number Publication date
DE3885082T2 (de) 1994-05-11
EP0325012A1 (fr) 1989-07-26
DE3885082D1 (de) 1993-11-25

Similar Documents

Publication Publication Date Title
DE69113493T2 (de) Aktives Antennensystem in gedruckter Schaltungstechnik mit hohem Wirkungsgrad für ein gesteuertes Weltraum-Radargerät.
Hansen Array pattern control and synthesis
US5477229A (en) Active antenna near field calibration method
EP0126626B1 (fr) Coupleur d'ouverture rayonnant à guide d'ondes résonnant
DE69323281T2 (de) Aktive phasengesteuerte Sende-Gruppenantenne
US5003314A (en) Digitally synthesized phase error correcting system
JP2629057B2 (ja) 自己監視・較正フェイズドアレーレーダ
Agrawal et al. Beamformer architectures for active phased-array radar antennas
EP0647358B1 (fr) Systeme de distribution d'energie electromagnetique
US4876548A (en) Phased array antenna with couplers in spatial filter arrangement
JPH0669713A (ja) 整相周波数ステアリング形アンテナアレイ
CN112688073B (zh) 反射式多波束卫星通信平板阵列天线控制系统及仿真方法
Casini et al. A novel design method for Blass matrix beam-forming networks
Elliott et al. The design of microstrip dipole arrays including mutual coupling, Part I: Theory
US6094172A (en) High performance traveling wave antenna for microwave and millimeter wave applications
EP0325012B1 (fr) Réseau d'antennes à commande par déphaseurs à coupleurs dans un arrangement à filtre spatial
US5333002A (en) Full aperture interleaved space duplexed beamshaped microstrip antenna system
EP1250726B1 (fr) Systeme antenne et procede de suppression des lobes secondaires
US4746923A (en) Gamma feed microstrip antenna
EP0275303B1 (fr) Appareil d'antenne a reseau a dephasage a semi-conducteurs a faible rayonnement des lobes laterals
GB1600346A (en) Antenna system having modular coupling network
CA1296098C (fr) Antenne reseau a commande de phase couplee a un filtre spatial
US5140336A (en) Non-resonant antenna for wind profilers
US5289196A (en) Space duplexed beamshaped microstrip antenna system
JP2720972B2 (ja) 空間フイルタ構成のカップラを有する整相アレイアンテナ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19890920

17Q First examination report despatched

Effective date: 19920207

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI CASETTA & PERANI S.P.A.

REF Corresponds to:

Ref document number: 3885082

Country of ref document: DE

Date of ref document: 19931125

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970327

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991223

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991229

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010120

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010928

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050120