EP0313599B1 - Device for expansion transfer in liquid cycle systems, in particular of heating and cooling installations - Google Patents

Device for expansion transfer in liquid cycle systems, in particular of heating and cooling installations Download PDF

Info

Publication number
EP0313599B1
EP0313599B1 EP88903736A EP88903736A EP0313599B1 EP 0313599 B1 EP0313599 B1 EP 0313599B1 EP 88903736 A EP88903736 A EP 88903736A EP 88903736 A EP88903736 A EP 88903736A EP 0313599 B1 EP0313599 B1 EP 0313599B1
Authority
EP
European Patent Office
Prior art keywords
expansion vessel
liquid
pressure
expansion
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88903736A
Other languages
German (de)
French (fr)
Other versions
EP0313599A1 (en
Inventor
Anton Schwarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A Schwarz and Co
Original Assignee
A Schwarz and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A Schwarz and Co filed Critical A Schwarz and Co
Publication of EP0313599A1 publication Critical patent/EP0313599A1/en
Application granted granted Critical
Publication of EP0313599B1 publication Critical patent/EP0313599B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1008Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system expansion tanks

Definitions

  • the invention relates to a device for taking over expansion in liquid circulation systems, in particular heating or cooling systems, with at least one expansion vessel, preferably in gas exchange with the atmosphere, into which liquid is taken up from the liquid circulation system via an inlet line and from the liquid via an outlet line and a Pressure pump is fed back to the liquid circulation system and an overflow valve that is adjustable to the operating pressure of the system is provided in the feed line to the expansion vessel, and a lower pressure prevails in the expansion vessel than in the liquid circulation system.
  • a device is known for example from BE-A-725 526.
  • heating or cooling of the heating liquid causes a change in volume.
  • the additional volume must be removed from the liquid circuit during heating and returned to the liquid circuit when cooling.
  • it is known to transfer the excess heating fluid caused by the thermal expansion into an open expansion vessel and to supply heating fluid to the liquid circuit again when it cools down.
  • Closed expansion vessels are also known for this purpose.
  • a solenoid valve is usually opened and the heating liquid is released from the circuit into the expansion vessel. If the pressure in the system drops, the pressure pump is switched on and heating fluid is pumped out of the expansion vessel into the fluid circuit.
  • Another example of such a system can be found in DE-A1-25 16 424. This intermittent removal and recirculation of heating fluid from or into the fluid circuit results in considerable pressure fluctuations in the system. Analogous conditions also occur in cooling systems.
  • the object of the invention is therefore to improve a device of the type mentioned above in such a way that the pressure compensation takes place smoothly and practically without pressure fluctuations in the liquid circulation system.
  • inlet and outlet lines which connect the expansion vessel to the liquid circulation system are separate lines which open out at separate points in the feed line or the return line of the liquid circulation system, and in that a continuously running outlet line from the expansion vessel Pressure and circulation pump is arranged.
  • the pressure and circulation pump continuously pumps liquid from the expansion vessel into the circulatory system and, with the appropriate dimensions, ensures that the operating pressure in the circulatory system is maintained, to which the overflow valve in the supply line to the expansion vessel is set.
  • at least a partial flow of the circulating liquid flows continuously through the overflow valve or the expansion vessel.
  • the phase of cooling the circulating liquid more liquid is conveyed from the expansion tank into the circulatory system than flows into the expansion vessel via the overflow valve. The liquid level in the expansion tank drops again. All of this happens practically without fluctuations in the operating pressure in the circulatory system.
  • the amount of water delivered by the pump determines the flow through the valve.
  • the pressure circuit does not have to be monitored.
  • the expansion vessel It is possible to lead only a partial flow of the system liquid (heating liquid) via the expansion vessel or, especially in the case of smaller heating systems, to conduct the full liquid stream via the inlet line, the expansion vessel and the outlet line.
  • the pressure and circulation pump arranged in the drain line from the expansion vessel can also take over the function of the system circulation pump, so that a further system circulation pump in the liquid circulation system is not necessary.
  • An embodiment variant of the invention provides that at least one further expansion vessel is connected to the expansion vessel.
  • This measure means that expansion vessels of different sizes and capacity do not have to be manufactured for different plant sizes. It is sufficient to produce an expansion vessel in a standard size, to which further additional expansion vessels are then connected in larger systems. Since these additional expansion vessels have no pumps or valves, the costs can be kept low.
  • the overflow valve in the inlet line to the expansion vessel causes, on the one hand, that in the flow direction upstream of the overflow valve (i.e. in the liquid circulation system) the operating pressure to which the overflow valve is set prevails, on the other hand that in the direction of flow behind the overflow valve (ie in the expansion vessel) there is a lower pressure than the operating pressure of the system.
  • the overflow valve which is open, ie which is in gas exchange with the atmosphere, this is practically the atmospheric pressure.
  • the oxygen uptake can also be reduced by a (preferably biodegradable) barrier liquid above the water level.
  • a barrier liquid above the water level.
  • this takes place in that the expansion vessel has a siphon at the gas outlet, which is filled with a sealing liquid, for example oil.
  • the drawing shows the diagram of a device according to the invention for a heating system.
  • the circulation system of the heating system exists; from the boiler 1, the liquid line 2 (flow) or 2 '(return) and radiators (e.g. radiators) 3.
  • the liquid circuit is maintained (or supported) by a system circulation pump 25.
  • a heating or Circulated liquid is preferably filtered and softened tap water.
  • an expansion vessel 4 which is connected to the supply line 2 of the system via an inlet line 5 and an outlet line 6.
  • the connections of the inlet line 5 and the outlet line 6 in the inlet line 2 are arranged relatively close behind the boiler 1 in order to use the thermal degassing. This type of connection is particularly suitable for water temperatures up to approx. 90 ° C.
  • the connection of the inlet line 5 and the outlet line 6 is better in the return line 2 '.
  • the full liquid flow can also be conducted via the expansion vessel 4, in which case the connecting line 2A between the inlet line 5 and the outlet line 6 is omitted.
  • the overflow valve 7 is located in the feed line 5 and can be adjusted to the system pressure.
  • the actual pressure of the heating system can be read from a manometer 8. In heating systems, there is usually an overpressure of at least 1.5 bar in the liquid circulation system (depending on the height of the building).
  • a continuously operating pressure and circulation pump 9 is located in the discharge line 6. It is followed in the flow direction by a flow control valve 10 and a flow meter 24.
  • a solenoid valve 11 is provided both in the inlet line 5 and in the outlet line 6. (In the drain line 6 it can also be a check valve).
  • a lower level controller is located in the expansion vessel 4 12 for the fresh water make-up (19 to 23) and an upper level controller 13 for securing the outlet of the expansion tank (at 15). If the water level 14 exceeds the level of the level controller 13, the solenoid valves 11 are closed and the expansion vessel 4 is separated from the system circuit.
  • the heat generator (burner) can also be switched off via the level controller 12, 13. Furthermore, the expansion vessel 4 and the heat generator can be switched off by pressure monitoring (for example by a pressostat) in the case of overpressure or underpressure in the system.
  • the gas outlet 15 of the expansion vessel 4 is provided with a siphon 16 which is filled with a barrier liquid 17. Both pipe legs of the siphon 16 have areas 16 'enlarged cross-section to prevent leakage of the sealing liquid with slight pressure fluctuations.
  • An additional expansion vessel 18 is drawn with dashed lines and can optionally be connected to the expansion vessel 4.
  • Line 19 is an inlet line for fresh water. Fresh water is pumped into the expansion vessel 4 when the water level 14 falls below the level of the lower level regulator 12.
  • the fresh water supply line 19 is provided with a water meter 20, a solenoid valve 22, a pipe separator 23 and a flow control valve 21.
  • the fresh water supply line can also be connected to the expansion vessel 4 at another point.
  • an "automatic" fresh water replenishment does not necessarily have to be provided (which controls the solenoid valve 22 via the level controller 12).
  • the essential feature of the device according to the invention is that at least a partial flow of the heating liquid (heating water) is passed through the expansion vessel 4 in a continuous flow, which is connected via the inlet line 5 and the outlet line 6 to the liquid line (feed line 2 or return line 2 ') of the system is.
  • heating fluid flows continuously via the overflow valve 7 into the expansion vessel 4 and the heating fluid is continuously returned from the expansion vessel 4 into the circulatory system or into the fluid line 2, since the circulation pump 9 works continuously.
  • the same amount of liquid is not always conveyed into the expansion vessel 4 as it flows out of it.
  • more liquid flows into the expansion vessel 4 than from it.
  • the water level 14 rises.
  • the water level 14 drops because more liquid is conveyed from the expansion vessel 4 into the circulatory system than flows in via the overflow valve 7.
  • the heating fluid is also degassed.
  • the water level 14 rises, displaced air escapes in bubbles through the barrier liquid 17 in the siphon 16. If the water level 14 drops, air from the outside again penetrates into the expansion vessel 4, but is "braked” due to the barrier liquid 17, which hinders the (re) absorption of air or air components (eg oxygen) in the heating fluid.
  • the lockable solenoid valves 11, as already mentioned, only serve to secure the system in the event of malfunctions and do not function during normal operation of the heating system.
  • a device according to the invention in a heating system has been described. However, it could also be used in cooling systems, that is to say wherever pressure fluctuations occurring in a liquid circulation system are to be compensated for by changes in volume of the circulation liquid.

Abstract

PCT No. PCT/AT88/00025 Sec. 371 Date Jan. 4, 1989 Sec. 102(e) Date Jan. 4, 1989 PCT Filed May 4, 1988 PCT Pub. No. WO88/08943 PCT Pub. Date Nov. 17, 1988.Device for expansion transfer in liquid cycle systems, in particular for heating installations, comprising a heating boiler (1), a liquid line (2, 2'), radiators (3) and an expansion vessel (4) at atmospheric pressure. The expansion vessel (4) is connected to the liquid line (2) of the heating installation through an inlet line (5), an outlet line (6), an overflow valve (7) which can be adjusted according to the operating pressure of the installation, and a continuously operating circulating pump (9).

Description

Die Erfindung bezieht sich auf eine Vorrichtung zur Expansionsübernahme in Flüssigkeitskreislaufsystemen, insbesondere von Heizungs- oder Kühlanlagen, mit mindestens einem vorzugsweise im Gasaustausch mit der Atmosphäre stehendem Expansionsgefäß, in das Flüssigkeit aus dem Flüssigkeitskreislaufsystem über eine Zulaufleitung aufgenommen und aus dem Flüssigkeit über eine Ablaufleitung und eine Druckpumpe dem Flüssigkeitskreislaufsystem wieder zugeführt wird und in der Zulaufleitung zum Expansionsgefäß ein auf den Betriebsdruck der Anlage einstellbares Überströmventil vorgesehen ist und wobei im Expansionsgefäß ein geringerer Druck als im Flüssigkeitskreislaufsystem herrscht. Eine derartige Vorrichtung ist beispielsweise aus der BE-A-725 526 bekannt.The invention relates to a device for taking over expansion in liquid circulation systems, in particular heating or cooling systems, with at least one expansion vessel, preferably in gas exchange with the atmosphere, into which liquid is taken up from the liquid circulation system via an inlet line and from the liquid via an outlet line and a Pressure pump is fed back to the liquid circulation system and an overflow valve that is adjustable to the operating pressure of the system is provided in the feed line to the expansion vessel, and a lower pressure prevails in the expansion vessel than in the liquid circulation system. Such a device is known for example from BE-A-725 526.

Es ist bekannt, daß bei Heizungsanlagen durch die Erwärmung bzw. Abkühlung der Heizungsflüssigkeit (Wasser) jeweils eine Veränderung des Volumens erfolgt. Das Mehrvolumen muß bei der Erwärmung aus dem Flüssigkeitskreislauf entnommen und bei der Abkühlung wieder in den Flüssigkeitskreislauf zurückgeführt werden. Es ist bei derartigen Heizungsanlagen bekannt, den durch die Wärmeausdehnung entstehenden Überschuß an Heizungsflüssigkeit in ein offenes Expansionsgefäß überzuführen und bei Abkühlung über eine Pumpe dem Flüssigkeitskreislauf wieder Heizflüssigkeit zuzuführen. Weiters sind zu diesem Zwecke auch geschlossene Expansionsgefäße bekannt. Dabei wird üblicherweise bei Erreichen eines bestimmten Überdruckes im Flüssigkeitskreislauf ein Magnetventil geöffnet und die Heizungsflüssigkeit aus dem Kreislauf in das Expansionsgefäß abgegeben. Sinkt der Druck in der Anlage, wird die Druckpumpe eingeschaltet und Heizungsflüssigkeit aus dem Expansiongefäß in den Flüssigkeitskreislauf gepumpt. Ein weiteres Beispiel für eine derartige Anlage ist der DE-A1-25 16 424 zu entnehmen. Durch diese intermittierende Entnahme und Wiederrückführung von Heizungsflüssigkeit aus bzw. in den Flüssigkeitskreislauf entstehen in der Anlage nicht unerhebliche Druckschwankungen. Analoge Verhältnisse treten auch bei Kühlanlagen auf.It is known that in heating systems, the heating or cooling of the heating liquid (water) causes a change in volume. The additional volume must be removed from the liquid circuit during heating and returned to the liquid circuit when cooling. In heating systems of this type, it is known to transfer the excess heating fluid caused by the thermal expansion into an open expansion vessel and to supply heating fluid to the liquid circuit again when it cools down. Closed expansion vessels are also known for this purpose. When a certain overpressure in the liquid circuit is reached, a solenoid valve is usually opened and the heating liquid is released from the circuit into the expansion vessel. If the pressure in the system drops, the pressure pump is switched on and heating fluid is pumped out of the expansion vessel into the fluid circuit. Another example of such a system can be found in DE-A1-25 16 424. This intermittent removal and recirculation of heating fluid from or into the fluid circuit results in considerable pressure fluctuations in the system. Analogous conditions also occur in cooling systems.

Aufgabe der Erfindung ist es daher, eine Vorrichtung der eingangs erwähnten Art dahingehend zu verbessern, daß der Druckausgleich gleitend und praktisch ohne Druckschwankungen im Flüssigkeitskreislaufsystem erfolgt.The object of the invention is therefore to improve a device of the type mentioned above in such a way that the pressure compensation takes place smoothly and practically without pressure fluctuations in the liquid circulation system.

Dies wird erfindungsgemäß dadurch erreicht, daß die Zulauf- und Ablaufleitungen, die das Expansionsgefäß mit dem Flüssigkeitskreislaufsystem verbinden, getrennte Leitungen sind, die an separaten Stellen in die Vorlaufleitung oder die Rücklaufleitung des Flüssigkeitskreislaufsystems einmünden, und daß in der Ablaufleitung aus dem Expansionsgefäß eine kontinuierlich laufende Druck- und Umwälzpumpe angeordnet ist.This is achieved according to the invention in that the inlet and outlet lines which connect the expansion vessel to the liquid circulation system are separate lines which open out at separate points in the feed line or the return line of the liquid circulation system, and in that a continuously running outlet line from the expansion vessel Pressure and circulation pump is arranged.

Die Druck und Umwälzpumpe fördert kontinuierlich Flüssigkeit aus dem Expansionsgefäß in das Kreislaufsystem und sorgt bei entsprechender Dimensionierung für die Aufrechterhaltung des Betriebsdruckes im Kreislaufsystem, auf den das Überströmventil in der Zulaufleitung zum Expansionsgefäß eingestellt ist. Im normalen Betriebsfall strömt zumindest ein Teilstrom der Kreislaufflüssigkeit kontinuierlich durch das Überströmventil bzw. das Expansionsgefäß. In der Phase der Erwärmung der Kreislaufflüssigkeit gelangt vorübergehend mehr Flüssigkeit durch das Überströmventil in das Expansionsgefäß als aus diesem durch die Druck- und Umwälzpumpe gefördert wird. Dadurch steigt das Flüssigkeitsniveau im Expansionsbehälter. In der Phase der Abkühlung der Kreislaufflüssigkeit wird umgekehrt mehr Flüssigkeit aus dem Expansionsbehälter in das Kreislaufsystem gefördert als über das Überströmventil in das Expansionsgefäß einströmt. Das Flüssigkeitsniveau im Expansionsbehälter sinkt wieder. Dies alles geht praktisch ohne Schwankungen des Betriebsdruckes im Kreislaufsystem vor sich. Die von der Pumpe geförderte Wassermenge bestimmt den Durchfluß durch das Ventil.The pressure and circulation pump continuously pumps liquid from the expansion vessel into the circulatory system and, with the appropriate dimensions, ensures that the operating pressure in the circulatory system is maintained, to which the overflow valve in the supply line to the expansion vessel is set. In normal operation, at least a partial flow of the circulating liquid flows continuously through the overflow valve or the expansion vessel. In the phase of heating the circulating liquid, more liquid temporarily passes through the overflow valve into the expansion vessel than is conveyed out of it by the pressure and circulation pump. This increases the liquid level in the expansion tank. Conversely, in the phase of cooling the circulating liquid, more liquid is conveyed from the expansion tank into the circulatory system than flows into the expansion vessel via the overflow valve. The liquid level in the expansion tank drops again. All of this happens practically without fluctuations in the operating pressure in the circulatory system. The amount of water delivered by the pump determines the flow through the valve.

Der Druckkreislauf muß nicht überwacht werden.The pressure circuit does not have to be monitored.

Bei der erfindungsgemäßen Vorrichtung kann auf eine aufwendige Steuerungstechnik zur Steuerung und überwachung der Anlage verzichtet werden. Ferner kommt es zu keinen Verschleißerscheinungen und Geräuschbildungen, wie sie bei der relativ hohen Schalthäufigkeit von Magnetventilen und intermittierend arbeitenden Pumpen auftreten.In the device according to the invention, complex control technology for controlling and monitoring the system can be dispensed with. Furthermore, there are no signs of wear and noise, such as occur with the relatively high switching frequency of solenoid valves and intermittently operating pumps.

Es ist möglich, nur einen Teilstrom der Anlagenflüssigkeit (Heizungsflüssigkeit) über das Expansionsgefäß zu führen oder, insbesondere bei kleineren Heizungsanlagen, den vollen FLüssigkeitsstrom über die Zulaufleitung, das Expansionsgefäß und die Ablaufleitung zu Leiten. Im Letzteren Fall kann die in der Ablaufleitung vom Expansionsgefäß angeordnete Druck- und Umwälzpumpe auch die Funktion der Anlagenumwälzpumpe übernehmen, sodaß sich eine weitere Anlagenumwälzpumpe im Flüssigkeitskreislaufsystem erübrigt.It is possible to lead only a partial flow of the system liquid (heating liquid) via the expansion vessel or, especially in the case of smaller heating systems, to conduct the full liquid stream via the inlet line, the expansion vessel and the outlet line. In the latter case, the pressure and circulation pump arranged in the drain line from the expansion vessel can also take over the function of the system circulation pump, so that a further system circulation pump in the liquid circulation system is not necessary.

Eine Ausführungsvariante der Erfindung sieht vor, daß an das Expansionsgefäß mindestens ein weiteres Expansionsgefäß angeschlossen ist. Durch diese Maßnahme müssen nicht für verschiedene Anlagegrößen unterschiedlich große und aufnahmefähige Expansionsgefäße gefertigt werden. Es genügt ein Expansionsgefäß in einer Standardgröße herzustellen, an das dann bei größeren AnLagen weitere Zusatzexpansionsgefäße angeschlossen werden. Da diese Zusatzexpansionsgefäße keine Pumpen oder Ventile aufweisen, können die Kosten gering gehalten werden.An embodiment variant of the invention provides that at least one further expansion vessel is connected to the expansion vessel. This measure means that expansion vessels of different sizes and capacity do not have to be manufactured for different plant sizes. It is sufficient to produce an expansion vessel in a standard size, to which further additional expansion vessels are then connected in larger systems. Since these additional expansion vessels have no pumps or valves, the costs can be kept low.

Das Überströmventil in der Zulaufleitung zum Expansions-gefäß bedingt (in Verbindung mit der kontinuierlich laufenden Druck- und Wärmepumpe in der Ablaufleitung des Expansionsgefäßes) einerseits, daß in Strömungsrichtung vor dem Überströmventil (also im Flüssigkeitskreislaufsystem) der Betriebsdruck herrscht, auf den das Überströmventil eingestellt ist, andererseits, daß in Strömungsrichtung hinter dem Überströmventil (also im Expansionsgefäß) ein geringerer Druck als der Betriebsdruck der Anlage vorhanden ist. Bei einem offenen, d.h. im Gasaustausch zur Atmosphäre stehenden Expansionsgefäß ist dies praktisch der Atmosphärendruck. Daraus ergibt sich ein weiterer Vorteil der erfindungsgemäßen Vorrichtung, denn - da in der in das Expansionsgefäß einströmenden Flüssigkeit ein Druckabfall stattfindetkönnen in der Kreislaufflüssigkeit enthaltene Gase entweichen (Henry-Gesetz), und dies nicht nur gelegentlich, sondern kontinuierlich aufgrund des erfindungsgemäßen Merkmals, wonach zumindest ein Teilstrom der Anlagen- bzw. Kreislaufflüssigkeit kontinuierlich durch das Expansionsgefäß geleitet wird. Damit ist auch der Sauerstoffgehalt der Heizungsflüssigkeit einer mit der erfindungsgemäßen Vorrichtung betriebenen Heizanlage gegenüber einer herkömmlichen Heizungsanlage durch Mitausscheidung des Sauerstoffes im Zuge der Entgasung erheblich niedriger. Wenn - wie dies vorzugsweise vorgesehen ist - das Expansionsgefäß mit der Atmosphäre im Gasaustausch steht, kann, um eine Wiederaufnahme von Sauerstoff aus der Atmosphäre zu erschweren, die Flüssigkeitsoberfläche im Expansionsgefäß mit einem Schwimmer abgedeckt werden. Die Sauerstoffaufnahme kann auch durch eine (vorzugsweise biologisch abbaubare) Sperrflüssigkeit oberhalb des Wasserspiegels herabgesetzt werden. Dies erfolgt in einer vorteilhaften Ausführungsform der Erfindung dadurch, daß das Expansionsgefäß beim Gasauslaß einen Siphon aufweist, der mit einer Sperrflüssigkeit, beispielsweise öl, gefüllt ist.The overflow valve in the inlet line to the expansion vessel (in conjunction with the continuously running pressure and heat pump in the outlet line of the expansion vessel) causes, on the one hand, that in the flow direction upstream of the overflow valve (i.e. in the liquid circulation system) the operating pressure to which the overflow valve is set prevails, on the other hand that in the direction of flow behind the overflow valve (ie in the expansion vessel) there is a lower pressure than the operating pressure of the system. In the case of an expansion vessel which is open, ie which is in gas exchange with the atmosphere, this is practically the atmospheric pressure. This results in a further advantage of the device according to the invention, because - since a pressure drop takes place in the liquid flowing into the expansion vessel, gases contained in the circulating liquid can escape (Henry's law), and not only occasionally, but continuously on the basis of the feature according to the invention, according to which a partial flow of the system or circulating liquid is continuously passed through the expansion vessel. The oxygen content of the heating fluid of a heating system operated with the device according to the invention is thus also considerably lower than that of a conventional heating system due to the co-separation of the oxygen during the degassing. If - as is preferably provided - the expansion vessel is in gas exchange with the atmosphere, the liquid surface in the expansion vessel can be covered with a float in order to make it difficult to resume oxygen from the atmosphere. The oxygen uptake can also be reduced by a (preferably biodegradable) barrier liquid above the water level. In an advantageous embodiment of the invention, this takes place in that the expansion vessel has a siphon at the gas outlet, which is filled with a sealing liquid, for example oil.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnung beschrieben.An exemplary embodiment of the invention is described below with reference to the drawing.

Die Zeichnung zeigt das Schema einer erfindungsgemäßen Vorrichtung für eine Heizungsanlage.The drawing shows the diagram of a device according to the invention for a heating system.

Das Kreislaufsystem der Heizungsanlage besteh; aus dem Heizkessel 1, der Flüssigkeitsleitung 2 (Vorlauf) bzw. 2′ (Rücklauf) und Heizkörpern (z.B. Radiatoren) 3. Der Flüssigkeitskreislauf wird durch eine Anlagen-Umwälzpumpe 25 aufrecht erhalten (bzw. unterstützt). Als Heizungs-bzw. Kreislaufflüssigkeit wird vorzugsweise gefiltertes und enthärtetes Leitungswasser verwendet. Ferner ist ein Expansionsgefäß 4 vorhanden, welches über eine Zulaufleitung 5 und eine Ablaufleitung 6 mit der Vorlaufleitung 2 der Anlage in Verbindung steht. Die Anschlüsse der Zulaufleitung 5 und der Ablaufleitung 6 in der Vorlaufleitung 2 sind relativ knapp hinter dem Heizkessel 1 angeordnet, um die thermische Entgasung zu nutzen. Diese Anschlußart ist vor allem für Wassertemperaturen bis ca. 90°C geeignet. Bei höheren Betriebstemperaturen erfolgt der Anschluß der Zulaufleitung 5 und der Ablaufleitung 6 besser in der Rücklaufleitung 2′. Bei kleineren Anlagen kann auch der volle Flüssigkeitsstrom über das Expansionsgefäß 4 geführt werden, wobei dann die Verbindungsleitung 2A zwischen Zulaufleitung 5 und Ablaufleitung 6 entfällt.The circulation system of the heating system exists; from the boiler 1, the liquid line 2 (flow) or 2 '(return) and radiators (e.g. radiators) 3. The liquid circuit is maintained (or supported) by a system circulation pump 25. As a heating or Circulated liquid is preferably filtered and softened tap water. There is also an expansion vessel 4, which is connected to the supply line 2 of the system via an inlet line 5 and an outlet line 6. The connections of the inlet line 5 and the outlet line 6 in the inlet line 2 are arranged relatively close behind the boiler 1 in order to use the thermal degassing. This type of connection is particularly suitable for water temperatures up to approx. 90 ° C. At higher operating temperatures, the connection of the inlet line 5 and the outlet line 6 is better in the return line 2 '. In smaller systems, the full liquid flow can also be conducted via the expansion vessel 4, in which case the connecting line 2A between the inlet line 5 and the outlet line 6 is omitted.

In der Zulaufleitung 5 befindet sich das Überströmventil 7, welches auf den Anlagendruck einstellbar ist. Der Ist-Druck der Heizungsanlage ist von einem Manometer 8 ablesbar. Bei Heizungsanlagen herrscht im Flüssigkeitskreislaufsystem üblicherweise ein überdruck von mindestens 1,5 bar (je nach Höhe des Gebäudes). In der Ablaufleitung 6 befindet sich eine kontinuierlich arbeitende Druck- und Umwälzpumpe 9. Ihr folg in der Flußrichtung ein Mengenregulierventil 10 sowie ein Durchflußmengenmesser 24.The overflow valve 7 is located in the feed line 5 and can be adjusted to the system pressure. The actual pressure of the heating system can be read from a manometer 8. In heating systems, there is usually an overpressure of at least 1.5 bar in the liquid circulation system (depending on the height of the building). A continuously operating pressure and circulation pump 9 is located in the discharge line 6. It is followed in the flow direction by a flow control valve 10 and a flow meter 24.

Weiters ist sowohl in der Zulaufleitung 5 als auch in der Ablaufleitung 6 ein Magnetventil 11 vorgesehen. (In der Ablaufleitung 6 kann es auch ein Rückschlagventil sein). Im Expansionsgefäß 4 befindet sich ein unterer Niveauregler 12 für die Frischwassernachspeisung (19 bis 23) und ein oberer Niveauregler 13 zur Absicherung des Auslasses des Expansionsgefäßes (bei 15). Übersteigt der Wasserspiegel 14 die Höhe des Niveaureglers 13, werden die Magnetventile 11 geschlossen und das Expansionsgefäß 4 vom Kreislauf der Anlage getrennt. Über die Niveauregler 12,13 kann auch der Wärmeerzeuger (Brenner) abgeschaltet werden. Des weiteren kann durch eine Drucküberwachung (z.B. durch einen Pressostaten) bei über- oder Unterdruck in der Anlage das Expansionsgefäß 4 und der Wärmeerzeuger abgeschaltet werden.Furthermore, a solenoid valve 11 is provided both in the inlet line 5 and in the outlet line 6. (In the drain line 6 it can also be a check valve). A lower level controller is located in the expansion vessel 4 12 for the fresh water make-up (19 to 23) and an upper level controller 13 for securing the outlet of the expansion tank (at 15). If the water level 14 exceeds the level of the level controller 13, the solenoid valves 11 are closed and the expansion vessel 4 is separated from the system circuit. The heat generator (burner) can also be switched off via the level controller 12, 13. Furthermore, the expansion vessel 4 and the heat generator can be switched off by pressure monitoring (for example by a pressostat) in the case of overpressure or underpressure in the system.

Der Gasauslaß 15 des Expansionsgefäßes 4 ist mit einem Siphon 16 versehen, der mit einer Sperrflüssigkeit 17 gefüllt ist. Beide Rohrschenkel des Siphons 16 weisen Bereiche 16′ erweiterten Querschnitts auf, um ein Ausströmen der Sperrflüssigkeit bei leichten Druckschwankungen zu verhindern.The gas outlet 15 of the expansion vessel 4 is provided with a siphon 16 which is filled with a barrier liquid 17. Both pipe legs of the siphon 16 have areas 16 'enlarged cross-section to prevent leakage of the sealing liquid with slight pressure fluctuations.

Strichliert ist ein Zusatzexpansionsgefäß 18 gezeichnet, das gegebenenfalls an das Expansionsgefäß 4 angeschlossen werden kann.An additional expansion vessel 18 is drawn with dashed lines and can optionally be connected to the expansion vessel 4.

Bei der Leitung 19 handelt es sich um eine Zulaufleitung für Frischwasser. Frischwasser wird in das Expansionsgefäß 4 eingepumpt, wenn der Wasserspiegel 14 das Niveau des unteren Niveaureglers 12 unterschreitet. Die Frischwasserzulaufleitung 19 ist mit einem Wasserzähler 20, einem Magnetventil 22, einem Rohrtrenner 23 und einem Mengenregulierventil 21 versehen. Die Frischwasserzulaufleitung kann auch an anderer Stelle am Expansionsgefäß 4 angeschlossen sein. Außerdem muß nicht unbedingt eine "automatische" Frischwassernachspeisung vorgesehen sein (welche über den Niveauregler 12 das Magnetventil 22 steuert).Line 19 is an inlet line for fresh water. Fresh water is pumped into the expansion vessel 4 when the water level 14 falls below the level of the lower level regulator 12. The fresh water supply line 19 is provided with a water meter 20, a solenoid valve 22, a pipe separator 23 and a flow control valve 21. The fresh water supply line can also be connected to the expansion vessel 4 at another point. In addition, an "automatic" fresh water replenishment does not necessarily have to be provided (which controls the solenoid valve 22 via the level controller 12).

Wenn (bei kleineren Anlagen) der volle Flüssigkeitsstrom des Kreislaufsystems über das Expansionsgefäß 4 geführt wird, dann kann auch auf die gesonderte Anlagen-Umwälzpumpe 23 verzichtet werden, weil die Druck- und Umwälzpumpe 9 in der Ablaufleitung 6 kontinuierlich arbeitet und daher auch die Funktion der Anlagen-Umwälzpumpe übernehmen kann.If (in the case of smaller systems) the full liquid flow of the circulatory system is routed via the expansion vessel 4, then it is also possible to use the separate system circulation pump 23 can be dispensed with because the pressure and circulation pump 9 in the discharge line 6 operates continuously and can therefore also assume the function of the system circulation pump.

Das wesentliche Merkmal der erfindungsgemäßen Vorrichtung ist, daß in kontinuierlicher Strömung zumindest ein Teilstrom der Heizungsflüssigkeit (Heizungswasser) durch das Expansionsgefäß 4 geführt wird, das über die Zulaufleitung 5 und die Ablaufleitung 6 an die Flüssigkeitsleitung (Vorlaufleitung 2 oder Rücklaufleitung 2′) der Anlage angeschlossen ist.The essential feature of the device according to the invention is that at least a partial flow of the heating liquid (heating water) is passed through the expansion vessel 4 in a continuous flow, which is connected via the inlet line 5 and the outlet line 6 to the liquid line (feed line 2 or return line 2 ') of the system is.

Bei vorgegebenem Betriebsdruck der Heizungsanlage fließt Heizungsflüssigkeit kontinuierlich über das überströmventil 7 in das Expansionsgefäß 4 und kontinuierlich erfolgt die Rückführung der Heizungsflüssigkeit aus dem Expansionsgefäß 4 in das Kreislaufsystem bzw. in die Flüssigkeitsleitung 2, da die Umwälzpumpe 9 kontinuierlich arbeitet. Allerdings wird nicht immer gleich viel Flüssigkeit in das Expansionsgefäß 4 gefördert, wie aus diesem abströmt. In der Phase der Erwärmung der Heizungsflüssigkeit strömt mehr Flüssigkeit in das Expansionsgefäß 4 ein als aus diesem ab. Der Wasserspiegel 14 steigt. In der Phase der Abkühlung der Heizungsflüssigkeit hingegen sinkt der Wasserspiegel 14, weil mehr Flüssigkeit aus dem Expansionsgefäß 4 in das Kreislaufsystem gefördert wird als über das überströmventil 7 einströmt.At a given operating pressure of the heating system, heating fluid flows continuously via the overflow valve 7 into the expansion vessel 4 and the heating fluid is continuously returned from the expansion vessel 4 into the circulatory system or into the fluid line 2, since the circulation pump 9 works continuously. However, the same amount of liquid is not always conveyed into the expansion vessel 4 as it flows out of it. In the phase of heating the heating liquid, more liquid flows into the expansion vessel 4 than from it. The water level 14 rises. In the phase of cooling the heating liquid, however, the water level 14 drops because more liquid is conveyed from the expansion vessel 4 into the circulatory system than flows in via the overflow valve 7.

Da im Expansionsgefäß 4 ein geringerer Druck als im Kreislaufsystem, nämlich praktisch Atmosphärendruck herrscht, erfolgt auch eine Entgasung der Heizungsflüssigkeit. Bei Anstieg des Wasserspiegels 14 verdrängte Luft entweicht bläschenweise durch die Sperrflüssigkeit 17 im Siphon 16 hindurch. Sinkt der Wasserspiegel 14, dringt zwar Luft von außen wieder in das Expansionsgefäß 4 ein, infolge der Sperrflüssigkeit 17 jedoch "gebremst", was die (Wieder-)Aufnahme von Luft bzw. Luftanteilen (z.B. Sauerstoff) in die Heizungsflüssigkeit behindert.Since the expansion vessel 4 has a lower pressure than the circulating system, namely practically atmospheric pressure, the heating fluid is also degassed. When the water level 14 rises, displaced air escapes in bubbles through the barrier liquid 17 in the siphon 16. If the water level 14 drops, air from the outside again penetrates into the expansion vessel 4, but is "braked" due to the barrier liquid 17, which hinders the (re) absorption of air or air components (eg oxygen) in the heating fluid.

Die absperrbaren Magnetventile 11 dienen, wie bereits erwähnt, lediglich der Sicherung der Anlage bei Funktionsstörungen und treten im normalen Betriebsfall der Heizungsanlage nicht in Funktion.The lockable solenoid valves 11, as already mentioned, only serve to secure the system in the event of malfunctions and do not function during normal operation of the heating system.

Im Ausführungsbeispiel wurde der Einsatz einer erfindungs-gemäßen Vorrithtung bei einer Heizanlage beschrieben. Sie könnte jedoth auch bei Kühlsystemen zum Einsatz kommen, also überall dort, wo in einem Flüssigkeitskreislaufsystem durch Volumsänderungen der Kreislaufflüssigkeit auftretende Drutkschwankungen kompensiert werden sollen.In the exemplary embodiment, the use of a device according to the invention in a heating system has been described. However, it could also be used in cooling systems, that is to say wherever pressure fluctuations occurring in a liquid circulation system are to be compensated for by changes in volume of the circulation liquid.

Claims (11)

1. Apparatus for expansion transfer in liquid circulatory systems, in particular of heating or cooling installations, comprising at least one expansion vessel (4) which is preferably in gas exchange relationship with the atmosphere and into which liquid is passed from the liquid circulatory system (1, 2, 3) by way of a feed conduit (5) and from which liquid is fed to the liquid circulatory system (1, 2, 3) again by way of a discharge conduit (6) and a pressure pump and provided in the feed conduit (5) to the expansion vessel (4) is a relief valve (7) which can be set to the operating pressure of the installation and wherein a lower pressure obtains in the expansion vessel (4) than in the liquid circulatory system ( 1, 2, 3 ) characterised in that the feed and discharge conduits (5, 6) which communicate the expansion vessel (4) with the liquid circulatory system (1, 2, 3) are separate conduits which open at different points into the flow line (2) or the return line (2′) of the liquid circulatory system and that arranged in the discharge conduit (6) from the expansion vessel (4) is a continuously operating pressure and circulating pump (9).
2. Apparatus according to claim 1 characterised in that disposed at least in the feed conduit (5) and preferably also in the discharge conduit (6) is a valve which is preferably in the form of a solenoid valve (11) and which is controlled by a level regulating means (13) of the expansion vessel (4).
3. Apparatus according to claim 1 or claim 2 characterised in that a quantitative regulating valve (10) is arranged in the discharge conduit (6) downstream of the pressure and circulating pump (9) in the direction of flow.
4. Apparatus according to one of claims 1 to 3 characterised in that a quantitative flow measuring means (24) is disposed in the discharge conduit (6) downstream of the circulating pump (9) in the direction of flow.
5. Apparatus according to one of claims 1 to 4 characterised in that at the gas outlet (15) the expansion vessel (4) has a syphon (16) filled with a blocking liquid (17), for example oil.
6. Apparatus according to claim 5 characterised in that both legs of the tube of the syphon (16) have regions (16′) of enlarged cross-section.
7. Apparatus according to one of claims 1 to 6 characterised by a refilling arrangement (19 to 23) wich is controlled by a level regulating means (12) disposed in the expansion vessel (4).
8. Apparatus according to one of claims 1 to 7 characterised in that at least one further expansion vessel (18) is connected to the expansion vessel (4).
9. Apparatus according to one of claims 1 to 8 characterised in that part of the flow of the installation liquid is passed by way of the feed conduit (5), the expansion vessel (4) and the discharge conduit (6).
10. Apparatus according to one of claims 1 to 8 characterised in that the full flow of the installation liquid is passed by way of the feed conduit (5), the expansion vessel ( 4 ) and the discharge conduit (6).
11. Apparatus according to claim 10 characterised in that the pressure and circulating pump ( 9 ) in the discharge conduit ( 6 ) is at the same time the installation circulating pump.
EP88903736A 1987-05-05 1988-05-04 Device for expansion transfer in liquid cycle systems, in particular of heating and cooling installations Expired - Lifetime EP0313599B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AT111887 1987-05-05
AT1118/87 1987-05-05
AT140087 1987-06-02
AT1400/87 1987-06-02

Publications (2)

Publication Number Publication Date
EP0313599A1 EP0313599A1 (en) 1989-05-03
EP0313599B1 true EP0313599B1 (en) 1991-10-23

Family

ID=25594946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88903736A Expired - Lifetime EP0313599B1 (en) 1987-05-05 1988-05-04 Device for expansion transfer in liquid cycle systems, in particular of heating and cooling installations

Country Status (6)

Country Link
US (1) US5007583A (en)
EP (1) EP0313599B1 (en)
AT (1) ATE68868T1 (en)
CA (1) CA1323546C (en)
DE (1) DE3865805D1 (en)
WO (1) WO1988008943A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015009696A1 (en) * 2015-07-30 2017-02-02 Aew Wassertechnologie Gmbh System and method for filling a water-bearing circulatory system

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
YU128388A (en) * 1988-07-01 1990-04-30 Gavrilovic Prehrambena Ind Horisontal device for continual food sterilizing
AT399217B (en) * 1991-11-22 1995-04-25 Schwarz A & Co DEVICE FOR TAKING EXPANSION IN LIQUID CIRCUIT SYSTEMS
AT400191B (en) * 1992-03-25 1995-10-25 Eder Anton DEGASSING DEVICE
NL9201883A (en) * 1992-10-29 1994-05-16 Spiro Research Bv Method and device for keeping a liquid at a working pressure in a substantially closed liquid circulation system.
NL9301908A (en) 1993-11-04 1995-06-01 Spiro Research Bv Method and device for venting a liquid in a substantially closed liquid circulation system.
NL9400106A (en) * 1994-01-24 1995-09-01 Cnossen Jan H Device for central heating system with expansion vessel, pressure control, water loss supplementation, ventilation, registration and control.
DE29510126U1 (en) * 1995-06-22 1995-10-12 Bernstein Hans Friedrich Fittings, in particular for the expansion and expansion tank of a liquid circulation system
US5671773A (en) * 1995-11-09 1997-09-30 Daewoo Electronics Co, Ltd. Automatic fluid-supply apparatus for a boiler system
NL1010047C2 (en) * 1998-04-03 1999-10-05 Jan Henk Cnossen Microserver.
ES2146161B1 (en) * 1998-04-06 2000-12-16 Tecnologia Y Componentes S L PROCEDURE AND DEVICE FOR THE REGULATION OF THE PULSE REGIME IN A LIQUID COLUMN OF AN ENERGY TRANSPORT CIRCUIT THROUGH A FLUID.
US6557774B1 (en) * 1999-10-12 2003-05-06 Gregory A. Krueger Non-pressurized space heating system and apparatus
EP1102012B1 (en) 1999-11-17 2006-08-30 Anton Eder De-gasing installation
US6739517B1 (en) 2001-10-15 2004-05-25 Gregory A. Krueger Non-circulating tank and kit for use with liquid heating unit
NL1020935C2 (en) * 2002-06-25 2004-08-04 Jan Henk Cnossen Feed line arrangement for liquid heating devices, e.g. central heating systems, includes inert gas source and valve for providing protective gas cushion above liquid inside closed volume
DE10257309A1 (en) * 2002-11-30 2004-06-09 Gast, Karl Heinz, Dipl.-Ing. (FH) Processes and devices for frost protection in heating systems
ITRM20050031U1 (en) * 2005-03-11 2006-09-12 Solari S R L Costruzioni PERFECTED SOLAR TANK.
FR2895915B1 (en) * 2006-01-11 2009-02-06 Collard Et Trolart Thermique S DEVICE FOR DEGASSING WATER BEFORE INTRODUCING IT TO A CIRCUIT AND CORRESPONDING APPLICATIONS.
NL1036252C2 (en) * 2008-04-24 2010-05-31 Flamco Stag Gmbh HEATING SYSTEM WITH EXPANSION DEVICE.
DE102012201645B4 (en) * 2012-02-03 2016-07-21 Air-Sep Vertriebs- Und Service Ag EXTENSION AND DEGASSING DEVICE FOR CONNECTION TO A CIRCULATORY SYSTEM, ESPECIALLY THE CIRCULAR SYSTEM OF BUILDING HEATING
CN103278038A (en) * 2013-05-16 2013-09-04 江苏昊隆换热器有限公司 Novel plate heat exchanger
WO2015155763A1 (en) * 2014-04-09 2015-10-15 Roots Sustainable Agricultural Technologies Ltd. Heat delivery system and method
JP6655898B2 (en) 2015-01-20 2020-03-04 大阪瓦斯株式会社 Exhaust heat recovery device, heat supply system, and method of operating exhaust heat recovery device
JP2017067327A (en) * 2015-09-29 2017-04-06 株式会社コロナ Hot water heating device
GB2576427B (en) * 2019-07-19 2021-01-06 Derek Barrett Peter Closed-loop pipework system de-aeration apparatus
EP4025837A1 (en) * 2019-09-03 2022-07-13 Flamco B.V. Liquid replenishing system and method of replenishing
NL2025076B1 (en) * 2019-09-03 2021-04-13 Flamco Bv Liquid replenishing system and method of replenishing
CN116817342A (en) * 2019-12-02 2023-09-29 徐兆良 Novel centralized heating and cooling method
CN112503392A (en) * 2020-10-23 2021-03-16 东方电气集团东方汽轮机有限公司 Closed circulating water system with self-balancing pressure stabilizing box for flue gas waste heat power generation
CN112775684B (en) * 2021-01-05 2022-03-15 江苏博尚工业装备有限公司 Automatic numerical control composite machine tool based on turning center

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE725526A (en) * 1968-12-16 1969-05-29
FR2088884A5 (en) * 1970-04-28 1972-01-07 Chapuzet Daniel
GB1355496A (en) * 1970-11-04 1974-06-05 Warmac Ltd Pressurized liquid medium systems'
AT344372B (en) * 1974-04-17 1978-07-25 Eder Anton PRESSURE COMPENSATION DEVICE FOR HEATING SYSTEMS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015009696A1 (en) * 2015-07-30 2017-02-02 Aew Wassertechnologie Gmbh System and method for filling a water-bearing circulatory system

Also Published As

Publication number Publication date
CA1323546C (en) 1993-10-26
DE3865805D1 (en) 1991-11-28
WO1988008943A1 (en) 1988-11-17
US5007583A (en) 1991-04-16
ATE68868T1 (en) 1991-11-15
EP0313599A1 (en) 1989-05-03

Similar Documents

Publication Publication Date Title
EP0313599B1 (en) Device for expansion transfer in liquid cycle systems, in particular of heating and cooling installations
EP0543285B1 (en) Device for expansion transfer in liquid cycle systems
EP0187683A2 (en) Degasification device
EP2884190B1 (en) Method and apparatus for degassing a medium in a circuit
EP0933109B1 (en) Apparatus for de-gasing liquid media
EP0580881B1 (en) Apparatus for degassing liquids in liquid circuits
DE19739142B4 (en) Method and device for degassing gases dissolved in a liquid
DE102014113671B4 (en) Device with a self-regulating pressure tank for hydraulic decoupling in the case of a direct water supply connection
DE602004001491T2 (en) Ventilation system with a reverse osmosis filter cartridge
DE19740358A1 (en) Pressure maintenance device
DE60100191T2 (en) CENTRAL HEATING
DE2439310A1 (en) Heating system hot water preparation - has boiler water delivered to storage unit for radiators and heat exchanger supply
DE1667157C3 (en) Device for mixing at least two flowing liquids
DE202021100938U1 (en) Safety device to protect drinking water against contamination by backflow
DE102017117704A1 (en) Apparatus and method for pressure equalization of heating systems
DE10151157B4 (en) Filter system and rinsing process
DE3726722C1 (en) Mixed-water installation with mixed-water temperature control
DE2028464B1 (en) Steam generating device for the purpose of air humidification
EP1616336B1 (en) Nuclear facility and method for operating a nuclear facility
DE2830114B2 (en) Water heater
DE102021104525A1 (en) Water treatment installation, in particular for drinking water
DE2657853A1 (en) Hot water system topping up device - has drinking water pumped from open container into system at constant pressure
DE2028464C (en) Steam generating device for the purpose of air humidification
DE595332C (en) Process and apparatus for refining liquid hydrocarbons
DE19917849C2 (en) Method and device for the discharge of polymer granules from an extractor in the printing process and for the discharge of conveying liquid after its granulate loading and for the return of process heat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19881222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 19900404

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19911023

Ref country code: GB

Effective date: 19911023

REF Corresponds to:

Ref document number: 68868

Country of ref document: AT

Date of ref document: 19911115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3865805

Country of ref document: DE

Date of ref document: 19911128

ITF It: translation for a ep patent filed

Owner name: ING. ANTON AUSSERER

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950424

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950529

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950531

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19960531

BERE Be: lapsed

Owner name: A. SCHWARZ + CO.

Effective date: 19960531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970131

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980501

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980514

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980522

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050504