EP0290724A2 - Becherfüllwerk für Nahrungs- und Genussmittel, insbesondere für Molkereiprodukte - Google Patents

Becherfüllwerk für Nahrungs- und Genussmittel, insbesondere für Molkereiprodukte Download PDF

Info

Publication number
EP0290724A2
EP0290724A2 EP88102945A EP88102945A EP0290724A2 EP 0290724 A2 EP0290724 A2 EP 0290724A2 EP 88102945 A EP88102945 A EP 88102945A EP 88102945 A EP88102945 A EP 88102945A EP 0290724 A2 EP0290724 A2 EP 0290724A2
Authority
EP
European Patent Office
Prior art keywords
sterile
container
filling machine
cup
machine according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88102945A
Other languages
English (en)
French (fr)
Other versions
EP0290724A3 (en
EP0290724B1 (de
Inventor
Burkhard Gies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAMBA-MASCHINENFABRIK HANS A. MUELLER GMBH & CO KG
Original Assignee
Hamba-Maschinenfabrik Hans A Mueller & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamba-Maschinenfabrik Hans A Mueller & Co KG GmbH filed Critical Hamba-Maschinenfabrik Hans A Mueller & Co KG GmbH
Priority to AT88102945T priority Critical patent/ATE64908T1/de
Publication of EP0290724A2 publication Critical patent/EP0290724A2/de
Publication of EP0290724A3 publication Critical patent/EP0290724A3/de
Application granted granted Critical
Publication of EP0290724B1 publication Critical patent/EP0290724B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/04Sterilising wrappers or receptacles prior to, or during, packaging
    • B65B55/10Sterilising wrappers or receptacles prior to, or during, packaging by liquids or gases

Definitions

  • the invention relates to a cup filling machine, as has become known in accordance with the preamble of claim 1 by public prior use.
  • the known cup filling machine has a sterile agent station downstream of both the cup feed station and the lid feed station in the flow of conveyance.
  • This sterile agent station is supplied with hydrogen peroxide via a metering device and an atomizing nozzle. It is important here that the hydrogen peroxide is fed to the sterile agent stations, which work in intervals with the cup filling unit, in an accurate and dosed amount.
  • Each metering device of the known cup filling machine has a circular cylindrical sight glass that is sealed between a cover flange and a bottom flange to form a sterile agent container.
  • the hydrogen peroxide is fed through the bottom flange using a continuously operating sterile pump.
  • an electrical filling level control known per se is provided in order to ensure a certain filling level of the hydrogen peroxide within the sterile agent container.
  • a measuring cup is provided in the metering device of the known cup filling machine, which is arranged laterally projecting at the free lower end of a holding rod that can be moved up and down in the working cycle of the cup filling machine.
  • This support rod immerses the measuring cup below the filling level of the hydrogen peroxide, scoops the sterile agent (for example in the manner of a ladle), and then returns the measuring cup vertically to its starting position above the level of the sterile agent. This is done in such a way that the suction tube is immersed in the sterile agent present in the measuring cup.
  • the sterile agent dosed in this way is then sucked off within one working cycle and fed to the atomizing nozzle for transfer to the cups or the lids. This process is repeated with every work cycle.
  • Suction tube and overflow measuring cup of the sterile agent dosing device of the known cup filling plant each represent the electrode of a level control device.
  • Level control devices of this type such as those provided by the company Ing. Grad. Helmut Negele, Hauptstrasse 14, D-8941 Egg ad Günz , are manufactured under the name "Niveau réelle gnv-d", are known per se and do not form an object of this invention.
  • the level control ensures, however, that an interfering signal that switches off the cup filler is generated in the event that either the sterile agent pump is not working or is not working properly, i.e. is not supplying sterile agent, or the suction of the sterile agent via the suction pipe is not working.
  • the Nieveau control device which measures a resistance gap between the two electrodes, would measure a small resistance at a certain phase of the working cycle and in the other case a very large resistance in the absence of sterile agent in another phase of the working cycle, in any case but trigger an interference signal.
  • a sterile agent dosing device with a much simpler construction is primarily desirable.
  • such a sterile agent dosing device should also offer the possibility, with little additional effort, of quickly changing the dosing amount of sterile agent in adaptation to different container and lid sizes.
  • the suction pipe and overflow measuring container are in a defined, spatially fixed relative position to one another, and in total they are distanced from the bottom of the sterile agent container.
  • the sterile medium pump no longer conveys an excess quantity of sterile medium intermittently but rather intermittently through a sterile medium feed line into the overflow measuring container.
  • the metering volume is always constant, while in the case of the known, due to the mechanical scooping movement - with improper maintenance - vibrations occur can occur, which lead to a partial spillage of the sterile from the scoop, that is to say a small amount.
  • the sterile agent supply line is a vertical, in particular free-standing cylindrical riser pipe, to which each overflow measuring container is directly connected to conduct liquid.
  • the overflow measuring container can be connected in two fundamentally different ways:
  • the vertically arranged cylindrical riser pipe has a cylindrical axial extension coaxial with it and directed upwards, which at the same time forms the overflow measuring container.
  • This axial extension is thus filled via the sterile medium pump, which in each working cycle supplies an excess metering quantity, whereupon the suction pipe, which is constantly in the relative position in the axial extension, sucks off as sterile medium until the suction flow is broken off.
  • the metering volume can be changed in a simple manner by either reducing or increasing the immersion depth of the suction tube in the axial extension.
  • the second basic embodiment of the invention is that the vertical riser is orthogonal to its cylinder Telachse has upper free end face, which is followed by an inclined in the direction of the bottom of the sterile agent bottom drain surface, which in each case delimits the filling opening of at least one overflow measuring container.
  • This embodiment according to the invention permits a plurality of overflow measuring containers in the form of cup-shaped depressions which are offset with respect to one another in the circumferential angle and which can have either the same or different metering volumes. In the event that the same dosing volume is available, a separate suction pipe can be assigned to each overflow measuring container.
  • the riser pipe including its inclined drain surface at the end, is guided downward from the suction pipe, the riser pipe is rotated by a certain circumferential angle around its longitudinal central axis, and then the measuring container (cup-shaped depression) with the desired dosing volume is placed in the immersion position with the suction pipe.
  • the cup filler in Fig. 1 is generally designated by the reference number 10.
  • a revolving conveyor chain K with an upper tower O and a lower run U runs over chain stars 11 and 12.
  • the conveyor chain K has cell boards 13 shown schematically in FIG. 1, which are provided with cup receptacles 14 for cup-shaped containers (e.g. plastic cups) 15.
  • the direction of conveyance of the cups 15 received in the upper run O is denoted by x.
  • the work stations of the cup filling machine 10 are as follows:
  • cup rod feed 17 the cup feed station, 18 the sensor for missing or double cups, 19 the cup disinfection (sterile agent station), for example using hydrogen peroxide
  • the main dispenser 21 the lid placement station with lid disinfection (i.e. another sterile agent Station)
  • the sealing station 23 the printing unit for applying the expiry date
  • the tightness control station 25 the cup removal station.
  • the cup filling machine 10 works as a double-step machine, i.e. with double feed, which means that each work station is occupied twice.
  • the feed occurs intermittently in cycles. Accordingly, the higher the working frequency, the shorter the cycle time in which each work station must begin and end the work assigned to it. This also applies to the sterile agent stations of the cup filling unit 10, which achieves a work rate of approximately 33600 cups / h.
  • liquid sterile metering devices shown in FIGS. 2 and 3 are each designated by the reference number 26.
  • a sterile agent container 27 has a sight glass 28, the two end faces between a container bottom 29 and a container lid 30 are clamped in a sealing manner.
  • the container base 29 consists of an electrically insulating material, in particular plastic, while the container cover 30 consists of an electrically conductive material, in particular stainless steel.
  • a sterile medium feed channel (eg for hydrogen peroxide) 31 is acted upon by a sterile medium feed pump, which works intermittently in cycles. So if a certain dosing volume is required, the sterile pump pumps an excess amount in one go, such that it overflows over the free cutting edge 32 of a circular cylindrical tubular extension 33, so that the excess amount flows out to the container bottom 29 and there via a discharge path 57, 58 can be fed to a sterile agent supply container (not shown) for further use. Accordingly, liquid sterile medium can never accumulate inside the sterile medium container 27, that is to say within the sight glass 28, so that the free, cutting-shaped end edge 32 is always distanced from excess liquid, and also from the container bottom surface 34. This ensures that the excess amount flows freely over the edge 32.
  • a ventilation duct in the cover 30 bears the reference number 59.
  • the axial extension 33 forms the upper free end region of an essentially likewise circular-cylindrical sterile medium riser tube 35.
  • the longitudinal central axes of the riser tube 35 and the axial extension 33 coincide with the vertical L.
  • the sterile medium liquid level within the axial extension 33 closes off with its cutting edge end edge 32.
  • the sterile agent located within the axial extension 33 is sucked off by means of a two-substance nozzle 36 and a compressed air valve 39 via the suction tube (ejector tube), which is designated overall by 37.
  • the suction pipe 37 dips vertically from above with an amount a and coaxially with L into the axial extension 33.
  • Sterile agent is now sucked off until the sterile agent suction flow inevitably breaks off at the lower end edge 38 of the suction pipe 37.
  • the predetermined metered amount is discharged, which is passed on to the atomizer nozzle (identified as 36 in total) (two-substance nozzle) and from there to the cups or lids to be treated in the cup disinfection 19 or in the lid placement station 21 (FIG. 1) .
  • a partial area of the outer tube of the riser pipe is held in the tank bottom 29 by means of a thread engagement G.
  • the amount a relevant for the dosing volume can now be easily reduced or increased by screw adjustment.
  • G-rings 40 are provided in the outer tube surface below the threaded engagement.
  • a so-called "level device gnv-d” is used to monitor the function of the sterile agent dosing device 26, as is done in the present case by the company Ing. Grad. Helmut Negele, Hauptstrasse 14, D-8941 Egg a.d. Günz, is delivered.
  • This control device is designated purely schematically at 41.
  • the leveling device 41 is electrically connected via an electrical line 42 to a sliding contact pin 43, which contacts the outer circumferential surface of the riser pipe 35 made of conductive material (stainless steel) within an annular groove 44.
  • the end edge 32 thus forms a first electrode.
  • the control device 41 is electrically conductively connected to the electrically conductive suction pipe 37 via a second line 45, so that its lower end edge 38 forms the second electrode.
  • the signal lamp 46 of the control device 41 lights up and the cup filling machine 10 is switched off.
  • the sterile pump does not deliver.
  • the axial extension 33 would not be filled at the beginning of the suction phase, so that the control device 41 would practically measure an infinitely large electrical resistance between 32 and 38. This would in turn cause the signal lamp 46 to light up and the cup filling unit 10 to be switched off.
  • the spatial relative position between the respective overflow measuring container (e.g. axial extension 33) and the suction pipe 37 is unchanged for the respectively set metering volume.
  • the spatial relative position is only changed if the dosing volume is to be changed.
  • the embodiment according to FIG. 3 basically has the same construction and operating mode (also with regard to the control device 41) as the embodiment according to FIG. 2.
  • the embodiment according to FIG. 3 is, however, different in comparison to FIG. 2 in that the riser pipe 35 also has at its upper free end an upper free end face or end edge 32 that is orthogonal to its cylinder central axis (perpendicular L). However, this end edge 32 is flush with a drain surface 47, which extends inclined in the direction of the bottom of the sterile medium container 29 and which receives the inlet opening of cup-like depressions 48, 49 of different sizes. These cup-like depressions 48, 49 accordingly form the overflow measuring container for the sterile agent.
  • a plurality of cup-shaped depressions in the manner of the depressions 48, 49 are here arranged approximately like a turret with the same radial distance from L in the drainage surface 47, which forms part of an approximately mushroom-shaped body 50.
  • the drainage surface 47 represents a truncated cone.
  • the body 50 is rotationally symmetrical.
  • the suction pipe 37 is cranked outwards.
  • the lower region of the suction pipe 37 with its lower end edge 38 plunges into the receiving volume of the corresponding cup-shaped depression, in the present case in FIG. 49.
  • the sterile agent suction process is otherwise the same as that described in connection with the exemplary embodiment according to FIG. 2.
  • the riser pipe 35 is according to FIG. 2 in its axial area passing through the container bottom 29 non-threaded, rotatable and axially adjustable. If the cup-shaped recess 48 is to be put into alignment with the riser pipe 37 with a larger dosing volume, the riser pipe 35 is pulled off axially in the direction z by means of a handle 51 arranged at the end and rotated around L until the one previously located in the locking hole 52 spring-loaded locking ball 53 is aligned with the diametrically opposite locking hole 54, whereupon the riser 35 is moved back against the direction z. This backward movement is supported by a helical compression spring 55, which is supported on the underside on the container bottom 34 and on the top side on a support flange 56 on the riser tube side.
  • the mushroom-shaped body 50 in contrast to FIG. 3, essentially only the mushroom-shaped body 50 is shown in another embodiment.
  • the sterile agent container 27 is otherwise designed in the same way as in the exemplary embodiment according to FIG. 2, with the difference, however, that two or more suction pipes 37 are provided according to FIG. 4.
  • Each suction pipe 37 is provided with its own electrical connection (shown schematically in each case), which in each case leads via a separate line 45 ′ or 45 41 to the control device 41, since the filling monitoring in the cup-shaped depressions 48, 49 is to be carried out separately for the following reasons: 4 is intended, if possible to supply each row of cups of a multi-lane cup filling machine separately with sterile agent. For this reason, the volumes of the cup-shaped depressions 48, 49 within the mushroom-shaped body 50 are each of the same size. Each metered amount within the recesses 48, 49 must therefore be monitored separately.
  • the container lid 30 is due to the different electrical leads 45; and 45 ⁇ made of electrically insulating material (plastic).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Basic Packing Technique (AREA)
  • Preparation Of Fruits And Vegetables (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Confectionery (AREA)
  • Seeds, Soups, And Other Foods (AREA)
  • Devices For Dispensing Beverages (AREA)
  • Dairy Products (AREA)
  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)

Abstract

Bei einem Becherfüllwerk für Nahrungs- und Genußmittel, insbesondere für dünnflüssige bis pastöse Molkerei- und Fettprodukte od.dgl., welches taktweise arbeitet, ist für die Becherzuführstation und ggf. für die Deckel-Zuführstation eine Flüssigsterilmittel-Dosiervorrichtung (26) zur Beaufschlagung einer Zerstäuberdüse (39) vorgesehen. Die Sterilmittel-Dosiervorrichtung (26) weist innerhalb eines Sterilmittel-Behälters (27) ein oberhalb des Behälterbodens (34) distanziert angeordnetes Überlaufgefäß als Sterilmittel-Meßbehälter (33) auf, in welches jeweils ein zur Zerstäuberdüse (39) führendes Saugrohr (37) eintaucht. Eine einfache und betriebssichere Bauweise, die eine rasche Änderung des Dosiervolumens ermöglicht, besteht darin, daß die Sterilmittelpumpe im Arbeitstakt des Becherfüllwerks intermittierend schubweise arbeitet und den Überlauf-Meßbehälter (33) über eine Sterilmittel-Zulaufleitung (31,35) unmittelbar beschickt. Hierbei sind Saugrohr (37) und Überlauf-Meßbehälter (33) für jede bestimmte Sterilmittel-Dosiermenge raumfest zueinander angeordnet. Außerdem ist der Sterilmittelablauf (57,58) bodenseitig des Sterilmittelbehälters (27) vorgesehen.

Description

  • Die Erfindung betrifft ein Becherfüllwerk, wie es entsprechend dem Oberbegriff des Patentan­spruchs 1 durch offenkundige Vorbenutzung bekannt­geworden ist.
  • Das bekannte Becherfüllwerk weist jeweils im Förderfluß stromabwärts sowohl hinter der Becher-­Zuführstation als auch hinter der Deckel-Zuführ­station eine Sterilmittel- Station auf. Dieser Sterilmittel-Station wird über eine Dosiervorrich­tung und eine Zerstäuberdüse Wasserstoffperoxyd zugeführt. Hierbei ist es wichtig, daß das Wasser­stoffperoxyd fehlerfrei und in genau dosierter Menge den gemeinsam mit dem Becherfüllwerk takt­weise arbeitenden Sterilmittel-Stationen zuge­führt wird.
  • Jede Dosiervorrichtung des bekannten Becher­füllwerks weist zur Bildung eines Sterilmittel-­Behälters ein zwischen einem Deckelflansch und einem Bodenflansch dichtend aufgenommenes kreiszy­lindrisches Schauglas auf. Das Wasserstoffperoxyd wird über den Bodenflansch mittels einer konti­nuierlich arbeitenden Sterilmittelpumpe zuge­führt. Um ein bestimmtes Füllniveau des Wasser­stoffperoxydes innerhalb des Sterilmittelbehäl­ters zu gewährleisten, ist eine an sich bekannte elektrische Füllstandsregelung vorgesehen. Alter­nativ oder zusätzlich zur elektrischen Füllstands­regelung ist ein den Sterilmittelbehälter-Boden durchsetzendes und frei auf diesem stehendes Ab­laufrohr vorhanden, dessen obere freie Ablauföff­nung vom Sterilmittel- Boden distanziert ist.
  • Als Überlauf-Meßbehälter ist bei der Dosier­vorrichtung des bekannten Becherfüllwerks ein Meß­becher vorgesehen, welcher seitlich vorragend am freien unteren Ende einer im Arbeitstakt des Becherfüllwerks auf- und abbeweglichen Halte­stange angeordnet ist. Diese Haltestange taucht den Meßbecher bis unter das Füllniveau des Wasser­stoffperoxydes ein, schöpft also das Sterilmittel (etwa nach Art einer Schöpfkelle), und führt den Meßbecher sodann vertikal in dessen Ausgangsposi­tion oberhalb des Sterilmittelniveaus zurück. Dieses geschieht derart, daß das Saugrohr in das innerhalb des Meßbechers vorhandene Sterilmittel eintaucht. Das so dosierte Sterilmittel wird sodann innerhalb eines Arbeitstaktes abgesaugt und der Zerstäuberdüse zwecks Weitergabe an die Becher oder an die Deckel zugeführt. Dieser Vor­gang wiederholt sich mit jedem Arbeitstakt.
  • Saugrohr und Überlauf-Meßbecher der Steril­mittel-Dosiervorrichtung des bekannten Becherfüll­werks stellen zugleich jeweils die Elektrode eines Niveau-Kontrollgeräts dar. Derartige Niveau-Kontrollgeräte, wie sie beispielsweise durch die Firma Ing. grad. Helmut Negele, Haupt­straße 14, D-8941 Egg a.d. Günz, unter der Be­zeichnung "Niveaugerät gnv-d" gefertigt werden, sind an sich bekannt und bilden nicht Gegenstand dieser Erfindung. Mit der Niveau-Kontrolle ist indes gewährleistet, daß ein das Becherfüllwerk abschaltendes Störsignal für den Fall erzeugt wird, daß entweder die Sterilmittelpumpe nicht oder nicht richtig arbeitet, also kein Sterilmit­tel zufördert, oder aber die Absaugung des Steril­mittels über das Saugrohr nicht funktioniert. Im ersten Fall würde die Nieveau-Kontrolleinrich­tung, die eine Widerstandsstrecke zwischen den beiden Elektroden mißt, zu einer bestimmten Phase des Arbeitstaktes einen kleinen Widerstand und im anderen Fall bei Fehlen des Sterilmittels in einer anderen Phase des Arbeitstaktes einen sehr großen Widerstand messen, in jedem Falle aber ein Störsignal auslösen.
  • Obwohl sich die eingangs beschriebene Steril­mittel-Dosiervorrichtung des bekannten Becherfüll­werks in der Praxis vielfach bewährt hat, ist in erster Linie eine Sterilmittel-Dosiervorrichtung mit einer wesentlich einfacheren Bauweise wün­schenswert. Außerdem sollte eine solche Steril­mittel-Dosiervorrichtung mit geringem Mehraufwand auch die Möglichkeit bieten, in Anpassung an unterschiedliche Behälter- und Deckelgrößen die Sterilmittel-Dosiermenge rasch umzustellen.
  • Die sich hieraus ergebende Aufgabe wurde ent­sprechend dem Kennzeichenteil des Patentanspruchs 1 gelöst.
  • Bei der Sterilmittel-Dosiervorrichtung des er­findungsgemäßen Becherfüllwerks ist es zunächst wesentlich, daß, solange jedenfalls eine be­stimmte Sterilmittel-Dosiermenge unverändert bei­behalten wird, Saugrohr und Überlauf-Meßbehälter sich in einer definierten raumfesten Relativposi­tion zueinander befinden, und zwar insgesamt vom Sterilmittelbehälter-Boden distanziert. Im Arbeitstakt des Becherfüllwerks fördert nun die Sterilmittelpumpe nicht mehr kontinuierlich sondern vielmehr taktweise intermittierend eine Überschußmenge an Sterilmittel über eine Steril­mittel-Zulaufleitung in den Überlauf-Meßbehälter hinein. Dieser läuft also in jedem Falle über, wobei die Überschußmenge sich frei auf den Steril­mittelbehälter- Boden ergießt und über den dort vorgesehenen bodenseitigen Sterilmittelablauf un­gehindert abfließen kann, so daß keine Flüssig­keitsfüllung im Sterilmittelbehälter selbst ent­steht. Bei der erfindungsgemäßen Sterilmittel-­Dosiervorrichtung wird also - im Unterschied zum eingangs beschriebenen Bekannten - nicht mehr Sterilmittel aus einem Sterilmittelvorat ge­schöpft, so daß der mechanische Schöpfantrieb weg­fällt.
  • Beim erfindungsgemäßen Becherfüllwerk hat sich außerdem herausgestellt, daß das Dosiervolumen stets gleichbleibend ist, während beim Bekannten infolge der mechanischen Schöpfbewegung - und zwar bei unsachgemäßer Wartung - Schwingungen auf­ treten können, die zu einem teilweise Verschütten des Sterilmittels aus dem Schöpfbecher, also zu einer Mindermenge, führen.
  • In weiterer Ausgestaltung der Erfindung ist die Sterilmittel-Zulaufleitung ein senkrecht, ins­besondere freistehend angeordnetes zylindrisches Steigrohr, an welches jeder Überlauf-Meßbehälter unmittelbar flüssigkeitsleitend angeschlossen ist. Der Anschluß des Überlauf-Meßbehälters kann erfindungsgemäß auf zwei grundsätzlich verschie­dene Arten geschehen:
  • In einer ersten Ausführungsform weist das senk­recht angeordnete zylindrische Steigrohr einen mit ihm koaxialen nach oben gerichteten zylindri­schen Axialfortsatz auf, welcher zugleich den Überlauf-Meßbehälter bildet. Dieser Axialfortsatz wird also über die jedesmal in einem Arbeitstakt einen Dosiermengen-Überschuß zuführende Sterilmit­telpumpe gefüllt, worauf das ständig in unverän­derter Relativlage in dem Axialfortsatz befind­liche Saugrohr als Sterilmittel bis zum Abreißen des Saugstroms absaugt. Eine Änderung des Dosier­volumens kann auf einfache Weise dadurch ge­schehen, daß die Eintauchtiefe des Saugrohres in den Axialfortsatz entweder verringert oder ver­größert wird.
  • Die zweite grundsätzliche erfindungsgemäße Aus­führungsform besteht darin, daß das lotrechte Steigrohr eine orthogonal zu seiner Zylindermit­ telachse verlaufende obere freie Stirnseite auf­weist, an welche eine sich geneigt in Richtung Sterilmittelbehälter-Boden erstreckende Ablauf­fläche anschließt, welche jeweils die Einfüllöff­nung mindestens eines Überlauf-Meßbehälters um­grenzt. Diese erfindungsgemäße Ausführungsform ge­stattet in der Ablauffläche mehrere zueinander umfangswinkelversetzte Überlauf-Meßbehälter in Form becherförmiger Vertiefungen, die entweder gleiche oder unterschiedliche Dosiervolumen auf­weisen können. Für den Fall, daß gleiche Dosier­volumen vorhanden sind, kann einem jeden Über­lauf-Meßbehälter ein gesondertes Saugrohr zugeord­net werden. Dieses kann in besonderen Fällen bei solchen Becherfüllwerken zweckmäßig sein kann, die eine Vielzahl von sich in Förderrichtung er­streckenden Becherbahnen aufweisen und im Doppel­schritt arbeiten. Für den Fall, daß die Dosier­volumen der in der geneigten Ablauffläche ange­ordneten Überlauf-Meßbehälter unterschiedlich sind, ist die Möglichkeit einer raschen Dosier­volumen-Umstellung gegeben. Und zwar wird hierbei das Steigrohr einschließlich seiner endseitigen geneigten Ablauffläche vom Saugrohr nach unten weggeführt, das Steigrohr um einen gewissen Um­fangswinkel um seine Längsmittelachse gedreht und sodann der Meßbehälter (becherförmige Vertiefung) mit dem gewünschten Dosiervolumen in Eintauchposi­tion mit dem Saugrohr versetzt.
  • Weitere Ausführungsformen entsprechend der Er­findung ergeben sich aus den übrigen Unteran­sprüchen.
  • In den Zeichnungen sind bevorzugte Ausführungs­beispiele entsprechend der Erfindung näher darge­stellt, hierbei zeigen:
    • Fig. 1 eine schematische Seitenansicht eines Becherfüllwerks,
    • Fig. 2 eine erste Ausführungsform einer Dosier­vorrichtung,
    • Fig. 3 eine zweite Ausführungsform einer Dosiervorrichtung und
    • Fig. 4 einen lediglich schematisch dargestell­ten wesentlichen Bereich einer dritten Ausfüh­rungsform.
  • Das Becherfüllwerk in Fig. 1 ist insgesamt mit der Bezugsziffer 10 bezeichnet. Eine umlaufend geführte Förderkette K mit einem Oberturm O und einem Untertrum U läuft über Kettensterne 11 und 12. Die Förderkette K weist in Fig. 1 schematisch dargestellte Zellenbretter 13 auf, die mit Becher­aufnahmen 14 für becherförmige Behälter (z.B. Kunststoffbecher) 15 versehen sind. Die Förder­richtung der im Obertrum O aufgenommenen Becher 15 ist mit x bezeichnet.
  • In Richtung x des Förderflusses sind die Arbeitsstationen des Becherfüllwerks 10 folgende:
  • 16 stellt die Becherstangenaufgabe, 17 die Becheraufgabe-Station, 18 den Fühler für fehlende bzw. für doppelte Becher, 19 die Becherentkeimung (Sterilmittel-Station) beispielsweise durch Wasserstoffperoxyd, 20 den Hauptdoseur, 21 die Deckelauflege-Station mit Deckelentkeimung (also eine weitere Sterilmittel-Station), 22 die Siegel­station, 23 das Druckwerk zum Aufbringen des Ver­fallsdatums, 24 die Dichtigkeitskontroll-Station und schließlich 25 die Becherentnahme-Station dar.
  • Das Becherfüllwerk 10 arbeitet als Doppel­schrittmaschine, d.h. mit doppeltem Vorschub, was bedeutet, daß jede Arbeitsstation doppelt besetzt ist. Der Vorschub erfolgt intermittierend takt­weise. Je höher demnach die Arbeitsfrequenz, desto geringer ist die Taktzeit, in welcher jede Arbeitsstation die ihr zugewiesene Arbeit be­ginnen und beenden muß. Dies gilt auch für die Sterilmittel-Stationen des eine Arbeitsleistung von ca. 33600 Becher/h erbringenden Becherfüll­werks 10.
  • Die in den Fig. 2 und 3 dargestellten Flüssig­sterilmittel-Dosiervorrichtungen sind jeweils mit der Bezugsziffer 26 bezeichnet.
  • Bei allen Ausführungsformen sind gleiche oder im wesentlichen analoge Bauteile stets mit der selben Bezugsziffer versehen.
  • Ein Sterilmittelbehälter 27 weist ein Schau­glas 28 auf, dessen beide Stirnflächen zwischen einen Behälter-Boden 29 und einem Behälter-Deckel 30 dichtend eingespannt sind. Der Behälterboden 29 besteht aus elektrisch isolierendem Werkstoff, insbesondere aus Kunststoff, während der Behäl­ter- Deckel 30 aus elektrisch leitendem Werk­stoff, insbesondere aus rostfreiem Stahl, be­steht. Die Funktion der Sterilmittel- Dosiervor­richtung gemäß Fig. 2 ist nun folgende:
  • Ein Sterilmittel-Zulaufkanal (z.B. für Wasser­stoffperoxyd) 31 wird von einer Sterilmittel-­Speisepumpe, die intermittierend taktweise arbei­tet, beaufschlagt. Wenn also ein bestimmtes Dosiervolumen erforderlich ist, fördert die Sterilmittelpumpe in einem Schub eine Überschuß­menge, derart, daß diese über die freie schneiden­förmige Stirnkante 32 eines kreiszylindrischen rohrförmigen Axialfortsatzes 33 überläuft, so daß die Überschußmenge zum Behälter-Boden 29 hin ab­fließen und dort über einen Ablaufweg 57, 58 einem Sterilmittel-Voratsbehälter (nicht gezeigt) zur weiteren Verwendung zugeführt werden kann. Innerhalb des Sterilmittelbehälters 27, also in­nerhalb des Schauglases 28, kann sich demnach niemals flüssiges Sterilmittel ansammeln, so daß die freie schneidenförmige Stirnkante 32 stets von überschüssiger Flüssigkeit, im übrigen auch von der Behälter-Bodenfläche 34, distanziert ist. Hierdurch ist das freie Abströmen der Überschuß­menge über die Kante 32 hinweg gewährleistet. Ein Entlüftungskanal im Deckel 30 trägt die Bezugs­ziffer 59.
  • Der Axialfortsatz 33 bildet den oberen freien Endbereich eines im wesentlichen ebenfalls kreis­zylindrischen Sterilmittel-Steigrohres 35. Die Längsmittelachsen des Steigrohres 35 und des Axialfortsatzes 33 fallen mit der lotrechten L zusammen.
  • Wenn nun die diskontinuierlich arbeitende Sterilmittelpumpe ihre Überschußmenge für einen Arbeitstakt gefördert hat, schließt der Steril­mittel-Flüssigkeitsspiegel innerhalb des Axial­fortsatzes 33 mit dessen schneidenförmiger Stirn­kante 32 ab. Nun wird mittels einer Zweistoff­düse 36 und eines Druckluftventils 39 das inner­halb des Axialfortsatzes 33 befindliche Sterilmit­tel über das insgesamt mit 37 bezeichnete Saug­rohr (Ejektorrohr) abgesaugt. Das Saugrohr 37 taucht mit einem Betrag a von oben her senkrecht und mit L koaxial in den Axialfortsatz 33 ein. Es wird nun so lange Sterilmittel abgesaugt, bis der Sterilmittelsaugstrom zwangsläufig an der unteren Stirnkante 38 des Saugrohres 37 abreißt. Hiermit ist die vorbestimmte Dosiermenge abgeführt, welche an die insgesamt mit 36 bezeichnete Zer­stäuberdüse (Zweistoffdüse) weitergeleitet wird und von dort aus zu den zu behandelnden Bechern bzw. Deckeln in die Becherentkeimung 19 bzw. in die Deckelauflege-Station 21 (Fig. 1) hineinge­langt.
  • Eine Veränderung des Dosiervolumens geschieht wir folgt:
  • Ein Teilbereich des Steigrohr-Außenmantels ist über einen Gewindeeingriff G im Behälter-Boden 29 gehalten. Durch Schraubverstellung kann nun auf einfache Weise der für das Dosiervolumen maßgeb­liche Betrag a verringert oder vergrößert werden.
  • Zur Abdichtung gegen Flüssigkeitsverluste sind in der Steigrohr-Außenmantelfläche unterhalb des Gewindeeingriffs G O-Ringe 40 vorgesehen.
  • Zur Funktionsüberwachung der Sterilmittel-­Dosiervorrichtung 26 dient ein sogenanntes "Niveaugerät gnv-d", wie es im vorliegenden Fall durch die Firma Ing. grad. Helmut Negele, Haupt­straße 14, D-8941 Egg a.d. Günz, geliefert wird. Dieses Kontrollgerät ist rein schematisch mit 41 bezeichnet. Über eine elektrische Leitung 42 ist das Niveaugerät 41 mit einem Gleitkontaktstift 43 elektrisch verbunden, welcher die Außenmantel­fläche des aus leitendem Werkstoff (rostfreier Stahl) bestehenden Steigrohres 35 innerhalb einer Ringnut 44 kontaktiert. Die Stirnkante 32 bildet also eine erste Elektrode. Außerdem ist das Kon­trollgerät 41 über eine zweite Leitung 45 elek­trisch leitend mit dem elektrisch leitfähigen Saugrohr 37 verbunden, so daß dessen untere Stirn­kante 38 die zweite Elektrode bildet.
  • Wenn nun beispielsweise über 37 bei gefülltem Axialfortsatz 33 kein Sterilmittel abgesaugt wird, wird zu Beginn der Ansaugphase ein geringer elektrischer Widerstand (das Sterilmittel, z.B. Wasserstoffperoxyd ist elektrisch leitend) gemes­sen. In diesem Falle leuchtet die Signallampe 46 des Kontrollgeräts 41 auf und das Becherfüllwerk 10 wird abgeschaltet.
  • Andererseits kann es vorkommen, daß die Steril­mittelpumpe nicht zufördert. In diesem Falle wäre der Axialfortsatz 33 zu Beginn der Absaugphase nicht gefüllt, so daß das Kontrollgerät 41 zwischen 32 und 38 praktisch einen unendlich großen elektrischen Widerstand messen würde. Hier­durch würde wiederum ein Aufleuchten der Signal­lampe 46 und ein Abschalten des Becherfüllwerks 10 bewirkt.
  • Grundsätzlich bleibt bezüglich sämtlicher in den Zeichnungen dargestellter Ausführungsformen zu bemerken, daß die räumliche Relativlage zwischen dem jeweiligen Überlauf-Meßbehälter (z.B. Axialfortsatz 33) und dem Saugrohr 37 für das jeweils eingestellte Dosiervolumen unverän­dert ist. Die räumliche Relativposition wird nur verändert, wenn das Dosiervolumen geändert werden soll.
  • Die Ausführungsform gemäß Fig. 3 weist grund­sätzlich dieselbe Bau- und Betriebsweise (auch hinsichtlich des Kontrollgeräts 41) wie das Aus­führungsbeispiel gemäß Fig. 2 auf.
  • Die Ausführungsform gemäß Fig. 3 ist jedoch im Vergleich zu Fig. 2 darin unterschiedlich, daß das Steigrohr 35 an seinem oberen freien Ende zwar ebenfalls eine orthogonal zu seiner Zylinder­mittelachse (Lotrechte L) verlaufende obere freie Stirnseite bzw. Stirnkante 32 aufweist. An diese Stirnkante 32 schließt jedoch eine sich geneigt in Richtung Sterilmittelbehälter-Boden 29 er­streckende Ablauffläche 47 bündig an, welche je­weils die Einlauföffnung unterschiedlich großer becherartiger Vertiefungen 48, 49 aufnimmt. Diese becherartigen Vertiefungen 48, 49 bilden demnach die Überlauf- Meßbehälter für das Sterilmittel. Mehrere becherförmige Vertiefungen nach Art der Vertiefungen 48, 49 sind hierbei etwa revolver­artig mit gleichem Radialabstand von L in der Ablauffläche 47, die Bestandteil eines etwa pilz­förmigen Körpers 50 bildet, angeordnet. Die Ab­lauffläche 47 stellt einen Kegelstumpf-Mantel dar. Der Körper 50 ist rotationssymmetrisch ausge­bildet.
  • Das Saugrohr 37 ist beim Ausführungsbeispiel gemäß Fig. 3 nach außen gekröpft. Der untere Bereich des Saugrohres 37 mit seiner unteren Stirnkante 38 taucht in das Aufnahmevolumen der entsprechenden becherförmigen Vertiefung, im vor­liegenden Fall in 49, hinein. Der Sterilmittel-­Absaugvorgang ist ansonsten ebenso, wie im Zusam­menhang mit dem Ausführungsbeispiel gemäß Fig. 2 beschrieben.
  • Das Steigrohr 35 ist gemäß Fig. 2 in seinem den Behälter-Boden 29 durchsetzenden Axialbereich gewindelos dreh- und axialverstellbar ausgebil­det. Wenn nun die becherförmige Vertiefung 48 mit einem größeren Dosiervolumen mit dem Steigrohr 37 in Flucht versetzt werden soll, wird das Steig­rohr 35 mittels eines sich endseitig angeordneten Griffes 51 axial in Richtung z abgezogen und so lange um L herumgedreht, bis die zuvor im Rast­loch 52 befindliche federbelastete Rastkugel 53 mit dem diametral gegenüberliegenden Rastloch 54 fluchtet, worauf das Steigrohr 35 entgegen der Richtung z zurückbewegt wird. Diese Zurückbewe­gung wird von einer Schraubendruckfeder 55 unter­stützt, welche sich unterseitig auf dem Behälter-­Boden 34 und oberseitig an einem steigrohrseiti­gen Stützflansch 56 abstützt.
  • Beim Ausführungsbeispiel gemäß Fig. 4 ist im Unterschied zu Fig. 3 im wesentlichen nur der pilzförmige Körper 50 in einer anderen Ausfüh­rungsform dargestellt. Der Sterilmittel-Behälter 27 ist ansonsten ebenso ausgebildet wir beim Aus­führungsbeispiel gemäß Fig. 2, mit dem Unter­schied allerdings, daß gemäß Fig. 4 zwei oder mehrere Saugrohre 37 vorgesehen sind. Jedes Saug­rohr 37 ist mit einem eigenen elektrischen An­schluß (jeweils schematisch dargestellt) ver­sehen, der jeweils über eine gesonderte Leitung 45′ bzw. 45˝ zum Kontrollgerät 41 führt, da die Füllüberwachung in den becherförmigen Vertiefun­gen 48, 49 aus nachstehenden Gründen gesondert er­folgen soll: entsprechend dem Ausführungsbeispiel gemäß Fig. 4 ist beabsichtigt, nach Möglichkeit jede Becherreihe eines vielbahnigen Becherfüll­werks gesondert mit Sterilmittel zu versorgen. Aus diesem Grunde sind die Volumen der becher­förmigen Vertiefungen 48, 49 innerhalb des pilz­förmigen Körpers 50 jeweils gleichgroß. Jede Dosiermenge innerhalb der Vertiefungen 48, 49 muß demnach gesondert überwacht werden.
  • Anhand von Fig. 4 (s. ebenfalls Fig. 3) wird besonders deutlich, daß die Überschuß-Menge des Dosiervolumens bzw. der Dosiervolumen über den Zentralbereich des Steigrohres 35 entsprechend dem Pfeil y hochströmen kann, die freie Stirn­kante 32 überströmen und sich sodann entsprechend den mit v bezeichneten Pfeilen sich über die abwärts geneigte Ablauffläche 47 nach unten so lange verteilen kann, bis die Überlauf-Vertiefun­gen 48, 49 in dargestellter Weise gefüllt sind. Danach kann der Überschuß an Sterilmittel frei nach unten zum Behälter-Boden 34 (s. Fig. 2 und 3) abschließen.
  • Beim Ausführungsbeispiel gemäß Fig. 4 ist der Behälterdeckel 30 wegen der unterschiedlichen elektrischen Ableitungen 45; und 45˝ aus elek­trisch isolierendem Werkstoff (Kunststoff) herge­stellt.

Claims (14)

1. Becherfüllwerk für Nahrungs- und Genußmit­tel, insbesondere für dünnflüssige bis pastöse Molkerei- und Fettprodukte od.dgl., mit einem taktweise umlaufend geführten Fördermittel für die in verschiedenen Arbeitsstationen zu behan­delnden, d.h. zuzuführenden, zu füllenden, zu ver­schließenden und abzufördernden Becher, wobei der Becher-Zuführstation und ggf. der Deckel-Zuführ­station jeweils eine Sterilmittel-Station nachge­ordnet sind, die eine Flüssigsterilmittel-Dosier­vorrichtung aufweist, welcher innerhalb eines Sterilmittelbehälters ein oberhalb des Sterilmit­telbehälter-Bodens distanziert angeordnetes Über­laufgefäß als Sterilmittel-Meßbehälter aufweist, in welches jeweils ein zu einer Zerstäuberdüse führendes Saugrohr eintaucht, wobei Überlauf-Meß­behälter und Saugrohr jeweils eine Elektrode für ein Niveaukontrollgerät darstellen, und wobei zur Beschickung des einen Sterilmittelablauf auf­weisenden Sterilmittelbehälters eine eine Über­schußmenge liefernde Sterilmittelpumpe vorgesehen ist, dadurch gekennzeichnet, daß die Sterilmittel­pumpe im Arbeitstakt des Becherfüllwerks (10) intermittierend arbeitet und den Überlauf-Meßbe­hälter (33; 48; 49) über eine Sterilmittel-Zulauf­leitung (31, 35) unmittelbar beschickt, daß Saug­rohr (37) und Überlauf-Meßbehälter (33; 48; 49) für jede bestimmte Sterilmittel-Dosiermenge raum­fest zueinander angeordnet sind und daß der Sterilmittelablauf (57, 58) bodenseitig (bei 34) des Sterilmittelbehälters (27) angeordnet ist.
2. Becherfüllwerk nach Anspruch 1, dadurch ge­kennzeichnet, daß die Sterilmittel-Zulaufleitung ein lotrecht angeordnetes zylindrisches Steigrohr (35) ist, an welches jeder Überlauf-Meßbehälter (33; 48; 49) flüssigkeitsleitend insbesondere un­mittelbar angeschlossen ist.
3. Becherfüllwerk nach Anspruch 1 und nach Anspruch 2, dadurch gekennzeichnet, daß das zylindrische Steigrohr (35) den Sterilmittelbehäl­ter-Boden (29) durchsetzt.
4. Becherfüllwerk nach Anspruch 2 oder 3, da­durch gekennzeichnet, daß das zylindrische Steig­rohr (35) einen mit ihm koaxialen nach oben gerichteten zylindrischen Axialfortsatz (33) auf­weist, welcher zugleich den Überlauf-Meßbehälter (33; 48; 49) bildet.
5. Becherfüllwerk nach Anspruch 4, dadurch ge­kennzeichnet, daß Überlauf-Meßbehälter und das in ihn eintauchende Saugrohr (37) koaxial oder paral­lelachsig zueinander angeordnet und zur Verände­rung der das Dosiervolumen bestimmenden Eintauch­tiefe (a) des Saugrohres (37) in den Überlauf-Meß­behälter (33; 48; 49)axial zueinander relativ ver­stell- und arretierbar sind.
6. Becherfüllwerk nach einem der vorangehenden Ansprüche, insbesondere nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß das Steigrohr eine orthogonal zu seiner Zylindermittelachse (L) verlaufende obere freie Stirnseite (32) aufweist, an welche eine sich geneigt in Richtung Sterilmit­telbehälter-Boden (34) erstreckende Ablauffläche (47) anschließt, welche jeweils die Einfüllöff­nung mindestens eines Überlauf-Meßbehälters (48; 49) umgrenzt.
7. Becherfüllwerk nach Anspruch 6, dadurch ge­kennzeichnet, daß die geneigte Ablauffläche (47) als rotationssymmetrische und koaxial zur Steig­rohr-Zylindermittelachse (L) verlaufende, zum Sterilmittelbehälter-Boden (34) hin divergierende Kegelstumpf-Mantelfläche ausgebildet ist.
8. Becherfüllwerk nach Anspruch 7, dadurch ge­kennzeichnet, daß der untere Rand der Kegel­stumpf-Mantelfläche (bei 47 u. 50) vom Sterilmit­telbehälter-Boden (34) distanziert ist.
9. Becherfüllwerk nach einem der Ansprüche 6-8, dadurch gekennzeichnet, daß die Ablauffläche (47) die Einfüllöffnungen mehrerer Überlauf-Meßbe­hälter (48; 49) umschließt.
10. Becherfüllwerk nach einem der Ansprüche 6-9, dadurch gekennzeichnet, daß die vorzugsweise kreiszylindrischen Überlauf-Meßbehälter (48; 49) mit ihren Mittelachsen auf demselben Kreis um die Zylindermittelachse (L) des Steigrohrs (35) ange­ordnet sind.
11. Becherfüllwerk nach Anspruch 10, dadurch gekennzeichnet, daß die Überlauf-Meßbehälter (48; 49) unterschiedliche Dosiervolumen aufweisen.
12. Becherfüllwerk nach einem der Ansprüche 6-11, dadurch gekennzeichnet, daß mehrere Saug­rohre (37) vorhanden sind, denen jeweils ein Meß­behälter (48; 49) zugeordnet ist.
13. Becherfüllwerk nach einem der Ansprüche 6-12, dadurch gekennzeichnet, daß das an seinem freien Ende die Kegelstumpf-Mantelfläche (47) mit mehreren Überlauf-Meßbehältern (48; 49) tragende Steigrohr (35) den Sterilmittelbehälter-Boden (29) drehverstellbar und axialverschieblich dich­tend durchsetzt.
14. Becherfüllwerk nach Anspruch 13, dadurch gekennzeichnet, daß das Steigrohr (35) ent­sprechend den Umfangswinkelabständen der Über­lauf-Meßbehälter (48; 49) zueinander raststufen­weise um seine Zylindermittelachse (L) drehver­stellbar ist.
EP19880102945 1987-05-14 1988-02-27 Becherfüllwerk für Nahrungs- und Genussmittel, insbesondere für Molkereiprodukte Expired - Lifetime EP0290724B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88102945T ATE64908T1 (de) 1987-05-14 1988-02-27 Becherfuellwerk fuer nahrungs- und genussmittel, insbesondere fuer molkereiprodukte.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3716096 1987-05-14
DE19873716096 DE3716096A1 (de) 1987-05-14 1987-05-14 Becherfuellwerk fuer nahrungs- und genussmittel, insbesondere fuer molkereiprodukte

Publications (3)

Publication Number Publication Date
EP0290724A2 true EP0290724A2 (de) 1988-11-17
EP0290724A3 EP0290724A3 (en) 1989-08-16
EP0290724B1 EP0290724B1 (de) 1991-07-03

Family

ID=6327517

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880102945 Expired - Lifetime EP0290724B1 (de) 1987-05-14 1988-02-27 Becherfüllwerk für Nahrungs- und Genussmittel, insbesondere für Molkereiprodukte

Country Status (5)

Country Link
US (1) US4862933A (de)
EP (1) EP0290724B1 (de)
AT (1) ATE64908T1 (de)
DE (2) DE3716096A1 (de)
ES (1) ES2024569B3 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981649A (en) * 1988-03-25 1991-01-01 Snow Brand Milk Products Co., Ltd. Means for lid sterilization and temporal sealing
EP0741972B1 (de) * 1995-05-09 2001-11-14 Societe Des Produits Nestle S.A. Vorrichtung und Verfahren zur Dosierung einen Nahrungsmittels in Form einer Musters
US5664487A (en) * 1996-09-19 1997-09-09 Tetra Laval Holdings & Finance Sa Sanitary filling nozzle mount
US6536188B1 (en) * 1999-02-02 2003-03-25 Steuben Foods, Inc. Method and apparatus for aseptic packaging
DE10008876A1 (de) 2000-02-25 2001-09-06 Hamba Maschf Vorrichtung zum Befüllen von Flaschen und anderen Behältern mit Nahrungs- und Genußmitteln, wie mit dünnflüssigen bis pasteusen Molkerei- und Fettprodukten, Säften, Wässern od. dgl.
DE10009006C1 (de) * 2000-02-25 2001-04-26 Hamba Maschf Vorrichtung zum Befüllen von Flaschen und anderen Behältern mit Nahrungs- und Genußmitteln, wie mit dünnflüssigen bis pasteusen Molkerei- und Fettprodukten, Säften, Wässern o. dgl.
FR2820110B1 (fr) * 2001-01-29 2003-08-15 Valois Sa Ensemble et procede de fabrication, de montage et de remplissage d'un dispositif de distribution de produit fluide
US20050095222A1 (en) * 2003-10-29 2005-05-05 Taro Suzuki Allergen inhibitor, allergen-inhibiting method, allergen-inhibiting fiber and allergen-inhibiting sheet
ITBO20050010A1 (it) * 2005-01-12 2006-07-13 Ima Spa Impianto compatto per il confezionamento in ambiente sterile di prodotti liquidi iniettabili in contenitori
US8356461B2 (en) * 2008-02-20 2013-01-22 H2Local, Inc. Apparatus for cleaning, filling, and sealing a container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2120765A5 (en) * 1970-12-28 1972-08-18 Hamba Maschinen H Muller Packaging liquid foods - automatically and sterilising containers
FR2487725A1 (fr) * 1980-08-01 1982-02-05 Resitec Doseur pour l'addition d'adjuvants liquides au beton

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1973755A (en) * 1933-07-13 1934-09-18 William O Geyer Chemical laboratory apparatus
US2614742A (en) * 1946-08-16 1952-10-21 Gaskell & Chambers Ltd Apparatus for charging containers with measured quantities of liquid
US3566575A (en) * 1968-02-26 1971-03-02 Ex Cell O Corp Aseptic packaging machine
CH513078A (de) * 1969-08-27 1971-09-30 Greiner Electronic Ag Einrichtung zur Abgabe einer Flüssigkeit
US4086305A (en) * 1976-06-10 1978-04-25 Dragerwerk Aktiengesellschaft Humidifier for respirators having a sealed container water supply to a water storage tank
US4409775A (en) * 1977-08-22 1983-10-18 The Mead Corporation Apparatus for the aseptic packing of high acid food
US4204612A (en) * 1978-05-11 1980-05-27 Foam Controls Inc. System for applying foam insulation
SU992070A1 (ru) * 1981-09-28 1983-01-30 Тартуский Ордена Трудового Красного Знамени Государственный Университет Ингал тор
EP0085758A3 (de) * 1982-02-10 1984-10-24 Molkerei Elsdorf e.G. Vorrichtung und Verfahren zum automatischen keimarmen Abfüllen von loser Milch in Flaschen
DE3303939A1 (de) * 1983-02-05 1984-08-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zur messung mechanischer eigenschaften einer fluessigkeit
JPS59191637U (ja) * 1983-06-04 1984-12-19 株式会社 堀場製作所 試料吸引機構
DE3414268A1 (de) * 1984-04-14 1985-10-24 Kolbus Gmbh & Co Kg Verfahren und vorrichtung zum entkeimen von lebensmittelbehaeltern
US4637378A (en) * 1984-11-01 1987-01-20 Olympus Optical Co., Ltd. Cleaning apparatus for endoscope
US4746067A (en) * 1986-11-07 1988-05-24 Svoboda Steven A Liquid atomizing device and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2120765A5 (en) * 1970-12-28 1972-08-18 Hamba Maschinen H Muller Packaging liquid foods - automatically and sterilising containers
FR2487725A1 (fr) * 1980-08-01 1982-02-05 Resitec Doseur pour l'addition d'adjuvants liquides au beton

Also Published As

Publication number Publication date
DE3716096C2 (de) 1990-01-04
EP0290724A3 (en) 1989-08-16
US4862933A (en) 1989-09-05
EP0290724B1 (de) 1991-07-03
DE3716096A1 (de) 1988-12-01
DE3863481D1 (de) 1991-08-08
ES2024569B3 (es) 1992-03-01
ATE64908T1 (de) 1991-07-15

Similar Documents

Publication Publication Date Title
DE2807866B1 (de) Vorrichtung zum dosierten Zufuehren von Pulver zu einer Pulververarbeitungseinheit
DE2340390A1 (de) Vorrichtung zum abgeben von nuessen und bonbons
EP0290724B1 (de) Becherfüllwerk für Nahrungs- und Genussmittel, insbesondere für Molkereiprodukte
EP0897864A2 (de) Vorrichtung und Verfahren zum dosierten Abfüllen von flüssigen bis pastösen Produkten
DE2642340A1 (de) Vorrichtung zur behandlung von saatgut mit einer fluessigkeit
EP0132628B1 (de) Gerät zur dosierten Ausgabe von Flüssigkeit
DE2704239C3 (de) Gerät zur wiederholten Entnahme von Meßproben aus Flüssigkeiten
DE3819419C2 (de)
DE2649664A1 (de) Pulverabfuellvorrichtung
DE3536186C2 (de) Vorrichtung zur Zuführung stabförmiger Gegenstände, beispielsweise Zigaretten, zu einer Behandlungsstation oder dergleichen
DE4423254A1 (de) Pneumatische Fördervorrichtung für Pulver, insbesondere Beschichtungspulver
DE1929589C3 (de) Dosiervorrichtung zum Abfüllen von fließfähigem Gut in Konservendosen
DE10130808C2 (de) Probenteiler
DE2648330C2 (de) Vorrichtung zur Entnahme einer Probe aus einer abgepumpten begrenzten Menge einer inhomogenen Flüssigkeit
DE3236647A1 (de) Vorrichtung zur dosierbaren ausgabe von dickstoffen
DE60002834T2 (de) Verfahren und vorrichtung zum dosieren von flüssigkeiten
DE2649046C2 (de) Druckluft-Spritzmaschine für Beton, Mörtel, o.ä. Gut mit Dosiervorrichtung
DE2924124C2 (de) Probengeber
DE1803371A1 (de) Verfahren und Vorrichtung zum vollstaendigen Entleeren eines mit einer viskosen oderpastenartigen Substanz angefuellten Behaelters
DE3120017C2 (de)
DE2043281C3 (de) Maschine zum Einsetzen von dosierten Mengen geschmolzenen thermoplastischen Kunststoffs in Verschlußkapseln o.dgl
DE1934609C3 (de) Verfahren und Vorrichtung zur dosierten Abgabe von Flüssigkeiten
DE19735619A1 (de) Vorrichtung zum dosierten Abfüllen von flüssigen bis pastösen Produkten, insbesondere eine mehrbahnige Aseptikmaschine
EP0099555B1 (de) Dosiergerät und Verfahren zum Betrieb des Geräts
DE19541397A1 (de) Vorrichtung zum volumetrischen Ausbringen und exakten Dosieren von Granulaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19891017

17Q First examination report despatched

Effective date: 19901213

ITF It: translation for a ep patent filed

Owner name: CALVANI SALVI E VERONELLI S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 64908

Country of ref document: AT

Date of ref document: 19910715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3863481

Country of ref document: DE

Date of ref document: 19910808

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HAMBA-MASCHINENFABRIK HANS A. MUELLER GMBH & CO KG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2024569

Country of ref document: ES

Kind code of ref document: B3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88102945.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950215

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950216

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950220

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950221

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950223

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950224

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950228

Year of fee payment: 8

Ref country code: NL

Payment date: 19950228

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950302

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960227

Ref country code: AT

Effective date: 19960227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960228

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960228

Ref country code: BE

Effective date: 19960228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960229

Ref country code: CH

Effective date: 19960229

BERE Be: lapsed

Owner name: HAMBA-MASCHINENFABRIK HANS A. MULLER G.M.B.H. & C

Effective date: 19960228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960901

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961031

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050227