EP0260367B1 - Refrigeration plant - Google Patents

Refrigeration plant Download PDF

Info

Publication number
EP0260367B1
EP0260367B1 EP86730138A EP86730138A EP0260367B1 EP 0260367 B1 EP0260367 B1 EP 0260367B1 EP 86730138 A EP86730138 A EP 86730138A EP 86730138 A EP86730138 A EP 86730138A EP 0260367 B1 EP0260367 B1 EP 0260367B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
condenser
liquid separator
low
collecting area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86730138A
Other languages
German (de)
French (fr)
Other versions
EP0260367A1 (en
Inventor
Manfred Smentek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Annemarie Smentek Te Berlijn Bondsrepubliek Duits
Original Assignee
KNOCHE GESELLSCHAFT fur KALTE- und KLIMATECHNIK MBH
Smentek Annemarie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KNOCHE GESELLSCHAFT fur KALTE- und KLIMATECHNIK MBH, Smentek Annemarie filed Critical KNOCHE GESELLSCHAFT fur KALTE- und KLIMATECHNIK MBH
Priority to DE8686730138T priority Critical patent/DE3669916D1/en
Priority to AT86730138T priority patent/ATE51440T1/en
Priority to EP86730138A priority patent/EP0260367B1/en
Publication of EP0260367A1 publication Critical patent/EP0260367A1/en
Application granted granted Critical
Publication of EP0260367B1 publication Critical patent/EP0260367B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the invention relates to a refrigeration system according to the first part of claim 1.
  • the known compression systems work in such a way that a vaporous but easily liquefiable refrigerant is first compressed in a compressor and then liquefied in a condenser with a coolant whose temperature is lower than the condensation temperature of the refrigerant at the present pressure.
  • the compression circuit with the compressor, the condenser and the pressure reduction element is led out of the gas collecting space of the separator and flows back into it, while the low pressure circuit containing the flooded evaporator removes the refrigerant from the liquid collecting area of the separator and this in a partly gaseous, partly liquid state into the Gas collection area returns.
  • the compressor consumes a relatively large amount of energy and, in addition, the compressor and the corresponding energy supply lines have to be designed for a high connected load, which means that the operating and connection costs are considerable.
  • a similar refrigeration system is described in FR-A 2 341 109.
  • This also contains a compression circuit with a compressor, a condenser and a pressure reduction element, a low-pressure circuit with a refrigerant pump, an evaporator and a condenser, and a liquid separator connecting the compression and the low-pressure circuit.
  • the condenser in the low-pressure circuit serves as a cold store, which is loaded by the compression circuit in times of low cooling demand and is discharged in times of high cooling demand. There is no energy saving here either.
  • the invention is characterized in that the (ondensation of the refrigerant in the condenser in the low-pressure circuit can be carried out directly or indirectly by outside air.
  • a partial or even complete condensation of the refrigerant takes place in the low pressure circuit behind the evaporator. This reduces the proportion of the refrigerant to be liquefied in the compression circuit, as a result of which the amount of work to be done by the compressor is reduced accordingly.
  • the use of the practically unlimited and freely available outside air as a coolant for the condensation of the refrigerant in the condenser of the low-pressure circuit thus leads to considerable savings.
  • a compression circuit 1 and a low-pressure circuit 2 for a conventional refrigerant are connected to one another by a liquid separator 3.
  • the liquid phase of the refrigerant collects in the lower area, while the upper area is filled with the gas phase of the refrigerant.
  • the boundary between the liquid phase and the gas phase is selected so that the two connections of the compression circuit 1 open into the gas collection area, while the line through which the refrigerant is fed to the low-pressure circuit 2 always leads to the liquid collection area, and the line via which the refrigerant is returned from the low-pressure circuit 2 into the liquid separator 3, with the gas collection area of which are connected.
  • the compression circuit 1 is designed in a known manner and has a compressor 4, a condenser 5 and a pressure reduction element in the form of an HP float valve 6 arranged one behind the other in the direction of flow of the refrigerant.
  • the compressor 4 is supplied with gaseous refrigerant from the liquid separator 3, which is compressed by the latter.
  • the condenser 5 the compressed refrigerant is condensed by a supplied coolant through heat exchange and then the pressure of the liquid refrigerant in the float valve 6 is reduced to the pressure prevailing in the liquid separator 3.
  • the liquid refrigerant flows out of the float valve 6 in the liquid separator 3 and collects in the lower area.
  • a refrigerant pump 7, an evaporator 8 and a condenser 9 are arranged one behind the other in the flow direction of the refrigerant.
  • the evaporator 8 operates in flooded mode, i.e. the liquid refrigerant supplied to it by the refrigerant pump 7 is evaporated to the extent necessary to adequately cool the medium to be cooled, which is also supplied to the evaporator 8.
  • the fully or partially evaporated refrigerant passes from the evaporator 8 into the condenser 9, where it is partially or completely liquefied again. Outside air is used as the coolant for the condensation of the refrigerant in the condenser 9, which air is available in sufficient quantity and inexpensively.
  • the refrigerant discharged from the condenser 9 to the liquid separator 3 is thus at least partially liquefied.
  • the remaining gas phase collects in the upper area of the liquid separator 3 and is taken up by the compression circuit 1 and liquefied in it.
  • the condenser 9 has the effect that the amount of gaseous refrigerant still to be liquefied in the compression circuit 1 is relatively small.
  • the refrigeration system according to FIG. 1 is modified so that a three-way valve 10 is inserted into the refrigerant line between the condenser 9 and the liquid separator 3, which valve is additionally connected to the refrigerant outlet of the evaporator 8.
  • the three-way valve 10 can be set so that it only connects the output of the condenser 9 in its first switching state and only the output of the evaporator 8 to the liquid separator 3 in its second switching state. In the first switching state, the system thus corresponds to that in Fig. 1, i.e. Evaporator 8 and condenser 9 are connected in series in the refrigerant circuit.
  • the condenser 9 is bridged by the line leading from the outlet of the evaporator 8 to the three-way valve 10. Since the connection between the outlet of the condenser 9 and the liquid separator 3 is interrupted by the three-way valve 10, the condenser 9 is thus completely removed from the low-pressure refrigerant circuit.
  • This second switching state will be selected when the temperature of the outside air supplied as a coolant to the condenser 9 is higher than that of the refrigerant leaving the evaporator 8.
  • the condenser 9 With the condenser 9 switched on, it would also act as an evaporator and cool the outside air, as a result of which the work to be performed by the compressor 4 would not only not be reduced but would even be increased.
  • the refrigeration system according to Fig. 2 will therefore be chosen when the temperature of the outside air fluctuates greatly. If the temperature of the outside air exceeds a certain value, depending on the temperature of the refrigerant, for example 25 ° C or 30 ° C, then the three-way valve 10 is switched to the second switching state, so that the condenser 9 is removed from the low-pressure circuit 2 and the Compressor 4 not loaded. If the temperature of the outside air falls below the mentioned value again, the condenser 9 is switched on again and relieves the load on the compressor 4.

Abstract

1. Refrigeration plant including a compression circuit (1), consisting of a compressor (4), connected with the gas-collecting area of a refrigerant-liquid separator (3), a condenser (5), connected at the compressor outlet side, and a pressure-reducing member (6), connected at the condenser outlet side, whereby the outlet of said member is led back to the gas-collecting area of the refrigerant-liquid separator (3), as well as a low-pressure circuit (2), proceeding from the liquid-collecting area of the refrigerant-liquid separator (3) and terminating in its gas-collecting area and which comprises a refrigerant pump (7), a flood evaporator (8) serving as media cooler, and in the flow direction of the refrigerant behind the evaporator (8) a condenser (9), characterised in that the condensation of the refrigerant in the condenser (9) in the low-pressure circuit (2) is directly or indirectly ductable through outside air.

Description

Die Erfindung betrifft eine Kälteanlage gemäß dem ersten Teil des Anspruchs 1.The invention relates to a refrigeration system according to the first part of claim 1.

Die bekannten Kompressionsanlagen arbeiten in der Weise, daß ein dampfförmiges, aber leicht zu verflüssigendes Kältemittel zunächst in einem Verdichter komprimiert und dann in einem Kondensator mit einem Kühlmittel verflüssigt wird, dessen Temperatur niedriger liegt als die Kondensationstemperatur des Kältemittels bei dem vorliegenden Druck. Der Kompressionskreislauf mit dem Verdichter, dem Kondensator und dem Druckreduktionsglied wird aus dem Gassammelraum des Abscheiders herausgeführt und mündet wieder in diesen, während der den überfluteten Verdampfer enthaltende Niederdruckkreislauf das Kältemittel aus dem Flüssigkeitssammelbereich des Abscheiders entnimmt und dieses in teils gasförmigem, teils flüssigem Zustand in den Gassammelbereich zurückführt. Bei dieser bekannten Kälteanlage verbraucht der Verdichter relativ viel Energie und außerdem müssen der Verdichter und die entsprechenden Energiezuführungsleitungen für eine hohe Anschlußleistung ausgelegt sein, wodurch die Betriebs- und Anschlußkosten erheblich sind.The known compression systems work in such a way that a vaporous but easily liquefiable refrigerant is first compressed in a compressor and then liquefied in a condenser with a coolant whose temperature is lower than the condensation temperature of the refrigerant at the present pressure. The compression circuit with the compressor, the condenser and the pressure reduction element is led out of the gas collecting space of the separator and flows back into it, while the low pressure circuit containing the flooded evaporator removes the refrigerant from the liquid collecting area of the separator and this in a partly gaseous, partly liquid state into the Gas collection area returns. In this known refrigeration system, the compressor consumes a relatively large amount of energy and, in addition, the compressor and the corresponding energy supply lines have to be designed for a high connected load, which means that the operating and connection costs are considerable.

Aus der US-A 2 096 065 ist eine Kälteanlage bekannt, bei der ein Kältemittel über einen Flüssigkeitsabscheider zwischen einem Kompressionskreislauf mit Kompressor und Kondensator und einem Niederdruckkreislauf mit Verdampfer und damit in Reihe geschaltetem Zusatzkondensator zirkuliert. Der Zusatzkondensator, d.h. ein in diesem vorhandenes Eutektikum wird bei unterbrochenem Niederdruckkreislauf in der Weise über den Kompressionskreislauf abgekühlt, daß das Kältemittel im Flüssigkeitsabscheider abgekühlt wird und dieses durch Wärmetausch wiederum das Eutektikum abkühlt. Hierzu befinden sich der Zusatzkondensator und der Flüssigkeitsabscheider in einem gemeinsamen, gegenüber der Umgebung isolierten Tank. Erst nachdem dieser Ladebetrieb abgeschlossen ist, beginnt der eigentliche Kühlvorgang. Diese Kälteanlage hat somit die Wirkung, auch bei schwankenden Belastungsanforderungen eine weitgehend konstante Auslastung des Kompressionskreislaufes sicherzustellen; es findet jedoch insgesamt keine Energieeinsparung statt.From US-A 2 096 065 a refrigeration system is known in which a refrigerant circulates via a liquid separator between a compression circuit with compressor and condenser and a low pressure circuit with evaporator and thus an additional condenser connected in series. The additional capacitor, i.e. an eutectic present in this is cooled with an interrupted low-pressure circuit in such a way via the compression circuit that the refrigerant is cooled in the liquid separator and this in turn cools the eutectic by heat exchange. For this purpose, the additional condenser and the liquid separator are located in a common tank that is insulated from the environment. The actual cooling process only begins after this charging operation has been completed. This refrigeration system therefore has the effect of ensuring that the compression circuit is used to a large extent, even in the event of fluctuating load requirements; however, there is no overall energy saving.

Eine ähnliche Kälteanlage wird in der FR-A 2 341 109 beschrieben. Auch diese enthält einen Kompressionskreislauf mit einem Verdichter, einem Kondensator und einem Druckreduktionsglied, einen Niederdruckkreislauf mit einer Kältemittelpumpe, einem Verdampfer und einem Kondensator, sowie einen den Kompressions- und den Niederdruckkreislauf verbindenden Flüssigkeitsabscheider. Der Kondensator im Niederdruckkreislauf dient als Kältespeicher, der in Zeiten niedrigen Kühlbedarfs vom Kompressionskreislauf geladen und in Zeiten hohen Kühlbedarfs entladen wird. Eine Energieeinsparung findet auch hier nicht statt.A similar refrigeration system is described in FR-A 2 341 109. This also contains a compression circuit with a compressor, a condenser and a pressure reduction element, a low-pressure circuit with a refrigerant pump, an evaporator and a condenser, and a liquid separator connecting the compression and the low-pressure circuit. The condenser in the low-pressure circuit serves as a cold store, which is loaded by the compression circuit in times of low cooling demand and is discharged in times of high cooling demand. There is no energy saving here either.

Es ist daher die Aufgabe der vorliegenden Erfindung, die vorbeschriebenen bekannten Kompressionskälteanlagen in der Weise weiterzuentwickeln, laß bei gleicher Kühlwirkung der Gesamtenergie- 'erbrauch des Verdichters herabgesetzt werden ann.It is therefore the object of the present invention to further develop the above-described known compression refrigeration systems in such a way, let the same cooling effect of the total energy 'IELD ann of the compressor can be reduced.

Diese Aufgabe wird erfindungsgemäß gelöst lurch das im kennzeichnenden Teil des Anspruchs 1 tngegebene Merkmal. Eine vorteilhafte Weiterbiliung der erfindungsgemäßen Kälteanlage ergibt sich aus Anspruch 2.This object is achieved by the feature given in the characterizing part of claim 1. An advantageous further development of the refrigeration system according to the invention results from claim 2.

Die Erfindung zeichnet sich dadurch aus, daß die (ondensation des Kältemittels im Kondensator im Niederdruckkreislauf direkt oder indirekt durch Au-3enluft durchführbar ist.The invention is characterized in that the (ondensation of the refrigerant in the condenser in the low-pressure circuit can be carried out directly or indirectly by outside air.

Es erfolgt bereits im Niederdruckkreislauf hinter 1em Verdampfer eine teilweise oder sogar vollstän-1ige Kondensation des Kältemittels. Hierdurch wird 1er Anteil des im Kompressionskreislauf zu verflüs- ;igenden Kältemittels herabgesetzt, wodurch auch jie vom Verdichter zu leistende Arbeit entsprechend verringert wird. Die Verwendung der prakisch in unbegrenzter Menge und kostenfrei ver- ügbaren Außenluft als Kühlmittel bei der Kondensa- :ion des Kältemittels im Kondensator des Niederdruckkreislaufs führt somit zu erheblichen Einsparungen.A partial or even complete condensation of the refrigerant takes place in the low pressure circuit behind the evaporator. This reduces the proportion of the refrigerant to be liquefied in the compression circuit, as a result of which the amount of work to be done by the compressor is reduced accordingly. The use of the practically unlimited and freely available outside air as a coolant for the condensation of the refrigerant in the condenser of the low-pressure circuit thus leads to considerable savings.

Die Erfindung wird im folgenden anhand von in 9en Figuren dargestellten Ausführungsbeispielen iäher erläutert. Es zeigen:

  • Fig. 1 ein Schemabild einer ersten Ausführungsform einer Kompressionskälteanlage, und
  • Fig. 2 ein Schemabild einer zweiten Ausführungsform einer Kompressionsanlage.
The invention is explained in more detail below on the basis of exemplary embodiments illustrated in FIGS. Show it:
  • Fig. 1 is a schematic image of a first embodiment of a compression refrigeration system, and
  • Fig. 2 is a schematic image of a second embodiment of a compression system.

Gemäß Fig. 1 sind ein Kompressionskreislauf 1 und ein Niederdruckkreislauf 2 für ein herkömmliches Kältemittel durch einen Flüssigkeitsabscheider 3 miteinander verbunden. Im Flüssigkeitsabscheider 3 sammelt sich die flüssige Phase des Kältemittels im unteren Bereich, während der obere Bereich durch die Gasphase des Kältemittels ausgefüllt ist.1, a compression circuit 1 and a low-pressure circuit 2 for a conventional refrigerant are connected to one another by a liquid separator 3. In the liquid separator 3, the liquid phase of the refrigerant collects in the lower area, while the upper area is filled with the gas phase of the refrigerant.

Die Grenze zwischen flüssiger Phase und Gasphase ist so gewählt, daß die beiden Anschlüsse des Kompressionskreislaufs 1 in den Gassammelbereich münden, während die Leitung, durch die das Kältemittel dem Niederdruckkreislauf 2 zugeführt wird, stets mit dem Flüssigkeitssammelbereich, und die Leitung, über die das Kältemittel aus dem Niederdruckkreislauf 2 in den Flüssigkeitsabscheider 3 zurückgeführt wird, mit dessen Gassammelbereich verbunden sind.The boundary between the liquid phase and the gas phase is selected so that the two connections of the compression circuit 1 open into the gas collection area, while the line through which the refrigerant is fed to the low-pressure circuit 2 always leads to the liquid collection area, and the line via which the refrigerant is returned from the low-pressure circuit 2 into the liquid separator 3, with the gas collection area of which are connected.

Der Kompressionskreislauf 1 ist in bekannter Weise ausgebildet und weist in Fließrichtung des Kältemittels hintereinander angeordnet einen Verdichter 4, einen Kondensator 5 und ein Druckreduktionsglied in Form eines HD-Schwimmerventils 6 auf. Dem Verdichter 4 wird aus dem Flüssigkeitsabscheider 3 gasförmiges Kältemittel zugeführt, das von diesem komprimiert wird. Im Kondensator 5 wird das komprimierte Kältemittel durch ein zugeführtes Kühlmittel durch Wärmetausch kondensiert und anschließend wird der Druck des flüssigen Kältemittels im Schwimmerventil 6 auf den im Flüssigkeitsabscheider 3 herrschenden Druck reduziert. Das flüssige Kältemittel fließt aus dem Schwimmerventil 6 in den Flüssigkeitsabscheider 3 und sammelt sich im unteren Bereich.The compression circuit 1 is designed in a known manner and has a compressor 4, a condenser 5 and a pressure reduction element in the form of an HP float valve 6 arranged one behind the other in the direction of flow of the refrigerant. The compressor 4 is supplied with gaseous refrigerant from the liquid separator 3, which is compressed by the latter. In the condenser 5, the compressed refrigerant is condensed by a supplied coolant through heat exchange and then the pressure of the liquid refrigerant in the float valve 6 is reduced to the pressure prevailing in the liquid separator 3. The liquid refrigerant flows out of the float valve 6 in the liquid separator 3 and collects in the lower area.

Im Niederdruckkreislauf 2, der aus dem Flüssigkeitssammelbereich des Flüssigkeitsabscheiders 3 gespeist wird, befinden sich in Flußrichtung des Kältemittels hintereinander angeordnet eine Kältemittelpumpe 7, ein Verdampfer 8 sowie ein Kondensator 9. Der Verdampfer 8 arbeitet im überfluteten Betrieb, d.h. das ihm durch die Kältemittelpumpe 7 zugeführte flüssige Kältemittel wird in dem Maße verdampft, wie zur ausreichenden Kühlung des dem Verdampfer 8 ebenfalls zugeführten zu kühlenden Mediums erforderlich ist. Das ganz oder teilweise verdampfte Kältemittel gelangt aus dem Verdampfer 8 in den Kondensator 9, in dem es wieder teilweise oder vollständig verflüssigt wird. Als Kühlmittel für die Kondensation des Kältemittels im Kondensator 9 wird Außenluft verwendet, die in ausreichender Menge und preisgünstig zur Verfügung steht.In the low-pressure circuit 2, which is fed from the liquid collection area of the liquid separator 3, a refrigerant pump 7, an evaporator 8 and a condenser 9 are arranged one behind the other in the flow direction of the refrigerant. The evaporator 8 operates in flooded mode, i.e. the liquid refrigerant supplied to it by the refrigerant pump 7 is evaporated to the extent necessary to adequately cool the medium to be cooled, which is also supplied to the evaporator 8. The fully or partially evaporated refrigerant passes from the evaporator 8 into the condenser 9, where it is partially or completely liquefied again. Outside air is used as the coolant for the condensation of the refrigerant in the condenser 9, which air is available in sufficient quantity and inexpensively.

Das vom Kondensator 9 an den Flüssigkeitsabscheider 3 abgegebene Kältemittel ist somit zumindest teilweise verflüssigt. Die verbleibende Gasphase sammelt sich im oberen Bereich des Flüssigkeitsabscheiders 3 und wird vom Kompressionskreislauf 1 aufgenommen und in diesem verflüssigt. Jedoch bewirkt der Kondensator 9, daß die im Kompressionskreislauf 1 noch zu verflüssigende gasförmige Kältemittelmenge relativ gering ist.The refrigerant discharged from the condenser 9 to the liquid separator 3 is thus at least partially liquefied. The remaining gas phase collects in the upper area of the liquid separator 3 and is taken up by the compression circuit 1 and liquefied in it. However, the condenser 9 has the effect that the amount of gaseous refrigerant still to be liquefied in the compression circuit 1 is relatively small.

Dadurch wird der Kompressionskreislauf wesentlich entlastet, wodurch Energie eingespart wird.This significantly relieves the compression cycle, which saves energy.

Bei der Ausführungsform nach Fig. 2 ist die Kälteanlage nach Fig. 1 so modifiziert, daß in die Kältemittelleitung zwischen dem Kondensator 9 und dem Flüssigkeitsabscheider 3 ein Dreiwegeventil 10 eingesetzt ist, das zusätzlich mit dem Kältemittelausgang des Verdampfers 8 verbunden ist. Das Dreiwegeventil 10 kann so eingestellt werden, daß es in seinem ersten Schaltzustand nur den Ausgang des Kondensators 9 und in seinem zweiten Schaltzustand nur den Ausgang des Verdampfers 8 mit dem Flüssigkeitsabscheider 3 verbindet. Im ersten Schaltzustand entspricht die Anlage somit der in Fig. 1, d.h. Verdampfer 8 und Kondensator 9 sind im Kältemittelkreislauf hintereinandergeschaltet. Im zweiten Schaltzustand wird der Kondensator 9 durch die vom Ausgang des Verdampfers 8 zum Dreiwegeventil 10 führenden Leitung überbrückt. Da die Verbindung zwischen dem Ausgang des Kondensators 9 und dem Flüssigkeitsabscheider 3 durch das Dreiwegeventil 10 unterbrochen ist, ist somit der Kondensator 9 vollständig aus dem Kältemittel-Niederdruckkreislauf herausgenommen. Diesen zweiten Schaltzustand wird man wählen, wenn die Temperatur der dem Kondensator 9 als Kühlmittel zugeführten Außenluft höher ist als die des den Verdampfer 8 verlassenden Kältemittels.In the embodiment according to FIG. 2, the refrigeration system according to FIG. 1 is modified so that a three-way valve 10 is inserted into the refrigerant line between the condenser 9 and the liquid separator 3, which valve is additionally connected to the refrigerant outlet of the evaporator 8. The three-way valve 10 can be set so that it only connects the output of the condenser 9 in its first switching state and only the output of the evaporator 8 to the liquid separator 3 in its second switching state. In the first switching state, the system thus corresponds to that in Fig. 1, i.e. Evaporator 8 and condenser 9 are connected in series in the refrigerant circuit. In the second switching state, the condenser 9 is bridged by the line leading from the outlet of the evaporator 8 to the three-way valve 10. Since the connection between the outlet of the condenser 9 and the liquid separator 3 is interrupted by the three-way valve 10, the condenser 9 is thus completely removed from the low-pressure refrigerant circuit. This second switching state will be selected when the temperature of the outside air supplied as a coolant to the condenser 9 is higher than that of the refrigerant leaving the evaporator 8.

In diesem Fall würde bei eingeschaltetem Kondensator 9 dieser ebenfalls als Verdampfer wirken und die Außenluft kühlen, wodurch die vom Verdichter 4 zu leistende Arbeit nicht nur nicht verringert, sondern sogar noch erhöht würde. Die Kälteanlage nach Fig. 2 wird man somit wählen, wenn die Temperatur der Außenluft stark schwankt. Übersteigt die Temperatur der Außenluft einen bestimmten, von der Temperatur des Kältemittels abhängigen Wert, beispielsweise 25°C oder 30°C, dann erfolgt eine Umschaltung des Dreiwegeventils 10 in den zweiten Schaltzustand, so daß der Kondensator 9 aus dem Niederdruckkreislauf 2 herausgenommen wird und den Verdichter 4 nicht belastet. Fällt die Temperatur der Außenluft wieder unter den genannten Wert, wird der Kondensator 9 wieder zugeschaltet und entlastet den Verdichter 4.In this case, with the condenser 9 switched on, it would also act as an evaporator and cool the outside air, as a result of which the work to be performed by the compressor 4 would not only not be reduced but would even be increased. The refrigeration system according to Fig. 2 will therefore be chosen when the temperature of the outside air fluctuates greatly. If the temperature of the outside air exceeds a certain value, depending on the temperature of the refrigerant, for example 25 ° C or 30 ° C, then the three-way valve 10 is switched to the second switching state, so that the condenser 9 is removed from the low-pressure circuit 2 and the Compressor 4 not loaded. If the temperature of the outside air falls below the mentioned value again, the condenser 9 is switched on again and relieves the load on the compressor 4.

Claims (2)

1. Refrigeration plant including a compression circuit (1), consisting of a compressor (4), connected with the gas-collecting area of a refrigerant-liquid separator (3), a condenser (5), connected at the compressor outlet side, and a pressure-reducing member (6), connected at the condenser outlet side, whereby the outlet of said member is led back to the gas-collecting area of the refrigerant-liquid separator (3), as well as a low-pressure circuit (2), proceeding from the liquid-collecting area of the refrigerant-liquid separator (3) and terminating in its gas-collecting area and which comprises a refrigerant pump (7), a flood evaporator (8) serving as media cooler, and in the flow direction of the refrigerant behind the evaporator (8) a condenser (9), characterised in that the condensation of the refrigerant in the condenser (9) in the low-pressure circuit (2) is directly or indirectly ductable through outside air.
2. Refrigeration plant according to claim 1, characterised in that the condenser (9) in the low-pressure circuit (2) can be bypassed.
EP86730138A 1986-09-16 1986-09-16 Refrigeration plant Expired - Lifetime EP0260367B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8686730138T DE3669916D1 (en) 1986-09-16 1986-09-16 REFRIGERATION PLANT.
AT86730138T ATE51440T1 (en) 1986-09-16 1986-09-16 REFRIGERATION SYSTEM.
EP86730138A EP0260367B1 (en) 1986-09-16 1986-09-16 Refrigeration plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP86730138A EP0260367B1 (en) 1986-09-16 1986-09-16 Refrigeration plant

Publications (2)

Publication Number Publication Date
EP0260367A1 EP0260367A1 (en) 1988-03-23
EP0260367B1 true EP0260367B1 (en) 1990-03-28

Family

ID=8196443

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86730138A Expired - Lifetime EP0260367B1 (en) 1986-09-16 1986-09-16 Refrigeration plant

Country Status (3)

Country Link
EP (1) EP0260367B1 (en)
AT (1) ATE51440T1 (en)
DE (1) DE3669916D1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0543194B1 (en) * 1991-11-20 1995-10-18 Air Products And Chemicals, Inc. Refrigeration apparatus and method of refrigeration
FR2697619A1 (en) * 1992-10-30 1994-05-06 Cesbron Jf Cold production and distribution plant of a new type.
JP4897284B2 (en) * 2005-12-13 2012-03-14 サンデン株式会社 Refrigeration cycle
JP2007303709A (en) * 2006-05-10 2007-11-22 Sanden Corp Refrigerating cycle
EP3159626A1 (en) * 2015-10-20 2017-04-26 Ulrich Brunner GmbH Heat pump circuit
CN109114842A (en) * 2018-09-27 2019-01-01 克莱门特捷联制冷设备(上海)有限公司 A kind of coupled mode computer-room air conditioning system and its control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2096065A (en) * 1932-03-23 1937-10-19 Ruppricht Siegfried Refrigerating system
NL7601499A (en) * 1976-02-13 1977-08-16 Cornelis Doomernik COOLING DEVICE WITH COLD ACCUMULATOR.
CA1234983A (en) * 1982-12-10 1988-04-12 Claudio Rossi Fluid cooling unit for air conditioning plant

Also Published As

Publication number Publication date
EP0260367A1 (en) 1988-03-23
DE3669916D1 (en) 1990-05-03
ATE51440T1 (en) 1990-04-15

Similar Documents

Publication Publication Date Title
DE60104034T2 (en) Cooling unit with "free cooling", also designed for operation with variable flow
DE3220335C2 (en) Heat pump system with a refrigerant mixture
DE10138255B4 (en) Arrangement of cascade refrigeration system
DE2754626C2 (en) Refrigeration system operating with an energy source at a relatively low temperature, in particular solar energy
EP0855009B1 (en) Sorption heat converter system with additional components
DE3809680C2 (en)
DE3105418A1 (en) "GAS COMPRESSION SYSTEM"
EP0260367B1 (en) Refrigeration plant
EP0021205A2 (en) Hybrid compression-absorption method for operating heat pumps or refrigeration machines
DE1551314A1 (en) Cold system
DE60218793T2 (en) Refrigerant circulation
DE2758547A1 (en) PROCESS FOR IMPROVING THE ENERGY BALANCE OF ABSORPTION REFRIGERATION SYSTEMS
EP0069756A1 (en) Heat pump arrangement.
EP2215412A1 (en) System for refrigeration, heating or air-conditioning technology, particularly refrigeration systems
EP0239837A2 (en) Method of recuperating the condensation heat of a refrigeration system, and refrigeration system for carrying out the method
DE3013518A1 (en) HEAT PUMP OR REFRIGERATOR
DE668922C (en) Continuously working absorption refrigeration machine
EP0531293B1 (en) Thermal processes for evaporating, condensing and absorbing and combination of said processes
DE3129957C2 (en)
DE19832682C2 (en) Defrosting device for an evaporator of a heat pump or an air conditioner
DE102020216027A1 (en) Gas heat pump system and method of controlling it
DE19538348C2 (en) Sorption heat converter system with additional components to increase the useful output or expand the limits for the drive, useful or cooling temperatures
DE2733653A1 (en) HEAT / COOLING MACHINE
DE2938565A1 (en) Heat temp. boosting system - uses absorption heat pump and external heat only in highest pressure expansion stage of solution
DE4003120C1 (en) Liq. mixture thermal separation method - heating re-concentrating solvent stream and mixture stream before combining at end for supply

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19880303

17Q First examination report despatched

Effective date: 19881020

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 51440

Country of ref document: AT

Date of ref document: 19900415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3669916

Country of ref document: DE

Date of ref document: 19900503

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SMENTEK, ANNEMARIE

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ANNEMARIE SMENTEK TE BERLIJN, BONDSREPUBLIEK DUITS

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930901

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930914

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19930915

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930916

Year of fee payment: 8

Ref country code: FR

Payment date: 19930916

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19930924

Year of fee payment: 8

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19930930

Year of fee payment: 8

Ref country code: CH

Payment date: 19930930

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931011

Year of fee payment: 8

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940916

Ref country code: GB

Effective date: 19940916

Ref country code: AT

Effective date: 19940916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

Ref country code: BE

Effective date: 19940930

EAL Se: european patent in force in sweden

Ref document number: 86730138.4

BERE Be: lapsed

Owner name: SMENTEK ANNEMARIE

Effective date: 19940930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940916

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950601

EUG Se: european patent has lapsed

Ref document number: 86730138.4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050916